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On self similarity and coarsening rate of a convecting bicontinuous phase separating mixture : effect of the viscosity contrast

We present a computational study of the hydrodynamic coarsening in 3D of a critical mixture using the Cahn-Hilliard/Navier-Stokes model. The topology of the resulting intricate bicontinuous microstructure is analyzed through the principal curvatures to prove self-similar morphological evolution. We find that the self similarity exists for both systems: isoviscous and with variable viscosity. However the two system have distinct topological character. Moreover an effective viscosity that accurately predicts coarsening rate is proposed.

I. INTRODUCTION

Among the physical process leading to the formation of a microstructure, phase separation is ubiquitous. It is seen in glasses [START_REF] Craievich | Phase separation and dynamical scaling in borate glasses[END_REF] and polymer blends [START_REF] Sanat | Phase separation in nearly symmetric polymer mixtures[END_REF], and can be divided into two stages. First, the unstable mixture phase separates at a characteristic length-scale, l [START_REF] John W Cahn | Phase Separation by Spinodal Decomposition in Isotropic Systems[END_REF]. When the volume fraction of one phase is close to 0.5, the initial microstructure that arises consists of two interlaced percolating clusters (similar to the one presented fig: 1)while for significantly lower volume fractions it consists of isolated droplets in a matrix of the majority phase. This pattern evolves under the effect of diffusion [START_REF] Lifshitz | The kinetics of precipitation from supersaturated solutions[END_REF] or of fluid flow [START_REF] Siggia | Late Stages of Spinodal decomposition in binary mixtures[END_REF], resulting in an increase of the characteristic length l known as coarsening. It is widely acknowledged that this process is self similar. In the case of diffusive coarsening, based either on analytical [START_REF] Lifshitz | The kinetics of precipitation from supersaturated solutions[END_REF] or numerical investigations [START_REF] Kwon | Coarsening of bicontinuous structures via nonconserved and conserved dynamics[END_REF][START_REF] Kwon | The topology and morphology of bicontinuous interfaces during coarsening[END_REF], strong arguments in favour of this hypothesis can be found.

In the case of viscous coarsening, such arguments are still lacking. Indeed Siggia [START_REF] Siggia | Late Stages of Spinodal decomposition in binary mixtures[END_REF], assuming a priori self similarity, proposed using a scaling argument, that after an initial diffusive coarsening stage where the characteristic length grows as t 1/3 , coarsening is governed by viscous fluid flow. This later regime is characterized by a growth of the characteristic length at a constant rate. Later, some consequences of self-similarity were observed in experiments [START_REF] Chou | Phase separation and coalescence in critically quenched isobutyric-acid and water and 2,6-lutidine water mixtures[END_REF][START_REF] Wong | Lightscattering studies of phase separation in isobutyric acid + water mixtures: Hydrodynamic effects[END_REF] and numerical simulations [START_REF] Appert | Phase separation in a threedimensional, two-phase, hydrodynamic lattice gas[END_REF][START_REF] Bastea | Spinodal Decomposition in Binary Gases[END_REF][START_REF] Kendon | Inertial effects in three-dimensional spinodal decomposition of a symmetric binary fluid mixture: a lattice Boltzmann study[END_REF] that were conducted at symmetric composition where phases share the same viscosity. In further investigations, laws that account for inertial effects were also proposed [START_REF] Furukawa | Role of inertia in the late stage of the phase separation of a fluid[END_REF][START_REF] S I Jury | Tests of dynamical scaling in three-dimensional spinodal decomposition[END_REF][START_REF] Grant | Spinodal Decomposition in Fluids[END_REF][START_REF] Vm Kendon | Scaling theory of three-dimensional spinodal turbulence[END_REF][START_REF] Sain | Phase Separation of a Binary Fluid in the Inertia-Dominated Regime[END_REF]. However these were limited to the symmetric case and the existence of the viscous self similar coarsening regime remains to be uncovered when the symmetry of the composition, or the kinetics is broken. Moreover, the method of analysis was based on analyzing the structure functions, that is loosing accuracy at low wavenumbers, and more importantly it gives no direct information about the topology of the microstructure.

Herein, inspired by recent X-Ray tomography [START_REF] Bouttes | Fragmentation and Limits to Dynamical Scaling in Viscous Coarsening: An Interrupted \textit{in situ} X-Ray Tomographic Study[END_REF][START_REF] Bouttes | Topological symmetry breaking in viscous coarsening[END_REF]] experiments, we explore the effect of viscosity contrast of the phases on the persistence of self similarity and T=10000 T=20000

FIG. 1. Perspective view of the isosurface c = 0.5 at different times of a simulation. Volume fraction is ϕ = 0.5, the viscosity contrast between the phases is 128 and the viscosity is

ν = 2.
the topology of the interconnected structure. Our analysis bases on simulations using the Cahn-Hilliard/Navier-Stokes (NSCH) model, and characterizing the geometrical features of the microstructure using recent advanced methods [START_REF] Kwon | Coarsening of bicontinuous structures via nonconserved and conserved dynamics[END_REF][START_REF] Araki | Three-Dimensional Numerical Simulations of Viscoelastic Phase Separation: Morphological Characteristics[END_REF] We first study the hydrodynamic coarsening of an isoviscous sample as reference, and discuss the domain of validity of Siggia's scaling. Next the effects of kinetic symmetry breaking (viscosity contrast) are considered and quantitative measures to the changes of the microstructure are given.

II. THEORY AND MODELING

The thermodynamics of a binary fluid is well described by the diffuse interface theory of Cahn and Hilliard [START_REF] Cahn | Free Energy of a Nonuniform System. I. Interfacial Free Energy[END_REF]. The simplest symmetric form of the Cahn-Hilliard freeenergy reads as:

F = 2 (∇c) 2 + A(c 2 (c -1) 2 ) (1) 
Here and A are model parameters, that are used to adjust interface tension to γ = 0.0042. as in reference [START_REF] Kendon | Inertial effects in three-dimensional spinodal decomposition of a symmetric binary fluid mixture: a lattice Boltzmann study[END_REF]. The coarsening dynamics via convection and diffusion is governed by the coupled Navier-Stokes (eq.4) and the convective Cahn-Hilliard (CH) (eq.2) equations (NSCH), also known as model H [START_REF] Hohenberg | Theory of dynamic critical phenomena[END_REF]. Thermal fluctuations, were neglected assuming they are small on the characteristic scale of the microstructure. The Navier-Stokes/Cahn-Hilliard [START_REF] Anderson | Diffuse-Interface Methods in Fluid Mechanics[END_REF] model was used along with the incompressibility constraint (eq.4):

∂ t c + v • ∇c = -D µ (2) 
∂ t v + ∇ • (v ⊗ v) = -1 ρ (∇p + c∇µ) (3) 
+ ∇ • ν(c) 2 (∇v + ∇v T ) ∇ • v = 0 (4) 
In the Cahn-Hilliard equation (Eq. 2), D is the diffusion constant, µ = δF/δc is the chemical potential that derives from the CH free energy. In the Navier-Stokes equation (Eq. 3) the -∇p term on the RHS includes a Lagrangian multiplier that forces incompressibility. The second term is the thermodynamic stress, and accounts for capillary forces. The last term accounts for the viscous dissipation, ν(c) = ν h (1c) + ν l (c) is the composition dependent kinematic viscosity. ρ is the mass density and was chosen to unity except specified otherwise. We define here the viscosity contrast as the ratio of the high and low viscosity of the species (V C = ν h /ν l ). While, according to the Stokes-Einstein relation, varying viscosity, implies concentration dependent diffusivity, in the late stage of coarsening one can assume local equilibrium at the interface. Therefore simplifying to a homogeneous diffusion equation does not affect the coarsening of the microstructure. In addition, the absence of viscoelastic terms is valid under the assumption that the shear modulus is sufficiently high [START_REF] Tanaka | Viscoelastic phase separation[END_REF]. The model equations were simulated numerically using standard approaches [START_REF] Orszag | Numerical methods for the simulation of turbulence[END_REF][START_REF] Orszag | Numerical simulation of three-dimensional homogeneous isotropic turbulence[END_REF][START_REF] Liu | A phase field model for the mixture of two incompressible fluids and its approximation by a fourier-spectral method[END_REF][START_REF] Zhu | Coarsening kinetics from a variable-mobility cahn-hilliard equation: Application of a semi-implicit fourier spectral method[END_REF] that are described in the supplementary material [START_REF] Henry | Suplemental material url to be given by publisher[END_REF] together with a more detailed description of the model equations that is inspired by [START_REF] Barry | Fluctuating hydrodynamics for multiscale simulation of inhomogeneous fluids: Mapping allatom molecular dynamics to capillary waves[END_REF][START_REF] Gyula | Phase-field theory of multicomponent incompressible cahn-hilliard liquids[END_REF] . The analysis of the results allowed us to extract a characteristic length scale l that is defined as the ratio between the total volume and the total interface between the phases and other statistical quantities such as the probability distribution function of the curvatures of the interface [START_REF] Goldman | Curvature formulas for implicit curves and surfaces[END_REF] or the structure functions. The detailed description of the method used to compute such quantities is also given in the supplementary material [START_REF] Henry | Suplemental material url to be given by publisher[END_REF] The NSCH model reproduces well the initial phase separation followed by the coarsening of the microstructure that is due to diffusion at small length-scales with a characteristic length-scale growing as l ∝ t 1/3 [START_REF] Lifshitz | The kinetics of precipitation from supersaturated solutions[END_REF][START_REF] Cahn | The later stages of spinodal composition and the begining of particle coarsening[END_REF]. At larger length scales the coarsening is driven by convection that is governed by surface tension and viscous dissipation. As a result l grows linearly: l = v 0 t ∝ γ/νt [START_REF] Siggia | Late Stages of Spinodal decomposition in binary mixtures[END_REF] where γ is the surface tension and ν is the viscosity of the fluid when V C = 1. The transition from the diffusive growth to a viscous growth occurs when v 0 is much larger than the growth velocity associated with diffusion (which itself is a function of the mobility of chemical species). This translates into the fact that the Peclet number (P e = lv 0 /D) is large. Finally the viscous growth law looses its validity when inertial effects cannot be neglected (the Reynolds number Re, defined as l/l 0 where l 0 = ν 2 /(γρ) becomes large). Here we have limited ourselves to the viscous coarsening of a phase separated mixture, assuming that the viscosity was sufficiently high to avoid the effects of fluid flow during the initial phase separation and before well defined phases are present and coarsenning takes place [START_REF] Tanaka | Spontaneous Double Phase Separation Induced by Rapid Hydrodynamic Coarsening in Two-Dimensional Fluid Mixtures[END_REF]. It is important to note that during the course of the coarsening, since l is growing, these two numbers grow (proportionally to l). This indicates that the characteristic size of the flow is the characteristic size of the microstructure and change with times. As a result, during the coarsening of a bicontinuous structure, both l and Re will increase and there will be a transition from a diffusive coarsening regime where P e << 1 to a viscous dominated regime (P e >> 1 and Re << 1 followed by an inertia dominated regime (Re >> 1) [START_REF] Kendon | 3D Spinodal Decomposition in the Inertial Regime[END_REF]. Here we have focused on the well defined Siggia regime for which P e >> 1 and Re << 1.

III. RESULTS

Since we consider the effect of the symmetry breaking induced by the viscosity contrast on the viscous coarsening we have chosen to limit ourselves to the case where the volume fraction of each phase is 0.5 for which the bicontinuous morphology, that is necessary to the Siggia's scaling, is more robust. First we present a few results in the case of the iso-viscosity regime and briefly discuss the effects of diffusion and of inertia in this case. Then, the main results of this work, about the effects of symmetry breaking are presented.

A. Symmetric regime

This section is devoted to the determination of the parameters for which the Siggia regime is valid. Indeed, while the three different regimes have been discussed at length in previous work, there is still no clear determination of where the transition occur. To this purpose, we first give an estimate of the diffusive effects as a function of the P e number. Then we determine the value above which the inertial terms are becoming significant.

To this purpose, we consider various parameter sets for which the Reynolds number and the diffusion process are kept unchanged while the Siggia flow rate is changed. Hence we change the value of the Peclet number without altering neither the relative importance of inertial terms and the absolute value of the diffusive contribution to coarsening thanks to the following transformation:

ν ; aν (5) ρ ; a 2 ρ ( 6 
)
where a is a real constant. Indeed l 0 = ν 2 /(γρ) (and the Reynolds number) is unchanged while v 0 = γ/(νρ) is multiplied by a. More precisely if a given field v(x, t) was solution of the Navier Stokes equation, for the original parameter set, av(x, t) will be a solution with the transformed parameter set if the diffusive effects are neglectable. In this situation, the coarsening rate with the transformed parameters will be a times the coarsening rate with the original parameters and the relative importance of diffusive effects will be given by the difference between the computed solution and the predicted one. We have applied this approach to our system and the result is presented in figure 2(b). The growth velocity multiplied by 1/v 0 , 0.5/v 0 , 0.25/v 0 respectively as a function of l is plotted for ν = 8, 16, 32 and ρ = 1, 0.25, 0.0625 respectively where v 0 is the average value of dl/dt obtained for (ν = 32, ρ = 0.0625). If the diffusive effects are neglectable, one expect the curves to collapse while if diffusive effects are present, the difference between the curves is a measure of the diffusive effects. One can see that the curves obtained for the last two set of parameters collapse well while for ν = 8 there is a significant departure from the collapse. As a result, with ρ = 1 and the kinematic viscosity ν < 8, diffusion effects can be neglected for values of l larger than 50. This translates in terms of Peclet number into the fact that P e > 1 (γ = 0.042, ρ = 1, ν = 8, D = 1 × A and l = 50). We now turn to the effects of inertia. To this purpose, in fig. 2 (a) we plot the growth velocity of domain size as a function of the inverse of the kinematic viscosity. One can see that, as predicted by Siggia, that for high values of ν the growth velocity is proportional to 1/ν with a constant prefactor. For smaller values there is a clear departure from linear behaviour proposed in [START_REF] Siggia | Late Stages of Spinodal decomposition in binary mixtures[END_REF]. The onset of this deviation occurs for ν ≈ 1 and is significant for ν < 0.5, values for which the growth velocity is well described as constant over the length span considered here. As a result, for these values, despite the apparent constant growth rate, there is a clear departure from the Siggia's scaling that is due to inertial effects. From a quantitative point of view, it occurs at Re = 1 (ν = 1, γ = 0.042, ρ = 1, l = 25). This value of Re = 1 has to be compared with the one postulated by Siggia that was ≈ 100 and that has been widely used since then.

10 3 < dl/dt > 1/ √ ν h ν l V C=1 V C=2 V C=4 V C=8 V C=16 V C=32 10 3 < dl/dt > 1/ √ ν h ν l 10 3 < dl/dt > 2/(ν h + ν l ) 10 3 < dl/dt > (ν h + ν l )/(2ν h ν l )
Here we have characterized the various regimes of domain growth and how they are related. We have also drawn a clear picture of the iso-viscous domain growth for a given value of the surface tension (γ = 0.0042) and the fluid density (ρ = 1). For a kinematic viscosity ranging from 4 to 1, and domain sizes ranging from 5 to 100, the growth regime can be described as purely viscous. For lower values of ν (corresponding to Re ≈ 1), a clear departure from this regime due to inertial effects can be seen. For higher values of viscosity,(i.e P e < 1.) the contribution of diffusion to viscosity can no longer be neglected.

B. Symmetry breaking induced by the viscosity contrast

We now consider the evolution of the microstructure when the two phases have different viscosities. The viscosity contrast (V C) is the ratio ν h /ν l and ranges from 1 to 128 in our simulations.

First we consider the evolution of the characteristic length l when ν h is small enough to guarantee that diffusive effects can be neglected. In such situations, the domain growth over time is linear with a velocity that is a function of both ν h and ν l . In the spirit of [START_REF] Onuki | Domain growth and rheology in phaseseparating binary mixtures with viscosity difference[END_REF] we seek an effective viscosity ν eff for the two phase fluid, that predicts the coarsening rate. We consider the following simple forms of the effective viscosity: the arithmetic mean (ν eff = (ν h + ν l )/2), the geometric mean (ν eff = √ ν h ν l ) and Onuki's formula ( 1/ν eff = (1/ν h +1/ν l )/2) [START_REF] Onuki | Domain growth and rheology in phaseseparating binary mixtures with viscosity difference[END_REF]. The results are summarized in figure 3 and indicate that the use of the geometric mean ( √ ν h ν l ) leads to a very good collapse of the curve giving the coarsening rate as a function of the effective viscosity in the linear regime and still a good collapse when inertial effects are present. Other propositions for the effective viscosity are far less convincing. Hence, the viscous growth of the microstructure is the same as the one that would occur if the viscosity was the geometric mean of the viscosities.

Finally we describe the effects of the viscosity contrast on the microstructure itself. To this purpose we consider three values of the viscosity contrast (1, 16 and 128) and choose ν h and ν l so that √ ν h ν l = 4, 8, 16. To avoid the effect of the diffusive cross over we set density as: ρ = 0.00625. Using the effective viscosity, l 0 ≈ 2.10 5 and the Pclet number is ranging from 5 to 200. Hence we have a set of parameters for which we expect both inertial and diffusive effects to be neglectable. With this parameter set the Probability Distribution Functions (PDFs) of the principal curvatures (rescaled by l) are independent of ν ef f and of the initial conditions(see supplementary material [START_REF] Henry | Suplemental material url to be given by publisher[END_REF]), indicating the generality of the results presented here. In fig. 4 the contour lines of the PDFs in the two extreme cases (V C = 1 and V C = 128, with ν ef f = 8) are plotted. As expected in the V C = 1 case, the PDF is symmetric with respect to the axis lκ 1 = -lκ 2 and the contours corresponding to two times where l ≈ 23 and to l ≈ 84 , the PDFs are indistinguishable, indicating the self similar nature of the domain growth In addition the contribution of the regions where κ 1 is of the same sign as κ 2 is negligible.

The self similar behaviour holds in the case V C = 128, as can be seen in the plot of the structure functions (see fig. 4 ) but the plot of PDF of the curvatures (fig. 4(b)) are no longer symmetric with respect to the axis κ 1 = -κ 2 which clearly indicates the effects of the symmetry breaking. In addition, the contribution of the regions where both κ 1 and κ 2 > 0 is no longer negligible : some regions of the interface between the fluids are spherical caps ( as seen fig. 1 which was not the case for V C = 1. This is also confirmed by the plot of the PDF (fig. 4 (c))of the Gaussian curvature where for viscosity contrast 16 and 128, the contribution of the κ g > 0 part of the curve is not negligible, contrary to the V C = 1 case.

Finally, we show the evolution of the rescaled genius number (g, which is proportional to the rescaled mean Gaussian curvature and a simple function of the Euler's characteristic. [START_REF] Henry | Suplemental material url to be given by publisher[END_REF]), and of the rescaled mean curvature < lκ m > as a function of l for these three values of V C. After an initial transient, as expected for a self-similar growth both the genius and the mean curvature are approximately constant for a given value of V C. In the case of the genius number, (fig. 5 (a))the values computed are similar to the one found in [START_REF] Kwon | Morphology and topology in coarsening of domains via nonconserved and conserved dynamics[END_REF] (≈ 0.13) in the case of diffusive coarsening and increasing V C induces a decrease of g. Nevertheless, the effect is small and there is an increase in measurement error as l increases. In contrast, the effect on the average mean curvature, (fig.

5. (b) ) are much clearer. Indeed, for V C = 1, it is 0 (up to numerical/statistical errors)for symmetry reasons. When V C is increased, there is a clear departure from this value that confirms the symmetry breaking.

The experimental results from [START_REF] Bouttes | Fragmentation and Limits to Dynamical Scaling in Viscous Coarsening: An Interrupted \textit{in situ} X-Ray Tomographic Study[END_REF][START_REF] Bouttes | Topological symmetry breaking in viscous coarsening[END_REF] give a growth of the Euler characteristic as 0.98l 1/3 for a V C ≈ 10 5 and a volume fraction ≈ 0.45 while our results for V C = 128 would correspond to a growth as 0.7l 1/3 . The difference can be attributed to the dramatic difference in parameter values. From a more qualitative point of view, we find noteworthy the fact that the PDFs of Gaussian curvature when the viscosity contrast is increased present a significantly higher contribution of κ g > 0, that corresponds to spherical caps (that are absent in the case V C = 1) since in the experiments with high values of V C, spherical inclusions are observed. 

IV. CONCLUSION

Here, the hydrodynamical coarsening of a two phase mixture at symmetric composition is studied using constant and varying viscosity. Firstly, we have challenged the assumption of self-similarity. The analysis of the PDFs of the principal curvatures gives strong arguments in favour of the self similar nature of the viscous coarsening in both cases. In addition, the analysis presented here is suitable to describe the geometry and topology of the microstructure. More specifically, the effects of the symmetry breaking on the morphology are described and qualitative agreement with experiments [START_REF] Bouttes | Fragmentation and Limits to Dynamical Scaling in Viscous Coarsening: An Interrupted \textit{in situ} X-Ray Tomographic Study[END_REF][START_REF] Bouttes | Topological symmetry breaking in viscous coarsening[END_REF] is found. When considering the kinetics of the coarsening process, we show that the linear growth regime predicted by Siggia [START_REF] Siggia | Late Stages of Spinodal decomposition in binary mixtures[END_REF] actually exists in the case where the two fluids share the same viscosity for values of the Reynolds number below 1. When symmetry is broken by introducing viscosity contrast, the self similar linear growth still persists. Furthermore, our analysis allowed us to propose a formula for an effective viscosity that accurately predicts the coarsening rate of the microstructure and may be used to estimate the magnitude of flow induced coarsening in experiments, This is in contrast with the thoroughly studied case of viscoelastic systems, where departure from self-similarity is observed [START_REF] Araki | Three-Dimensional Numerical Simulations of Viscoelastic Phase Separation: Morphological Characteristics[END_REF][START_REF] Tanaka | Viscoelastic phase separation[END_REF].

Further understanding of the microstructure formation during coarsening should be gained by study of the pattern formation process in the off critical mixture ϕ = 0.5 where we expect to observe dramatic topological changes during the coarsening process.
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 2 FIG. 2. (a) growth velocity as a function of viscosity for a volume fraction of 0.5. In the inset a zoom on the linear regime is shown. (b) v/v0 = dl/dt/v0 as a function of l for resp. ρ = 1, 0.25, 0.0625 and resp. ν = 8, 16, 32 with resp. solid, long and short dash. Here v0 is the value computed in the case ρ = 0.0625, ν = 32 (rescaled for ρ = 1, 0.25).
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 3 FIG. 3. (a): Growth rate as function of √ ν l ν h for different values of ν h ranging from 0.0625 to 32 and of ν h /ν l equal to 2, 4, 16 ad 32. The points corresponding to ν h /ν l = 1 are the purple +. The line is a guide to the eye. (b): same data with a zoom on the vicinity of the origin. (c) (resp. d) plot of the coarsening velocity versus ν eff = (ν h + ν l )/2 (resp. 1/ν eff = (1/ν h + 1/ν l )/2).
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 4 FIG. 4. (a), (b):Contour plots of the PDF of the principal curvatures rescaled by the characteristic length for two values of the viscosity contrast: 1 (resp. 128) taken at two times corresponding to (solid) l ≈ 23 (resp. 30) and to (dashed) l ≈ 88 (resp.84. ) (dashed). The iso-levels are 0.0001, 0.0002, 0.0003, 0.0004 and 0.0005. (c) PDF of the Gaussian curvature for three different values of the viscosity contrast (solid: 1, long dash 16 and short dash: 128). (d) Plot of the normalized structure functions taken at different time corresponding to the value of l indicated on the graph. The very good collapse of the curves for the lowest values of l confirms the self similar nature of the coarsening process. The low wavenumber departure from the collapse for l = 63 and l = 82 can be attributed to discretization effects[START_REF] Kendon | Inertial effects in three-dimensional spinodal decomposition of a symmetric binary fluid mixture: a lattice Boltzmann study[END_REF] 
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 5 FIG. 5. (a) Plot of the rescaled genius as a function of l for V C = 1 (+), 16 (X) and 128(2). (b) Plot of the rescaled average mean curvature as a function of l for V C = 1 (+), 16 (X) and 128(2).
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