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Abstract:  This paper presents a Boolean discrete event model-based approach for Fault Detection and 
Isolation of manufacturing systems. This approach considers a system as a set of components composed 
of discrete actuators and their associated discrete sensors. Each component model is only aware of its 
local desired, fault-free, behavior. The occurrence of any fault entailing the violation of the desired 
behavior is detected and the potential responsible candidates are isolated using event sequences, time 
delays between correlated events and state conditions, characterized by sensors readings and control 
signals issued by the controller. An application example is used to illustrate the approach. 

Keywords: Discrete-Event Systems, Decentralized approaches, Diagnosis, Automata, Manufacturing 
System.  

 

1. INTRODUCTION 

The complexity of man-made systems, such as 
communication networks, manufacturing systems, electric 
power systems, …, increases rapidly with the course of time. 
It results from the large number of subcomponents of these 
systems and the large volume of information flow. This 
increasing complexity enhances the probability of 
unpredictable faults and failures.  

The basic idea of Fault Detection and Isolation (FDI) is to 
collect sequences of observations (or symptoms), in order to 
decide whether or not a system is working normally (fault 
detection). Then if a fault is detected, FDI reports (fault 
isolation) which fault has occurred (deterministic diagnosis) 
or the most likely to have occurred (probabilistic diagnosis). 
Each fault that can result in a certain symptom, or sequence 
of observations, is considered as a possible fault candidate.   

Generally, the FDI approaches are divided into model-
reasoning and model-based approaches. The model-reasoning 
approaches (Devillez et al. 2004, Isermann 1997) construct a 
model about the system behavior based on an initial human 
experience, e.g. expert systems, on a set of historical data, 
e.g. pattern recognition and signal processing methods, etc. 
The model-based approaches (Cordier et al. 2007, 
Darkhovski et al. 2003, Hadjicostis 2005, Rozé et al. 2002, 
Patton el al. 2000, Sampath et al. 1995, Wang et al. 2005) 
establish a mathematical or analytical model about the 
behavior of a system. The model can contain the normal or 
nominal behavior (fault-free behavior) or the normal behavior 
as well as the system behavior for a predefined set of faults. 
The model may be quantitative, expressed in e.g. differential, 
difference equations, or transfer functions, etc., or a 
qualitative model, e.g. a finite-state automaton, a set of logic 
expressions, a combination of both, a Petri Net, etc.  

The principal advantage of approaches using normal and 

faulty behaviors is the precision of the fault isolation. 
However, integrating the system behavior in response to a 
predefined set of faults increases exponentially the model 
size. In addition, only predefined faults can be diagnosed. 
This disadvantage can be avoided using a fault-free model. 
However, the fault isolation cannot be as precise as the one 
using normal and faulty behaviors. 

Performing the diagnosis of large scale DES by using a 
global model is unrealistic. In addition, this type of systems is 
naturally distributed, i.e., they are composed of several 
subsystems possessing their own local information. Thus in 
this paper, we propose a distributed fault-free-model-based 
approach to diagnose plant faults of large scale DES. The 
global model is described by its components fault-free 
models. Each component is composed of an actuator and its 
associated sensors. These models are available in a library 
and represented as Boolean DES models. Each behavior 
which does not correspond to a normal one is considered as a 
faulty behavior. The components’ elements (actuators or 
sensors) responsible of this faulty behavior are considered as 
potential fault candidates. 

The paper is structured as follows. In section 2, the proposed 
approach is presented. In section 3, a manufacturing system is 
used to illustrate the approach. The last section concludes the 
paper and presents future research directions.   

2. MODEL-BASED FDI APPROACH 

2.1 System components Boolean models 

We use Boolean DES (BDES) modeling, introduced in 
(Wang 2000), to model the equipments (sensors and 
actuators) behavior of the system. The system model G 
consists of n local models: G1,…, Gn, each one owns its local 
observable events responsible of a restricted area of the 



 
 

     

 

process. The model ( )0q,h,,Y,Q,G δΣ=  is represented as 

Moore automaton and L = L(G) denotes its corresponding 
prefixed closed language. Σ  is a set of finite events and it 
includes the observable and unobservable events. Q is the set 

of states, Y is the output space, δ : *Σ x Q → Q is the state 

transition function and *Σ  is the set of all event sequences of 
the language L(G). The transition function ),( qσδ  provides 

the set of possible next states if σ  occurs at q. h : Q → Y is 
the output function. h(q) is the observed output at q. q0 is the 
initial state. Let { }

rFFF ,...,, ΠΠΠΣ Π 21
=  be the set of fault 

partitions. Each fault partition corresponds to some kind of 
faults in an equipment element (sensor or actuator). It 
consists of the set of faults which has the same effect 
according to either the configuration or maintaining 
procedure. We assume that at most one fault may occur at a 
time.   

(Balemi et al. 1993) defined controllable events ΣΣ ⊆c  as 

controller’s outputs sent to actuators, and uncontrollable 
events ΣΣ ⊆u  as the controller’s inputs coming from 

sensors. ΣΣΣΣ ⊂∪= )( uco  is the set of observable 

events. Typically, the observable events in a system are one 
of the following: enabled or disabled commands issued by 
the controller and changes of sensor readings. The 
unobservable events are failure events or other events which 
cause changes in the system state not recorded by sensors. 

Let Gi and its corresponding prefixed closed language, Li = 
L(Gi), be the local model of the restricted area of the system 

observed by this model. ( )iiiiiii q,h,,Y,Q,G
0

δΣ=   is 

represented as Moore automaton. i
u

i
c

i ΣΣΣ ∪=0  is the set of 

local observable events by Gi and o
i
o ΣΣ ⊂ . The other 

notations have the usual definition but for the restricted area 
observed by Gi. The model G is the synchronous composition 
of all the local models: G = G1 ║G2║...║Gn. G observes the 
system by one global projection function or mask, 

{ } **: oLP ΣεΣ →∪ . Thus P erases the unobservable events 

in an event sequence. The inverse projection function is 

defined as: { }u)s(PLsuP LL =∈=− :)(1 . It establishes all the 

event sequences producing the same observable event 
sequence u. Similarly, a local projection function can be 

defined for each local model Gi as: { } **: i
o

iiP ΣεΣ →∪ . 

Each state qi of G is represented by an output vector hj 
considered as a Boolean vector whose components are 
Boolean variables. Let d denote the number of state variables 
of G, the output vector hj of each state qj can be defined as: 

{ }1, ( ) ( ,..., ,..., ), 0,1 ,1 2 , Β .d d
j j j j jp jd jp jq Qh q h h h h h j h Y I∀ ∈ = = ∈ ≤ ≤ ∈ ⊆

 A transition from one state to another one is defined as a 
change of a state variable from 0 to 1, or from 1 to 0. Thus 
each transition produces an event α  characterized by either 

rising, jph=↑α , or falling, jph=↓α , edges where 

{ }dp ,...,2,1∈ . 

To describe the effect of the occurrence of an event oΣα ∈ , 

a displacement vector Eα is used. It is defined as a Boolean 

vector ),...,,...,( 1 dp eeeE αααα =  in dIB . If peα  = 1, then the 

value of pth state variable hjp will be set or reset when α  
occurs. While if peα  = 0, the value of pth state variable hjp 

will remain unchanged when  α  occurs. Consequently we 
can write:  

ααδα EhhqqQqq ijijoji ⊕=⇒=Σ∈∀∈∀ ),(,,,        (1) 

The symbol “⊕ ” denotes the logical operator Exclusive-OR. 

Similarly, we can define the displacement vectors for the 
other observable events. The set of all the displacement 
vectors of all the events provides the displacement matrix E. 
For each event 0α Σ∈ , an enablement condition, 

{ }1,0)( ∈iqenα , is defined in order to indicate if the event α 

can occur at the state qi, 1)( =iqenα , or not, 0)( =iqenα . 

Consequently, (1) can be re-written as: 

, , , ( , ) ( . ( ))i j o j i j i α α iq q Q α Σ q δ α q h h E en q∀ ∈ ∀ ∈ = ⇒ = ⊕   (2) 

The symbol “.” denotes the logical operator AND. 

2.2 Constrained-system Boolean model 

Let ( )0q,h,,Y,Q,S SS δΣ=  denote the constrained-system 

model, characterized as Moore automaton. It defines the 
global desired behaviour of the system and it is represented 
by the prefixed closed specification language K = 
L(S) ( )L G⊆ . S can be obtained using different algorithms 

from the literature as the ones developed in (Phillipot et al. 
2007, Ramadge and Wonham 1987) and the references 
therein. To obtain the transition functionSδ , the enablement 

conditions for all the system events at each state, 0Σ∈∀α , 

must satisfy all the specifications K, representing the desired 
behaviour: 

0 , , , ( , )

( ) 1, ( . ( ))
i j S j S i

α i j i α α i

α Σ q q Q q δ α q

en q h h E en q

∀ ∈ ∀ ∈ = ⇒

= = ⊕
                       (3) 

Thus, the constrained-system model contains only the 
authorized events at each state. Each local model Gi has a 
local constrained model Si, which is a part of the global 
constrained model S. Si is represented by the specification 
language Ki = L(Si), which is included in K. Si is a Moore 

automaton: ( )iii
S

ii
S

ii q,h,,Y,Q,S
0

δΣ=  and ii
S QQ ⊂ . All 

these notations have the usual definition but for the local 
constrained-system model Si. 

2.3 Events timing delays modelling 

The majority of sensors and actuators in manufacturing 
systems produce correlated events since state’s changes are 
usually effected by a predictable flow of materials (Pandalai 
and Holloway 2000). Therefore, a temporal model centered 
on the notion of expected event sequencing and timing 
relationships can be used.  



 
 

     

 

In this paper, we define a set of expected consequents βEC  

for each controllable event, β ∈ Σc, in order to predict 
uncontrollable but observable consequent events within pre-
defined time periods. This βEC  is constructed for 

observable events and it describes the next events that should 
occur and the relative time periods in which they are 
expected. These pre-defined time periods are determined by 
experts or by learning according to the system dynamic and 
to the desired behaviour. If u = kααβα ...21  is an observable 

event sequence starting by a controllable event β, and ending 
by the observable event sequence *

1 2... k oα α α Σ⊂ , then the 

set of expected consequents ( )βEC u  is created when the 

event β occurs. )(uECβ  has the following form :                          

)(uECβ  = { }β
α

β
α

β
α

β
α ki

CCCC ,...,,...,,
21

. β
α i

C  is a 

consequent expected after the enablement of the controllable 
event β and it is defined as follows: 

{ }min max, , ( ,[ , ], ) ,i i i
qαii i

α α αβ

α j i αC α α q t t l j i= < . This expected 

consequent means that when jα  occurs, the event iα  should 

happen at the state 
i

qα  and within the time interval 

[ i
mintα , i

maxtα ]. If it is the case then the expected consequent is 

satisfied. If the event iα  has occurred before i
mintα  or after 

i
maxtα  then the expected consequent is not satisfied and it 

provides the fault labels i

αi

α

ql , as the cause of this non 

satisfaction. The fault labels indicate one or more of fault 
candidates and they are defined by an expert. The set of 
expected consequent )(uECβ  is evaluated by an expected 

function )(uEFβ . )(uEFβ  is equal to 1 if one of its 

expected consequents is not satisfied while it is equal to zero 
if all its expected consequents are satisfied. The set of 
expected consequents )(uECβ  is deleted when they are 

satisfied, i.e., )(uEFβ  = 0. 

2.4 Fault detection and isolation checking 

We adopt the hypothesis that each behavior which does not 
correspond to a normal one is considered as abnormal one. 
Thus, a fault can occur starting from any state of the desired 
behavior. This fault occurrence is unobservable and it leads 
the system to a faulty state. Each one of these faulty states 
must be reached within a finite delay for all the event 
sequences that can lead to this state starting from any other 
one of the desired behaviour states.  

Let
jFΨ define the set of all the event sequences ending by a 

fault belonging to the fault partition 
jFΠ . Thus 

)(
jF

r
jF ΨΨ 1== ∪ denotes the set of all the event sequences 

ending by a fault belonging to one of fault partitions of ΠΣ . 

Consequently, FΨ  ⊆  (L – K), i.e., all the faulty sequences 

ending by a fault belonging to one fault partitions of ΠΣ  are 

considered as violation of the specification language K. The 

set of faulty states is defined as SF : )S(
jF

r
j 1=∪ where 

jFS  is 

the set of states reached by the occurrence of a fault 
belonging to 

jFΠ . Let 
jFH  denote the set of all state output 

vectors of the faulty states belonging to
jFS . Then, the output 

partition 
jFH  is defined as : , ( ) .

j jF Fq S h h q h H′ ′ ′ ′∀ ∈ = ⇒ ∈  

In order to ensure the fault detection, the following 
conditions must hold: 

{ }, , 1,2,..., , ( ) 1i
ρρ L ρ K i n q Q en q∀ ∈ ∈ ∀ ∈ ∀ ∈ ⇒ =          (4) 

{ }
{ }

, , 1,2,..., , ,

1,2,..., , ( ) 0 or ( ( )) 1

F

i i
ρ q

ρ L ρ L K j r ρ ψ Φ

i n q Q en q EF P ρ

∀ ∈ ∈ − ∀ ∈ ∩ ≠

∃ ∈ ∃ ∈ ⇒ = =
  (5) 

Nk ∈≤ρ                                                      (6) 

The condition (4) means that all the enablement conditions of 
all the local desired models must be satisfied for any event of 
a sequence belonging to the global desired behavior. Thus, 
this condition ensures that no conflict can occur between 
local desired models for the enablement of events at any state 
of the desired behaviour. The satisfaction of (5) ensures that 
any event sequence violating the global desired behavior, due 
to the occurrence of a fault, must be detected by reaching at 
least one state q. This detection is based on the non 
satisfaction either of the enablement condition of the latest 
event in the event sequenceρ  or of its expected function. In 

the both cases, this non satisfaction can provide a set of fault 
labels Fj, { }1,2,..,j r∈ . This later can contain one fault label, 

i.e., one fault candidate, or several fault candidates. In the 
latter case, a preference order can be defined among these 
fault candidates in order to help the human operators to 
isolate the original or real one. This preference order can be 
established using the human experience or by learning, i.e., 
simulation. Finally (6) guarantees that this detection will be 
realized in a finite delay or number of event transitions equal 
to the cardinality of the event sequenceρ . 

3. MANUFACTURING SYSTEM EXAMPLE 

To illustrate the proposed approach, we use the example of 
pick and place station of the flexible manufacturing system 
platform cellflex (http://meserp.free.fr/). This station realizes 
the import and the export of pieces by a gripper between two 
processes thanks to a pneumatic system of 3 axes (Fig. 1). 
The symbol � refers to Z axis displacement, � to X axis 
displacement, � to Y axis displacement and � to the 
pneumatic system gripper. This station is composed of 4 
actuators piloted by 6 pre-actuators produced by different 
technologies. The information about the behavior of the 
station is provided by 9 sensors (Fig. 2). 

 



 
 

     

 

 

Fig. 1. Pick and place station 
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Fig. 2. Actuators and sensors of the pick and place station 

3.1 Y axis Plant Elements models 

We will illustrate the construction of Y axis model. Same 
reasoning can be followed for the construction of the other 
axis models. The Y axis actuator is a Double Acting Cylinder 
(DAC) where their positions are given by two sensors, 
retracted yR and extended yE positions ones (Fig. 3). 

 yR yE 

Out In 

VOUT V-> VIN V<- 

 

Fig. 3. Elements of Y axis 

The Fig. 4 and Fig. 5 illustrate the free-fault models of plant 
elements of Y axis. The model GDAC (Fig. 5) evolves from its 
initial state q0 towards the states q1/VIN or q3/VOUT according, 
respectively, to the activation of the control signals In or Out. 
The states q1/VIN and q3/VOUT represent, receptively, the 
piston rod in home and in fully extended positions. If the 
model is located in the state q1, the activation of the control 
signal Out leads the piston rod to move forward. This piston 
rod movement is represented by the dynamic state q*2/V->. 
The output V-> indicates that the piston rod is in movement 
towards its fully extended position. The time required to 

reach this position, Ts, is assigned to the time variable ∆. In 
the same time, a local clock t is initiated to calculate the spent 
time during the forward movement. At this dynamic state, 
two cases can arise. In the first case, the value of t becomes 
equal to the one allocated to ∆. This means that the actuator 
has reached its fully extended position. Therefore, GDAC 
reaches the state q3 with the output Vout. In the second case, 
the control signal In is activated. This activation forces the 
piston rod to stop moving forward in order to return to its 
home position. Thus, GDAC evolves to the dynamic state q*4 
with the output V<- indicating that the piston rod is in 
inversed movement. In this case, the present spent time t is 
assigned to ∆. Then, the local clock is initiated again to 
calculate the elapsed time in the inverse movement. When 
this time becomes equal to the one allocated to ∆, the piston 
reaches its home position indicated by the state q1/VIN. The 
same reasoning can be followed for the other states. 

 ↓yR 

↑yR 

yR 

q1 

/yR 
 

q0 
↓yE 

 

↑yE 

 

yE 

q1 

/yE 
 

q0 

a) Sensor yR fault-free model b) Sensor yE fault-free model  

Fig. 4. Sensors yR and yE fault-free models  
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Fig. 5. DAC fault-free model 

For each PE, we can enumerate, with the help of an expert, 
the possible potential faulty or degraded behaviors and their 
responsible candidates. Faulty behavior causes the production 
halt while the degraded one disturbs or reduces the optimal 
production performances. Table 1 shows the labels indicating 
the faulty candidates of the faulty and degraded behaviors of  
Y axis Plant Elements.  

Table 1. Faulty and degraded behaviors and their responsible 
candidates for the Y axis Plant Elements 

Type Label Description 
ByR sensor yR blocked at 1 
B/yR sensor yR blocked at 0 
ByE sensor yE blocked at 1 
B/yE sensor yE blocked at 0 
BVin DAC blocked in retracted direction 

F
au

lty
 b

eh
av

io
rs

 

BVout DAC blocked in extended direction 

DV-> 
DAC too slowly acting in extended 

direction compared to its normal behavior 

D
eg

ra
d

ed
 

b
eh

av
io

rs 

DV<- 
DAC too slowly acting in retracted 

direction compared to its normal behavior 



 
 

     

 

However, the faulty behaviors caused by these faults are not 
integrated in the models; only their labels are defined in order 
to propose fault candidates. 

3.2 Y axis desired behavior model 

The Y axis Plant Elements can be represented as a block for 
which the inputs are the control signals of the controller, In 
and Out, and the outputs are the sensors’ information, yR and 
yE (Fig. 6). The controller is supposed to be safety and 
dependable. Consequently, it is not possible to have the 
activation of In and Out at the same time. When the control 
signal Out is activated, the normal response is ↓yR followed 
by ↑yE. 
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Fig. 6. Observable events of the “Y axis” PE 

The local constrained-system model SY for the sub-model GY 
of the Y axis Plant Elements is depicted in Fig. 7. Since any 
double effect cylinder with 2 positions has the same behavior, 
the constrained model is obtained from a library given by an 
expert. In BDES modelling, this desired behavior can be 
described using two tables; the first one explains the 
enablement conditions for the occurrence of each event and 
the second one is the displacement matrix for the estimation 
of the state output vector of each next state. These tables are 
shown respectively in Table 2 and, Table 3 for the SY. As an 
example we can notice that the only event allowed to take 
place in the initial state of SY, characterized by the output 
vector h1 = (yR yE Out In)=(1000), is the enablement of the 
controllable event ↑Out since its enablement condition, 

1
( )Y

qen Out↑ , is satisfied and the enablement conditions for 

all the other events are false (See Table 2). The displacement 
vector of this event is (0010)

Out

YE
↑

= . The output vector of the 

next estimated state of SY is calculated using (2) :  
1

2 1 1( . ( )) (1000) ((0010).1) (1010)
Out Out

Yh h E en q
↑ ↑

= ⊕ = ⊕ = . 

Similarly, we calculate the next output vector according to 
the occurrence of each authorized observable event. 

1 2 
↑Out 

8 

3 

5 

↑yE 

7 6 
↑In 

↓yR 

↓In ↓Out 

SY  h : yR yE Out In   

1000 1010 0010 0110 

1001 0101 0100 

4 

↑yE 

0001 

↓yE 

 

Fig. 7. Local constrained-system model SY for the sub model 
GY 

Table 2. Enablement conditions for SY for the sub model GY 

Event: σ  
 SY Enable condition: Y

σen  

↑yR /yR . /yE . /Out . In 
↓yR yR . /yE . Out . /In 
↑yE /yR . /yE . Out . /In 

↓yE /yR . yE . /Out . In 

↑Out yR . /yE . /Out . /In 
↓Out /yR . yE . Out . /In 
↑In /yR . yE . /Out . /In 
↓In yR . /yE . /Out . In 

Table 3. The displacement matrix EY for SY 

State  
variable 

↑yR ↓yR ↑yE ↓yE ↑Out ↓Out ↑In ↓In 

yR 1 1 0 0 0 0 0 0 
yE 0 0 1 1 0 0 0 0 

Out 0 0 0 0 1 1 0 0 
In 0 0 0 0 0 0 1 1 

3.3 Expected consequents definition 

We use expected consequents to model the cylinder response 
times which can be obtained by learning and/or by technical 
documentation. For SY, we define 2 expected consequents, 
one for each command enablement:

Out
EC↑ and

In
EC↑ . The 

enablement of Out, entails the events ↓yR and ↑yE to occur 
respectively at the states q2 and q3. ↓yR is expected to occur 
within the time interval [t1, t2] after the enablement of Out, 
↑yE within the time interval [t3, t4] after the occurrence of ↓yR 
according to the system dynamic. If ↓yR does not occur at q2 
then the cylinder has not responded. Thus, the non 
satisfaction of the corresponding expected consequent at this 
state indicates the occurrence of the fault “DAC blocked in 
retracted direction” indicated by the label BVin. If ↓yR has 
occurred but too lately, then the provided fault is “DAC is 
acting too slowly in extended direction” indicated by the 
label DV->. However when ↓yR occurs, SY will transit to the 
state q3. If ↑yE has not occurred, then the non satisfaction of 
the corresponding expected consequent provides the fault 
candidate {yE} with the label B/yE to indicate that the sensor 
yE is blocked at 1, stuck-off, since the piston has responded. 
Consequently 

Out
EC↑  can be written as follows: 

{ }{ }
{ }{ }

2 Vin

3 /yE

, ,( ,[ 1, 2], B , ) ,
.

, ,( ,[ 3, 4], B , )

R V

Out

R E V

Out y q t t D
EC

y y q t t D

−>

↑
−>

 ↑ ↓ =  
↓ ↑  

 

The number of candidates can be reduced using a progressive 
monitoring. The occurrence of new sensors events can lead to 
eliminate the improbable or inconsistent candidates with this 
new observation. According to the case if the event Ry↓  or 

Ey↑  has occurred too lately or not, one faulty candidate will 

be validated. If the event Ry↓ , or Ey↑ , occurred then the 

faulty candidate is the DAC which is acting too slowly in 
extended direction compared to its normal behavior.     



 
 

     

 

Similarly, the expected function for the enablement of the 
command In is written as follows: 

{ }{ }
{ }{ }

6 Vout V

7 / yR V

, , ( ,[ 1, 2], B ,D ) ,

, , ( ,[ 3, 4], B ,D )

E

In

E R

In y q t t
EC

y y q t t

<−

↑
<−

 ↑ ↓
 =  

↓ ↑  

. 

However, these abnormal behaviors require the determination 
of the intervals defining the acceptable time displacement of 
the DAC. To determine these intervals, we have established a 
learning phase about the system’s normal behavior. The goal 
of this learning is to obtain realistic time response intervals 
related to the system dynamic and to the actuators 
technology. These intervals are obtained by a learning 
extrapolation of the probability, chance, of the occurrence of 
an event in this interval. For example, Fig. 7 presents the 
learning of time interval [t3,t4] of the occurrence of the event 
↑yE after the occurrence of the event ↓yR in response to the 
activation of the command Out. Fig. 8 presents the learning 
extrapolation when the command Out is activated. This 
activation expects as normal response the events ↓yR and ↑yE 
within respectively the time intervals [t1,t2] and [t3,t4]. 
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Fig. 7. Learning of the time interval of the occurrence of the 
event ↑yE after the occurrence of the event ↓yR in 
response to the activation of the command Out  
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Fig. 8. Learning extrapolation for the time intervals of the 
sensors events occurrences in response to the activation 
of the command Out 

3.4 Fault candidates generation for the Y axis 

The candidates responsible of the occurrence of a fault in a 
PE can be determined based on its normal models as well as 
on its temporal constraints represented by a set of templates 
or chronicles. The following hypotheses are considered: 

• Only one event responsible of a faulty or degraded 
behavior can occur at the same time, 

• The controller is supposed to be dependable and 
safety. Consequently, the controller cannot be 
responsible of any fault as the one of sending two 
opposable control signals, 

• The cylinder does not fail during operation, i.e., if it 
does fail, the fault occurs at the start of operation. 
This means that a fault cannot occur during the 
cylinder movement.   

A fault is detected either when a non expected event occurs 
or when an expected event does not occur. In the first case 
the enablement condition of the event’s occurrence is not 
satisfied. The possible faulty candidates are determined by 
identifying the state variables responsible of this non 
satisfaction. As an example, when the cylinder of the Y axis is 
in the initial state (Fig 7) and when the command Out is 
activated, the system transits to the next desired state 
characterized by the outputs Out = 1, In = 0, yR = 1, yE = 0. If 
the cylinder responds, then the sensor event ↓yR will be 
observed within the time interval [t1,t2] indicating that the 
cylinder motor is not faulty. If there is no sensor event within 
the time interval then we can infer that the DAC is blocked in 
retracted direction. However if ↓yR occurs but too late, then 
we can infer that the DAC is acting too slowly in extended 
direction compared to its normal behavior (the fault label   
DV->). 

The occurrence of ↑Out transits the Y axis model to the 
second state q2. The output vector for this state is calculated 
using (1) : 2 1( 1000) ( 0010) (1010)

Out

Yh h E
↑

= = ⊕ = = . Since 

1( ) 1
Out

Yen q
↑

= , see Table 2,  then this state corresponds to a 

state of the desired behaviour SY. If the event ↑yE occurred at 
the state q2 instead of the expected event ↓yR, then 

E

Y
yen↑ (q2) 

= / . / . . /R Ey y Out In  = 0. The only reason of this non 

enablement, based on the conditions of q2, is the variable 
state of the sensor yR. Thus, the faulty candidate is the 
retracted sensor {yR}. 

4. CONCLUSION AND FUTURE WORKS 

This paper presents a fault-free model-based approach for the 
Fault Detection and Isolation (FDI) of discrete manufacturing 
system. This approach considers the plant as a set of plant 
elements composed of actuators and their associated sensors. 
The goal is to take benefit of the composite structure of 
manufacturing systems. The use of fault-free models reduces 
the model construction complexity and avoids the necessity 
to define a priori the faults to be diagnosed.   

A fault is detected either by the occurrence of non expected 
event or by the non occurrence of expected event within a 
predefined time intervals. The later indicate the actuators 
reactivity and are determined using a learning extrapolation. 
The occurrence of non expected event is detected when the 
enablement condition of this event is not satisfied. The state 
variables, representing the sensors outputs and the control 
signals, responsible of this non satisfaction are considered as 
the fault candidates. The non occurrence of expected event, 
or its occurrence too late, within its predefined time intervals 



 
 

     

 

is detected using a template. The later is created for each 
control signal and it represents temporal constraints between 
events occurrences.   

A future work of this paper is to define a codiagnosability 
notion allowing determining the set of faults which can be 
diagnosed and the time delay required for this diagnosis. This 
diagnosis is achieved by the set of local diagnosers. Each one 
of the later is responsible of a restricted area of the system or 
a specified component. In addition, we aim to use the 
learning of system dynamic as well as the expert knowledge 
to achieve an order preference between candidates when the 
set of fault candidates contains more than one candidate.   
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