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Abstract
Concurrent Kleene Algebra is an elegant tool for equational reasoning about concurrent programs.
An important feature of concurrent programs that is missing from CKA is the ability to restrict
legal interleavings. To remedy this we extend the standard model of CKA, namely pomsets, with
a new feature, called boxes, which can specify that part of the system is protected from outside
interference. We study the algebraic properties of this new model. Another drawback of CKA is
that the language used for expressing properties of programs is the same as that which is used
to express programs themselves. This is often too restrictive for practical purposes. We provide
a logic, ‘pomset logic’, that is an assertion language for specifying such properties, and which is
interpreted on pomsets with boxes. In contrast with other approaches, this logic is not state-based,
but rather characterizes the runtime behaviour of a program. We develop the basic metatheory for
the relationship between pomset logic and CKA, including frame rules to support local reasoning,
and illustrate this relationship with simple examples.
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1 Introduction

Concurrent Kleene Algebra (CKA) [11, 14, 15, 4] is an elegant tool for equational reasoning
about concurrent programs. Its semantics is given in terms of pomsets languages; that is,
sets of pomsets. Pomsets [8], also known as partial words [9], are a well-known model of
concurrent behaviour, traditionally associated with runs in Petri nets [13, 4].

However, in CKA the language used for expressing properties of programs is the same
as that which is used to express programs themselves. It is clear that this situation is not
ideal for specifying and reasoning about properties of programs. Any language specifiable
in CKA terms has bounded width (i.e., the number of processes in parallel; the size of a
maximal independent set) and bounded depth (i.e., the number of alternations of parallel
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2 Pomsets with Boxes

print(counter);
x:=counter; y:=counter;
x:=x+1; y:=y+1;
counter:=x; counter:=y;

print(counter);

(a) Pseudo code

Ò
x Ix bx

y Iy by

Ò

(b) Graphical representation

Figure 1 Distributed counter

and sequential compositions)[17]. However, many properties of interest — for example, safety
properties — are satisfied by sets of pomsets with both unbounded width and depth.

In this paper, we provide a logic, ‘pomset logic’, that is an assertion language for specifying
such properties. We develop the basic metatheory for the relationship between pomset logic
and CKA and illustrate this relationship with simple examples. In addition, to the usual
classical or intuitionistic connectives — both are possible — the logic includes connectives
that characterize both sequential and parallel composition.

In addition, we note that CKA allows programs with every possible interleaving of parallel
threads. However, to prove the correctness of such programs, some restrictions must be
imposed on what are the legal interleavings. We provide a mechanism of ‘boxes’ for this
purpose. Boxes identify protected parts of the system, so restricting the possible interleavings.
From the outside, one may interact with the box as a whole, as if the program inside was
atomic. On the other hand, it is not possible to interact with its individual components, as
that would intuitively require opening the box. However, boxes can be nested, with this
atomicity observation holding at each level. Pomset logic has context and box modalities
that characterize this situation.
I Note. The term ‘Pomset logic’ has already been used in work by Retoré [25]. We feel that
reusing it does not introduce ambiguity, since the two frameworks arise in different contexts.

I Example 1 (Running example: a distributed counter). We consider here a program where a
counter is incremented in parallel by two processes. The intention is that the counter should
be incremented twice, once by each process. However, to do so each process has to first
load the contents of the counter, then compute the increment, and finally commit the result
to memory. A naive implementation is presented in Figure 1a. Graphically, we represent
the print instruction print(counter)by Ò, the read instruction x:=counter by x, the
increment instruction x:=x+1 by Ix, and finally the write instruction counter:=x by bx.
We thus represent the previous program as displayed in Figure 1b.
This program does not comply with our intended semantics, since the following run is possible:

Ò x Ix bxy Iy by Ò

The result is that the counter has been incremented by one. We can identify a subset
of instructions that indicate there is a fault: the problem is that both read instructions
happened before both write instructions; i.e.,

x bx

y by

To preclude this problematic behaviour, a simple solution is to make the sequence
‘read;compute;write’ atomic. This yields the program in Figure 2a. Diagrammatically, this
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print(counter);
atomic{ atomic{

x:=counter; y:=counter;
x:=x+1; y:=y+1;
counter:=x; counter:=y;

} }
print(counter);

(a) Pseudo code

Ò
x Ix bx

y Iy by

Ò

(b) Graphical representation

Figure 2 Distributed counter with atomic increment

can be represented by drawing solid boxes around the atomic{} blocks, as shown in Figure 2b.
This paper shows how to make these ideas formal.

In Section 2, we extend pomsets with a new construct for protection, namely boxes. We
provide a syntax for specifying such pomsets and characterize precisely its expressivity. This
enables us, for example, to correctly represent the program from Example 1. We present a
sound and complete axiomatization of these terms, with operators for boxing, sequential and
parallel composition, and non-deterministic choice, as well as the constants abort and skip.

In Section 3, we introduce pomset logic. This logic comes in both classical and intuitionistic
variants. In addition to the usual classical or intuitionistic connectives, this logic includes
connectives corresponding to each of sequential and parallel composition. These two classes
of connectives are combined to give the overall logics, in the same way as the additives and
multiplicatives of BI (bunched implications logic) [21, 1, 23]. Just as in BI and its associated
separation logics [21, 12, 26], pomset logic has both classical and intuitionistic variants.
It also includes modalities that characterize, respectively, protection, and locality. These
correspondences are made precise by van Benthem–Hennessy–Milner-type theorems asserting
that two programs are (operationally) equivalent iff they satisfy the same formulae. We obtain
such correspondences for several variants of our framework. In contrast to Hennessy–Milner
logic, however, pomset logic is a logic of behaviours rather than of states and transitions.

In Section 4, we investigate local reasoning principles for our logic of program behaviours.
We showcase the possibilities of our framework on an example. We conclude by briefly
discussing future work in Section 5.

2 Algebra of Pomsets with Boxes

In this section, we define our semantic model, and the corresponding syntax. We characterize
the expressivity of the syntax, and axiomatize its equational theory.

Throughout this paper, we will use Σ to denote a given set of atomic actions.

2.1 Pomsets with boxes
2.1.1 Definitions and elementary properties
I Definition 2 (Poset with boxes). A poset with boxes is a tuple P := 〈EP ,≤P , λP ,BP 〉,
where EP is a finite set of events; ≤P⊆ EP ×EP is a partial order; λP : EP → Σ is a labelling
function; BP ⊆ P (EP ) is a set of boxes, such that ∅ /∈ BP .

The partial order should be viewed as a set of necessary dependencies: in any legal scheduling
of the pomset, these dependencies have to be satisfied. We therefore consider that a stronger



4 Pomsets with Boxes

Ò
x bx

y by

ÒÒ x bxy by Ò v

Ò
x bx

y by

ÒÒ x bx y by Ò v

Ò
x bx

y by

ÒÒ x bxy by Ò 6v

Figure 3 Poset subsumption

ordering — that is, one containing more pairs — yields a smaller pomset. The intuition
is that the set of legal schedulings of the smaller pomset is contained in that of the larger
one. The boxes are meant to further restrict the legal schedulings: no event from outside
a box may be interleaved between the events inside the box. Subsequently, a pomset with
more boxes is smaller than one with less boxes. This ordering between pomsets with boxes
is formalized by the notion of homomorphism:

I Definition 3 (Poset morphisms). A (poset with boxes) homomorphism is a map between
event-sets that is bijective, label respecting, order preserving, and box preserving. In other
words, a map φ : EP → EQ such that (i) φ is a bijection; (ii) λQ ◦ φ = λP ; (iii) φ(≤P ) ⊆≤Q;
(iv) φ(BP ) ⊆ BQ. If in addition (iii) holds as an equality, φ is called order-reflecting. If on
the other hand (iv) holds as an equality φ is box-reflecting. A homomorphism that is both
order- and box-reflecting is a (poset with boxes) isomorphism.

In Figure 3 are some examples and a non-example of subsumption between posets. We
introduce some notations. PΣ is the set of posets with boxes. If φ is a homomorphism
from P to Q, we write φ : P → Q. If there exists such a homomorphism (respectively an
isomorphism) from P to Q, we write Q v P (resp. Q ∼= P ).

I Lemma 4. ∼= is an equivalence relation. v is a partial order with respect to ∼=.

I Remark 5. Note that the fact that v is antisymmetric with respect to ∼= relies on the
finiteness of the posets considered here. For instance, consider the example is depicted in
Figure 4. Formally, we fix some fixed symbol a ∈ Σ, and let P and Q be defined as follows:

P := 〈N× {0, 1, 2} ,≤P , [_ 7→ a] , ∅〉 with 〈n, i〉 ≤P 〈m, j〉 := (n 6 m ∧ i = j < 2)
Q := 〈N× {0, 1} ,≤Q, [_ 7→ a] , ∅〉 with 〈n, i〉 ≤Q 〈m, j〉 := (n 6 m ∧ i = j = 0) .

One can plainly see that P and Q are not isomorphic, but there are indeed homomorphisms
in both directions. Let us define the following functions:

φ : EP → EQ ψ : EQ → EP
〈n, 0〉 7→ 〈2n, 0〉 〈n, 0〉 7→ n, 0
〈n, 1〉 7→ 〈2n+ 1, 0〉 〈2n, 1〉 7→ 〈n, 1〉
〈n, 2〉 7→ 〈n, 1〉 〈2n+ 1, 1〉 7→ 〈n, 2〉 .

One may easily check that φ and ψ are both poset-homomorphisms.
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P :

〈0, 0〉 : a 〈1, 0〉 : a 〈2, 0〉 : a 〈3, 0〉 : a · · ·

〈0, 1〉 : a 〈1, 1〉 : a 〈2, 1〉 : a 〈3, 1〉 : a · · ·

〈0, 2〉 : a 〈1, 2〉 : a 〈2, 2〉 : a 〈3, 2〉 : a · · ·

Q :
〈0, 0〉 : a 〈1, 0〉 : a 〈2, 0〉 : a 〈3, 0〉 : a · · ·

〈0, 1〉 : a 〈1, 1〉 : a 〈2, 1〉 : a 〈3, 1〉 : a · · ·

Figure 4 Example of mutual homomorphic posets that are not isomorphic

I Definition 6 (Pomsets with boxes). Pomsets with boxes are equivalence classes of ∼=. The
set PomΣ of pomsets with boxes is defined as PΣ/∼=.

We now define some elementary poset-building operations.

I Definition 7 (Constants). Given a symbol a ∈ Σ, the atomic poset associated with a is
defined as a :=

〈
{0} , [0 7→ a] , Id{0}, ∅

〉
∈PΣ. The empty poset is defined as � :=〈∅, ∅, ∅, ∅〉∈PΣ.

I Remark 8. For any poset P ∈ PΣ, P v �⇔ P w �⇔ P ∼= �. This is because each of those
relations imply there is a bijection between the events of P and E� = ∅. So we know that P
has no events, and since boxes cannot be empty, P has no boxes either. Hence P ∼= �.

I Definition 9 (Compositions). Let P,Q be two posets with boxes. The sequential composition
P ⊗Q and parallel composition P ⊕Q are defined by:

P ⊗Q := 〈EP ] EQ,≤P ∪ ≤Q ∪ (EP × EQ) , λP t λQ,BP ∪ BQ〉
P ⊕Q := 〈EP ] EQ,≤P ∪ ≤Q, λP t λQ,BP ∪ BQ〉 ,

where the symbol t denotes the union of two functions; that is, given f : A → C and
g : B → C, the function f t g : A ]B → C associates f(a) to a ∈ A and g(b) to b ∈ B.

Intuitively, P ⊕Q consists of disjoint copies of P and Q side by side. P ⊗Q also contains
disjoint copies of P and Q, but also orders every event in P before any event in Q.

I Definition 10 (Boxing). Given a poset P its boxing is denoted by [P ] and is defined by:
[P ] := 〈EP ,≤P , λP ,BP ∪ {EP }〉.

Boxing a pomset simply amounts to drawing a box around it.
In our running example, the pattern of interest is a subset of the events of the whole run.

To capture this, we define the restriction of a poset to a subset of its events.

I Definition 11 (Restriction, sub-poset). For a given set of events A ⊆ EP , we define the
restriction of P to A as P �A := 〈A,≤P ∩ (A×A) , λP �A,BP ∩ P (A)〉. We say that P is a
sub-poset of Q, and write P D Q, if there is a set A ⊆ EQ such that P ∼= Q�A.

Given a poset P , a set of events A ⊆ EP is called:
non-trivial if A /∈ {∅, E}.
nested if for any box β ∈ BP either β ⊆ A or A ∩ β = ∅;
prefix if for any e ∈ A and f /∈ A we have e ≤P f ; and
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isolated if for any e ∈ A and f /∈ A we have e 6≤P f and f 6≤P e.

These properties characterize sub-posets of particular interest to P . This is made explicit
in the following observation:

I Fact 12. Given a poset P and a set of events A ⊆ EP :
(i) A is prefix and nested iff P ∼= P �A ⊗ P �A;
(ii) A is isolated and nested iff P ∼= P �A ⊕ P �A.

(Here A denotes the complement of A relative to EP ; that is, A := EP \A.)

This fact is very useful as a way to ‘reverse-engineer’ how a poset was built.

2.1.2 Series–parallel pomsets
In the sequel, we will often restrict our attention to series–parallel pomsets. These are
of particular interest since they are defined as those pomsets that can be generated from
constants using the operators we have defined.

I Definition 13 (Pomset terms, SP-Pomsets). A (pomset) term is a syntactic expression
generated from the following grammar: s, t ∈ SPΣ ::= 1 | a | s ; t | s ‖ t | [s]. By convention ;
binds tighter than ‖. A term is interpreted as a poset as follows:

JaK := a J1K := � J [s] K := [ JsK ]
Js ; tK := JsK⊗ JtK Js ‖ tK := JsK⊕ JtK .

A pomset [P ]∼= is called series–parallel (or SP for short) if it is the interpretation of some
term; that is, ∃s ∈ SPΣ : JsK ∼= P .

I Example 14. The program in Figure 1 of the running example corresponds to

JÒ ; ( x ;Ix ;bx ‖ y ;Iy ;by) ;ÒK .

The corrected program, from Figure 2, corresponds to

JÒ ; ([ x ;Ix ;bx] ‖ [ y ;Iy ;by]) ;ÒK .

Finally, the problematic pattern we identified may be represented as J( x ‖ y) ; (bx ‖by)K.

Series–parallel pomsets with boxes may also be defined by excluded patterns, in the same
style as the characterization of series–parallel pomsets [27, 9, 8]. More precisely, one can
prove that a pomset [P ]∼= is series–parallel iff and only if it does not contain any of the
patterns in Figure 5. Formally,

I Theorem 15. A pomset [P ]∼= is series-parallel iff and only if it none of the following
properties are satisfied:
P1 : ∃e1, e2, e3, e4 ∈ EP : e1 ≤P e3 ∧ e2 ≤P e3 ∧ e2 ≤P e4 ∧ e1 6≤P e4 ∧ e2 6≤P e1 ∧ e4 6≤P e3
P2 : ∃e1, e2, e3 ∈ EP ,∃A,B ∈ BP : e1 ∈ A \B ∧ e2 ∈ A ∩B ∧ e3 ∈ B \A
P3 : ∃e1, e2, e3 ∈ EP ,∃A ∈ BP : e1 /∈ A ∧ e2, e3 ∈ A ∧ e1 ≤P e2 ∧ e1 6≤P e3
P4 : ∃e1, e2, e3 ∈ EP ,∃A ∈ BP : e1 /∈ A ∧ e2, e3 ∈ A ∧ e2 ≤P e1 ∧ e3 6≤P e1.

Before we discuss the proof of this result, we make a number of comments.
The four properties in Theorem 15 are invariant under isomorphism, since they only use

the ordering between events and the membership of events to boxes. This is consistent with
SP being a property of pomsets, not posets.
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P1:
•

•

•

•

P2: • • • P3: •
•

•
P4: •

•

•

Figure 5 Forbidden patterns of SP-pomsets: dashed arrows (in red) are negated.

Pattern P1 is known as N , and is the forbidden pattern of series-parallel pomsets (without
boxes), as proved by Gischer [8]. Pattern P2 indicates that the boxes in an SP-pomset are
well nested: two boxes are either disjoint, or one is contained in the other. Patterns P3 and
P4 reflect that an event is outside of a box cannot distinguish the events inside by the order:
it is either smaller than all of them, larger than all of them, or incomparable with them.

Together, P2, P3, and P4 provide an alternative view of pomsets with boxes: one may
see them as hyper-pomsets; that is, pomsets in which some events (the boxes) can be labelled
with non-empty pomsets (the contents of the boxes). However, it seems that for our purposes
the definition we provide is more convenient. In particular, the definition of hyper-pomset
homomorphism is more involved.

Two auxiliary results on sub-posets, which we collect in the following lemma, will be
useful in this proof.

I Lemma 16. Let P be a poset with at least two events, such that EP /∈ BP . Then:
(i) if P contains a non-trivial prefix set, it contains one that is nested;
(ii) if P contains a non-trivial isolated set, it contains one that is nested.

Proof. (i) Assume there exists non-trivial prefix set. We pick a minimal one; that is, a
non-trivial prefix set A such that for any non-trivial prefix B, if B ⊆ A, then B = A (this
is always possible since ⊆ is a well-founded partial order on finite sets). If A is nested,
then A satisfies our requirements. Otherwise, there is a box that is not contained in A
while intersecting A. Since P does not contain the pattern P2, we know that we may
pick a maximal such box β. This means that we know the following:

β ∈ BP (∀α ∈ BP , β ⊆ α⇒ β = α) ∃e1 ∈ β ∩A ∃e2 ∈ β \A.

First, we show that A ⊆ β. Consider the set A′ := A \ β. Clearly A′ ( A (since
e1 ∈ A \A′). We may also show that A′ is prefix. Let e ∈ A′ and f /∈ A′. There are two
cases:

either f /∈ A, then since A is prefix and e ∈ A′ ⊆ A we have e ≤P f ;
or f ∈ A ∩ β. In this case, we use the fact that P does not have pattern P3: we know
that e2 ∈ β \ A, so since e ∈ A′ ⊆ A we have e ≤P e2, and since e /∈ β and e2, f ∈ β
we may conclude that e ≤P f .

Therefore, A′ is prefix and strictly contained in A. By minimality of A, A′ has to be
trivial. Since A is non-trivial this means that A′ = ∅, hence that A ⊆ β.
Now we know that A ⊆ β. Because we know that β is not empty, and that EP /∈ BP , we
deduce that β is non-trivial. Since P does not contain pattern P2, and by maximality of
β, we know that β is nested. We now conclude by showing that β is in fact prefix. Let
e ∈ β, and f /∈ β. Since A ⊆ β we get that f /∈ A. By the prefix property of A we get
e1 ≤P f , and since e1, e ∈ β and f /∈ β, by the absence of pattern P4 we get that e ≤P f .

(ii) This proceeds in a similar manner. We pick a minimal non-trivial isolated set A, and
try to find a maximal box β such that β ∩A 6= ∅ and β \A 6= ∅. If no such box exists, A
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is already nested. If we do find such a box, we first show that A has to be contained in β.
Then we use this to show that β is a non-trivial nested isolated set.

J

Proof of Theorem 15. By a simple induction on terms, we can easily show that SP-posets
avoid all four forbidden patterns. The more challenging direction is the converse: given a
poset P that does not contain any of the forbidden patterns, can we build a term s ∈ SPΣ
such that P ∼= JsK. We construct this by induction on the size of P , defined as number of
boxes plus the number of events. Notice that if a poset does not contain a pattern, then nor
does any of its sub-posets.

If P has at most one event, then the following property holds:
if P has no events, then P ∼= J1K;
if P has a single event e, let a = λP (e); we know that

BP ⊆ {β ⊆ {e} | β 6= ∅} = {{e}} ;

if BP = ∅ then P ∼= a = JaK;
if BP = {{e}} then P ∼= [a] = J[a]K.

If EP ∈ BP , then let P ′ be the poset obtained by removing the box EP . The size of P ′
is strictly smaller than that of P , and P ∼= [P ′]. By induction, we get a term s such that
JsK ∼= P ′, so P ∼= J[s]K.

Consider now a pomset P with at least two events, and such that EP /∈ BP . As a corollary
of Gischer’s characterization theorem [8, Theorem 3.1], we know that since P is N-free (i.e.,
does not contain P1) and contains at least two events, it contains either a non-trivial prefix
set or a non-trivial isolated set.

If P contains a non-trivial, prefix set A, then by Lemma 16 P contains a non-trivial,
nested, prefix set A′. By Fact 12, this means that P ∼= P �A ⊗ P �A. We may thus conclude
by induction.

The case in which P contains a non-trivial, isolated set A is handled similarly. J

2.2 Sets of posets
We now lift our operations and relations to sets of posets. This allows us to enrich our syntax
with a non-deterministic choice operator.

I Definition 17 (Orderings on sets of posets). Let A,B ⊆ PΣ, we define the following:
Isomorphic inclusion : A ⊂∼ B iff ∀P ∈ A, ∃Q ∈ B such that P ∼= Q

Isomorphic equivalence : A ∼= B iff A ⊂∼ B ∧B ⊂∼ A
Subsumption : A v B iff ∀P ∈ A, ∃Q ∈ B such that P v Q.
I Remark 18. Isomorphic inclusion and subsumption are partial orders with respect to
isomorphic equivalence, which is an equivalence relation.

I Definition 19 (Operations on sets of posets). We will use the set-theoretic union of sets of
posets, as well as the pointwise liftings of the two products of posets and the boxing operators:

A⊗B := {P ⊗Q | 〈P,Q〉 ∈ A×B} [A] := {[P ] | P ∈ A}
A⊕B := {P ⊕Q | 〈P,Q〉 ∈ A×B}.

I Definition 20 (Closure of a set of posets). The (downwards) closure of a set of posets S is
the smallest set containing S that is downwards closed with respect to the subsumption order;
that is, S↓ := {P ∈ PΣ | ∃Q ∈ S : P v Q}. Similarly, the upwards closure of S is defined
as: S↑ := {P ∈ PΣ | ∃Q ∈ S : P w Q}.
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Table 1 Equational and inequational logic

e = f ∈ A
A ` e = f

A ` e = e
A ` e = f

A ` f = e

A ` e = f A ` f = g

A ` e = g

σ, τ : Σ→ TΣ,
∀a ∈ Σ, A ` σ(a) = τ(a)

A ` σ̂(e) = τ̂(e)

e = f ∈ A
A ` e ≤ f

f = e ∈ A
A ` e ≤ f

e ≤ f ∈ A
A ` e ≤ f

A ` e ≤ e
A ` e ≤ f A ` f ≤ g

A ` e ≤ g

σ, τ : Σ→ TΣ,
∀a ∈ Σ, A ` σ(a) ≤ τ(a)

A ` σ̂(e) ≤ τ̂(e)

I Remark 21. (_) ↓ and (_) ↑ are Kuratowski closure operators [16]; i.e., they satisfy the
following properties:

∅↓ = ∅ A ⊆ A↓ A↓↓ = A↓ (A ∪B) ↓ = A↓ ∪B↓.

(And, similarly, for the upwards closure.) Using downwards-closures, we can express sub-
sumption in terms of isomorphic inclusion:

A v B ⇔ A ⊂∼ B↓ ⇔ A↓ ⊂∼ B↓.

Similarly, the equivalence relation associated with v, defined as the intersection of the
relation and its converse, corresponds to the predicate A↓ ∼= B↓.

I Definition 22. Terms are defined by the following grammar:

e, f ∈ TΣ ::= 0 | 1 | a | e ; f | e ‖ f | e+ f | [e] .

Terms can be interpreted as finite sets of posets with boxes as follows:

J0K := ∅ J1K := {�} JaK := {a}

J [e] K := [ JeK ] Je ; fK := JeK⊗ JfK Je+ fK := JeK ∪ JfK Je ‖ fK := JeK⊕ JfK .

I Remark 23. Interpreted as a program, 0 represents failure: this is a program that aborts
the whole execution. +, on the other hand, represents non-deterministic choice. It can be
used to model conditional branching.

2.3 Axiomatic presentations of pomset algebra
We now introduce axioms to capture the various order and equivalence relations we introduced
over posets and sets of posets. Given a set of axioms A (i.e., universally quantified identities),
we write A ` e = f to denote that the pair 〈e, f〉 belongs to the smallest congruence
containing every axiom in A. Equivalently, A ` e = f holds iff this statement is derivable in
the equational logic described in Table 1. Similarly, A ` e ≤ f is the smallest precongruence
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Table 2 Axioms

s ;(t ;u) = (s ; t) ;u (A1)
s ‖(t ‖u) = (s ‖ t) ‖u (A2)

s ‖ t = t ‖ s (A3)
1 ; s = s (A4)
s ; 1 = s (A5)
1 ‖ s = s (A6)
[[s]] = [s] (A7)
[1] = 1 (A8)

(s ‖ t) ;(u ‖ v) ≤ (s ;u) ‖(t ; v) (B1)
[s] ≤ s (B2)

e+(f + g) = (e+ f) + g (C1)
e+ f = f + e (C2)
e+ e = e (C3)
0 + e = e (C4)
0 ; e = e ; 0 = 0 (C5)
0 ‖ e = 0 (C6)

e ;(f + g) = (e ; f) +(e ; g) (C7)
(e+ f) ; g = (e ; g) +(f ; g) (C8)
e ‖(f + g) = (e ‖ f) +(e ‖ g) (C9)

[0] = 0 (C10)
[e+ f ] = [e] + [f ] (C11)

containing A, where equality axioms are understood as pairs of inequational axioms. An
inference system is also provided in Table 1. We will consider the following sets of axioms:

BiMon� := (A1)− (A8) (Bimonoid with boxes)
CMon� := BiMon�, (B1)(B2) (Concurrent monoid with boxes)

SR� := BiMon�, (C1)− (C11) (Bisemiring with boxes)
CSR� := SR�, (B1), (B2) (Concurrent semiring with boxes)

In the last theory, inequational axioms e ≤ f should be read as e+ f = f . Indeed one can
show that for A ∈ {SR�,CSR�}, we have

A ` e ≤ f ⇔ A ` e+ f = f A ` e = f ⇔ A ` e ≤ f ∧A ` f ≤ e.

2.3.1 Posets up to isomorphism: the free bimonoid with boxes
In this section we show that the axioms BiMon� provide a sound and complete axiomatisation
of isomorphisms between posets with boxes; that is,

JsK ∼= JtK⇔ BiMon� ` s = t.

Before we move to the prove of this statement, we need to make some remarks and set up
some auxiliary definitions.

First, notice that the constant 1 can be handled easily:

I Lemma 24. For any term t ∈ SPΣ, the set EJtK is empty iff BiMon� ` t = 1.

Proof. Since EJtK = ∅, t does not feature any symbol from Σ, meaning t ∈ SP∅. We may then
show that for every term t ∈ SP∅ we have BiMon� ` t = 1. J

We can also remove boxes from terms, in the following sense.

I Lemma 25. Given a term s ∈ SPΣ such that EJsK ∈ BJsK, there exists a term t such that
BiMon� ` s = [t] and EJtK /∈ BJtK.
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Proof. We proceed by induction on s:
s = 1, s = a: contradicts the premiss;
s = [s′]: we have to consider two cases:
EJs′K ∈ BJs′K: in this case, by induction we get t such that EJtK /∈ BJtK, and

BiMon� ` s = [s′] = [[t]] = [t]

EJs′K /∈ BJs′K: pick t = s′;
s = s1 ; s2: we know the following facts:

EJs1K ∪ EJs2K = EJsK ∈ BJsK = BJs1K ∪ BJs2K

∀β ∈ BJsiK, β ⊆ EJsiK

EJs1K ∩ EJs2K = ∅.

From them, we deduce that either EJs1K = ∅ or EJs2K = ∅. We conclude by applying the
induction hypothesis to the appropriate sub-term, and use Lemma 24 to conclude;
s = s1 ‖ s2: same as s1 ; s2. J

We now introduce a syntactic variant of the P �A operator we introduced earlier, which
extracts a sub-poset out of a poset, guided by a subset of events.

I Definition 26 (Syntactic restriction). Let s ∈ SPΣ be a term and A ⊆ EJsK a set of events.
The syntactic restriction of s to A, written πA (s) is defined by induction on terms as follows:

πA (1) := 1 πA (a) :=
{

1 if A = ∅
a otherwise

πA (s ; t) := πA∩EJsK (s) ;πA∩EJsK (t)

πA ([s]) :=
{

[s] if A = EJeK
πA (s) otherwise

πA (s ‖ t) := πA∩EJsK (s) ‖πA∩EJsK (t).

The main properties of this operator are stated in the following observation:

I Fact 27. For any s ∈ SPΣ and A ⊆ EJsK the following hold:
(i) JπA (s)K ∼= JsK�A;
(ii) if A is prefix and nested, then BiMon� ` πA (s) ;πA (s) = s;
(iii) if A is isolated and nested, then BiMon� ` πA (s) ‖πA (s) = s.

We may now establish the main result of this section:

I Theorem 28. For any pair of terms s, t ∈ SPΣ, the following holds:

JsK ∼= JtK⇔ BiMon� ` s = t

Proof. As often for this kind of result, the right-to-left implication; that is, soundness, is
very simple to check, by a simple induction on the derivation.

For the converse direction, we prove the following statement by induction on the term s:

∀t ∈ SPΣ, JsK ∼= JtK⇒ BiMon� ` s = t.

s = 1: follows from Lemma 24.
s = a: we prove the result by induction on t:
t = 1, t = [t′]: impossible since JtK ∼= a;
t = b: since JtK ∼= a this means a = b; i.e., by reflexivity BiMon� ` t = a;
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t = t1 ; t2: since a has a single event, and EJt1 ; t2K = EJt1K ] EJt2K, that event must be
either in EJt1K or in EJt2K, and the other term has no event. The term that has no event,
by Lemma 24, is provably equal to 1. The term containing an event is isomorphic to
a, so by induction it is provably equal to a. Hence we get that t is provably equal to
either a ; 1 or 1 ; a, both of which are provably equal to a;
t = t1 ‖ t2: same as t1 ; t2.

s = s1 ; s2: let A := EJs1K ⊆ EJsK. Notice that A = EJsK \ EJs1K = EJs2K. Let φ be the
isomorphism from JsK to JtK and let t1 := πφ(A) (t) and t2 := π

φ(A) (t). Since A is nested
and prefix, so is its image by the isomorphism φ. Therefore by Fact 27 we get that:
BiMon� ` t = t1 ; t2. By properties of isomorphisms, we can also see that for any set
X ⊆ EJsK we have JsK�X ∼= JtK�φ(X). Hence we have Jt1K ∼= JtK�φ(A)

∼= JsK�A ∼= Js1K.
Similarly, and because by bijectivity of φ we have φ(A) = φ

(
A
)
, we get Jt2K ∼= Js2K. We

may thus conclude by induction that BiMon� ` si = ti (i ∈ {1, 2}); that is,

BiMon� ` s = s1 ; s2 = t1 ; t2 = t.

s = s1 ‖ s2: same as s1 ; s2. J

2.3.2 Posets up to subsumption: the free concurrent monoid
In this section we show a similar relation between the axioms of CMon� and poset homo-
morphisms, namely that for any pair of terms s, t we have JsK v JtK⇔ CMon� ` s ≤ t.

To prove this result, we will deal with the two extra axioms (B1) and (B2) separately. In
order to do so, we define the following sub-orders of v:

we write P vb Q if there is an order-reflecting poset homomorphism φ : Q→ P ;
we write P vo Q if there is an box-reflecting poset homomorphism φ : Q→ P .

I Lemma 29 (Factorization of subsumption). If P v Q, then there are R1, R2 such that:
P vo R1 vb Q and P vb R2 vo Q. In other words, v=vo ◦ vb and v=vb ◦ vo.

Proof. Let φ : Q → P be a poset homomorphism witnessing P v Q. We may define
R1 := 〈EQ,≤Q, λQ, {B | φ (B) ∈ BP }〉 and R2 := 〈EP ,≤P , λP , φ (BQ)〉 . Checking that P vo
R1 vb Q and P vb R2 vo Q hold is a simple matter of unfolding definitions. J

We also notice the following properties of vb and vo with respect to the forbidden patterns
of series–parallel posets:

I Lemma 30. Let P,Q be two posets:
(i) if P vb Q, then P contains P1 iff Q contains P1;
(ii) if P vo Q, then P contains P2 iff Q contains P2;
(iii) if P vb Q and Q contains P3, then P contains P3;
(iv) if P vb Q and Q contains P4, then P contains P4.

Proof. (i) if φ : Q→ P is order reflecting, then by definition we have

x ≤Q y ⇔ φ(x) ≤P φ(y).

The result follows immediately.
(ii) if φ : Q→ P is order reflecting, then by definition we have

B ∈ BQ ⇔ φ (B) ∈ BP

e ∈ B \ C ⇔ φ(e) ∈ φ (B) \ φ (C) e ∈ B ∩ C ⇔ φ(e) ∈ φ (B) ∩ φ (C) .

The result follows immediately.
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(iii) if φ : Q→ P is order reflecting and Q contains P3 then by definition of the pattern we
have e1, e2, e3 ∈ EQ and B ∈ BQ such that

e1 /∈ B e2 ∈ B e3 ∈ B e1 ≤Q e2 e1 6≤Q e3.

Since φ is a poset homomorphism, we know that φ (B) ∈ BP and φ(e1) ≤P φ(e2). By
definition of the direct image, we also know that φ(e1) /∈ φ (B) and φ(e2), φ(e3) ∈ φ (B).
Finally, since φ is order reflecting φ(e1) 6≤P φ(e3).

(iv) similar to the proof for (iii). J

We now prove that CMon� completely axiomatizes vb:

I Lemma 31. If JsK vb JtK, then CMon� ` s ≤ t.

Proof. First, we define the following operator H (_) : PΣ → Pf (PΣ):

H (P ) := {〈EP ,≤P , λP , B〉 | B ⊆ BP } .

From the definitions it is straightforward to show that P vb Q iff Q is isomorphic to some
P ′ ∈ H (P ). This operator H (P ) can be mirrored on terms; i.e., we can associate inductively
to each term s a finite set of terms H (s) such that ∀P ∈ H (JsK) ,∃t ∈ H (s) : JtK ∼= P and
∀t ∈ H (s) , CMon� ` s ≤ t. We may therefore conclude:

JsK vb JtK⇒ ∃P ∈ H (JsK) : JtK ∼= P

⇒ ∃t′ ∈ H (s) : Jt′K ∼= JtK

⇒ ∃t′ ∈ H (s) : BiMon� ` t′ = t ∧ CMon� ` s ≤ t′

⇒ CMon� ` s ≤ t′ = t. J

We now prove the same result for vo.

I Lemma 32. If JsK vo JtK then CMon� ` s ≤ t.

I Remark 33. The proof we give below relies on Gischer’s completeness theorem [8]. In
the Coq proof however, we make no assumptions, and we do not have access to Gischer’s
result. Therefore we perform a different, more technically involved proof there, with Gischer’s
theorem as a corollary.

Proof. We will perform this proof by induction on the number of boxes in s. Let φ : JtK→ JsK
be the box-reflecting homomorphism witnessing JsK vo JtK.

If s contains no boxes, then by Gischer’s completeness theorem we know that

JsK vo JtK⇒ BiMon�, (B1) ` s ≤ t.

Hence, as we have BiMon�, (B1) ⊆ CMon�, we get CMon� ` s ≤ t.
If on the other hand s has boxes, consider the following set of boxes:

B :=
{
B ∈ BJsK

∣∣ ∀C ∈ BJsK, B ⊆ C ⇒ B = C
} (

= maxBJsK
)
.

Notice that since φ is box-reflecting, we have that B = φ
(
maxBJtK

)
. Furthermore, we

have the following property: for any box B ∈ maxBJtK, the map φ�B is a box-reflecting
homomorphism from JtK�B to JsK�φ(B). We pick new symbols for the elements of B; that is, we
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find a set Σ′ disjoint from Σ and a bijection ` (_) : B → Σ′. Using the observation Lemma 25
we made earlier, we find two maps s (_) , t (_) : Σ′ such that:

∀B ∈ B, BiMon� ` πB (s) = [s (` (B))] . (2.1)
∀x ∈ Σ′, EJs(x)K /∈ BJs(x)K (2.2)

∀B ∈ maxBJtK, BiMon� ` πB (t) = [t (` (φ(B)))] . (2.3)
∀x ∈ Σ′, EJt(x)K /∈ BJt(x)K (2.4)

Clearly, for every x ∈ Σ′, s (x) has strictly less boxes than s. Our previous observations imply
that Js (x)K vo Jt (x)K. Therefore, by induction hypothesis, we get that ∀x ∈ Σ′, CMon� `
s (x) ≤ t (x), hence:

∀x ∈ Σ′, CMon� ` [s (x)] ≤ [t (x)] .

Combined with (2.1) and (2.3) this yields that ∀B ∈ maxBJtK, CMon� ` πφ(B) (s) ≤ πB (t).
We define two substitutions σ, τ : Σ ∪ Σ′ → SPΣ as follows:

σ(x) :=
{
πB (s) if x = ` (B)
x if x ∈ Σ τ(x) :=

{
πB (t) if x = ` (φ (B))
x if x ∈ Σ

Finally, we syntactically substitute maximal boxed sub-terms with letters from Σ′ in s, t,
yielding terms s′, t′ ∈ SPΣ∪Σ′ such that σ̂ (s′) = s, τ̂ (t′) = t, and neither s′ nor t′ has any
box. By unfolding the definitions, we can check that since JsK vo JtK we have JsK′ vo JtK′.
Furthermore, since s′ and t′ do not contain any box, we may use Gischer’s theorem to prove
that CMon� ` s′ ≤ t′. We may now conclude: by applying σ everywhere in the proof of
CMon� ` s′ ≤ t′, we get that CMon� ` s = σ̂ (s′) ≤ σ̂ (t′). Since ∀a ∈ Σ ∪ Σ′, we have
CMon� ` σ(a) ≤ τ(a), we get CMon� ` σ̂ (t′) ≤ τ̂ (t′) = t. J

I Theorem 34. For any pair of terms s, t ∈ SPΣ, the following holds:

JsK v JtK⇔ CMon� ` s ≤ t.

Proof. Soundness is straightforward, and completeness arises from Lemma 29,Lemma 31,
and Lemma 32. J

2.3.3 Completeness results for sets of posets
The following lemma allows us to extend seamlessly our completeness theorem from BiMon�
to SR� and from CMon� to CSR�.

I Lemma 35. There exists a function T_ : TΣ → Pf (SPΣ) such that: SR� ` e =
∑
s∈Te

s

and JeK ∼= {JsK | s ∈ Te}.

Proof. Te is defined by induction on e:

T0 := ∅ T1 := {1}
Ta := {a} T[e] := {[s] | s ∈ Te}

Te ; f := {s ; t | 〈s, t〉 ∈ Te × Tf} Te ‖ f := {s ‖ t | 〈s, t〉 ∈ Te × Tf}
Te+ f := Te ∪ Tf .

Checking the lemma is done by a simple induction. J
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From there, we can easily establish two completeness results.

I Theorem 36. For any pair of terms e, f ∈ TΣ, the following hold:

JeK ∼= JfK⇔ SR� ` e = f (2.5)
JeK ↓ ∼= JfK ↓ ⇔ CSR� ` e = f (2.6)

Proof. (2.5) Soundness is easy to check. By a simple induction on the derivation tree, we
can ensure that SR� ` e = f ⇒ JeK ∼= JfK.

Using Lemma 35, we may rewrite any term e as a finite union of series–parallel terms.
Let s ∈ Te. By soundness, there is P ∈ JeK such that P ∼= JsK. Since JeK ∼= JfK, there
is Q ∈ JfK such that P ∼= Q. Since SR� ` f =

∑
s∈Tf

s, by soundness there is t ∈ Tf
such that Q ∼= t. Therefore JsK ∼= JtK, so by Theorem 28 we have BiMon� ` s = t. Since
BiMon� ⊆ SR�, we also have SR� ` s = t, and because t ∈ Tf we get SR� ` s ≤ f .
Since this holds for every s ∈ Te, this means that

SR� ` e =
∑
s∈Te

s ≤ f.

By a symmetric argument, we obtain SR� ` f ≤ e, allowing us to conclude by antisym-
metry that SR� ` e = f .

(2.6) Again, soundness is straightforward. For completeness, it is sufficient to show if
JeK v JfK then CSR� ` e ≤ f . Assume JeK v JfK; i.e., every poset in JeK is subsumed by
some poset in JfK. Since SR� ⊆ CSR�, we get, by Lemma 35, that

CSR� ` e =
∑
s∈Te

s CSR� ` f =
∑
t∈Tf

t.

Let s ∈ Te. Since JeK v JfK, and because of Lemma 35, we know that there is a term t ∈ Tf
such that JsK v JtK. By Theorem 34, that means CMon� ` s ≤ t. Since CMon� ⊆ CSR�,
we get CSR� ` s ≤ t ≤ f . This means that for every s ∈ Te, we have CSR� ` s ≤ f ,
hence that CSR� ` e =

∑
s∈Te

s ≤ f . J

3 Logic for pomsets with boxes

We introduce a logic for reasoning about pomsets with boxes, in the form of a bunched modal
logic, in the sense of [21, 7, 5, 1, 23], with substructural connectives corresponding to each of
sequential and concurrent composition. Modalities characterize boxes and locality. The logic
is also conceptually related to Concurrent Separation Logic [19, 3].

In contrast with other work, pomset logic is a logic of behaviours. A behaviour is a run
of some program, represented as a pomset. The logic describes such behaviours in terms of
the order in which instructions are, or can be, executed, and the separation properties of
sub-runs. Note, in particular, that we do not define any notion of state. On the contrary,
existing approaches, such as dynamic logic and Hennessy–Milner logic for example, put the
emphasis on the state of the machine before and after running the program. Typically, the
assertion language describes the memory-states, and some accessibility relations between
them. The semantics then relies on labelled transition systems to interpret action modalities.

Here, the satisfaction relation (given in Definition 38) directly defines a relation between
sets of behaviours and formulas. An intuitionistic version of the semantics given in Defini-
tion 38 might be set up — cf. Tarski’s semantics and the semantics of relevant logic — in
terms of (ternary) relations on behaviours.



16 Pomsets with Boxes

3.1 Pomset logic: definitions
We generate the set of formulas FΣ and the set of positive formulas F+

Σ as follows:

φ, ψ ∈ F+
Σ ::= ⊥ | a | φ ∨ ψ | φ ∧ ψ | φIψ | φ ?ψ | [φ] | LβφM

φ, ψ ∈ FΣ ::= ⊥ | a | φ ∨ ψ | φ ∧ ψ | φIψ | φ ?ψ | [φ] | LβφM | ¬φ

I Remark 37. Here the atomic predicates are chosen to be exactly Σ. Another natural choice
would be a separate set Prop of atomic predicates, together with a valuation v : Prop→ P (Σ)
to indicate which actions satisfy which predicate. Both definitions are equivalent:

to encode a formula over Prop as a formula over Σ, simply replace every predicate
p ∈ Prop with the formula

∨
a∈v(p) a

to encode a formula over Σ as one over Prop, we need to make the customary assumption
that ∀a ∈ Σ, ∃p ∈ Prop : v(p) = {a}.

These formulas are interpreted over posets. We define a satisfaction relation |=R that is
parametrized by a relation R ⊆ PΣ × PΣ (to be instantiated later on with ∼=, v, and w).

I Definition 38. P |=R φ is defined by induction on φ ∈ FΣ:
P |=R ⊥ iff R (P, �)
P |=R a iff R (P, a)
P |=R ¬φ iff P 6|=R φ

P |=R φ ∨ ψ iff P |=R φ or P |=R ψ

P |=R φ ∧ ψ iff P |=R φ and P |=R ψ

P |=R φIψ iff ∃P1, P2 such that R (P, P1 ⊗ P2) and P1 |=R φ and P2 |=R ψ

P |=R φ ?ψ iff ∃P1, P2 such that R (P, P1 ⊕ P2) and P1 |=R φ and P2 |=R ψ

P |=R [φ] iff ∃Q such that R (P, [Q]) and Q |=R φ

P |=R LβφM iff ∃P ′, Q such that R (P, P ′) and P ′ E Q and Q |=R φ.

The operator [−] describes the (encapsulated) properties of boxed terms. The operator Lβ−M
identifies a property of a term that is obtained by removing parts, including boxes and events,
of its satisfying term (i.e., its world) such that remainder satisfies the formula that it guards.
The meanings of these operators are discussed more fully in Section 4.2.

Note that |=w and |=v will only be used with positive formulas. Given a formula φ and
a relation R, we may define the R-semantics of φ as JφKR := {P ∈ PΣ | P |=R φ}.

I Example 39. Recall the problematic pattern we saw in the running example; that is,

x bx

y by

This pattern can be represented by the formula conflict := Lβ( x ? y)I (bx ?by)M.

We may also interpret these formulas over sets of posets. We consider here two ways a
set of posets X may satisfy a formula:

X satisfies φ universally if every poset in X satisfies φ;
X satisfies φ existentially if some poset in X satisfies φ.

Combined with our three satisfaction relations for pomsets, this yields six definitions:

X |=∀∼= φ iff ∀P ∈ X,P |=∼= φ X |=∃∼= φ iff ∃P ∈ X,P |=∼= φ

X |=∀w φ iff ∀P ∈ X,P |=w φ X |=∃w φ iff ∃P ∈ X,P |=w φ
X |=∀v φ iff ∀P ∈ X,P |=v φ X |=∃v φ iff ∃P ∈ X,P |=v φ.
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For a term e ∈ TΣ, we write e |=y
R φ to mean JeK |=y

R φ. In terms of R-semantics, these
definitions may be formalized as

e |=∃R φ⇔ JeK ∩ JφKR 6= ∅ and e |=∀R φ⇔ JeK ⊆ JφKR . (3.1)

3.2 Properties of pomset logic
We now discuss some of the properties of pomset logic. First, notice that if the relation R is
transitive, then for any posets P,Q and any formula φ ∈ F+

Σ , we have that

R (P,Q) and Q |=R φ⇒ P |=R φ. (3.2)

Proof. Let R be a transitive relation, we show by induction on Φ ∈ F+
Σ that ∀P,Q ∈ PΣ, if

R (P,Q) and Q |=R Φ then P |=R Φ.
If Φ = φ∨ψ or Φ = φ∧ψ, we use the induction hypothesis to show that Q |=R Φ implies
P |=R Φ.
If Φ = ⊥, Φ = a, Φ = φIψ, Φ = φ ?ψ, Φ = [φ], or Φ = LβφM, then the satisfaction relation
says Q |=R Φ iff R (Q,Q′) and h(Q′). Since R (P,Q) and R (Q,Q′), by transitivity of R
we get that R (P,Q′) and thus we conclude that P |=R Φ without using the induction
hypothesis. J

If, additionally, R is symmetric, this property may be strengthened to

∀P,Q ∈ PΣ, ∀φ ∈ FΣ, if R (P,Q) , then P |=R φ⇔ Q |=R φ. (3.3)

Proof. Let R be a symmetric and transitive relation, we show by induction on Φ ∈ FΣ that
∀P,Q ∈ PΣ, if R (P,Q) then P |=R Φ iff Q |=R Φ.

If Φ = ¬φ, Φ = φ ∨ ψ, or Φ = φ ∧ ψ, we use the induction hypothesis to conclude.
If Φ = ⊥, Φ = a, Φ = φIψ, Φ = φ ?ψ, Φ = [φ], or Φ = LβφM, then the satisfaction relation
says Q |=R Φ iff R (Q,Q′) and h(Q′). Since R (P,Q), by symmetry and transitivity of
R we get that R (P,Q′) ⇔ R (Q,Q′) and thus we conclude that P |=R Φ ⇔ Q |=R Φ
without using the induction hypothesis. J

Furthermore, increasing the relation R increases the satisfaction relation as well:

R ⊆ R′ ⇒ ∀φ ∈ F+
Σ ,∀P ∈ PΣ, P |=R φ⇒ P |=R′ φ. (3.4)

Proof. This follows by a straightforward induction on formulas. J

From these observations and (3.1), we obtain the following characterizations of the
universal satisfaction relations for R ∈ {∼=,v,w}:

e |=∀∼= φ⇔ JeK ⊂∼ JφK∼= (3.5)
e |=∀v φ⇔ JeK v JφKv (3.6)

e |=∀w φ⇔ ∀P ∈ JeK , ∃Q ∈ JφKw : P w Q. (3.7)

Additionally, the following preservation properties hold for sets of posets:

e ⊂∼ f ⇒ ∀φ ∈ FΣ,
(
e |=∃∼= φ⇒ f |=∃∼= φ

)
∧
(
f |=∀∼= φ⇒ e |=∀∼= φ

)
(3.8)

e v f ⇒ ∀φ ∈ F+
Σ ,
(
e |=∃w φ⇒ f |=∃w φ

)
∧
(
f |=∀v φ⇒ e |=∀v φ

)
(3.9)

Proof. (3.8) Assume e ⊂∼ f .
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If e |=∃∼= φ, then there exists a poset P ∈ JeK ∩ JφK∼=. Because e ⊂∼ f , we can find a
poset Q ∈ JfK such that P ∼= Q. Since P ∈ JφK∼= and JφK∼= is closed under ∼= we get
Q ∈ JfK ∩ JφK∼=.
If f |=∀∼= φ, then JfK ⊂∼ JφK∼=. By transitivity, we get that JeK ⊂∼ f ⊂∼ JφK∼=; i.e., e |=

∀∼= φ.
(3.9) Assume e v f .

If e |=∃w φ, then there exists a poset P ∈ JeK ∩ JφKw. Because e v f , we can find a
poset Q ∈ JfK such that P v Q. Since P ∈ JφKw and JφKw is upwards-closed we get
Q ∈ JfK ∩ JφKw.
If f |=∀v φ, then JfK v JφKv. By transitivity, we get that JeK v JfK v JφKv, that is,
e |=∀v φ. J

We can build formulas from series–parallel terms: φ(a) := a, φ(1) := ⊥, φ ([s]) := [φ(s)],
φ(s ; t) := φ(s)Iφ(t), and φ(s ‖ t) := φ(s) ? φ(t). Using T_, we generalize this construction
our full syntax: given a term e ∈ TΣ, we define the formula Φ(e) :=

∨
s∈Te

φ(s). These
formulas are closely related to terms thanks to the following lemma:

I Lemma 40. For any term s ∈ SPΣ and any poset P , we have that

P |=∼= φ(s)⇔ P ∼= JsK P |=w φ(s)⇔ P w JsK P |=v φ(s)⇔ P v JsK .

For a term e ∈ TΣ and a set of posets X ⊆ PΣ, we have that

X |=∀∼= Φ(e)⇔ X ⊂∼ JeK X |=∀v Φ(e)⇔ X v JeK .

The proof of this lemma may be found in the appendix.
As an immediate corollary, for any e ∈ TΣ and any s ∈ SPΣ, we obtain that:

e |=∃∼= φ(s)⇔ JsK ∈ JeK e |=∃w φ(s)⇔ JsK ∈ JeK ↓ (3.10)

Proof.

e |=∃∼= φ(s)⇔ JeK ∩ Jφ(s)K∼= 6= ∅ ⇔ JeK ∩ {JsK} 6= ∅ ⇔ JsK ∈ JeK .

e |=∃w φ(s)⇔ JeK ∩ Jφ(s)Kw 6= ∅ ⇔ JeK ∩ {JsK} ↑ 6= ∅ ⇔ JsK ∈ JeK ↓. J

We can now establish adequacy lemmas. These should be understood as appropriate
formulations of the completeness theorems relating operational equivalence and logical
equivalence in the sense of van Benthem [2] and Hennessy–Milner [10, 18] for this logic
(cf. [1]). From the results we have established so far, we may directly prove the following:

I Proposition 41. For a pair of series–parallel terms s, t ∈ SPΣ,

BiMon� ` s = t⇔ ∀φ ∈ FΣ, (JsK |=∼= φ⇔ JtK |=∼= φ) (3.11)
CMon� ` s ≤ t⇔ ∀φ ∈ F+

Σ , (JsK |=w φ⇒ JtK |=w φ) . (3.12)

Proof.

BiMon� ` s = t⇔ JsK ∼= JtK (Theorem 28)
⇒ ∀φ ∈ FΣ, JsK |=∼= φ⇔ JtK |=∼= φ. (Equation (3.3))
⇒ JsK |=∼= φ(t) (Since JtK |=∼= φ(t) follows from Lemma 40)
⇔ JsK ∼= JtK (Lemma 40)
⇔ BiMon� ` s = t (Theorem 28)
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CMon� ` s ≤ t⇔ JsK v JtK (Theorem 34)
⇒ ∀φ ∈ F+

Σ , JsK |=w φ⇒ JtK |=w φ. (Equation (3.2))
⇒ JtK |=w φ(s) (Since JsK |=w φ(s) follows from Lemma 40)
⇔ JtK w JsK (Lemma 40)
⇔ CMon� ` s ≤ t (Theorem 34)

J

This extends to sets of pomsets in the following sense:

I Proposition 42. Given two terms e, f ∈ TΣ, the following equivalences hold:

SR� ` e ≤ f ⇔
(
∀φ, e |=∃∼= φ⇒ f |=∃∼= φ

)
⇔
(
∀φ, f |=∀∼= φ⇒ e |=∀∼= φ

)
(3.13)

SR� ` e = f ⇔
(
∀φ, e |=∃∼= φ⇔ f |=∃∼= φ

)
⇔
(
∀φ, e |=∀∼= φ⇔ f |=∀∼= φ

)
(3.14)

CSR� ` e ≤ f ⇔
(
∀φ, e |=∃w φ⇒ f |=∃w φ

)
⇔
(
∀φ, f |=∀v φ⇒ e |=∀v φ

)
(3.15)

CSR� ` e = f ⇔
(
∀φ, e |=∃w φ⇔ f |=∃w φ

)
⇔
(
∀φ, e |=∀v φ⇔ f |=∀v φ

)
(3.16)

Proof. (3.13) We prove both directions.
(⇒) Assume SR� ` e ≤ f . By Equation (2.5) this means JeK ⊂∼ JfK. Therefore, we may

conclude by Equation (3.8).
(⇐) We show that each LHS implies JeK ⊂∼ JfK; that is, SR� ` e ≤ f :

Assume ∀φ, f |=∀∼= φ⇒ e |=∀∼= φ. Then in particular, since JfK ⊂∼ JfK by Lemma 40
we have f |=∀∼= Φ(f), hence e |=∀∼= Φ(f) ergo JeK ⊂∼ JfK;
Assume ∀φ, e |=∃∼= φ⇒ f |=∃∼= φ, and let P ∈ JeK. By Lemma 35 we know that there
is s ∈ Te such that P ∼= JsK, and by Lemma 40 we get e |=∃∼= φ(s). Hence f |=∃∼= φ(s).
Hence, by Equation (3.10), we get P ∼= JsK ∈ JfK.

(3.14) follows from (3.13), and the fact that ≤ is antisymmetric. J

4 Local Reasoning

Some of the discussions in this section do not rely on which satisfaction relation we pick.
When this is the case, we use the symbol |= to mean any of the relations |=∼=, |=w, |=v.

4.1 Modularity
Pomset logic enjoys a high level of compositionality, much like algebraic logic. Formally, this
comes from the following principle:

If e |= φ and ∀a, σa |= τa, then σ̂e |= τ̂φ.

This makes possible the following verification scenario: Let P be a large program, involving
a number of simpler sub-programs P1, . . . , Pn. We may simplify P by replacing the sub-
programs by uninterpreted symbols x1, . . . , xn. We then check that this simplified program
satisfies a formula Φ, the statement of which might involve the xi. We then separately
determine for each sub-program Pi some specification φi. Finally, using the principle we just
stated, we can show that the full program P satisfies the formula Φ′, obtained by replacing
the xi with φi.
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4.2 Frame rule
A key of objective of applied, modelling-oriented, work in logic and semantics is to understand
systems — such as complex programs, large-scale distributed systems, and organizations —
compositionally. That is, we seek understand how the system is made of components that
can be understood independently of one another. A key aspect of this is what has become
known as local reasoning. That is, that the pertinent logical properties of the components of
a system should be independent of their context.

In the world of Separation Logic [26, 12, 19], for reasoning about how computer programs
manipulate memory, O’Hearn, Reynolds, and Yang [22] suggest that

‘To understand how a program works, it should be possible for reasoning and specific-
ation to be confined to the cells that the program actually accesses. The value of any
other cell will automatically remain unchanged.’

In this context, a key idea is that of the ‘footprint’ of a program; that is, that part of memory
that is, in an appropriate sense, used by the program [24]. If, in an appropriate sense, a
program executes correctly, or ‘safely’, on its footprint, then the so-called ‘frame property’
ensures that the resources present outside of the footprint and, by implication, their inherent
logical properties, are unchanged by the program.

In the setting of Separation Logic, the frame property is usually represented by a Hoare-
triple rule of the form

{φ}C{ψ}
{φ ∗ χ}C{ψ ∗ χ}

C is independent of χ.

That is, the formula χ does not include any variables (from the memory) that are modified
by the program C.

In order to formulate the frame property in our framework, we first fix the notion of
independence between a program and a formula. We say that a pomset P is R-independent
of a formula φ, written P #R φ if P 6|=R Lβ[φ]M. Since independence is meant to prevent
overlap, the use of the Lβ−M modality should come as no surprise.

To explain the need for the [−] modality, first consider a pomset P satisfying LβφM. To
extract a witness of this fact, we must remove parts of P , including boxes and events, such
that the remainder satisfies φ. However, there are no restrictions on the relationship between
the remaining events and those we have deleted. In a sequence of three events, we are allowed
to keep the two extremities, and delete the middle one. In contrast, to get a witness of Lβ[φ]M,
we need to identify a box on P whose contents satisfy φ, and remove all events external to
that box. The result is that the deleted events, that is, the context of our witness, can only
appear outside the box, and must treat all events inside uniformly. In other words, these
events can interact with the behaviour encapsulated in the box, but cannot interact with
individual components inside. For this reason, the frame properties given in Proposition 43
are expressed using [φ] — that is, the encapsulation of φ — rather than φ.

With this definition, we can now state three frame rules, enabling local reasoning with
respect to the parallel product, sequential prefixing, and sequential suffixing.

I Proposition 43 (Frame properties). If P #∼= φ, and Q |=∼= [φ], then it holds that:
(i) ∀ψ ∈ FΣ, P |=∼= ψ ⇔ P ⊕Q |=∼= ψ ? [φ];
(ii) ∀ψ ∈ FΣ, P |=∼= ψ ⇔ P ⊗Q |=∼= ψI [φ];
(iii) ∀ψ ∈ FΣ, P |=∼= ψ ⇔ Q⊗ P |=∼= [φ]Iψ.
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Proof. Clearly, if P |=∼= ψ, since Q |=∼= [φ] we have immediately that P ⊕ Q |=∼= ψ ? [φ],
P ⊗Q |=∼= ψI [φ], and P ⊗Q |=∼= [φ]Iψ.

Now assume P ⊕Q |=∼= ψ ? [φ]. This means that there exists P ′, Q′ such that P ⊕Q ∼=
P ′ ⊕ Q′, P ′ |=∼= ψ and Q′ |=∼= [φ]. The factorization P ⊕ Q ∼= P ′ ⊕ Q′ may be further
decomposed into pomsets P1, P2, Q1, and Q2 such that P ∼= P1 ⊕ P2, Q ∼= Q1 ⊕ Q2,
P1 ⊕Q1 ∼= P ′, and P2 ⊕Q2 ∼= Q′.

Note that φ cannot be satisfied by the empty pomset: otherwise, since the empty pomset
is contained in any other pomset, we would have P |=∼= Lβ[φ]M. Therefore since both Q′ and
Q satisfy [φ], both have to be non-empty boxes. As a result, we get:

since Q ∼= Q1 ⊕Q2, either Q1 or Q2 have to be empty;
since Q′ ∼= P2 ⊕Q2, either P2 or Q2 have to be empty.

If Q2 is empty, we violate again the hypothesis that P is independent from φ, since P ∼=
P1 ⊕ P2 ∼= P1 ⊕Q′ E Q′, and Q′ |=∼= [φ].

Hence we know that Q1 and P2 are empty, meaning that P ∼= P1 ∼= P ′ |=∼= ψ.
The same argument works for the sequential product. J

I Remark 44. Note that this lemma does not hold for v or w instead of '. The left-to-right
implications always hold, but the converse may be fail, as we now demonstrate with some
examples.

For v, consider the following:

P := a Q := [b⊕ [c]] φ := LβcM ψ := a ? b.

We may check that in this case we have:

P 6|=v Lβ[φ]M Q |=v [φ] P ⊕Q |=v ψ ? [φ] P 6|=v ψ.

This happens because in order to satisfy ψ ? [φ] we may rearrange the pomsets using the
ordering. More precisely, we use the fact that

P ⊕Q = a⊕ [b⊕ [c]] v (a⊕ b)⊕ [c] .

For w, we have a similar example. The difference is that instead of Q overspiling into P ,
we have the converse.

P := a⊕ b Q := c φ := LβcM ψ := a.

Since P does not contain any c, but has more than one event, P 6|=v Lβ[φ]M∨ψ. On the other
hand Q |=v [φ] because Q w [Q] and Q E Q |=w c. Finally, P⊕Q = a⊕b⊕c w a⊕[b⊕ c],
and we have both a |=v ψ and [b⊕ c] |=v [φ].

I Remark 45. this principle may be extended to sets of pomsets. Indeed, if we define the
independence relation for sets of pomsets as A #R φ := ∀P ∈ A, P #R φ, then Proposition
43 holds for both |=∀∼= and |=∃∼=.

4.3 Example
In this section, we present an example program, and showcase reasoning principles of pomset
logic. In particular, we will highlight the use of local reasoning when appropriate.

Consider the following voting protocol: a fixed number of voters, v1, . . . , vn, are each
asked to increment one of the counters c1, . . . , ck. The tally is then sent to each of the vi, to
inform them of the result. The increment is implemented similarly to our running example
of the distributed counter (Example 1). The implementation of the protocol is displayed in
Figure 6, together with the intended semantics of the atomic actions.



22 Pomsets with Boxes

VoteProc := Choose ; Publish

Choose := [Vote (1)] ‖ · · · ‖ [Vote (n)]

Vote (i) :=
∑

16j6k
Bi,j ; j ;I ;bj

Publish := T1 ‖ · · · ‖Tn

Ti : the contents of counters c1, . . . , ck is sent to voter vi

Bi,j : voter vi chooses counter cj

j : the content of counter cj is loaded into a local variable
I : the local variable is incremented
bj : the content of the local variable is stored in counter cj

Figure 6 Voting protocol

Conflict

As in Example 1, if we forgo the boxes in Choose, we cannot enforce mutual exclusion. Recall
that the undesirable behaviour is captured by the following formula:

conflictj := Lβ( j ? j)I (bj ?bj)M

We may see this by defining an alternative (faulty) protocol:

VoteProc′ := (Vote (1) ‖ · · · ‖ Vote (n)) ; Publish

and then checking that this protocol displays the behaviour we wanted to avoid:

VoteProc′ |=∃w conflictj .

This statement should be read as ‘there is a pomset in JVoteProc′K that is larger than one
containing a conflict’. We can show the existence of this ‘bug’ by local reasoning. We may
first prove that Vote (i) ‖ Vote (i′) |=∃w conflictj (for some arbitrary i 6= i′). The properties
of Lβ−M then allow us to deduce that

VoteProc′ ∼= (Vote (i) ‖ Vote (i′) ‖ · · · ) ; · · · |=∃w LβconflictjM ≡ conflictj .

The implementation in Figure 6 avoids this problem, and indeed it holds that:

VoteProc 6|=∃w conflictj .

However, showing that this formula is not satisfied by the program is less straightforward
and, in particular, cannot be done locally: we have to enumerate all possible sub-pomsets,
and check that none provide a suitable witness.

Sequential separation

In our protocol, the results of the vote are only communicated after every participant has
voted. This is specified by the following statement:

SendAfterVote := Lβ¬
(∨

i

Ti

)
MI Lβ¬

∨
i,j

Bi,j

M.
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This may be checked modularly. Indeed, one may prove by simple syntactic analysis that

Choose |=∀∼= Lβ¬
(∨

i

Ti

)
M and Publish |=∀∼= Lβ¬

∨
i,j

Bi,j

M.
Therefore, we may combine these to get that:

VoteProc = Choose ; Publish |=∀∼= Lβ¬
(∨

i

Ti

)
MI Lβ¬

∨
i,j

Bi,j

M = SendAfterVote.

For voter i, two of the most meaningful steps are Bi,j and Ti, i.e. when the vote is cast
and when the result of the vote is forwarded to them. Using the macro choosei :=

∨
jBi,j ,

we can specify that during the protocol, each voter first votes, and then gets send the result:

VoteThenSend := Lβ(choose1IT1) ? . . . ? (choosenITn)M.

Unique votes

Another important feature of this protocol is that each voter may only cast a single vote.
Knowing that each voter controls a single box, we express this property with the statement:

VoteProc 6|=∃v
∨
j,j′

Lβ[Lβbj ?bj′M]M.

Since we use the relation |=∃v with the connective ?, we allow any possible ordering of the
two write events. The only constraint is that there should be at least two of them in the
same box. As for the ‘conflict’ property, if the ‘bad’ behaviour were to happen, one could
prove it compositionally. However, disproving the existence of such a behaviour is a more
global process, involving the exploration of all possible sub-pomsets.

Frame property

As we have seen in previous examples, proving that a formula does not hold can be challenging,
because the non-existence of a local pattern is not a local property. We may circumvent
this problem by adding more boxes in both programs and formulas. This is related to a
common pattern in parallel programming: in a multi-threaded program, one may insert
fences to ‘tame’ concurrency. Doing so simplifies program analysis, at the cost of some
efficiency. Similarly, since adding boxes restricts behaviours — thus disallowing some possible
optimizations — the analysis of a program becomes simpler and more efficient.

We illustrate this with the following statement:

[Choose] ; [Publish] 6|=∀∼= LβbIbMI [φ] where φ := ¬ (⊥ ∨ Lβ[LβbM]M) .

LβbIbM indicates that two ‘write’ instructions can be executed in sequence, while φ denotes
a non-empty pomset, not containing any boxes with a ‘write’ event inside. We can first prove
properties of the subprograms:

[Publish] |=∀∼= [φ] [Choose] 6|=∀∼= Lβ[φ]M [Choose] 6|=∀∼= LβbIbM.

Since [Choose] #∼= φ and [Publish] |=∀∼= [φ], we obtain from the frame rule that

[Choose] ; [Publish] |=∀∼= LβbIbMI [φ]⇔ [Choose] |=∀∼= LβbIbM.

Since we have locally disproved the latter, we may deduce that the former does not hold.
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5 Future work

In this paper, we have not considered the CKA operator −?. A natural further step would be
to do so, with the corresponding need to consider versions of pomset logic with fixed points.
Connections with Hoare-style program logics, such as Concurrent Separation Logic [3, 20]
with its concrete semantics, should also be considered.

Our satisfaction relation over pomsets is defined inductively. However, the satisfaction
relations we define for sets of pomsets is not: we define in terms of the former relation. For
practical purposes, such as model-checking, it would be useful to have a similar inductive
definition for sets of pomsets.

It is also worth noticing that the definitions and statements in Section 2 are straight-
forward generalizations of their counterparts in CKA (without boxes); even the proofs of
those results follow a similar strategy. However, we could reuse almost no result from CKA:
instead we had to reprove everything from scratch. This situation is deeply unsatisfactory,
and we plan on investigating techniques to better ‘recycle’ proofs in this context. Recent
work on (C)KA with hypotheses [6, 14] seems to be a step towards this goal.
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A Proof of Lemma 40

I Lemma 40. For any term s ∈ SPΣ and any poset P , we have that

P |=∼= φ(s)⇔ P ∼= JsK P |=w φ(s)⇔ P w JsK P |=v φ(s)⇔ P v JsK .

For a term e ∈ TΣ and a set of posets X ⊆ PΣ, we have that

X |=∀∼= Φ(e)⇔ X ⊂∼ JeK X |=∀v Φ(e)⇔ X v JeK .

Proof. By induction on s:

s = 1 : P |=∼= φ(1) = ⊥ ⇔ P ∼= � = J1K .

P |=w φ(1) = ⊥ ⇔ P ∼= �⇔ P w � = J1K .

P |=v φ(1) = ⊥ ⇔ P ∼= �⇔ P v � = J1K .

s = a : P |=∼= φ(a) = a⇔ P ∼= a = JaK .

P |=w φ(a) = a⇔ P w a = JaK .

P |=v φ(a) = a⇔ P v a = JaK .

s = [t] : P |=∼= [φ(t)]⇔ P ∼= [Q] ∧Q |=∼= φ(t)
⇔ P ∼= [Q] ∧Q ∼= JtK

⇔ P ∼= [JtK] = J[t]K .
P |=w [φ(t)]⇔ P w [Q] ∧Q |=w φ(t)

⇔ P w [Q] ∧Q w JtK

⇔ P w [JtK] = J[t]K .
P |=v [φ(t)]⇔ P v [Q] ∧Q |=v φ(t)

⇔ P v [Q] ∧Q v JtK

⇔ P v [JtK] = J[t]K .
s = s1 ; s2 : P |=∼= φ(s1)Iφ(s2)⇔ P ∼= P1 ⊗ P2

⇔ ∧ P1 |=∼= φ(s1) ∧ P2 |=∼= φ(s2)
⇔ P ∼= P1 ⊗ P2 ∧ P1 ∼= Js1K ∧ P2 ∼= Js2K

⇔ P ∼= Js1K⊗ Js2K = Js1 ; s2K .

P |=w φ(s1)Iφ(s2)⇔ P w P1 ⊗ P2

⇔ ∧ P1 |=w φ(s1) ∧ P2 |=w φ(s2)
⇔ P w P1 ⊗ P2 ∧ P1 w Js1K ∧ P2 w Js2K

⇔ P w Js1K⊗ Js2K = Js1 ; s2K .

P |=v φ(s1)Iφ(s2)⇔ P v P1 ⊗ P2

⇔ ∧ P1 |=v φ(s1) ∧ P2 |=v φ(s2)
⇔ P v P1 ⊗ P2 ∧ P1 v Js1K ∧ P2 v Js2K

⇔ P v Js1K⊗ Js2K = Js1 ; s2K .

s = s1 ‖ s2 : P |=∼= φ(s1) ? φ(s2)⇔ P ∼= P1 ⊕ P2

⇔ ∧ P1 |=∼= φ(s1) ∧ P2 |=∼= φ(s2)
⇔ P ∼= P1 ⊕ P2 ∧ P1 ∼= Js1K ∧ P2 ∼= Js2K

⇔ P ∼= Js1K⊕ Js2K = Js1 ‖ s2K .
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P |=w φ(s1) ? φ(s2)⇔ P w P1 ⊕ P2

⇔ ∧ P1 |=w φ(s1) ∧ P2 |=w φ(s2)
⇔ P w P1 ⊕ P2 ∧ P1 w Js1K ∧ P2 w Js2K

⇔ P w Js1K⊕ Js2K = Js1 ‖ s2K .

P |=v φ(s1) ? φ(s2)⇔ P v P1 ⊕ P2

⇔ ∧ P1 |=v φ(s1) ∧ P2 |=v φ(s2)
⇔ P v P1 ⊕ P2 ∧ P1 v Js1K ∧ P2 v Js2K

⇔ P v Js1K⊕ Js2K = Js1 ‖ s2K .

Recall that since _↑ and _↓ are Kuratowski closure operators, they distribute over unions.
We may thus obtain:

JΦ(e)K∼= =
⋃
s∈Te

Jφ(s)K∼= ∼=
⋃
s∈Te

{JsK} ∼= JeK .

JΦ(e)Kv =
⋃
s∈Te

Jφ(s)Kv ∼=
⋃
s∈Te

{JsK} ↓ ∼= JeK ↓.

The statements then follow by (3.5) and (3.6). J
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