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Abstract: Anthropogenic emissions can modify the frequency and intensity of5

extreme weather events such as cold-spells, heat-waves and heavy precipita-6

tions. A major challenge is to detect changes in the atmospheric circulation7

patterns associated to those extreme events. The emergence of patterns de-8

pends on the chaotic behavior of the atmospheric flow and can also be mod-9

ified by anthropogenic emissions. By embedding the circulation patterns ob-10

served during selected extremes into historical climate simulations and projec-11

tions based on emission scenarios, we find major changes in probability, pre-12

dictability and persistence of atmospheric patterns observed during extreme13

events using an analog based method. The results highlight the need to take14

into account the role of atmospheric circulation in attribution studies as future15
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extremes will be associated to modified circulation patterns.16

Significance17

Weather extreme events greatly impact agricultural, social and economic activities. In a chang-18

ing climate, it seems primordial to ask how anthropogenic emissions impact the frequency and19

intensity of extreme events. Attribution studies focus on this issue, often assuming that the20

atmospheric circulation associated to extreme events is not itself affected by climate changes.21

Here we show that the synoptic patterns associated to extreme events will be greatly affected22

by anthropogenic forcing. These results warn that such changes must be taken into account in23

future research to perform meaningful attribution studies24

Introduction25

Understanding to what extent an extreme weather event is caused or modified by anthropogenic26

climate change is a challenging scientific question. One of the outcomes of extreme event27

attribution (EEA) is an estimate of how the probability of an event is altered with climate change28

(1,2). Many local or regional extremes of temperature or precipitation are driven by features of29

the synoptic circulation (3,4). Focusing on the relations between extremes and the circulation is30

part of a general ”storyline” approach to EEA (5). Assessing changes in the synoptic circulation31

was deemed as a major scientific challenge (6–8). One of the difficulties has a statistical nature32

due to the rarity of the multivariate features of the circulation leading to extremes. The other33

major difficulty is of physical nature, related to the chaotic behavior of the atmosphere (9)34

and the complexity introduced by other components of the climate system (oceans, vegetation,35

sea and continental ice, volcanoes). This generates an intrinsic variability on a wide range of36

spatial and temporal scales which can affect the occurrence and intensity of extreme events.37

On top of this, the climate system is never on a stationary state: external forcings, both natural38
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(solar activity, volcanic eruptions, orbital parameters) and anthropogenic (greenhouse gases39

emissions, land use cover changes) change continuously on a wide range of temporal scales (10,40

11). This non stationarity is difficult to tackle from both statistical and physical perspectives.41

Here, we develop a new paradigm to treat this challenge of estimating shifts in rare atmospheric42

patterns.43

Previous studies have focused on detecting significant global and average shifts in the at-44

mospheric circulation pattern under anthropogenic forcing (6, 12–16). At this point, there is no45

general consensus on the existence and direction of a potential shift. In contrast, little attention46

has been devoted to the evolution of circulation patterns related to specific observed weather47

events (17–19). The originality of this article is to use the framework of dynamical systems48

theory applied to these specific observed circulation patterns. We aim to understand how likely,49

persistent and predictable those patterns will be under different greenhouse gases emissions50

scenarios. We build our studies on the analogs theory and the results presented in (20, 21).51

The main idea is to follow the atmospheric flow in its full phase space, avoiding to project it52

onto specific and empirical indices (such as North Atlantic Oscilation (NAO), Arctic Oscillation53

(AO)) and compute the recurrences (analogs) properties of the circulation patterns associated to54

extreme events. Indeed, (21) have shown that robust changes of atmospheric circulation patterns55

under anthropogenic emissions can be identified with this methodology.56

We test our methodology on recent observed examples of different classes of extreme events57

in Europe (cold spells, heatwaves and extreme precipitations) and their associated circulation58

patterns and we detect their changes using global coupled climate models from the CMIP559

(Coupled models inter-comparison project) ensemble.60
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Methodology61

We select 12 different extreme events: 4 cold spells, 4 heatwaves and 4 extreme precipitations62

(see Table 1 for event descriptions). The selection of these events is based on their socio-63

economic impacts and is detailed in the Supplementary Material. All these events affected one64

or more European countries and they are associated to specific circulation patterns. We define65

the circulation on a region corresponding to the North Atlantic basin and Europe [22.5N-70N,66

80W-50E]. This region has been already used in studies based on analogs (18), and on weather67

patterns (22–24). We use geopotential height at 500mb (hereafter Z500), issued from the NCEP68

reanalysis as proxy for atmospheric circulation.69

70

We extract the daily Z500 fields corresponding to the selected extreme event (average Z50071

maps anomalies during the events are shown in Figure 1). We then embed these observed tra-72

jectories into historical simulations (1951–2000), and projections (2051–2100) under a medium73

(RCP4.5) and high (RCP 8.5) emissions scenarios (25) of the CMIP5 models given in Table S1.74

Data are regridded to the NCEP spatial resolution. When we embed the portion of Z500 trajec-75

tories corresponding to extreme events, we assume that the circulation patterns associated to the76

extreme event are observed in the climate model simulations. Given that the models have biased77

representation of the geopotential heights, we apply a statistical bias correction — allowing to78

account for climate change (26) — on the Z500 fields, before the analysis. Since there is a trend79

on Z500 fields directly related to the surface temperature, we present the results for a bias cor-80

rection on the raw Z500 field as well as for a bias correction on detrended Z500 fields. Details81

about the bias correction and detrending procedures are given in the Supplementary Material.82

83

For each extreme event, we compute the analogs of the observed synoptic patterns in each set84
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of model simulations, and determine their properties. For each daily Z500 field observed during85

extreme events, we select the closest 2% of daily Z500 fields using Euclidean distance. This86

defines our analogs ensemble. Note that the results do not crucially depend on this percentage87

provided that it is in the range of 0.5 to 3%. The values of the Euclidean distance allow to88

determine how well the circulation patterns associated to extreme events fit in the simulations.89

In addition to this metric (hereafter called analogs quality and precisely defined as the average of90

the Euclidian distance of the 2% closest fields), we compute the predictability d and persistence91

θ−1 metrics (20) (see Supplementary material). Those parameters describe the recurrences of a92

system around a state in phase space. In our case, the state is the Z500 map for a given extreme93

event. Values of d and θ−1 are obtained for every day in the dataset of interest. d provides94

information on the number of pathways the system can take to reach and leave a state, and it95

acts as a proxy for the systems active number of degrees of freedom around the state of interest.96

θ−1 describes the persistence of an atmospheric circulation state in time, i.e. how long the97

system typically stays around the state of interest. A very persistent state (i.e., with a large θ−1)98

is highly stable (and therefore also highly predictable), while a very unstable state yields low99

persistence.100

By repeating this procedure for all models and scenario runs, we can detect changes in the101

atmospheric circulation observed during extreme events. A change in the analogs quality will102

tell us whether the atmospheric configuration is more or less likely in the historical than in the103

scenario experiments. A change in the dynamical indices will inform us on the change of pre-104

dictability and persistence of the circulation pattern associated to the extreme event.105

106
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Results107

Figure 2 shows the change in the atmospheric circulation associated to climate change in terms108

of relative changes (xRCP − xHIST)/xHIST where x is alternatively the analogs quality, the pre-109

dictability d and the persistence θ−1 for each of the events considered in this study. Individual110

results for each event are displayed in Figure S1–S12 in the Supplementary material. As an111

indicator of significance of the results, we use the number of models yielding changes of the112

same sign for the analogs quality (size of the circles in Figure 2). Panels a) and b) (respectively113

c) and d)) corresponds to non-detrended (respectively detrended) bias correction for RCP 4.5114

Scenario (a) and c) and RCP 8.5 Scenario (b) and (d). Figure 3 shows the same results with a115

bar representation for RCP 4.5 (a) and RCP 8.5 scenario (b).116

117

We first begin with the results for the non-detrended results shown in Figure 2-a,b and bars118

with blue edges in Figure 3. We note that different classes of extreme events have similar re-119

sponses: all heatwaves yield better analogs in RCP4.5 and RCP 8.5 than in the historical periods120

(i.e., negative change in the average Euclidean distance), although more slightly for RCP8.5.121

We also remark that the model agreement on the sign of changes is very low for the RCP8.5122

scenario, possibly meaning that the circulation deviates too much from the observed patterns to123

be observed under very large greenhouse gases forcing. All the heatwaves suffer of a decrease124

in predictability (5-10%) and a decrease in the persistence (10–15%). Cold spells become less125

likely in the RCP 4.5 (≈ 5% less) and RCP 8.5 (10–15% less) scenarios. They all become more126

persistent but interestingly, the predictability depends on the event considered. For the patterns127

connected to precipitation events, results strongly depend on the event considered. Overall, we128

find that the changes in the patterns associated to the extreme events are most of the time sig-129

nificant: there is a large agreement among different models on the sign of these changes. The130
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intensity of the changes is approximately of 10% and therefore not negligible.131

132

We analyse the effect of detrending (Figure 2-c,d and bars with red edges in Figure 3). In133

general, detrending reduces the magnitude of changes for the three indicators because we are134

looking at residuals. Those residuals between detrended and non-detrended analysis can be in-135

terpreted as the part of changes not directly linked to the thermodynamic trend on Z500, since136

the trend in Z500 are a direct consequence of antrhopogenic emissions. For some events, the137

changes in the detrended data have an opposite sign, e.g. the analogs quality for heatwave events138

which decreases in the RCP 8.5 scenario. This implies that the circulation patterns associated139

to the examined heatwaves are less probable in a RCP 8.5 scenario than in present climate. This140

does not mean that there will be no heatwaves – as it has been shown by numerous studies that141

anthropogenic climate change has led and will lead to more heatwaves (27) – but rather that142

there will be other kinds (or even unprecedented) heatwave events.143

144

Discussion145

We have provided a framework for attributing to climate change synoptic circulations associated146

to extreme events. Our analysis provides a range of indicators, which inform on the likelihood147

of observing those circulation patterns in future emission scenarios, and estimate their changes148

in predictability and persistence. Different extreme events have different responses to climate149

change. We however found similarities within each class of extremes. Performing a detrended150

or not detrended bias correction also affects the results and allows to separate the thermody-151

namic effect in the increase of the geopotential height from the residual anomalies.152

This study comes with some caveats. Models have biases in synoptic patterns associated153

to extreme events as they are marked by blocking, strong gradients of even cut-offs in the154
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Z500 fields. They also have different mean global and local temperatures and this affects the155

average height of Z500 data. This motivated our need for performing a bias correction. Another156

caveat comes from the stationarity hypothesis on 50 years periods used to pick up the analogs157

field. Detrending partly answers this problem and allows to compute the residual changes.158

Another limitation is the use of the Z500 field as a proxy of the synoptic circulation. It does159

not completely capture the synoptic circulation of the atmosphere. The time and spatial scale160

of the Z500 field may affect the results. The sensitivity of our analysis in the choice of the161

domain analyzed is reflected in the different quality of the results for heatwaves/coldspells with162

respect to flood events. Indeed the synoptic patterns leading to high precipitation yield a smaller163

scale, as shown in (19, 28)). The role of convection for these events could also be taken into164

account (29).165

The method presented has the advantage of being a very flexible and fast tool that could166

be applied in real time to observed (and potentially forecasted) extreme weather events. This167

would be a way to complete extreme event attribution diagnostics on the role of anthropogenic168

as well as natural climate change on the synoptic circulation leading to the observed event (30).169

The evaluation of which extreme events are and will become more or less predictable could170

be useful to improve weather forecast and climate projections (31). While previous studies171

mostly focus on single extreme events attribution our method is completely general and can be172

potentially applied to all possible class of extreme events. Our results also express the need of173

including the role of atmospheric circulation in attribution studies (32). Further developments174

of this tool could include the recent extensions of dynamical system techniques to take into175

account multiple variables (33), that can be used for studying compound events (34).176

177
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Event Type Region Affected Starting Date Ending Date
CS1956-SE Cold Spell Southern and Central Europe 01/02/1956 20/02/1956
CS2012-SE Cold Spell Italy & the Balkans 05/02/2012 15/02/2012
CS2013-WE Cold Spell Western and Central Europe 10/03/2013 16/03/2013
CS2017-SE Cold Spell Italy & Greece 05/01/2017 08/01/2017
FL2014-BK Flood The Balkans 31/08/2014 06/09/2014
FL2016-FR Flood France 28/05/2016 31/05/2016
FL2018-06-FR Flood France 11/06/2018 12/06/2018
FL2018-10-FR Flood France 14/10/2018 15/10/2018
HW2003-EU Heatwave Central, Western Europe 01/08/2003 15/08/2003
HW2010-RU Heatwave Eastern Europe & Russia 01/07/2010 18/07/2010
HW2017-SE Heatwave Southern Europe 01/08/2017 10/07/2017
HW2018-NE Heatwave Northern Europe 15/07/2018 02/08/2018

Table 1: Description of the extreme events analyzed in this study. More details in the Supple-
mentary Material.

Figure 1: NCEP Geopotential height Z500 anomalies (in meters) computed subtracting the
monthly climatology from the average Z500 field of the event. a-d) cold spell events, e-h)
extreme precipitations, i-l) heatwaves. Details reported in Table 1. See Supplemental material
for a description of the events.
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Materials and Methods6

Extreme Events Analyzed7

We provide here some characteristics of the extreme events analyzed in this study. They have8

been selected based on their social and economical impact, as an illustration of the method.9

1956 Southern Europe Cold spell (CS1956-SE). The cold spells events we analyze are all10

characterized by the presence of heavy snowfalls over large populated areas. The 1956 cold11

spell (Supplementary Figure 1) was one of the coldest and snowiest of the 20th century, espe-12

cially over Italy and Serbia (1). Federico Fellini in Amarcord reproduces scenes of Rimini, a13

town at sea level height in Emilia Romagna region, blocked by snow walls over 1 meter high.14

Locations such as Marseilles, Rome, Naples and Palermo recorded important snowfall amounts.15
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The duration of this event was very long with cold conditions persisting for about 20 days and16

severe effects on vegetation (2).17

2012 Southern Europe Cold spell (CS2012-SE). The 2012 cold spell (Supplementary Figure18

2) struck Western and Southern Europe with remarkable effects on the Adriatic sea region (3).19

In Bologna, over 45 cm of fresh snow fell in one night for a total over one meter during the20

whole event. Even Rome was covered by 15 cm of snow. The snow caused interruptions at21

London Heathrow airport where 10cm of snow were measured. Snow fell in Mallorca for the22

first time since 1956. Finally the snow reached 111 cm height in Sarajevo and 5 people died for23

cold-related causes.24

2013 Western Europe Cold spell (CS2013-WE). The 2013 cold spell (Supplementary Fig-25

ure 3) was marked by an unusual cold and snowy weather especially in the United Kingdom and26

in France. The snowfall affected Scotland, Ireland but also southern England and Normandy (4).27

In Normandy, nuclear power plants had to reduce their operations for few days.28

2017 Southern Europe Cold spell (CS2017-SE). The beginning of January 2017 (Supple-29

mentary Figure 4) was extremely cold in central, eastern and southern Europe. The Danube30

froze in Romania. Snowstorms affected, among other locations, Instanbul, Rome, Athens, San-31

torini and Majorca (5).32

2014 Balkan floods (FL2014-BK). A series of storms (Supplementary Figure 5) occurred33

between the Adriatic regions of Italy and the Balkans (especially Croatia, Albania and Greece)34

at the beginning of September 2014. Extreme precipitations associated to hail, heavy rain and35

tornados were reported in Puglia as well as in Costal Croatia. One station in Puglia (Falcare)36

reported over 700 mm rainy in 48h (6).37
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2016 French floods (FL2016-FR). Continued heavy rain fell between 28 May to 31 May38

2016 and caused major flooding in several departments including Seine-et Marne and Loiret39

(7,8) (Supplementary Figure 6). 155 mm of rain were recorded in Melleroy, Loiret Department,40

which is the equivalent of 2 to 3 months of rain. The level of the Loing river at Nemours broke41

a 100-year record by reaching 4.63 meters. The Seine river overflowed its banks and reached a42

level of 6.10 meters at the Paris Austerlitz reference gauge. (9) performed an attribution study43

of the event and showed that anthropogenic climate change has increased the likelihood of such44

an event by about a factor of 2 on the Seine and Loire rivers.45

June 2018 French floods (FL2018-06-FR). A serie of storms (Supplementary Figure 7) oc-46

curred in France from mid-May to mid-June 2018. In particular, between 11 and 12 June 201847

heavy rainfall struck the regions, Ile de France, Pays de Loire, Normandy, Brittany, Centre-Val48

de Loire and Grand Est (10). Records were broken in Ile de France and in Brittany. For in-49

stance, according to Météo-France, 75mm of precipitation fell in 24 hours in Orly and 71 mm50

of precipitation fell in 24 hours in Nantes. The heavy rainfall also caused flooding, especially51

in the South of Paris, Brittany, Normandy and in Southwestern France.52

October 2018 French floods (FL2018-10-FR). Heavy rainfall (Supplementary Figure 8) fell53

in the South of France on October 14-15 (11). The event was particularly extreme in Aude54

department. For instance, 295 mm of rain fell in Trèbes and the level of the Aude River in this55

town increased by 7 meters overnight. Heavy rainfall were also recorded at the same time in the56

Mediterranean islands of Corsica (France) and Sardinia (Italy).57

2003 European heatwave (HW2003-EU). The 2003 European heatwave (Supplementary58

Figure 9) broke records of mean temperature in Western Europe in the past five centuries (12).59

Numerous studies have shown that climate change increased the probability of occurrence of60
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such a heatwave (e.g. (13, 14)). The maximal temperature anomaly was centered over West-61

ern in the first half of August (15), hence the choice of the dates for our study (see Table 1).62

The very low soil moisture exacerbated the intensity of the heatwave (16, 17). (13) evaluated63

that anthropogenic climate change increased the probability of this event at least 10 times since64

the preindustrial era. (18) evaluated that a trend in the atmospheric circulation that lead to that65

event.66

2010 Russian heatwave (HW2010-RU). The 2010 Russian heatwave (Supplementary Figure67

10) is also one of the most extreme heatwaves recorded in Europe (19,20). Climate change also68

seemed to increase the probability of occurrence of such an event (21, 22). Low soil moisture69

and atmospheric circulation both played a role, as analyzed in (23). In (22) a threefold increase70

of the probability of such an event was shown. In (24) it was observed that there was no trend71

in the atmospheric circulation that lead to that event.72

2017 Southern Europe heatwave (HW2017-SE). Western Europe and the Euro-Mediterranean73

region experienced long spells of heat in the Summer of 2017 (Supplementary Figure 11).74

Madrid (Retiro) reached 40.6C on July 13, equaling the 2012 record. Heat episodes contin-75

ued into August, extending to many areas in southern Europe (25). The heatwave in early76

August was described as the worst heat wave since 2003 (BBC 2017) in southern Europe, with77

local maximum temperatures in Italy and the Balkans exceeding 40C for several days. Records78

were broken in southern France (e.g. 4 August, Nmes-Courbessac, 41.6C), and nighttime tem-79

peratures exceeded 30C in Corsica and Croatia. Anthropogenic climate change has increased80

the odds of such an event at least threefold since 1950.81

Northern Europe heatwave 2018 (HW2018-NE). A heatwave struck northern Europe in82

the summer of 2018 (Supplementary Figure 12). Daily temperature anomalies reached 14K in83
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Scandinavia, the Netherlands and Belgium, where records of temperature were broken. This84

heatwave was exacerbated by a drought caused by a persisting circulation anomaly. The heat-85

wave and drought favored unprecedented forest fires in Scandinavia. This corresponds to the86

Scandinavian cluster type of heatwave identified by (16).87

Data and models used88

In this study we use geopotential height (Z500) as a proxy to describe the North Atlantic circu-89

lation. A wealth of atmospheric features, ranging from teleconnection patterns to storm track90

activity to atmospheric blocking can be diagnosed from the Z500 field and this field appears91

to be the most relevant to perform atmospheric circulation extreme event attribution. We base92

our study on NCEP/NCAR reanalysis data (26) over the period 1948–2018, with a horizontal93

resolution of 2.5◦. The region of interest is (22.5◦N − 70◦N and 80◦W − 50◦E. We ana-94

lyze daily output of the Coupled Model Intercomparison Project phase 5 (CMIP5) (27) for:95

16 historical simulations (Supplementary Table 1), 16 RCP4.5/8.5 projections. The histori-96

cal simulations cover the period 1950–2000; the forcings are consistent with observations and97

include changes in: atmospheric composition due to anthropogenic and volcanic influences,98

solar forcing, emissions or concentrations of short-lived species and natural and anthropogenic99

aerosols or their precursors, as well as land use. RCP4.5 and RCP8.5 projections are projections100

of future climates (2051–2100) forced by two representative concentration pathway scenarios101

(RCPs). These result in a radiative forcing of 4.5 Wm−2 and 8.5 Wm−2 respectively in year102

2100, relative to pre-industrial conditions.103

Bias Correction procedures104

The statistical bias correction method applied is the Cumulative Distribution Function - trans-105

form (CDF-t) method, developed in (28). This approach links the cumulative distribution func-106
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tion (CDF) of a climate variable (here Z500) from GCM simulations to be corrected, to the107

CDF of this variable from a reference dataset, here the NCEP/NCAR reanalysis dataset (29).108

A mathematical transformation T is performed on the simulations CDF to define a new CDF109

as close as possible to the reference CDF. Let FGh and FRh denote respectively the CDFs of110

the variable of interest from the GCM and from the reference over a historical time period111

(here 1950-2005). We assume that, whatever the value x of the variable to be corrected, the112

transformation T allows to go from FGh to FRh:113

T (FGh(x)) = FRh(x). (1)

Therefore, by noting that x can be written as F−1
Gh (p), with p a probability value in [0, 1], the114

transformation T can be expressed as115

T (p) = FRh(F−1
Gh (p)). (2)

Then, Eq. (2) is assumed to stay valid under evolving climate conditions. This means that if116

the GCM CDF FGh for the historical period becomes FGf in a future time period, it is assumed117

that T enables us to estimate FRf , the target reference CDF for the future time period, through118

FRf (x) = T (FGf (x)), which is thus formulated as119

FRf (x) = FRh(F−1
Gh (FGf (x))). (3)

Then, this future corrected CDF FRf allows us to perform a quantile-mapping approach (30–32)120

between FGf and FRf to generate values out of FRf , respecting the GCM rank chronology.121

Hence, CDF-t can be considered as a variant of the empirical quantile-mapping method but122

within the appropriate target (here future) time period and therefore accounts for changes of123

CDF from the calibration period to the projection one.124

This bias correction method is applied in two different ways. First, CDF-t is applied on a125

monthly basis to the raw NCEP/NCAR reanalyses and CMIP5 GCM simulations. The results126
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are the non-detrended bias corrections. Secondly, CDF-t is applied, still on a monthly basis,127

to NCEP/NCAR reanalyses and GCM simulations from which a spatial and seasonal trend is128

removed. To do so, for each day, the Z500 spatial average is calculated. Next, for each calendar129

day (e.g., each January, 1) over the period of interest (1951-2000 or 2051-2100), a linear fit130

of the daily Z500 spatial average as a function of time is estimated. This spatial trend is then131

removed from each Z500 grid-cell value for the specific calendar day, and the spatial average132

value estimated by the model for the year 2006 for the calendar day is added. This ensures133

that a seasonality (that estimated for 2006) is preserved, with no trend in the resulting Z500134

data. Those seasonally and spatially detrended data are the inputs of CDF-t, therefore providing135

adjusted values hereafter and in the main text referred to as detrended bias corrections.136

In the present study, all bias corrections have been made through the CDF-t R package137

(freely available on www.r-project.org/). More theoretical and technical details, as well as first138

validations and comparisons can be found in (33). Various applications of CDF-t can be found139

in (34–37), among others.140

Dynamical systems metrics141

The attractor of a dynamical system is a geometric object defined in the space hosting all the142

possible states of the system (phase-space). Each point ζ on the attractor can be characterized143

by two dynamical indicators: the local dimension d, which indicates the number of degrees of144

freedom active locally around ζ , and the persistence θ−1, a measure of the mean residence time145

of the system around ζ (38). To determine d, we exploit recent results from the application of146

extreme value theory to Poincaré recurrences in dynamical systems. This approach considers147

long trajectories of a system — in our case successions of daily SLP latitude–longitude maps —148

corresponding to a sequence of states on the attractor. For a given point ζ in phase space (e.g.,149

a given SLP map), we compute the probability that the system returns within a ball of radius ε150
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centered on the point ζ . The Freitas et al. (39) theorem, modified by Lucarini et al. (40), states151

that logarithmic returns:152

g(x(t)) = − log(dist(x(t), ζ)) (4)

yield a probability distribution such that:153

Pr(z > s(q)) ' exp

[
−ϑ(ζ)

(
z − µ(ζ)

σ(ζ)

)]
(5)

where z = g(x(t)) and s is a high threshold associated to a quantile q of the series g(x(t)).154

Requiring that the orbit falls within a ball of radius ε around the point ζ is equivalent to asking155

that the series g(x(t)) is over the threshold s; therefore, the ball radius ε is simply e−s(q). The156

resulting distribution is the exponential member of the Generalized Pareto Distribution family.157

The parameters µ and σ, namely the location and the scale parameter of the distribution, depend158

on the point ζ in phase space. µ(ζ) corresponds to the threshold s(q) while the local dimension159

d(ζ) can be obtained via the relation σ = 1/d(ζ).160

When x(t) contains all the variables of the system, the estimation of d based on extreme161

value theory has a number of advantages over traditional methods (e.g. the box counting algo-162

rithm (41, 42)). First, it does not require to estimate the volume of different sets in scale-space:163

the selection of s(q) based on the quantile provides a selection of different scales s which de-164

pends on the recurrence rate around the point ζ . Moreover, it does not require the a priori165

selection of the maximum embedding dimension as the observable g is always a univariate166

time-series.167

The persistence of the state ζ is measured via the extremal index 0 < ϑ(ζ) < 1, an adi-168

mensional parameter, from which we extract θ(ζ) = ϑ(ζ)/∆t. θ(ζ) is therefore the inverse of169

the average residence time of trajectories around ζ and it has unit of a frequency (in this study170

1/days). If ζ is a fixed point of the attractor θ(ζ) = 0. For a trajectory that leaves the neighbor-171
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Supplementary Table 1: List of CMIP5 Models Analysed. The resolution refers to the average
horizontal resolution.

No. Model Institution/ID Country Reolution
01 BCC-CSM1-M Beijing Climate Center China 1.125 × 1.125
02 BCC-CSM1-1 Beijing Climate Center China 2.81 × 2.79
03 BNU-ESM Beijing Normal University Earth System Model China 2.81 × 2.81
04 CANESM2 Canadian Centre for Climate Modelling and Analysis Canada 2.81 × 2.81
05 CMCC-CMS Centro Euro-Mediterraneo sui Cambiamenti Climatici Italy 1.87 × 1.87
06 CNRM-CM5 CNRM-CERFACS France 1.40 × 1.40
07 GFDL-ESM2G Geophysical Fluid Dynamics Laboratory, NOAA USA 2.5 × 2.02
08 GFDL-ESM2M Geophysical Fluid Dynamics Laboratory, NOAA USA 2.5 × 2.02
09 HadGEM2-CC MetOffice-Hadley Centre UK 1.87 × 1.25
10 IPSL-CM5A-MR Institute Pierre Simon Laplace, IPSL France 2.5 × 1.26
11 IPSL-CM5B-LR Institute Pierre Simon Laplace, IPSL France 3.75 × 1.89
12 MIROC-ESM-CHEM MIROC Japan 2.81 × 2.79
13 MPI-ESM-LR Max Planck Institute for Meteorology, MPI Germany 1.87 × 1.87
14 MPI-ESM-MR Max Planck Institute for Meteorology, MPI Germany 1.87 × 1.87
15 MRI-CGCM3 Meteorological Research Institute, MRI Japan 1.125 × 1.
16 NorESM1-M Norwegian Climate Center Norway 2.5 × 1.89

hood of ζ at the next time iteration, θ = 1. To estimate θ, we adopt the Süveges estimator (43).172

For further details on the the extremal index, see (44).173
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