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Abstract

Context. Automatically predicting if a subject with Mild Cognitive Impairment (MCI)
is going to progress to Alzheimer’s disease (AD) dementia in the coming years is a
relevant question regarding clinical practice and trial inclusion alike. A large number
of articles have been published, with a wide range of algorithms, input variables, data
sets and experimental designs. It is unclear which of these factors are determinant for
the prediction, and affect the predictive performance that can be expected in clinical
practice. We performed a systematic review of studies focusing on the automatic pre-
diction of the progression of MCI to AD dementia. We systematically and statistically
studied the influence of different factors on predictive performance.

Method. The review included 172 articles, 93 of which were published after 2014.
234 experiments were extracted from these articles. For each of them, we reported the
used data set, the feature types (defining 10 categories), the algorithm type (defining 12
categories), performance and potential methodological issues. The impact of the fea-
tures and algorithm on the performance was evaluated using t-tests on the coefficients
of mixed effect linear regressions.

∗Corresponding author
Email address: manon.ansart@inria.fr (Manon Ansart)



Results. We found that using cognitive, fluorodeoxyglucose-positron emission tomog-
raphy or potentially electroencephalography and magnetoencephalography variables
significantly improves predictive performance compared to not including them (p=0.046,
0.009 and 0.003 respectively), whereas including T1 magnetic resonance imaging,
amyloid positron emission tomography or cerebrospinal fluid AD biomarkers does not
show a significant effect. On the other hand, the algorithm used in the method does not
have a significant impact on performance. We identified several methodological issues.
Major issues, found in 23.5% of studies, include the absence of a test set, or its use for
feature selection or parameter tuning. Other issues, found in 15.0% of studies, pertain
to the usability of the method in clinical practice. We also highlight that short-term pre-
dictions are likely not to be better than predicting that subjects stay stable over time.
Finally, we highlight possible biases in publications that tend not to publish methods
with poor performance on large data sets, which may be censored as negative results.

Conclusion. Using machine learning to predict MCI to AD dementia progression is a
promising and dynamic field. Among the most predictive modalities, cognitive scores
are the cheapest and less invasive, as compared to imaging. The good performance they
offer question the wide use of imaging for predicting diagnosis evolution, and call for
further exploring fine cognitive assessments. Issues identified in the studies highlight
the importance of establishing good practices and guidelines for the use of machine
learning as a decision support system in clinical practice.

Keywords: quantitative review, Alzheimer’s disease, Mild Cognitive Impairment,
progression, automatic prediction, cognition

1. Introduction

The early diagnosis of Alzheimer’s disease (AD) is crucial for patient care and
treatment. Machine learning algorithms have been used to perform automatic diagnosis
and predict the current clinical status at an individual level, mainly in research cohorts.
Individuals suffering from mild cognitive impairment (MCI) are however likely to have5

a change of clinical status in the coming years, and to be diagnosed with AD or another
form of dementia. Distinguishing between the MCI individuals that will remain MCI
(MCI stable, or sMCI) from those who will progress to AD (pMCI) is an important
task, that can allow for the early care and treatment of pMCI patients. In this article,
we will review methods that have been proposed to automatically predict if an MCI10

patient will develop AD dementia in the future by performing a careful reading of
published articles, and compare them through a quantitative analysis.

The application of machine learning to precision medicine is an emerging field, at
the cross roads of different disciplines, such as computer science, radiology or neurol-
ogy. Researchers working on the topic usually come from one field or the other, and15

therefore do not have all the skills that are necessary to design methods that would
be efficient and following machine learning best practices, while being understandable
and useful to clinicians.

Reviews of the automatic prediction of the current clinical diagnosis in the con-
text of AD have already been published, but none specifically target the prediction of20
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progression from MCI to AD dementia. They focus on the use of magnetic resonance
imaging (MRI) (Falahati et al., 2014; Leandrou et al., 2018), or of neuroimaging data
more broadly (Rathore et al., 2017; Arbabshirani et al., 2017; Haller et al., 2011; Sar-
ica et al., 2017). Several of them are systematic reviews such as Arbabshirani et al.
(2017) with 112 studies on AD, Rathore et al. (2017) with 81 studies, Falahati et al.25

(2014) with 50 studies and Sarica et al. (2017) with 12 studies. They often gather the
findings of each individual article and compare them, but no quantitative analysis of
performance is proposed.

We propose here to perform a systematic and quantitative review of studies predict-
ing the evolution of clinical diagnosis in individuals with MCI. We will report different30

quantitative and qualitative characteristics of the proposed method such as the sam-
ple size, type of algorithm, reported accuracy, identification of possible issues. We
will then analyze this data to identify the characteristics which impact performance the
most, and propose a list of recommendations to ensure that the performance is well
estimated, and that the algorithm would have the best chance to be useful in clinical35

practice.

2. Materials and Method

2.1. Selection process

The query used to find the relevant articles was composed of 4 parts:

1. As we study the progression from MCI to AD, the words MCI and AD should40

be present in the abstract ;
2. We removed the articles predicting only the current diagnosis by ensuring the

words “prediction” and “progression” or associated terms are present in the ab-
stract ;

3. A performance measure should be mentioned ;45

4. A machine learning algorithm or classification related key-word should be in the
abstract. This fourth part ensures the selected articles make individual predic-
tions and reduces the presence of group analyzes.

The full query can be found in Appendix A.1. Running it on Scopus on the 13th of
December 2018 resulted in 330 articles. The abstracts were read to remove irrelevant50

articles, including studies of the progression of cognitively normal individuals to MCI,
automatic diagnosis methods, review articles and group analyses. After this selection
206 articles were identified. As this first selection was quite conservative, 34 addi-
tional articles were removed from the selection for similar reasons during the reading
process, leaving 172 studied articles. The selection process is described in Figure S155

in Appendix A.2.

2.2. Reading process

For each study, the number of individuals was first assessed and noted. Only stud-
ies including more than 30 sMCI and 30 pMCI (111 articles) were then fully read, as
we consider that experience using less than 30 individuals cannot provide robust esti-60

mates of performance. Articles with less than 30 individuals in each category were still
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considered when studying the evolution of the number of articles with time, and of the
number of individuals per article with time. The studies including enough individuals
were then analyzed by one of the 19 readers participating in this review, and a global
check was performed by one author (MA) to ensure homogeneity. 36 items, of which65

a list is available in Appendix A.3, were reported for each study, including the used
features, the cohort, the method (time to prediction, algorithm, feature selection, fea-
ture processing), the evaluation framework and the performance measures, as well as
identified biases in the method. When several experiments were available in an article,
they were all reported in the table. A total of 234 experiments was thus studied.70

2.3. Quality check

Several methodological issues were identified during the reading process. This list
of issues was not previously defined, it has been established as issues were encountered
in the various studies. We identified the following list of issues:

• Lack of a test data set: use of the same data set for training and testing the algo-75

rithm, without splitting the data set or using any kind of cross-validation method.
The performance computed this way is the training performance, whereas a test
performance, computed on a different set of individuals, is necessary to measure
the performance that could be obtained on any other data set (i.e. generalizability
of the method) .80

• Automatic feature selection performed on the whole data set. When a large num-
ber of features is available, automatic feature selection can be performed in order
to identify the most relevant features and use them as input. A variety of auto-
matic algorithms exist to do this. Some studies performed this automatic feature
selection on the whole data set, before splitting it into a training and a test set85

or performing cross-validation. An example of this issue is, first, using t-tests
to identify features that best separate pMCI from sMCI, using the whole data
set, then splitting the data set into a training and a test set, to respectively train
the classification algorithm and evaluate its performance. In this example, the
individuals from the test set have been used to perform the automatic feature se-90

lection and choose the most relevant features. This is an issue, as individuals in
the test set should be used for performance evaluation only.

• Other data-leakage. More broadly, data leakage is the use of data from the test set
outside of performance evaluation. Using the test data set for parameter tuning,
or for choosing the best data set out of a large number of experiments, are two95

common examples of data leakage.

• Feature embedding performed on the whole data set. Feature embedding (for ex-
ample principal components analysis) transforms the input features into a lower-
dimension feature space. It is often used to reduce the input dimension when
many features are available, but it does not use the individual labels (sMCI/pMCI)100

to do so, as feature selection often does. This issue is therefore similar to per-
forming feature selection on the whole data set, except that only the features of
the test individuals are used, and not their labels.
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• Use of the date of AD diagnosis to select the input visit of pMCI individuals.
An example of this issue is using the visit 3 years before progression to AD105

for pMCI subjects, and the first available visit for sMCI subjects, to predict the
progression to AD at 3 years, even for testing the method. In this case, the date
of progression to AD of the individuals of the test set was used to select the input
visit, which is not possible in clinical practice, as the date of progression is not
known.110

Other methodological issues, not belonging to these categories, were also reported,
such as incompatibility between different reported measures. The articles in which at
least one of these issues was identified were not used when analyzing the performance
of the methods and the method characteristics impacting them.

2.4. Statistical analysis115

We studied the impact of various method characteristics (input features, algorithm...)
on the performance of the classification task, separating sMCI form pMCI individuals.
Several experiments were reported for each article, so we had to account for the de-
pendency between experiments coming from the same article. In order to do so, we
used linear mixed-effects models with a random effect on the article, and tested if the120

considered characteristics had a significant impact by performing a two-sided t-test on
the corresponding regression coefficient. Only the characteristics found in more than
one article with an associated performance measure were taken into account. Unless
stated otherwise, the performance measure used for testing is the area under the receiver
operating characteristic (ROC) curve (AUC), experiments with no reported AUC were125

therefore not taken into account in these tests. When testing the impact of various char-
acteristics at the same time, conditionally to each other (e.g. among all input features,
which ones have an impact on the performance when taking the other features into ac-
count), we performed a linear mixed effect regression with all these characteristics as
input. Concerning the input features, d being the number of features:130

AUC = α1 ∗ f eature1 + ... + αd ∗ f eatured + β + βarticle (1)

When testing the impact of different characteristics independently (e.g. for each
algorithm, the effect of using this specific algorithm or any other), an individual linear
mixed effect regression was performed for each one separately:

AUC = αi ∗ algoi + β + βarticle (2)

for all i, i being the algorithm number.
In both cases, a two-sided t-test was performed on α to test the significance of each135

coefficient. The p-values corrected for multiple comparisons were obtained by using
the Benjamini-Hochberg procedure.

3. Descriptive analysis

3.1. A recent trend
We observe from Figure 1a that the number of articles published each year on the140

prediction of the progression of MCI to AD dementia has been steadily increasing since
2010.
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(a) Evolution of number of article per year and of the number of
individuals per article

(b) Evolution of the AUC with time

Figure 1: Recent trends. (a) Evolution of number of article per year (in red) and of the number of individuals
per article with time (in blue). (b) Evolution of the area under the ROC (receiver operating characteristic)
curve (AUC) with time. The AUC of each article is represented by a dot. The AUC of articles published the
same year is represented as box-plots. The plain line corresponds to the regression of the AUC against time
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Figure 1a also shows that the number of individuals used for the experiments is
increasing over time (p= 10−5). 84.6% of articles used data of the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) study. Starting in 2004, this multicenter longitudinal145

study provides multiple modalities for the early detection of AD. As the recruitment
of this largely used cohort is still ongoing, it is not surprising to see the number of
included individuals increasing over the years. Studies often select individuals with a
minimal follow-up time, of 3 years for example, and over the years more and more
MCI individuals from the ADNI cohort fulfill these criteria, so more individuals can be150

included.
As shown in Figure 1b, the reported AUC are also increasing over time (p= 0.045),

which can have multiple explanations. First, as new studies often compare their per-
formance with those of previous methods, they tend to be published only when the
obtained results seem competitive compared to previous ones. A more optimistic inter-155

pretation would be that algorithms tend to improve, and that newly available features
might have a better predictive power. It has also been shown (Ansart et al., 2019;
Domingos, 2012) that having a larger data set leads to a higher performance, so there
may be a link between the increase in data set size and the increase in performance.

3.2. Features160

T1 MRI, cognition and socio-demographic features are used in respectively 69.2%,
43.2% and 33.8% of experiments. On the other hand, fluorodeoxyglucose (FDG)
positron emission tomography (PET), APOE and cerebrospinal fluid (CSF) AD biomark-
ers are used in 15 to 20% of experiments, and the other studied features (white matter
hyper-intensities, electroencephalography (EEG), magnetoencephalography (MEG),165

PET amyloid, amyloid binary status without considering the PET or CSF value, diffu-
sion tensor imaging (DTI) and PET Tau) are used in less than 10% of experiments. No
study using functional MRI has been identified.

Studies using T1 MRI mainly use selected regions of interest (46.8%), whereas
34.7% use the whole brain, separated into regions of interest, and 18.5% use voxel170

features. Studies using neuro-psychological tests mainly use aggregated tests evalu-
ating multiple domains of cognition (51.2% of them), and 37.4% of them combine
aggregated tests with domain-specific ones. Seven experiments use new or home-made
cognitive tests. 35.7% of experiments use only T1 MRI (apart from socio-demographic
features), and 15% use cognition only.175

The prevalence of T1 MRI does not seem surprising, as researchers working on
automatic diagnosis often come from the medical imaging community, and T1 MRI is
the most widely available modality. The prevalence of the imaging community can also
explain the choice of cognitive features, and why more detailed and targeted cognitive
tests are not used as much as more general and more well-known ones.180

3.3. Algorithm

Support vector machines (SVM) and logistic regressions are the most used algo-
rithms, being used in respectively 34.5% and 15.0% of experiments. Other algorithms
are used in less than 10% of cases. Figure 2 shows the evolution of the algorithm use
over time.185
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Figure 2: Evolution of the use of various algorithms with time. OPLS: orthogonal partial least square; SVM:
support vector machine

The high proportion of methods using an SVM has already been shown for the
prediction of the current diagnosis in Falahati et al. (2014) and Rathore et al. (2017), it
is therefore not surprising that this algorithm is also commonly used for the prediction
of future diagnosis. The predominance of SVM and logistic regression still seems
surprising, as more recent algorithms are more popular nowadays. We see for example190

that random forests started being used around 2014, but the proportion of methods
using this algorithm, even recently, stays low compared to the proportion of methods
using an SVM. Neural networks started being used during the last two years, as it can
be seen in Figure 2, and we can assume the phenomenon has been too recent to be
visible just yet in the field. Overall, even if the proportion of SVM has been decreasing195

until 2013, the field has not been so prompt to use new algorithms as one could have
expected.

3.4. Validation method
For evaluating their performance, 29.1 % of experiments use a 10-fold, and 12.8%

use a k-fold with k different from 10. Leave-one individual out is also quite popular,200

being used in 17.5% of cases. We noted that 7.3% of experiments were trained and
tested on the same individuals, and 7.3% train the method on a first cohort and test it
on a different one.

It should be kept in mind when comparing the performance of different studies that
the cross-validation methods can impact the performance. Using a larger training set205

and smaller test set is more favorable, hence the same method might result in a better
performance when evaluated using a leave-one out validation than using a 10-fold val-
idation, as shown in Lin et al. (2018). Bias and variance also vary across validation
methods (Efron, 1983).

4. Performance analyses210

4.1. Features
We measured the impact on the AUC of each feature compared to the others by

using a linear mixed-effect model including all features used in more than one article.
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The results are presented in the first part of Table 1, and show that the performance is
significantly better when using cognition (p = 0.046), FDG PET (p=0.009) or EEG and215

MEG (p=0.003).
We also considered the impact of using each feature alone compared to a combina-

tion of them, by testing each feature independently using a linear mixed effect regres-
sion. We only tested the impact of the features that were used alone (or in combination
with socio-demographic features) more than once with an associated AUC, and that220

had been combined with other features more than once, that is T1 MRI, cognition, and
FDG PET. It is significantly better to combine T1 MRI with other features than to use it
solely (p = 0.009, coefficient = 5.5). The effect is not significant for cognition (p=0.19,
coefficient=3.0) and FDG PET (p=0.38 , coefficient = -6.1).

We distinguished between global neuro-psychological tests, domain-targeted tests225

and newly proposed tests. We measured the impact of the type of test on the AUC by
performing independent regressions for each category. Experiences using a domain-
specific test had a significantly greater AUC than those that did not (p=0.023, coeffi-
cient = 5.0), whereas the effect was not significant for the other two categories (p >

0.1). We tested the impact on the AUC of using longitudinal data (repeated visits as230

input), and of combining images of different modalities, and both were not significant
(p > 0.2)

4.2. Cognition

Cognitive variables can be easily collected in clinical routine, at a low cost, and235

they are proven to increase the performance of the methods, so their use should be
encouraged. This finding is consistent with comparisons performed in several studies.
Minhas et al. (2018); Kauppi et al. (2018); Ardekani et al. (2017); Tong et al. (2017);
Gavidia-Bovadilla et al. (2017); Moradi et al. (2015); Hall et al. (2015); Fleisher et al.
(2008) showed that using cognition and T1 MRI performed better than using T1 MRI240

only. Dukart et al. (2015); Cui et al. (2011); Thung et al. (2018); Li et al. (2018) showed
that adding cognition to other modalities also improved the results.

More surprisingly, we showed that using other modalities does not significantly
improve the results compared to using cognition only. Although Fleisher et al. (2008)
shows that using T1 MRI in addition to cognition does not improve the performance245

compared to using cognition only, several studies show the opposite on various modali-
ties (Samper-Gonzalez et al., 2019; Moradi et al., 2015; Ardekani et al., 2017; Li et al.,
2018; Kauppi et al., 2018). However, when taking all studies into account, it appears
that the improvement one gains by including other modalities along with cognitive
variables is not significant. As the cost of collecting cognitive variables compared to250

performing an MRI or a FDG PET is quite low, the non-significant improvement in
performance might not be worth the cost and logistics of collecting data from other
modalities specifically to address this question. Methods focusing on cognition only,
such as proposed by Johnson et al. (2014), should therefore be further explored. Such
methods should include domain-specific cognitive scores, which have shown to in-255

crease the performance.
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4.3. Medical imaging and biomarkers

Imaging modalities are not as widely available as cognitive feature, but they can
represent a good opportunity to better understand the disease process by showing the
changes that appear before the individuals progress to AD dementia. Among the used260

imaging modalities, we showed that using FDG PET leads to a better performance.
Similar observations have been made by Samper-Gonzalez et al. (2018). PET images
could therefore represent a better alternative for the imaging community than T1 MRI,
which does not significantly improve the results and should not be used alone as it leads
to lower results. Changes in FDG PET appear earlier in the AD process than changes in265

structural MRI (Jack et al., 2010), therefore these changes might already be visible in
MCI individuals several years before their progression to AD, which can explain why
FDG PET is more predictive of this progression.

No method using Tau PET has been identified in this review. This new modality
should also be affected early in the disease process, and could therefore represent great270

hopes for the imaging community. However, surprisingly, Amyloid PET or CSF value,
which is also one of the earliest markers, did not have a significant impact on the
prediction performance.

The use of EEG or MEG had a significant impact on the performance. However,
only six experiments use these features, it is therefore difficult to conclude if this effect275

is real, and if it is not due to methodological issues that have not been identified during
the quality check.

4.4. Combination of different imaging modalities

Multimodality has been put forward in the reviews of AD classification (Rathore
et al., 2017; Falahati et al., 2014; Arbabshirani et al., 2017). As different imaging280

modalities correspond to various stages of the AD process, combining them could give
a more complete overview of each individual. However, we did not find the impact
of the use of multimodality to be significant. This result is not surprising, as the most
combined modalities are MRI and FDG PET (19 out of 35 experiments using multi-
modality), and we showed that including other features does not lead to a significant285

increase in performance compared to using FDG PET alone. In addition, the cost of
collecting images of different modalities for each patient is not small, and should not
be neglected when using such approaches.

4.5. Longitudinal data

In a similar manner, longitudinal data could give a better view of the evolution of290

the patient, and hence be more predictive of the progression to AD than cross-sectional
data. Nonetheless, we did not find the use of longitudinal data to have a significant
effect on the performance. Similar findings are reported in Aksman (2017) for the
classification of AD and in Schuster et al. (2015) for progressive diseases in general.

4.6. Algorithms295

We studied the impact of the algorithms on the AUC, by using an independent lin-
ear mixed effect model on each algorithm. The results, presented in the second part of
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Feature or algorithm coeff. p-value corrected
p-value

number of
exp.

T1 MRI 2.217 0.22 0.38 103
Neuro-psychological tests 3.934 0.046 0.11 64
socio-demographic 0.652 0.83 0.83 59
APOE 4.612 0.092 0.18 35
FDG PET 6.768 0.0092 0.037 29
CSF 2.232 0.38 0.41 26
Others 3.12 0.28 0.4 18
EEG/MEG 16.573 0.0025 0.015 6
PET Amyloid 7.743 0.3 0.4 6
White matter hyper-intensities -5.18 0.36 0.41 5

SVM -4.8 0.061 0.24 35
Logistic regression 0.8 0.812 0.93 15
Random Forest 4.1 0.166 0.5 13
MKL -0.3 0.950 0.95 10
Other 0.8 0.851 0.93 7
Bayes 5.4 0.271 0.65 6
Linear regression -5.2 0.434 0.74 6
Neural network 10.1 0.010 0.06 6
OPLS -15.5 0.003 0.04 6
Survival analysis 2.0 0.810 0.93 6
Threshold 1.1 0.791 0.93 6
LDA -6.3 0.325 0.65 5

Table 1: Impact of features and algorithm. Benjamini-Hochberg procedure was applied to get corrected p-
values. coeff.:coefficient, such as defined in Equations 1 and 2; MRI: magnetic resonance imaging; APOE:
Apolipoprotein E; FDG: fluorodeoxyglucose; PET: positron emission tomography; CSF: cerebrospinal fluid;
EEG: electroencephalography; MEG: magnetoencephalography; LDA: linear discriminant analysis; MKL:
multiple kernel learning; OPLS: orthogonal partial least square; SVM: support vector machine
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Figure 3: Relationship between the AUC (area under the ROC curve) and the number of individuals. The
black dotted lines represent the upper and lower limits.

Table 1, show that the orthogonal partial least square (OPLS) algorithm performs sig-
nificantly worse than others (p=0.003), whereas neural networks perform significantly
better (p=0.01).300

Only six experiments have been performed using each of these algorithms, so an
unidentified methodological issue in one of them could greatly impact these results.
As neural networks have a large number of parameters, which are often tuned man-
ually using the test error, we found that experiments using this algorithm have high
proportion of data leakage. This is consistent with the findings of Wen et al. (2019),305

a literature review conducted on the use of deep learning for AD classification. No
conclusion regarding the impact of the classification algorithm can therefore be drawn
from our results, which might be explained by the variety of algorithms, and hence the
small sample size for each of them.

5. Design of the decision support system and methodological issues310

5.1. Identified issues

5.1.1. Lack or misuse of test data
The lack of a test data set is observed in 7.3% of experiments. In 16% of articles

using feature selection, it is performed on the whole data set, and 8% of articles do not
describe this step well enough to draw conclusions. Other data leakage (use of the test315

set for decision making) is identified in 8% of experiments, and is unclear for 4%.
Overall, 26.5% of articles use the test set in the training process, to train the algo-

rithm, choose the features or tune the parameters. This issue, and in particular perform-
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ing feature selection on the whole data set, has also been pointed out by Arbabshirani
et al. (2017) in the context of brain disorder prediction.320

5.1.2. Performance as a function of data set size
We plot the AUC against the number of individuals for each experiment in Figure

3, with the colored dots representing experiments with identified issues. The colored
dots show that there is a higher prevalence of studies with identified issues among
high-performance studies: a methodological issue has been identified in 18.5% of ex-325

periments with an AUC below 75%, whereas this proportion rises to 36.4% for experi-
ments with an AUC of 75% or higher (significant difference, with p = 0.006). We can
observe an upper-limit (shown in dashed line) decreasing when the number of indi-
viduals increases, suggesting that high-performance achieved with a small number of
subjects might be due to over-fitting. This phenomenon has already been identified by330

Arbabshirani et al. (2017). A lower limit is also visible, with the AUC increasing with
the number of individuals. This may reflect the fact that, on average, methods general-
ize better when correctly trained on larger data sets. But it might also suggest that it is
harder to publish a method with a relatively low performance if it has been trained on
a large number of subjects, such a paper being then considered as reporting a negative335

result. Within papers also, authors tend to focus on their best performing method, and
rarely explain what they learned to achieve this. As the number of subjects increases,
the two lines seem to converge to an AUC of about 75%, which might represent the
true performance for current state-of-the-art methods.

Figure 3 seems to highlight possible unconscious biases in the publications of sci-340

entific results in this field. It might be considered more acceptable to publish high-
performance methods with small sample size than a low-performance method with
large sample size. First, we think that low-performance methods trained on large sam-
ple size should be published also, as it is important for the field to understand what
works and also what does not. In particular, we think that we, as authors, should not345

only focus on our best performing method, but report also other attempts. Second, it
might not be such a problem that innovative methodological works that do not result
in a higher performance are published also, provided that the prediction performance
is not used to argue about the interest and validity of the method. The machine learn-
ing field has the chance to have simple metrics, such as AUC or accuracy, to compare350

different methods on an objective basis. However, we believe that one should use such
metrics wisely not to discourage the publication of innovative methodological works
even if it does not yield immediately better prediction performance, and not to over-
shadow the need to better understand why some methods work better than others.

5.1.3. Use of features of test subjects355

Feature embedding is performed on the whole data set in 6.8% of experiments,
meaning that the features of the test individuals are used for feature embedding during
the training phase. As the diagnosis of the test individuals is often not used for feature
embedding, as it is for feature selection, performing it on test individual can be consid-
ered a less serious issue than for feature selection. It however requires to re-train the360

algorithm each time the prediction has to be made on a new individual, which is not
suited for a use in clinical practice.
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Figure 4: Evolution of the performance with respect to the time to prediction. Box plots represent the
accuracy of the articles using ADNI. The straight line represents the accuracy of predicting that all individuals
remain MCI, corresponding to the proportion of MCI individuals in ADNI staying MCI at the corresponding
follow-up time. The shaded area corresponds to the 90% confidence interval of this percentage.

5.1.4. Use of the diagnosis date
In 5.6% of the experiments, the date of AD diagnosis is used to select the input visit

of pMCI individuals, for training and testing. As explained in section 2.3, this practice365

can prevent the generalization of the method to the clinical practice, as the progression
date of test individuals is by definition unknown.

These type of experiments answer the question "may one detect some characteris-
tics in the data of a MCI patient 3 years before the diagnosis which, at the same time,
is rarely present in stable MCI subjects?". Which should not be confused with: "can370

such characteristics predict that a MCI patient will progress to AD within the next 3
years". What misses to conclude about the predictive ability is to consider the MCI
subjects who have the found characteristics and count the proportion of them who will
not develop AD within 3 years.

This confusion typically occurred after the publication of Ding et al. (2018). The375

paper attracted a great attention from general media, including a post on Fox News (Wooller,
2018), stating “Artificial intelligence can predict Alzheimer’s 6 years earlier than medics”.
However, the authors state in the paper that “final clinical diagnosis after all follow-
up examinations was used as the ground truth label”, thus without any control of the
follow-up periods that vary across subjects. Therefore, a patient may be considered as380

a true negative in this study, namely as a true stable MCI subject, whereas this subject
may have been followed for less than 6 years. There is no guarantee that this subject is
not in fact a false negative for the prediction of diagnosis at 6 years.

5.1.5. Choice of time-to-prediction
We find that 22.6% of experiments work on separating pMCI from sMCI, regard-385

less of their time to progression to dementia. We advise against this practice, as the
temporal horizon at which the individuals are likely to progress is an important infor-
mation in clinical practice. Methods predicting the exact progression dates, such as
what is asked in the Tadpole challenge (Marinescu et al., 2018), should be favored over
methods predicting the diagnosis at a given date.390
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The other experiments have set a specific time to prediction, often between 1 and 3
years, meaning that they intend to predict the diagnosis of the individual at the end of
this time interval. Figure 4 shows the evolution of the accuracy of these methods tested
on ADNI with respect to the time to prediction. The time to prediction did not have
a significant effect on AUC, accuracy, balanced accuracy, specificity nor sensitivity.395

Figure 4 also shows the accuracy that one would get on ADNI when using a constant
prediction, that is predicting that all individuals stay MCI at future time points. The
accuracy of this constant prediction has been computed using the proportion of MCI
remaining stable at each visit. We show that most methods predicting the progression
to AD within a short-term period smaller of 3 years do not perform better than this400

constant prediction. We therefore advise to use a time to prediction of at least 3 years,
as for a shorter time interval the proportion of MCI individuals progressing to AD is
small, predicting that all individuals remain stable therefore gives a better accuracy
than most proposed methods.

This fact also shows that the accuracy may be arbitrarily increased by using a cohort405

with a large proportion of stable subjects. The algorithm may then yield high accuracy
by mimicking a constant predictor. This effect may be alleviated by optimizing the
balanced accuracy instead of the accuracy.

5.1.6. Problem formulation and data set choice
A common theme that arises from the previous issues is that the methods are not410

always designed to be the most useful in clinical practice. It is for example true of
methods that do not use a specific time-to-prediction, or that use the date of AD diag-
nosis to select the included visits.

More generally, we think the most useful decision support system should not only
focus on Alzheimer’s disease but perform differential diagnosis. Clinicians do not415

usually need to distinguish between individuals who will develop AD and individuals
who will not develop any neurological disorder. They most likely need help to deter-
mine which disorder an MCI individual is likely to develop. Unfortunately, no widely
available data set allows the development methods for differential diagnosis to date.
Methods focusing on AD should therefore target individuals who have already been420

identified as at risk of developing AD, by providing insight on the date at which this
conversion is likely to happen. Such methods could be trained on MCI subjects that
are at risk to develop Alzheimer’s disease, defined for instance as the ones who have a
MMSE of 27 or smaller and are amyloid positive. In addition to being closer to what
can be expected in clinical practice, such data sets of at risk subjects should include a425

larger proportion of pMCI, leading to a better performance compared to the constant
prediction. For example in ADNI, 71.6% of MCI subjects stay stable 2 years after
inclusion, whereas this proportion drops to 53.7% for MCI subjects who are amyloid
positive and have a MMSE of 27 or lower.

The diagnosis of Alzheimer’s disease highly depends on the clinical practice, and430

varies greatly across sites and countries (Beach et al., 2012). Therefore, the short-term
prediction of progression to Alzheimer’s disease are unlikely to generalize well outside
the well controlled environment of a research study. An interesting alternative may be
to predict the changes in the imaging or clinical biomarkers in time rather the change
in diagnosis, such as proposed by Koval et al. (2018) and Iddi et al. (2019).435
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5.2. Proposed guidelines

In order to ensure that the proposed method is useful for clinical practice and that
the evaluated performance reflects what could be expected in real life, we propose a
list of attention points:

• Separate train and test data sets by using independent cohorts or, if not available,440

cross-validation.

• No element of the test data set, both labels and features, should be used except
for performance evaluation.

• Always pre-register the time window within which one aims to predict conver-
sion to AD, or predict the date of progression.445

• Use a large data set or pool different cohorts to obtain a large data set.

• Define a cohort that best reflects the future use of the method in clinical practice.
For instance, select subjects that will be considered as at risk of developing the
disease rather than all possible ADNI subjects.

• Systematically benchmark the method against the prediction that the subjects450

will remain stable over time.

6. Conclusion

We conducted a systematic and quantitative review on the automatic prediction of
the evolution of clinical status of MCI individuals. We reported results from 234 exper-
iments coming from 111 articles. We showed that studies using cognitive variables or455

FDG PET reported significantly better results than studies that did not. These modali-
ties should be further explored, cognition because it can be easily collected in clinical
routine, and FDG PET for the interest it might represent for the imaging community
and for increasing our understanding of the disease. On the other hand, we showed that
using solely T1 MRI yields a significantly lower performance, despite the great number460

of methods developed for this imaging modality. These findings call into question the
role of imaging, and more particularly of MRI, for the prediction of the progression of
MCI individuals to dementia. It would therefore be interesting to shift our focus to-
wards other modalities. More specific cognitive tests could be created, and the impact
of using digitized tests, that can be frequently used at home by the patients themselves,465

should be studied.
We identified several key points that should be checked when creating a method

which aims at being used as a clinical decision support. When possible, an indepen-
dent test set should be used to evaluate the performance of the method, otherwise a test
set can be separated by carefully splitting the cohort. In any case, the test individuals470

should not be used to make decisions regarding the method, such as the selection of
the features or parameter tuning. The time window in which one aims at predicting the
progression to AD should be pre-registered, as the temporal horizon at which an indi-
vidual is likely to progress to AD is a useful information for clinicians. Alzheimer’s
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disease being a very slowly progressive disease, algorithm performance should be sys-475

tematically compared with the prediction that no change will occur in the future. We
have shown indeed that the constant prediction may yield very high performance de-
pending on the time frame of the prediction and the composition of the cohort. Finally,
the cohort on which the method is tested should be carefully chosen and defined, so
as to reflect the future use in clinical practice as best as possible. At a time where one480

has great expectation regarding the use of artificial intelligence to support the devel-
opment of precision medicine, it becomes urgent that the field of AD research adopts
state-of-the-art standards and good practices in machine learning.

Acknowledgements

Federica Cacciamani, Baptiste Couvy-Duchesne, Pascal Lu and Wen Wei partici-485

pated in reading articles to conduct this review.
The research leading to these results has received funding from the program “In-

vestissements d’avenir” ANR-10-IAIHU-06 (Agence Nationale de la Recherche-10-IA
Institut Hospitalo-Universitaire-6) from the European Union H2020 program (project
EuroPOND, grant number 666992, project HBP SGA1 grant number 720270), from490

the ICM Big Brain Theory Program (project DYNAMO, project PredictICD), from
the Inria Project Lab Program (project Neuromarkers), from the European Research
Council (to Dr Durrleman project LEASP, grant number 678304), from the Abeona
Foundation (project Brain@Scale). OC is supported by a "contrat d’interface local"
from AP-HP. China Scholarship Council supports J.W’s work on this topic.495

Data used in preparation of this article were obtained from the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the in-
vestigators within the ADNI contributed to the design and implementation of ADNI
and/or provided data but did not participate in analysis or writing of this report. A
complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-500

content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

References

Aksman, L.M., 2017. Longitudinal neuroimaging features for discriminating early
neurodegeneration. Ph.D. thesis. King’s College London.

Ansart, M., Epelbaum, S., Gagliardi, G., Colliot, O., Dormont, D., Dubois, B., Ham-505

pel, H., Durrleman, S., for the Alzheimer’s Disease Neuroimaging Initiative* and
the INSIGHT-preAD study, 2019. Reduction of recruitment costs in preclinical
AD trials: validation of automatic pre-screening algorithm for brain amyloido-
sis. Statistical Methods in Medical Research , 0962280218823036doi:10.1177/
0962280218823036.510

Arbabshirani, M.R., Plis, S., Sui, J., Calhoun, V.D., 2017. Single subject prediction of
brain disorders in neuroimaging: Promises and pitfalls. NeuroImage 145, 137–165.
doi:10.1016/j.neuroimage.2016.02.079.

17

http://dx.doi.org/10.1177/0962280218823036
http://dx.doi.org/10.1177/0962280218823036
http://dx.doi.org/10.1177/0962280218823036
http://dx.doi.org/10.1016/j.neuroimage.2016.02.079


Ardekani, B.A., Bermudez, E., Mubeen, A.M., Bachman, A.H., 2017. Prediction of In-
cipient Alzheimer’s Disease Dementia in Patients with Mild Cognitive Impairment.515

Journal of Alzheimer’s Disease 55, 269–281. doi:10.3233/JAD-160594.

Beach, T.G., Monsell, S.E., Phillips, L.E., Kukull, W., 2012. Accuracy of the Clin-
ical Diagnosis of Alzheimer Disease at National Institute on Aging Alzheimer’s
Disease Centers, 2005–2010. Journal of Neuropathology and Experimental Neu-
rology 71, 266–273. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/520

PMC3331862/, doi:10.1097/NEN.0b013e31824b211b.

Cui, Y., Liu, B., Luo, S., Zhen, X., Fan, M., Liu, T., Zhu, W., Park, M., Jiang, T., Jin,
J.S., Initiative, t.A.D.N., 2011. Identification of Conversion from Mild Cognitive
Impairment to Alzheimer’s Disease Using Multivariate Predictors. PLOS ONE 6,
e21896. doi:10.1371/journal.pone.0021896.525

Ding, Y., Sohn, J.H., Kawczynski, M.G., Trivedi, H., Harnish, R., Jenkins, N.W., Li-
tuiev, D., Copeland, T.P., Aboian, M.S., Mari Aparici, C., Behr, S.C., Flavell, R.R.,
Huang, S.Y., Zalocusky, K.A., Nardo, L., Seo, Y., Hawkins, R.A., Hernandez Pam-
paloni, M., Hadley, D., Franc, B.L., 2018. A Deep Learning Model to Predict a Di-
agnosis of Alzheimer Disease by Using 18f-FDG PET of the Brain. Radiology 290,530

456–464. URL: https://pubs.rsna.org/doi/10.1148/radiol.2018180958,
doi:10.1148/radiol.2018180958.

Domingos, P., 2012. A few useful things to know about machine learning. Communi-
cations of the ACM 55, 78. doi:10.1145/2347736.2347755.

Dukart, J., Sambataro, F., Bertolino, A., 2015. Accurate prediction of conversion to535

Alzheimer’s disease using imaging, genetic, and neuropsychological biomarkers.
Journal of Alzheimer’s Disease 49, 1143–1159. doi:10.3233/JAD-150570. 00022.

Efron, B., 1983. Estimating the Error Rate of a Prediction Rule: Improvement on
Cross-Validation. Journal of the American Statistical Association 78, 316–331.
doi:10.1080/01621459.1983.10477973.540

Falahati, F., Westman, E., Simmons, A., 2014. Multivariate Data Analysis and Machine
Learning in Alzheimer’s Disease with a Focus on Structural Magnetic Resonance
Imaging. Journal of Alzheimer’s Disease 41, 685–708. doi:10.3233/JAD-131928.

Fleisher, A., Sun, S., Taylor, C., Ward, C., Gamst, A., Petersen, R., Jack, C., Aisen,
P., Thal, L., 2008. Volumetric MRI vs clinical predictors of Alzheimer disease545

in mild cognitive impairment. Neurology 70, 191–199. doi:10.1212/01.wnl.
0000287091.57376.65. 00178.

Gavidia-Bovadilla, G., Kanaan-Izquierdo, S., Mataroa-Serrat, M., Perera-Lluna, A.,
2017. Early prediction of Alzheimer’s disease using null longitudinal model-based
classifiers. PLoS ONE 12. doi:10.1371/journal.pone.0168011.550

Hall, A., Mattila, J., Koikkalainen, J., Lötjonen, J., Wolz, R., Scheltens, P., Frisoni,
G., Tsolaki, M., Nobili, F., Freund-Levi, Y., Minthon, L., Frölich, L., Hampel, H.,

18

http://dx.doi.org/10.3233/JAD-160594
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3331862/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3331862/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3331862/
http://dx.doi.org/10.1097/NEN.0b013e31824b211b
http://dx.doi.org/10.1371/journal.pone.0021896
https://pubs.rsna.org/doi/10.1148/radiol.2018180958
http://dx.doi.org/10.1148/radiol.2018180958
http://dx.doi.org/10.1145/2347736.2347755
http://dx.doi.org/10.3233/JAD-150570
http://dx.doi.org/10.1080/01621459.1983.10477973
http://dx.doi.org/10.3233/JAD-131928
http://dx.doi.org/10.1212/01.wnl.0000287091.57376.65
http://dx.doi.org/10.1212/01.wnl.0000287091.57376.65
http://dx.doi.org/10.1212/01.wnl.0000287091.57376.65
http://dx.doi.org/10.1371/journal.pone.0168011


Visser, P., Soininen, H., 2015. Predicting progression from cognitive impairment to
alzheimer’s disease with the disease state index. Current Alzheimer Research 12,
69–79. doi:10.2174/1567205012666141218123829.555

Haller, S., Lovblad, K.O., Giannakopoulos, P., 2011. Principles of Classification
Analyses in Mild Cognitive Impairment (MCI) and Alzheimer Disease. Journal of
Alzheimer’s Disease 26, 389–394. doi:10.3233/JAD-2011-0014.

Iddi, S., Li, D., Aisen, P.S., Rafii, M.S., Thompson, W.K., Donohue, M.C., for
the Alzheimer’s Disease Neuroimaging Initiative, 2019. Predicting the course of560

Alzheimer’s progression. Brain Informatics 6, 6. URL: https://doi.org/10.
1186/s40708-019-0099-0, doi:10.1186/s40708-019-0099-0.

Jack, C.R., Knopman, D.S., Jagust, W.J., Shaw, L.M., Aisen, P.S., Weiner, M.W., Pe-
tersen, R.C., Trojanowski, J.Q., 2010. Hypothetical model of dynamic biomarkers
of the Alzheimer’s pathological cascade. Lancet neurology 9, 119. doi:10.1016/565

S1474-4422(09)70299-6.

Johnson, P., Vandewater, L., Wilson, W., Maruff, P., Savage, G., Graham, P.,
Macaulay, L., Ellis, K., Szoeke, C., Martins, R., Rowe, C., Masters, C., Ames,
D., Zhang, P., 2014. Genetic algorithm with logistic regression for prediction
of progression to Alzheimer’s disease. BMC Bioinformatics 15. doi:10.1186/570

1471-2105-15-S16-S11. 00027.

Kauppi, K., Fan, C., McEvoy, L., Holland, D., Tan, C., Chen, C.H., Andreassen, O.,
Desikan, R., Dale, A., 2018. Combining polygenic hazard score with volumetric
MRI and cognitive measures improves prediction of progression from mild cognitive
impairment to Alzheimer’s disease. Frontiers in Neuroscience 12. doi:10.3389/575

fnins.2018.00260.

Koval, I., Bône, A., Louis, M., Bottani, S., Marcoux, A., Samper-Gonzalez, J., Bur-
gos, N., CHARLIER, B., Bertrand, A., Epelbaum, S., Colliot, O., Allassonnière, S.,
Durrleman, S., 2018. Simulating Alzheimer’s disease progression with personalised
digital brain models. URL: https://hal.inria.fr/hal-01964821. preprint.580

Leandrou, S., Petroudi, S., Kyriacou, P., Reyes-Aldasoro, C., Pattichis, C., 2018. Quan-
titative MRI Brain Studies in Mild Cognitive Impairment and Alzheimer’s Disease:
A Methodological Review. IEEE Reviews in Biomedical Engineering 11, 97–111.
doi:10.1109/RBME.2018.2796598.

Li, Y., Yao, Z., Zhang, H., Hu, B., for, t.A.D.N.I., 2018. Indirect relation based indi-585

vidual metabolic network for identification of mild cognitive impairment. Journal of
Neuroscience Methods 309, 188–198. doi:10.1016/j.jneumeth.2018.09.007.

Lin, W., Tong, T., Gao, Q., Guo, D., Du, X., Yang, Y., Guo, G., Xiao, M., Du, M.,
Qu, X., 2018. Convolutional neural networks-based MRI image analysis for the
Alzheimer’s disease prediction from mild cognitive impairment. Frontiers in Neu-590

roscience 12. doi:10.3389/fnins.2018.00777.

19

http://dx.doi.org/10.2174/1567205012666141218123829
http://dx.doi.org/10.3233/JAD-2011-0014
https://doi.org/10.1186/s40708-019-0099-0
https://doi.org/10.1186/s40708-019-0099-0
https://doi.org/10.1186/s40708-019-0099-0
http://dx.doi.org/10.1186/s40708-019-0099-0
http://dx.doi.org/10.1016/S1474-4422(09)70299-6
http://dx.doi.org/10.1016/S1474-4422(09)70299-6
http://dx.doi.org/10.1016/S1474-4422(09)70299-6
http://dx.doi.org/10.1186/1471-2105-15-S16-S11
http://dx.doi.org/10.1186/1471-2105-15-S16-S11
http://dx.doi.org/10.1186/1471-2105-15-S16-S11
http://dx.doi.org/10.3389/fnins.2018.00260
http://dx.doi.org/10.3389/fnins.2018.00260
http://dx.doi.org/10.3389/fnins.2018.00260
https://hal.inria.fr/hal-01964821
http://dx.doi.org/10.1109/RBME.2018.2796598
http://dx.doi.org/10.1016/j.jneumeth.2018.09.007
http://dx.doi.org/10.3389/fnins.2018.00777


Marinescu, R.V., Oxtoby, N.P., Young, A.L., Bron, E.E., Toga, A.W., Weiner, M.W.,
Barkhof, F., Fox, N.C., Klein, S., Alexander, D.C., Consortium, t.E., Initiative,
f.t.A.D.N., 2018. TADPOLE Challenge: Prediction of Longitudinal Evolution in
Alzheimer’s Disease. arXiv preprint arXiv:1805.03909 .595

Minhas, S., Khanum, A., Riaz, F., Khan, S., Alvi, A., 2018. Predicting progression
from mild cognitive impairment to Alzheimer’s disease using autoregressive mod-
elling of longitudinal and multimodal biomarkers. IEEE Journal of Biomedical and
Health Informatics 22, 818–825. doi:10.1109/JBHI.2017.2703918.

Moradi, E., Pepe, A., Gaser, C., Huttunen, H., Tohka, J., 2015. Machine learning600

framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects.
NeuroImage 104, 398–412. doi:10.1016/j.neuroimage.2014.10.002.

Rathore, S., Habes, M., Iftikhar, M.A., Shacklett, A., Davatzikos, C., 2017. A review
on neuroimaging-based classification studies and associated feature extraction meth-
ods for Alzheimer’s disease and its prodromal stages. NeuroImage 155, 530–548.605

doi:10.1016/j.neuroimage.2017.03.057.

Samper-Gonzalez, J., Burgos, N., Bottani, S., Fontanella, S., Lu, P., Marcoux, A.,
Routier, A., Guillon, J., Bacci, M., Wen, J., et al., 2018. Reproducible evaluation
of classification methods in alzheimer’s disease: Framework and application to mri
and pet data. NeuroImage 183, 504–521.610

Samper-Gonzalez, J., Burgos, N., Bottani, S., Habert, M.O., Evgeniou, T., Epelbaum,
S., Colliot, O., 2019. Reproducible evaluation of methods for predicting progression
to Alzheimer’s disease from clinical and neuroimaging data, in: Angelini, E.D.,
Landman, B.A. (Eds.), Medical Imaging 2019: Image Processing, SPIE, San Diego,
United States. p. 30. doi:10.1117/12.2512430.615

Sarica, A., Cerasa, A., Quattrone, A., 2017. Random Forest Algorithm for the Classifi-
cation of Neuroimaging Data in Alzheimer’s Disease: A Systematic Review. Fron-
tiers in Aging Neuroscience 9, 329. doi:10.3389/fnagi.2017.00329.

Schuster, C., Elamin, M., Hardiman, O., Bede, P., 2015. Presymptomatic and longitu-
dinal neuroimaging in neurodegeneration—from snapshots to motion picture: a sys-620

tematic review. Journal of Neurology, Neurosurgery & Psychiatry 86, 1089–1096.
doi:10.1136/jnnp-2014-309888.

Thung, K.H., Yap, P.T., Adeli, E., Lee, S.W., Shen, D., 2018. Conversion and time-to-
conversion predictions of mild cognitive impairment using low-rank affinity pursuit
denoising and matrix completion. Medical Image Analysis 45, 68–82. doi:10.625

1016/j.media.2018.01.002.

Tong, T., Gao, Q., Guerrero, R., Ledig, C., Chen, L., Rueckert, D., 2017. A novel
grading biomarker for the prediction of conversion from mild cognitive impairment
to Alzheimer’s disease. IEEE Transactions on Biomedical Engineering 64, 155–165.
doi:10.1109/TBME.2016.2549363.630

20

http://dx.doi.org/10.1109/JBHI.2017.2703918
http://dx.doi.org/10.1016/j.neuroimage.2014.10.002
http://dx.doi.org/10.1016/j.neuroimage.2017.03.057
http://dx.doi.org/10.1117/12.2512430
http://dx.doi.org/10.3389/fnagi.2017.00329
http://dx.doi.org/10.1136/jnnp-2014-309888
http://dx.doi.org/10.1016/j.media.2018.01.002
http://dx.doi.org/10.1016/j.media.2018.01.002
http://dx.doi.org/10.1016/j.media.2018.01.002
http://dx.doi.org/10.1109/TBME.2016.2549363


Wen, J., Thibeau-Sutre, E., Samper-González, J., Routier, A., Dormont, D., Durrleman,
S., Colliot, O., Burgos, N., 2019. How serious is data leakage in deep learning
studies on Alzheimer’s disease classification?, in: Proceedings of: Human Brain
Mapping (HBM), p. 8.

Wooller, S., 2018. Artificial intelligence can predict Alzheimer’s 6 years ear-635

lier than medics, study finds. URL: https://www.foxnews.com/health/
artificial-intelligence-can-predict-alzheimers-6-years-earlier-than-medics-study-finds.

21

https://www.foxnews.com/health/artificial-intelligence-can-predict-alzheimers-6-years-earlier-than-medics-study-finds
https://www.foxnews.com/health/artificial-intelligence-can-predict-alzheimers-6-years-earlier-than-medics-study-finds
https://www.foxnews.com/health/artificial-intelligence-can-predict-alzheimers-6-years-earlier-than-medics-study-finds


Appendix A. Supplementary Materials

Appendix A.1. Query

The full query was:640

TITLE-ABS-KEY ("alzheimer’s" OR alzheimer OR ad) AND TITLE-ABS-
KEY ("Mild Cognitive Impairment" OR "MCI") AND TITLE-ABS-
KEY ((predicting OR prediction OR predictive) AND (
conversion OR decline OR progression OR onset) OR prognosis
) AND TITLE-ABS-KEY (accuracy OR roc OR auc OR specificity645

OR sensitivity) AND (TITLE-ABS-KEY ("Deep learning" OR "
neural network" OR "neural networks" OR "convolutional
network" OR "convolutional networks" OR "bayesian network"
OR "bayesian networks") OR TITLE-ABS-KEY ("Matrix
completion" OR "Support vector machine" OR "linear mixed-650

effect" OR "logistic regression" OR "Random Forest" OR "
kernel classifier" OR "kernel" OR "decision tree" OR "
decision trees" OR "least-squares") OR TITLE-ABS-KEY ("
Machine learning" OR "pattern recognition" OR "pattern
classification" OR "classifier" OR "algorithm" OR "655

classification"))

Appendix A.2. Selection process diagram

The process used to select the articles included in the review is shown in Figure S1.

Appendix A.3. Reported items660

For each article, the following elements were reported:

• number of MCI subjects progressing to AD;

• number of stable MCI subjects;

• time to prediction;

• used cohorts;665

• use of socio-demographic features (yes/no);

• use of APOE (yes/no);

• use of general cognitive features (yes/no);

• use of domain-targeted cognitive features (yes/no);

• use of new, home-made cognitive features (yes/no);670

• use of voxel based features from T1 MRI (yes/no);
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Figure S1: Diagram representing who the articles were selected
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• use of regions of interest on the whole brain, from T1 MRI (yes/no);

• use of selected regions of interest from T1 MRI (yes/no);

• use of white matter hyper-intensities (yes/no);

• use of PET FDG features (yes/no);675

• use of PET amyloid features (yes/no);

• use of PET tau features (yes/no);

• use of CSF features (yes/no);

• use of amyloid status (yes/no);

• use of DTI features (yes/no);680

• use of functional MRI features (yes/no);

• use of EEG or MEG features (yes/no);

• use of other features (yes/no, precision given as a free note);

• use of longitudinal features (yes/no);

• is feature selection performed (yes/no);685

• used algorithm (categories defined below);

• validation method (categories defined bellow);

• feature selection performed on the whole data set (yes/no/unclear);

• feature embedding performed on the whole data set (yes/no/unclear);

• selection of the input visit of the test subjects using their date of progression to690

AD (yes/no);

• other data leakage (use of the test set to make decisions) (yes/no/unclear);

• other issue (yes/no)

• AUC value;

• accuracy value;695

• balanced accuracy value;

• sensitivity value;

• specificity value;
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Free notes describing the issues, or important points that did not fit in the previous
list, were added.700

The possible algorithm categories were added by the readers and aggregated. The
final list was: bayesian algorithms, classification by clinicians, gaussian process, linear
discriminant analysis (LDA), low rank matrix completion (LRMC), linear regression,
logistic regression, manifold learning, multiple kernel learning, neural network, orthog-
onal partial least square (OPLS), random forest, regularized logistic regression, support705

vector machine, survival analysis, use of a threshold and others (including home-made
algorithms).

The same process was used to create the cross-validation category list, composed
of: 10-fold, k-fold, repeated k-fold, leave one out, out of the bag, single split, repeated
single split, validation on an independent cohort, validation on different groups (when710

the algorithm is trained on separating AD and CN subjects, and tested on predicting the
progression of MCI subjects), none, not described (when the use of cross-validation
is mentioned but the used validation method is not described) and not needed (for
thresholding with a manually chosen threshold for example).

Appendix A.4. Journals and conference proceedings715

Table S1 shows the journals and conference proceedings in which more than one
included article has been published, and the associated number of articles.

Journal or conference proceedings Number of included
articles

Journal of Alzheimer’s Disease 12
NeuroImage 11
Lecture Notes in Computer Science 7
PLoS ONE 9
Neurobiology of Aging 6
Neurology 3
Brain Topography 3
Current Alzheimer Research 3
Medical Image Analysis 3
Frontiers in Aging Neuroscience 3
Scientific Reports 2
Frontiers in Neuroscience 2
IEEE Journal of Biomedical and Health Informatics 2
IEEE Transactions on Biomedical Engineering 2
NeuroImage: Clinical 2
Journal of Neuroscience Methods 2

Table S1: Number of included articles published in each journal or conference proceedings. Only the journals
with more than one included article are shown here. The articles taken into account are the one considered
for analysis, and that use a large enough data set.
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Appendix A.5. Information table

A table containing all the articles included in the review and all the reported values
can be found on https://gitlab.com/icm-institute/aramislab/mci-progression-review.720

The issues identified in each articles were removed from this open-access table, to
avoid negatively pointing at these studies. They can be made available if requested to
the corresponding author.
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