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This paper presents a Boolean discrete event model-based approach for Fault Detection and Isolation of manufacturing systems. This approach considers a system as a set of components composed of discrete actuators and their associated discrete sensors. Each component model is only aware of its local desired, fault-free, behavior. The occurrence of any fault entailing the violation of the desired behavior is detected and the potential responsible candidates are isolated using event sequences, time delays between correlated events and state conditions, characterized by sensors readings and control signals issued by the controller. An application example is used to illustrate the approach.

INTRODUCTION

The complexity of man-made systems, such as communication networks, manufacturing systems, electric power systems, …, increases rapidly with the course of time. It results from the large number of subcomponents of these systems and the large volume of information flow. This increasing complexity enhances the probability of unpredictable faults and failures.

The basic idea of Fault Detection and Isolation (FDI) is to collect sequences of observations (or symptoms), in order to decide whether or not a system is working normally (fault detection). Then if a fault is detected, FDI reports (fault isolation) which fault has occurred (deterministic diagnosis) or the most likely to have occurred (probabilistic diagnosis). Each fault that can result in a certain symptom, or sequence of observations, is considered as a possible fault candidate.

Generally, the FDI approaches are divided into modelreasoning and model-based approaches. The model-reasoning approaches [START_REF] Devillez | A process monitoring module based on fuzzy logic and Pattern Recognition[END_REF][START_REF] Isermann | Supervision, Fault Detection and Fault-Diagnosis Methods-an Introduction[END_REF]) construct a model about the system behavior based on an initial human experience, e.g. expert systems, on a set of historical data, e.g. pattern recognition and signal processing methods, etc. The model-based approaches [START_REF] Cordier | Exploiting Independence in a Decentralised and Incremental approach of diagnosis[END_REF][START_REF] Darkhovski | Theoretic Approach to Decision in FDI[END_REF][START_REF] Hadjicostis | Probabilistic Fault Detection in Finite-State Machines Based on State Occupancy Measurements[END_REF][START_REF] Rozé | Diagnosing Discrete-Event Systems: Extending the "Diagnoser Approach" to Deal with Telecommunication Networks[END_REF], Patton el al. 2000[START_REF] Sampath | A Discrete Event Systems Approach to Failure Diagnosis[END_REF][START_REF] Wang | Decentralized diagnosis of discrete event systems using conditional and unconditional decisions[END_REF]) establish a mathematical or analytical model about the behavior of a system. The model can contain the normal or nominal behavior (fault-free behavior) or the normal behavior as well as the system behavior for a predefined set of faults. The model may be quantitative, expressed in e.g. differential, difference equations, or transfer functions, etc., or a qualitative model, e.g. a finite-state automaton, a set of logic expressions, a combination of both, a Petri Net, etc.

The principal advantage of approaches using normal and faulty behaviors is the precision of the fault isolation. However, integrating the system behavior in response to a predefined set of faults increases exponentially the model size. In addition, only predefined faults can be diagnosed. This disadvantage can be avoided using a fault-free model. However, the fault isolation cannot be as precise as the one using normal and faulty behaviors.

Performing the diagnosis of large scale DES by using a global model is unrealistic. In addition, this type of systems is naturally distributed, i.e., they are composed of several subsystems possessing their own local information. Thus in this paper, we propose a distributed fault-free-model-based approach to diagnose plant faults of large scale DES. The global model is described by its components fault-free models. Each component is composed of an actuator and its associated sensors. These models are available in a library and represented as Boolean DES models. Each behavior which does not correspond to a normal one is considered as a faulty behavior. The components' elements (actuators or sensors) responsible of this faulty behavior are considered as potential fault candidates.

The paper is structured as follows. In section 2, the proposed approach is presented. In section 3, a manufacturing system is used to illustrate the approach. The last section concludes the paper and presents future research directions.

MODEL-BASED FDI APPROACH

System components Boolean models

We use Boolean DES (BDES) modeling, introduced in [START_REF] Wang | Supervisory Control of Boolean Discrete-Event Systems[END_REF], to model the equipments (sensors and actuators) behavior of the system. The system model G consists of n local models: G 1 ,…, G n , each one owns its local observable events responsible of a restricted area of the process. The model
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is represented as Moore automaton and L = L(G) denotes its corresponding prefixed closed language. Σ is a set of finite events and it includes the observable and unobservable events. Q is the set of states, Y is the output space, δ : * Σ x Q → Q is the state transition function and * Σ is the set of all event sequences of the language L(G). The transition function ) , ( q σ δ provides the set of possible next states if σ occurs at q. h : Q → Y is the output function. h(q) is the observed output at q. q 0 is the initial state. Let
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be the set of fault partitions. Each fault partition corresponds to some kind of faults in an equipment element (sensor or actuator). It consists of the set of faults which has the same effect according to either the configuration or maintaining procedure. We assume that at most one fault may occur at a time. [START_REF] Balemi | Supervisory control of a rapid thermal multiprocessor[END_REF]) defined controllable events Σ Σ ⊆ c as controller's outputs sent to actuators, and uncontrollable events Σ Σ ⊆ u as the controller's inputs coming from sensors.
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is the set of observable events. Typically, the observable events in a system are one of the following: enabled or disabled commands issued by the controller and changes of sensor readings. The unobservable events are failure events or other events which cause changes in the system state not recorded by sensors.

Let G i and its corresponding prefixed closed language, L i = L(G i ), be the local model of the restricted area of the system observed by this model.
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represented as Moore automaton. . Thus P erases the unobservable events in an event sequence. The inverse projection function is defined as:
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It establishes all the event sequences producing the same observable event sequence u. Similarly, a local projection function can be defined for each local model G i as:

{ } * * : i o i i P Σ ε Σ → ∪
. Each state q i of G is represented by an output vector h j considered as a Boolean vector whose components are Boolean variables. Let d denote the number of state variables of G, the output vector h j of each state q j can be defined as:
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A transition from one state to another one is defined as a change of a state variable from 0 to 1, or from 1 to 0. 
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The symbol " ⊕ " denotes the logical operator Exclusive-OR.

Similarly, we can define the displacement vectors for the other observable events. The set of all the displacement vectors of all the events provides the displacement matrix E.

For each event

0 α Σ ∈ , an enablement condition, { } 1 , 0 ) ( ∈ i q en α
, is defined in order to indicate if the event α can occur at the state q i , 1 ) 1) can be re-written as:

( = i q en α , or not, 0 ) ( = i q en α . Consequently, (
, , , ( , ) ( . ( ) 
) i j o j i j i α α i q q Q α Σ q δ α q h h E en q ∀ ∈ ∀ ∈ = ⇒ = ⊕ (2)
The symbol "." denotes the logical operator AND.

Constrained-system Boolean model

Let

( ) 0 q , h , , Y , Q , S S S δ Σ =
denote the constrained-system model, characterized as Moore automaton. It defines the global desired behaviour of the system and it is represented by the prefixed closed specification language K = L(S) ( ) L G ⊆ . S can be obtained using different algorithms from the literature as the ones developed in (Phillipot et al. 2007, Ramadge and Wonham 1987) and the references therein. To obtain the transition function S δ , the enablement conditions for all the system events at each state, 0 Σ ∈ ∀α , must satisfy all the specifications K, representing the desired behaviour:
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Thus, the constrained-system model contains only the authorized events at each state. Each local model G i has a local constrained model S i , which is a part of the global constrained model S. S i is represented by the specification language K i = L(S i ), which is included in K. S i is a Moore automaton:
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these notations have the usual definition but for the local constrained-system model S i .

Events timing delays modelling

The majority of sensors and actuators in manufacturing systems produce correlated events since state's changes are usually effected by a predictable flow of materials (Pandalai and Holloway 2000). Therefore, a temporal model centered on the notion of expected event sequencing and timing relationships can be used.

In this paper, we define a set of expected consequents β EC for each controllable event, β ∈ Σ c , in order to predict uncontrollable but observable consequent events within predefined time periods. This β EC is constructed for observable events and it describes the next events that should occur and the relative time periods in which they are expected. These pre-defined time periods are determined by experts or by learning according to the system dynamic and to the desired behaviour. ) (u EC β has the following form :
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is a consequent expected after the enablement of the controllable event β and it is defined as follows:
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Fault detection and isolation checking

We adopt the hypothesis that each behavior which does not correspond to a normal one is considered as abnormal one. Thus, a fault can occur starting from any state of the desired behavior. This fault occurrence is unobservable and it leads the system to a faulty state. Each one of these faulty states must be reached within a finite delay for all the event sequences that can lead to this state starting from any other one of the desired behaviour states. H is defined as : , ( ) .
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In order to ensure the fault detection, the following conditions must hold:
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The condition (4) means that all the enablement conditions of all the local desired models must be satisfied for any event of a sequence belonging to the global desired behavior. Thus, this condition ensures that no conflict can occur between local desired models for the enablement of events at any state of the desired behaviour. The satisfaction of (5) ensures that any event sequence violating the global desired behavior, due to the occurrence of a fault, must be detected by reaching at least one state q. This detection is based on the non satisfaction either of the enablement condition of the latest event in the event sequence ρ or of its expected function. In the both cases, this non satisfaction can provide a set of fault labels F j ,
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. This later can contain one fault label, i.e., one fault candidate, or several fault candidates. In the latter case, a preference order can be defined among these fault candidates in order to help the human operators to isolate the original or real one. This preference order can be established using the human experience or by learning, i.e., simulation. Finally (6) guarantees that this detection will be realized in a finite delay or number of event transitions equal to the cardinality of the event sequence ρ .

MANUFACTURING SYSTEM EXAMPLE

To illustrate the proposed approach, we use the example of pick and place station of the flexible manufacturing system platform cellflex (http://meserp.free.fr/). This station realizes the import and the export of pieces by a gripper between two processes thanks to a pneumatic system of 3 axes (Fig. 1). The symbol refers to Z axis displacement, to X axis displacement, to Y axis displacement and to the pneumatic system gripper. This station is composed of 4 actuators piloted by 6 pre-actuators produced by different technologies. The information about the behavior of the station is provided by 9 sensors (Fig. 2). We will illustrate the construction of Y axis model. Same reasoning can be followed for the construction of the other axis models. The Y axis actuator is a Double Acting Cylinder (DAC) where their positions are given by two sensors, retracted y R and extended y E positions ones (Fig. 3).
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Fig. 3. Elements of Y axis

The Fig. 4 and Fig. 5 illustrate the free-fault models of plant elements of Y axis. The model G DAC (Fig. 5) evolves from its initial state q 0 towards the states q 1 /V IN or q 3 /V OUT according, respectively, to the activation of the control signals In or Out. The states q 1 /V IN and q 3 /V OUT represent, receptively, the piston rod in home and in fully extended positions. If the model is located in the state q 1 , the activation of the control signal Out leads the piston rod to move forward. This piston rod movement is represented by the dynamic state q* 2 /V -> . The output V -> indicates that the piston rod is in movement towards its fully extended position. The time required to reach this position, T s , is assigned to the time variable ∆. In the same time, a local clock t is initiated to calculate the spent time during the forward movement. At this dynamic state, two cases can arise. In the first case, the value of t becomes equal to the one allocated to ∆. This means that the actuator has reached its fully extended position. Therefore, G DAC reaches the state q 3 with the output V out . In the second case, the control signal In is activated. This activation forces the piston rod to stop moving forward in order to return to its home position. Thus, G DAC evolves to the dynamic state q* 4 with the output V <-indicating that the piston rod is in inversed movement. In this case, the present spent time t is assigned to ∆. Then, the local clock is initiated again to calculate the elapsed time in the inverse movement. When this time becomes equal to the one allocated to ∆, the piston reaches its home position indicated by the state q 1 /V IN . The same reasoning can be followed for the other states. 

In.t := ∆ V IN q 1 V -> q* 2 V OUT q 3 V <- q* 4
In Out q 0 Fig. 5. DAC fault-free model

For each PE, we can enumerate, with the help of an expert, the possible potential faulty or degraded behaviors and their responsible candidates. Faulty behavior causes the production halt while the degraded one disturbs or reduces the optimal production performances. DAC too slowly acting in retracted direction compared to its normal behavior However, the faulty behaviors caused by these faults are not integrated in the models; only their labels are defined in order to propose fault candidates.

Y axis desired behavior model

The Y axis Plant Elements can be represented as a block for which the inputs are the control signals of the controller, In and Out, and the outputs are the sensors' information, y R and y E (Fig. 6). The controller is supposed to be safety and dependable. Consequently, it is not possible to have the activation of In and Out at the same time. When the control signal Out is activated, the normal response is ↓y R followed by ↑y E . The local constrained-system model S Y for the sub-model G Y of the Y axis Plant Elements is depicted in Fig. 7. Since any double effect cylinder with 2 positions has the same behavior, the constrained model is obtained from a library given by an expert. In BDES modelling, this desired behavior can be described using two tables; the first one explains the enablement conditions for the occurrence of each event and the second one is the displacement matrix for the estimation of the state output vector of each next state. These tables are shown respectively in Table 2 and, Table 3 for the S Y . As an example we can notice that the only event allowed to take place in the initial state of S Y , characterized by the output vector h 1 = (y R y E Out In)=(1000), is the enablement of the controllable event ↑Out since its enablement condition, 1 ( )

Y q en Out ↑
, is satisfied and the enablement conditions for all the other events are false (See Table 2). The displacement vector of this event is (0010

) Out Y E ↑ =
. The output vector of the next estimated state of S Y is calculated using (2) :
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Similarly, we calculate the next output vector according to the occurrence of each authorized observable event. 

y R 1 1 0 0 0 0 0 0 y E 0 0 1 1 0 0 0 0 Out 0 0 0 0 1 1 0 0 In 0 0 0 0 0 0 1 1

Expected consequents definition

We use expected consequents to model the cylinder response times which can be obtained by learning and/or by technical documentation. For S Y , we define 2 expected consequents, one for each command enablement:

Out EC ↑ and
In EC ↑ . The enablement of Out, entails the events ↓y R and ↑y E to occur respectively at the states q 2 and q 3 . ↓y R is expected to occur within the time interval [t1, t2] after the enablement of Out, ↑y E within the time interval [t3, t4] after the occurrence of ↓y R according to the system dynamic. If ↓y R does not occur at q 2 then the cylinder has not responded. Thus, the non satisfaction of the corresponding expected consequent at this state indicates the occurrence of the fault "DAC blocked in retracted direction" indicated by the label B Vin . If ↓y R has occurred but too lately, then the provided fault is "DAC is acting too slowly in extended direction" indicated by the label D V-> . However when ↓y R occurs, S Y will transit to the state q 3 . If ↑y E has not occurred, then the non satisfaction of the corresponding expected consequent provides the fault candidate {y E } with the label B /yE to indicate that the sensor y E is blocked at 1, stuck-off, since the piston has responded. Consequently

Out EC ↑ can be written as follows: ,[ 3, 4], B , )
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The number of candidates can be reduced using a progressive monitoring. Similarly, the expected function for the enablement of the command In is written as follows: , ( ,[ 3, 4], B , D )
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However, these abnormal behaviors require the determination of the intervals defining the acceptable time displacement of the DAC. To determine these intervals, we have established a learning phase about the system's normal behavior. The goal of this learning is to obtain realistic time response intervals related to the system dynamic and to the actuators technology. These intervals are obtained by a learning extrapolation of the probability, chance, of the occurrence of an event in this interval. For example, Fig. 7 presents the learning of time interval [t3,t4] of the occurrence of the event ↑y E after the occurrence of the event ↓y R in response to the activation of the command Out. Fig. 8 presents the learning extrapolation when the command Out is activated. This activation expects as normal response the events ↓y R and ↑y E within respectively the time intervals [t1,t2] and [t3,t4]. The candidates responsible of the occurrence of a fault in PE can be determined based on its models as well as on its temporal constraints represented by a set of templates or chronicles. The following hypotheses are considered:

• Only one event responsible of a faulty or degraded behavior can occur at the same time,

• The controller is supposed to be dependable and safety. Consequently, the controller cannot be responsible of any fault as the one of sending two opposable control signals, • The cylinder does not fail during operation, i.e., if it does fail, the fault occurs at the start of operation. This means that a fault cannot occur during the cylinder movement.

A fault is detected either when a non expected event occurs or when an expected event does not occur. In the first case the enablement condition of the event's occurrence is not satisfied. The possible faulty candidates are determined by identifying the state variables responsible of this non satisfaction. As an example, when the cylinder of the Y axis is in the initial state (Fig 7) and when the command Out is activated, the system transits to the next desired state characterized by the outputs Out = 1, In = 0, y R = 1, y E = 0. If the cylinder responds, then the sensor event ↓y R will be observed within the time interval [t1,t2] indicating that the cylinder motor is not faulty. If there is no sensor event within the time interval then we can infer that the DAC is blocked in retracted direction. However if ↓y R occurs but too late, then we can infer that the DAC is acting too slowly in extended direction compared to its normal behavior (the fault label D V-> ).

The occurrence of ↑Out transits the Y axis model to the second state q 2 . The output vector for this state is calculated using (1) : 2 en ↑ (q 2 ) = / . / . . / R E y y Out In = 0. The only reason of this non enablement, based on the conditions of q 2 , is the variable state of the sensor y R . Thus, the faulty candidate is the retracted sensor {y R }.

CONCLUSION AND FUTURE WORKS

This paper presents a fault-free model-based approach for the Fault Detection and Isolation (FDI) of discrete manufacturing system. This approach considers the plant as a set of plant elements composed of actuators and their associated sensors. The goal is to take benefit of the composite structure of manufacturing systems. The use of fault-free models reduces the model construction complexity and avoids the necessity to define a priori the faults to be diagnosed.

A fault is detected either by the occurrence of non expected event or by the non occurrence of expected event within a predefined time intervals. The later indicate the actuators reactivity and are determined using a learning extrapolation. The occurrence of non expected event is detected when the enablement condition of this event is not satisfied. The state variables, representing the sensors outputs and the control signals, responsible of this non satisfaction are considered as the fault candidates. The non occurrence of expected event, or its occurrence too late, within its predefined time intervals is detected using a template. The later is created for each control signal and it represents temporal constraints between events occurrences.

A future work of this paper is to define a codiagnosability notion allowing determining the set of faults which can be diagnosed and the time delay required for this diagnosis. This diagnosis is achieved by the set of local diagnosers. Each one of the later is responsible of a restricted area of the system or a specified component. In addition, we aim to use the learning of system dynamic as well as the expert knowledge to achieve an order preference between candidates when the set of fault candidates contains more than one candidate.
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 78 Fig. 7. Learning of the time interval of the occurrence of the event ↑y E after the occurrence of the event ↓y R in response to the activation of the command Out

Table 1 .

 1 Table 1 shows the labels indicating the faulty candidates of the faulty and degraded behaviors of Y axis Plant Elements. Faulty and degraded behaviors and their responsible candidates for the Y axis Plant Elements

	Type Label	Description
	Faulty behaviors		B yR B /yR B yE B /yE B Vin B Vout	sensor y R blocked at 1 sensor y R blocked at 0 sensor y E blocked at 1 sensor y E blocked at 0 DAC blocked in retracted direction DAC blocked in extended direction
	Degraded	behaviors	D V-> D V<-	DAC too slowly acting in extended direction compared to its normal behavior

Table 2 .

 2 Enablement conditions for S Y for the sub model G Y

	Event: σ S Y	Enable condition: Y σ en
	↑y R	/y R . /y E . /Out . In
	↓y R	y R . /y E . Out . /In
	↑y E	/y R . /y E . Out . /In
	↓y E	/y R . y E . /Out . In
	↑Out	y R . /y E . /Out . /In
	↓Out	/y R . y E . Out . /In
	↑In	/y R . y E . /Out . /In
	↓In	y R . /y E . /Out . In

Table 3 .

 3 The displacement matrix E Y for S Y State variable ↑y R ↓y R ↑y E ↓y E ↑Out ↓Out ↑In ↓In

  The occurrence of new sensors events can lead to eliminate the improbable or inconsistent candidates with this new observation. According to the case if the event

					↓	y	R	or
	↑	y	E	has occurred too lately or not, one faulty candidate will
	be validated. If the event	R ↓ , or y	E ↑ , occurred then the y
	faulty candidate is the DAC which is acting too slowly in
	extended direction compared to its normal behavior.

  Table 2, then this state corresponds to a state of the desired behaviour S Y . If the event ↑y E occurred at the state q 2 instead of the expected event ↓y R , then

E

Y y
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