
HAL Id: hal-02337905
https://hal.science/hal-02337905

Submitted on 29 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fault Diagnosis of Discrete Event Systems Using
Components Fault-Free models

Moamar Sayed-Mouchaweh, A. Philippot, V. Carre-Menetrier, Bernard Riera

To cite this version:
Moamar Sayed-Mouchaweh, A. Philippot, V. Carre-Menetrier, Bernard Riera. Fault Diagnosis of Dis-
crete Event Systems Using Components Fault-Free models. 20th International Workshop on Principles
of Diagnosis DX’09, Jun 2009, Stockholm, Sweden. �hal-02337905�

https://hal.science/hal-02337905
https://hal.archives-ouvertes.fr

Fault Diagnosis of Discrete Event Systems Using Components Fault-Free models

M. Sayed-Mouchaweh, A. Philippot, V. Carré-Ménétrier, Bernard Riera

Université de Reims Champagne-Ardenne - Centre de Recherche en STIC (URCA-CReSTIC)
Moulin de la Housse B.P. 1039, 51687 REIMS Cedex 2, FRANCE,

({moamar.sayed-mouchaweh, alexandre.philippot, veronique.carre, bernard.riera}@univ-reims.fr)

Abstract: This paper presents a Boolean discrete event model-based approach for Fault Detection and
Isolation of manufacturing systems. This approach considers a system as a set of components composed
of discrete actuators and their associated discrete sensors. Each component model is only aware of its
local desired, fault-free, behavior. The occurrence of any fault entailing the violation of the desired
behavior is detected and the potential responsible candidates are isolated using event sequences, time
delays between correlated events and state conditions, characterized by sensors readings and control
signals issued by the controller. An application example is used to illustrate the approach.

Keywords: Discrete-Event Systems, Decentralized approaches, Diagnosis, Automata, Manufacturing
System.

1. INTRODUCTION

The complexity of man-made systems, such as
communication networks, manufacturing systems, electric
power systems, …, increases rapidly with the course of time.
It results from the large number of subcomponents of these
systems and the large volume of information flow. This
increasing complexity enhances the probability of
unpredictable faults and failures.

The basic idea of Fault Detection and Isolation (FDI) is to
collect sequences of observations (or symptoms), in order to
decide whether or not a system is working normally (fault
detection). Then if a fault is detected, FDI reports (fault
isolation) which fault has occurred (deterministic diagnosis)
or the most likely to have occurred (probabilistic diagnosis).
Each fault that can result in a certain symptom, or sequence
of observations, is considered as a possible fault candidate.

Generally, the FDI approaches are divided into model-
reasoning and model-based approaches. The model-reasoning
approaches (Devillez et al. 2004, Isermann 1997) construct a
model about the system behavior based on an initial human
experience, e.g. expert systems, on a set of historical data,
e.g. pattern recognition and signal processing methods, etc.
The model-based approaches (Cordier et al. 2007,
Darkhovski et al. 2003, Hadjicostis 2005, Rozé et al. 2002,
Patton el al. 2000, Sampath et al. 1995, Wang et al. 2005)
establish a mathematical or analytical model about the
behavior of a system. The model can contain the normal or
nominal behavior (fault-free behavior) or the normal behavior
as well as the system behavior for a predefined set of faults.
The model may be quantitative, expressed in e.g. differential,
difference equations, or transfer functions, etc., or a
qualitative model, e.g. a finite-state automaton, a set of logic
expressions, a combination of both, a Petri Net, etc.

The principal advantage of approaches using normal and

faulty behaviors is the precision of the fault isolation.
However, integrating the system behavior in response to a
predefined set of faults increases exponentially the model
size. In addition, only predefined faults can be diagnosed.
This disadvantage can be avoided using a fault-free model.
However, the fault isolation cannot be as precise as the one
using normal and faulty behaviors.

Performing the diagnosis of large scale DES by using a
global model is unrealistic. In addition, this type of systems is
naturally distributed, i.e., they are composed of several
subsystems possessing their own local information. Thus in
this paper, we propose a distributed fault-free-model-based
approach to diagnose plant faults of large scale DES. The
global model is described by its components fault-free
models. Each component is composed of an actuator and its
associated sensors. These models are available in a library
and represented as Boolean DES models. Each behavior
which does not correspond to a normal one is considered as a
faulty behavior. The components’ elements (actuators or
sensors) responsible of this faulty behavior are considered as
potential fault candidates.

The paper is structured as follows. In section 2, the proposed
approach is presented. In section 3, a manufacturing system is
used to illustrate the approach. The last section concludes the
paper and presents future research directions.

2. MODEL-BASED FDI APPROACH

2.1 System components Boolean models

We use Boolean DES (BDES) modeling, introduced in
(Wang 2000), to model the equipments (sensors and
actuators) behavior of the system. The system model G
consists of n local models: G1,…, Gn, each one owns its local
observable events responsible of a restricted area of the

process. The model ()0q,h,,Y,Q,G δΣ= is represented as

Moore automaton and L = L(G) denotes its corresponding
prefixed closed language. Σ is a set of finite events and it
includes the observable and unobservable events. Q is the set

of states, Y is the output space, δ : *Σ x Q → Q is the state

transition function and *Σ is the set of all event sequences of
the language L(G). The transition function),(qσδ provides

the set of possible next states if σ occurs at q. h : Q → Y is
the output function. h(q) is the observed output at q. q0 is the
initial state. Let { }

rFFF ,...,, ΠΠΠΣ Π 21
= be the set of fault

partitions. Each fault partition corresponds to some kind of
faults in an equipment element (sensor or actuator). It
consists of the set of faults which has the same effect
according to either the configuration or maintaining
procedure. We assume that at most one fault may occur at a
time.

(Balemi et al. 1993) defined controllable events ΣΣ ⊆c as

controller’s outputs sent to actuators, and uncontrollable
events ΣΣ ⊆u as the controller’s inputs coming from

sensors. ΣΣΣΣ ⊂∪=)(uco is the set of observable

events. Typically, the observable events in a system are one
of the following: enabled or disabled commands issued by
the controller and changes of sensor readings. The
unobservable events are failure events or other events which
cause changes in the system state not recorded by sensors.

Let Gi and its corresponding prefixed closed language, Li =
L(Gi), be the local model of the restricted area of the system

observed by this model. ()iiiiiii q,h,,Y,Q,G
0

δΣ= is

represented as Moore automaton. i
u

i
c

i ΣΣΣ ∪=0 is the set of

local observable events by Gi and o
i
o ΣΣ ⊂ . The other

notations have the usual definition but for the restricted area
observed by Gi. The model G is the synchronous composition
of all the local models: G = G1 ║G2║...║Gn. G observes the
system by one global projection function or mask,

{ } **: oLP ΣεΣ →∪ . Thus P erases the unobservable events

in an event sequence. The inverse projection function is

defined as: { }u)s(PLsuP LL =∈=− :)(1 . It establishes all the

event sequences producing the same observable event
sequence u. Similarly, a local projection function can be

defined for each local model Gi as: { } **: i
o

iiP ΣεΣ →∪ .

Each state qi of G is represented by an output vector hj
considered as a Boolean vector whose components are
Boolean variables. Let d denote the number of state variables
of G, the output vector hj of each state qj can be defined as:

{ }1, () (,..., ,...,), 0,1 ,1 2 , Β .d d
j j j j jp jd jp jq Qh q h h h h h j h Y I∀ ∈ = = ∈ ≤ ≤ ∈ ⊆

 A transition from one state to another one is defined as a
change of a state variable from 0 to 1, or from 1 to 0. Thus
each transition produces an event α characterized by either

rising, jph=↑α , or falling, jph=↓α , edges where

{ }dp ,...,2,1∈ .

To describe the effect of the occurrence of an event oΣα ∈ ,

a displacement vector Eα is used. It is defined as a Boolean

vector),...,,...,(1 dp eeeE αααα = in dIB . If peα = 1, then the

value of pth state variable hjp will be set or reset when α
occurs. While if peα = 0, the value of pth state variable hjp

will remain unchanged when α occurs. Consequently we
can write:

ααδα EhhqqQqq ijijoji ⊕=⇒=Σ∈∀∈∀),(,,, (1)

The symbol “⊕ ” denotes the logical operator Exclusive-OR.

Similarly, we can define the displacement vectors for the
other observable events. The set of all the displacement
vectors of all the events provides the displacement matrix E.
For each event 0α Σ∈ , an enablement condition,

{ }1,0)(∈iqenα , is defined in order to indicate if the event α

can occur at the state qi, 1)(=iqenα , or not, 0)(=iqenα .

Consequently, (1) can be re-written as:

, , , (,) (. ())i j o j i j i α α iq q Q α Σ q δ α q h h E en q∀ ∈ ∀ ∈ = ⇒ = ⊕ (2)

The symbol “.” denotes the logical operator AND.

2.2 Constrained-system Boolean model

Let ()0q,h,,Y,Q,S SS δΣ= denote the constrained-system

model, characterized as Moore automaton. It defines the
global desired behaviour of the system and it is represented
by the prefixed closed specification language K =
L(S) ()L G⊆ . S can be obtained using different algorithms

from the literature as the ones developed in (Phillipot et al.
2007, Ramadge and Wonham 1987) and the references
therein. To obtain the transition functionSδ , the enablement

conditions for all the system events at each state, 0Σ∈∀α ,

must satisfy all the specifications K, representing the desired
behaviour:

0 , , , (,)

() 1, (. ())
i j S j S i

α i j i α α i

α Σ q q Q q δ α q

en q h h E en q

∀ ∈ ∀ ∈ = ⇒

= = ⊕
 (3)

Thus, the constrained-system model contains only the
authorized events at each state. Each local model Gi has a
local constrained model Si, which is a part of the global
constrained model S. Si is represented by the specification
language Ki = L(Si), which is included in K. Si is a Moore

automaton: ()iii
S

ii
S

ii q,h,,Y,Q,S
0

δΣ= and ii
S QQ ⊂ . All

these notations have the usual definition but for the local
constrained-system model Si.

2.3 Events timing delays modelling

The majority of sensors and actuators in manufacturing
systems produce correlated events since state’s changes are
usually effected by a predictable flow of materials (Pandalai
and Holloway 2000). Therefore, a temporal model centered
on the notion of expected event sequencing and timing
relationships can be used.

In this paper, we define a set of expected consequents βEC

for each controllable event, β ∈ Σc, in order to predict
uncontrollable but observable consequent events within pre-
defined time periods. This βEC is constructed for

observable events and it describes the next events that should
occur and the relative time periods in which they are
expected. These pre-defined time periods are determined by
experts or by learning according to the system dynamic and
to the desired behaviour. If u = kααβα ...21 is an observable

event sequence starting by a controllable event β, and ending
by the observable event sequence *

1 2... k oα α α Σ⊂ , then the

set of expected consequents ()βEC u is created when the

event β occurs.)(uECβ has the following form :

)(uECβ = { }β
α

β
α

β
α

β
α ki

CCCC ,...,,...,,
21

. β
α i

C is a

consequent expected after the enablement of the controllable
event β and it is defined as follows:

{ }min max, , (,[,],) ,i i i
qαii i

α α αβ

α j i αC α α q t t l j i= < . This expected

consequent means that when jα occurs, the event iα should

happen at the state
i

qα and within the time interval

[i
mintα , i

maxtα]. If it is the case then the expected consequent is

satisfied. If the event iα has occurred before i
mintα or after

i
maxtα then the expected consequent is not satisfied and it

provides the fault labels i

αi

α

ql , as the cause of this non

satisfaction. The fault labels indicate one or more of fault
candidates and they are defined by an expert. The set of
expected consequent)(uECβ is evaluated by an expected

function)(uEFβ .)(uEFβ is equal to 1 if one of its

expected consequents is not satisfied while it is equal to zero
if all its expected consequents are satisfied. The set of
expected consequents)(uECβ is deleted when they are

satisfied, i.e.,)(uEFβ = 0.

2.4 Fault detection and isolation checking

We adopt the hypothesis that each behavior which does not
correspond to a normal one is considered as abnormal one.
Thus, a fault can occur starting from any state of the desired
behavior. This fault occurrence is unobservable and it leads
the system to a faulty state. Each one of these faulty states
must be reached within a finite delay for all the event
sequences that can lead to this state starting from any other
one of the desired behaviour states.

Let
jFΨ define the set of all the event sequences ending by a

fault belonging to the fault partition
jFΠ . Thus

)(
jF

r
jF ΨΨ 1== ∪ denotes the set of all the event sequences

ending by a fault belonging to one of fault partitions of ΠΣ .

Consequently, FΨ ⊆ (L – K), i.e., all the faulty sequences

ending by a fault belonging to one fault partitions of ΠΣ are

considered as violation of the specification language K. The

set of faulty states is defined as SF :)S(
jF

r
j 1=∪ where

jFS is

the set of states reached by the occurrence of a fault
belonging to

jFΠ . Let
jFH denote the set of all state output

vectors of the faulty states belonging to
jFS . Then, the output

partition
jFH is defined as : , () .

j jF Fq S h h q h H′ ′ ′ ′∀ ∈ = ⇒ ∈

In order to ensure the fault detection, the following
conditions must hold:

{ }, , 1,2,..., , () 1i
ρρ L ρ K i n q Q en q∀ ∈ ∈ ∀ ∈ ∀ ∈ ⇒ = (4)

{ }
{ }

, , 1,2,..., , ,

1,2,..., , () 0 or (()) 1

F

i i
ρ q

ρ L ρ L K j r ρ ψ Φ

i n q Q en q EF P ρ

∀ ∈ ∈ − ∀ ∈ ∩ ≠

∃ ∈ ∃ ∈ ⇒ = =
 (5)

Nk ∈≤ρ (6)

The condition (4) means that all the enablement conditions of
all the local desired models must be satisfied for any event of
a sequence belonging to the global desired behavior. Thus,
this condition ensures that no conflict can occur between
local desired models for the enablement of events at any state
of the desired behaviour. The satisfaction of (5) ensures that
any event sequence violating the global desired behavior, due
to the occurrence of a fault, must be detected by reaching at
least one state q. This detection is based on the non
satisfaction either of the enablement condition of the latest
event in the event sequenceρ or of its expected function. In

the both cases, this non satisfaction can provide a set of fault
labels Fj, { }1,2,..,j r∈ . This later can contain one fault label,

i.e., one fault candidate, or several fault candidates. In the
latter case, a preference order can be defined among these
fault candidates in order to help the human operators to
isolate the original or real one. This preference order can be
established using the human experience or by learning, i.e.,
simulation. Finally (6) guarantees that this detection will be
realized in a finite delay or number of event transitions equal
to the cardinality of the event sequenceρ .

3. MANUFACTURING SYSTEM EXAMPLE

To illustrate the proposed approach, we use the example of
pick and place station of the flexible manufacturing system
platform cellflex (http://meserp.free.fr/). This station realizes
the import and the export of pieces by a gripper between two
processes thanks to a pneumatic system of 3 axes (Fig. 1).
The symbol � refers to Z axis displacement, � to X axis
displacement, � to Y axis displacement and � to the
pneumatic system gripper. This station is composed of 4
actuators piloted by 6 pre-actuators produced by different
technologies. The information about the behavior of the
station is provided by 9 sensors (Fig. 2).

Fig. 1. Pick and place station

C
O

N
T

R
O

L
LE

R

Gripper

X axis cylinder

Y axis cylinder

Z axis cylinder

Z axis in upper end position

Z axis in lower end position

Y axis in retracted position (station side)

Y axis in extended position
(conveyor side)

X axis at feeding belt

X axis at slide 2

X axis at middle position (slide 1)

Gripper opened

Gripper closed

Actuators

Sensors Effector

PLANT

Fig. 2. Actuators and sensors of the pick and place station

3.1 Y axis Plant Elements models

We will illustrate the construction of Y axis model. Same
reasoning can be followed for the construction of the other
axis models. The Y axis actuator is a Double Acting Cylinder
(DAC) where their positions are given by two sensors,
retracted yR and extended yE positions ones (Fig. 3).

 yR yE

Out In

VOUT V-> VIN V<-

Fig. 3. Elements of Y axis

The Fig. 4 and Fig. 5 illustrate the free-fault models of plant
elements of Y axis. The model GDAC (Fig. 5) evolves from its
initial state q0 towards the states q1/VIN or q3/VOUT according,
respectively, to the activation of the control signals In or Out.
The states q1/VIN and q3/VOUT represent, receptively, the
piston rod in home and in fully extended positions. If the
model is located in the state q1, the activation of the control
signal Out leads the piston rod to move forward. This piston
rod movement is represented by the dynamic state q*2/V->.
The output V-> indicates that the piston rod is in movement
towards its fully extended position. The time required to

reach this position, Ts, is assigned to the time variable ∆. In
the same time, a local clock t is initiated to calculate the spent
time during the forward movement. At this dynamic state,
two cases can arise. In the first case, the value of t becomes
equal to the one allocated to ∆. This means that the actuator
has reached its fully extended position. Therefore, GDAC
reaches the state q3 with the output Vout. In the second case,
the control signal In is activated. This activation forces the
piston rod to stop moving forward in order to return to its
home position. Thus, GDAC evolves to the dynamic state q*4
with the output V<- indicating that the piston rod is in
inversed movement. In this case, the present spent time t is
assigned to ∆. Then, the local clock is initiated again to
calculate the elapsed time in the inverse movement. When
this time becomes equal to the one allocated to ∆, the piston
reaches its home position indicated by the state q1/VIN. The
same reasoning can be followed for the other states.

 ↓yR

↑yR

yR

q1

/yR

q0
↓yE

↑yE

yE

q1

/yE

q0

a) Sensor yR fault-free model b) Sensor yE fault-free model

Fig. 4. Sensors yR and yE fault-free models

Out.t := ∆

Out, Ts->∆

In, Ts->∆

In, t->∆

Out, t->∆

In.t := ∆

VIN

q1

V->

q*2

VOUT

q3

V<-

q*4

In

Out

q0

Fig. 5. DAC fault-free model

For each PE, we can enumerate, with the help of an expert,
the possible potential faulty or degraded behaviors and their
responsible candidates. Faulty behavior causes the production
halt while the degraded one disturbs or reduces the optimal
production performances. Table 1 shows the labels indicating
the faulty candidates of the faulty and degraded behaviors of
Y axis Plant Elements.

Table 1. Faulty and degraded behaviors and their responsible
candidates for the Y axis Plant Elements

Type Label Description
ByR sensor yR blocked at 1
B/yR sensor yR blocked at 0
ByE sensor yE blocked at 1
B/yE sensor yE blocked at 0
BVin DAC blocked in retracted direction

F
au

lty
 b

eh
av

io
rs

BVout DAC blocked in extended direction

DV->
DAC too slowly acting in extended

direction compared to its normal behavior

D
eg

ra
d

ed

b
eh

av
io

rs

DV<-
DAC too slowly acting in retracted

direction compared to its normal behavior

However, the faulty behaviors caused by these faults are not
integrated in the models; only their labels are defined in order
to propose fault candidates.

3.2 Y axis desired behavior model

The Y axis Plant Elements can be represented as a block for
which the inputs are the control signals of the controller, In
and Out, and the outputs are the sensors’ information, yR and
yE (Fig. 6). The controller is supposed to be safety and
dependable. Consequently, it is not possible to have the
activation of In and Out at the same time. When the control
signal Out is activated, the normal response is ↓yR followed
by ↑yE.

C

O
N

T
R

O
LL

E
R

Y axis retracted (station side)

Y axis extended (conveyor side)

Y axis Plant Elements

Y axis cylinder
In

Out

yR

yE

Fig. 6. Observable events of the “Y axis” PE

The local constrained-system model SY for the sub-model GY
of the Y axis Plant Elements is depicted in Fig. 7. Since any
double effect cylinder with 2 positions has the same behavior,
the constrained model is obtained from a library given by an
expert. In BDES modelling, this desired behavior can be
described using two tables; the first one explains the
enablement conditions for the occurrence of each event and
the second one is the displacement matrix for the estimation
of the state output vector of each next state. These tables are
shown respectively in Table 2 and, Table 3 for the SY. As an
example we can notice that the only event allowed to take
place in the initial state of SY, characterized by the output
vector h1 = (yR yE Out In)=(1000), is the enablement of the
controllable event ↑Out since its enablement condition,

1
()Y

qen Out↑ , is satisfied and the enablement conditions for

all the other events are false (See Table 2). The displacement
vector of this event is (0010)

Out

YE
↑

= . The output vector of the

next estimated state of SY is calculated using (2) :
1

2 1 1(. ()) (1000) ((0010).1) (1010)
Out Out

Yh h E en q
↑ ↑

= ⊕ = ⊕ = .

Similarly, we calculate the next output vector according to
the occurrence of each authorized observable event.

1 2
↑Out

8

3

5

↑yE

7 6
↑In

↓yR

↓In ↓Out

SY h : yR yE Out In

1000 1010 0010 0110

1001 0101 0100

4

↑yE

0001

↓yE

Fig. 7. Local constrained-system model SY for the sub model
GY

Table 2. Enablement conditions for SY for the sub model GY

Event: σ
 SY Enable condition: Y

σen

↑yR /yR . /yE . /Out . In
↓yR yR . /yE . Out . /In
↑yE /yR . /yE . Out . /In

↓yE /yR . yE . /Out . In

↑Out yR . /yE . /Out . /In
↓Out /yR . yE . Out . /In
↑In /yR . yE . /Out . /In
↓In yR . /yE . /Out . In

Table 3. The displacement matrix EY for SY

State
variable

↑yR ↓yR ↑yE ↓yE ↑Out ↓Out ↑In ↓In

yR 1 1 0 0 0 0 0 0
yE 0 0 1 1 0 0 0 0

Out 0 0 0 0 1 1 0 0
In 0 0 0 0 0 0 1 1

3.3 Expected consequents definition

We use expected consequents to model the cylinder response
times which can be obtained by learning and/or by technical
documentation. For SY, we define 2 expected consequents,
one for each command enablement:

Out
EC↑ and

In
EC↑ . The

enablement of Out, entails the events ↓yR and ↑yE to occur
respectively at the states q2 and q3. ↓yR is expected to occur
within the time interval [t1, t2] after the enablement of Out,
↑yE within the time interval [t3, t4] after the occurrence of ↓yR
according to the system dynamic. If ↓yR does not occur at q2
then the cylinder has not responded. Thus, the non
satisfaction of the corresponding expected consequent at this
state indicates the occurrence of the fault “DAC blocked in
retracted direction” indicated by the label BVin. If ↓yR has
occurred but too lately, then the provided fault is “DAC is
acting too slowly in extended direction” indicated by the
label DV->. However when ↓yR occurs, SY will transit to the
state q3. If ↑yE has not occurred, then the non satisfaction of
the corresponding expected consequent provides the fault
candidate {yE} with the label B/yE to indicate that the sensor
yE is blocked at 1, stuck-off, since the piston has responded.
Consequently

Out
EC↑ can be written as follows:

{ }{ }
{ }{ }

2 Vin

3 /yE

, ,(,[1, 2], B ,) ,
.

, ,(,[3, 4], B ,)

R V

Out

R E V

Out y q t t D
EC

y y q t t D

−>

↑
−>

 ↑ ↓ =  
↓ ↑  

The number of candidates can be reduced using a progressive
monitoring. The occurrence of new sensors events can lead to
eliminate the improbable or inconsistent candidates with this
new observation. According to the case if the event Ry↓ or

Ey↑ has occurred too lately or not, one faulty candidate will

be validated. If the event Ry↓ , or Ey↑ , occurred then the

faulty candidate is the DAC which is acting too slowly in
extended direction compared to its normal behavior.

Similarly, the expected function for the enablement of the
command In is written as follows:

{ }{ }
{ }{ }

6 Vout V

7 / yR V

, , (,[1, 2], B ,D) ,

, , (,[3, 4], B ,D)

E

In

E R

In y q t t
EC

y y q t t

<−

↑
<−

 ↑ ↓
 =  

↓ ↑  

.

However, these abnormal behaviors require the determination
of the intervals defining the acceptable time displacement of
the DAC. To determine these intervals, we have established a
learning phase about the system’s normal behavior. The goal
of this learning is to obtain realistic time response intervals
related to the system dynamic and to the actuators
technology. These intervals are obtained by a learning
extrapolation of the probability, chance, of the occurrence of
an event in this interval. For example, Fig. 7 presents the
learning of time interval [t3,t4] of the occurrence of the event
↑yE after the occurrence of the event ↓yR in response to the
activation of the command Out. Fig. 8 presents the learning
extrapolation when the command Out is activated. This
activation expects as normal response the events ↓yR and ↑yE
within respectively the time intervals [t1,t2] and [t3,t4].

0

5

10

15

20

25

30

35

40

45

50

12
0

12
3

12
6

12
9

13
2

13
5

13
8

14
1

14
4

14
7

15
0

time (ms)

O
cc

ur
re

nc
es

 n
u

m
be

r
of

 ↑
yE

Fig. 7. Learning of the time interval of the occurrence of the
event ↑yE after the occurrence of the event ↓yR in
response to the activation of the command Out

t

Out =1 ↓yR ↑yE

t1 t2 t3 t4

Fig. 8. Learning extrapolation for the time intervals of the
sensors events occurrences in response to the activation
of the command Out

3.4 Fault candidates generation for the Y axis

The candidates responsible of the occurrence of a fault in a
PE can be determined based on its normal models as well as
on its temporal constraints represented by a set of templates
or chronicles. The following hypotheses are considered:

• Only one event responsible of a faulty or degraded
behavior can occur at the same time,

• The controller is supposed to be dependable and
safety. Consequently, the controller cannot be
responsible of any fault as the one of sending two
opposable control signals,

• The cylinder does not fail during operation, i.e., if it
does fail, the fault occurs at the start of operation.
This means that a fault cannot occur during the
cylinder movement.

A fault is detected either when a non expected event occurs
or when an expected event does not occur. In the first case
the enablement condition of the event’s occurrence is not
satisfied. The possible faulty candidates are determined by
identifying the state variables responsible of this non
satisfaction. As an example, when the cylinder of the Y axis is
in the initial state (Fig 7) and when the command Out is
activated, the system transits to the next desired state
characterized by the outputs Out = 1, In = 0, yR = 1, yE = 0. If
the cylinder responds, then the sensor event ↓yR will be
observed within the time interval [t1,t2] indicating that the
cylinder motor is not faulty. If there is no sensor event within
the time interval then we can infer that the DAC is blocked in
retracted direction. However if ↓yR occurs but too late, then
we can infer that the DAC is acting too slowly in extended
direction compared to its normal behavior (the fault label
DV->).

The occurrence of ↑Out transits the Y axis model to the
second state q2. The output vector for this state is calculated
using (1) : 2 1(1000) (0010) (1010)

Out

Yh h E
↑

= = ⊕ = = . Since

1() 1
Out

Yen q
↑

= , see Table 2, then this state corresponds to a

state of the desired behaviour SY. If the event ↑yE occurred at
the state q2 instead of the expected event ↓yR, then

E

Y
yen↑ (q2)

= / . / . . /R Ey y Out In = 0. The only reason of this non

enablement, based on the conditions of q2, is the variable
state of the sensor yR. Thus, the faulty candidate is the
retracted sensor {yR}.

4. CONCLUSION AND FUTURE WORKS

This paper presents a fault-free model-based approach for the
Fault Detection and Isolation (FDI) of discrete manufacturing
system. This approach considers the plant as a set of plant
elements composed of actuators and their associated sensors.
The goal is to take benefit of the composite structure of
manufacturing systems. The use of fault-free models reduces
the model construction complexity and avoids the necessity
to define a priori the faults to be diagnosed.

A fault is detected either by the occurrence of non expected
event or by the non occurrence of expected event within a
predefined time intervals. The later indicate the actuators
reactivity and are determined using a learning extrapolation.
The occurrence of non expected event is detected when the
enablement condition of this event is not satisfied. The state
variables, representing the sensors outputs and the control
signals, responsible of this non satisfaction are considered as
the fault candidates. The non occurrence of expected event,
or its occurrence too late, within its predefined time intervals

is detected using a template. The later is created for each
control signal and it represents temporal constraints between
events occurrences.

A future work of this paper is to define a codiagnosability
notion allowing determining the set of faults which can be
diagnosed and the time delay required for this diagnosis. This
diagnosis is achieved by the set of local diagnosers. Each one
of the later is responsible of a restricted area of the system or
a specified component. In addition, we aim to use the
learning of system dynamic as well as the expert knowledge
to achieve an order preference between candidates when the
set of fault candidates contains more than one candidate.

ACKNOWLEDGEMENTS

This work is integrated in the regional project MOSYP
(Performances Measurements and Optimization of
Production Systems). For this, the authors would like to
thank the region Champagne-Ardennes within the project
MOSYP (CPER ICOS).

REFERENCES

Balemi, S., Hoffmann, G.J., Gyugyi, P., Wong-Toi, H. and
Franklin G.F. (1993). Supervisory control of a rapid
thermal multiprocessor. IEEE Transactions on Automatic
Control, vol. 38, N°7, pp.1040-1059.

Cordier, M.O. and Grastien, A. (2007). Exploiting
Independence in a Decentralised and Incremental
approach of diagnosis. 20th International Joint
Conference on Artificial Intelligence, pp. 292-297.

Darkhovski, B. and Staroswiecki, M. (2003). Theoretic
Approach to Decision in FDI. IEEE Transactions on
Automatic Control, vol. 48, n°5.

Devillez A., Sayed Mouchaweh M. and Billaudel P. (2004),
A process monitoring module based on fuzzy logic and
Pattern Recognition, International Journal of
Approximate Reasoning, 37/1, 43-70.

Hadjicostis, C.N. (2005). Probabilistic Fault Detection in
Finite-State Machines Based on State Occupancy
Measurements. IEEE Transactions on Automatic
Control, vol. 50, N°12, pp. 2078-2083.

Lamperti, G., Zanella, M. (2008). On Processing Temporal
Observations in Monitoring of Discrete-Event Systems.
Book Chapter, Enterprise Information Systems: Part 3,
vol. 3, pp.135-146, ISBN 978-3-540-77580-5.

Isermann, R. (1997). Supervision, Fault Detection and Fault-
Diagnosis Methods-an Introduction. Control
Engineering Practice, Vol. 5, N° 5, pp.639-652.

Patton, R., Clark R.R. and Frank M. (2000). Issues of Fault
Diagnosis for Dynamic Systems. Contributor Ron
Patton, Edition: illustrated. Published by Springer.

Philippot, A., Sayed-Mouchaweh, M. and Carré-Ménétrier,
V. (2007). Unconditional Decentralized Structure for the
fault diagnosis of Discrete Event Systems. 1st IFAC
Workshop on Dependable Control of Discrete-event
Systems (DCDS’07), Cachan, France.

Qiu, W. (2005). Decentralized/distributed failure diagnosis
and supervisory control of discrete event systems. PhD
of the Iowa State University, USA.

Rozé, L. and Cordier, M.O. (2002). Diagnosing Discrete-
Event Systems: Extending the “Diagnoser Approach” to
Deal with Telecommunication Networks. In Discrete
Event Dynamic Systems, vol. 12, n°1, pp.43-81, ISSN
0924-6703.

Sampath, M. (1995). A Discrete Event Systems Approach to
Failure Diagnosis. Thesis, University of Michigan,
Michigan, USA.

Wang, Y. (2000). Supervisory Control of Boolean Discrete-
Event Systems. Thesis of Master of Applied Sciences,
University of Toronto, Canada.

Wang, Y., Yoo, T.S. and Lafortune S. (2005). Decentralized
diagnosis of discrete event systems using conditional and
unconditional decisions. Proceeding of CDC’05, 44th
IEEE Conference on Decision and Control.

Wonham, W. M. and Ramadge, P.J. (1987). On the supremal
controllable sublanguage of a given language. SIAM
Journal on Control and Optimization, vol. 25, n°3,
pp.637-659.

