
HAL Id: hal-02337757
https://hal.science/hal-02337757v1

Preprint submitted on 29 Oct 2019 (v1), last revised 5 May 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pomsets with Boxes: Protection, Separation, and
Locality in Concurrent Kleene Algebra

Paul Brunet, David Pym

To cite this version:
Paul Brunet, David Pym. Pomsets with Boxes: Protection, Separation, and Locality in Concurrent
Kleene Algebra. 2019. �hal-02337757v1�

https://hal.science/hal-02337757v1
https://hal.archives-ouvertes.fr

Pomsets with Boxes: Protection, Separation,
and Locality in Concurrent Kleene Algebra

Paul Brunet and David Pym

University College London
{p.brunet,d.pym}@ucl.ac.uk

Abstract. Concurrent Kleene Algebra is an elegant tool for equational
reasoning about concurrent programs. An important feature of concur-
rent programs that is missing from CKA is the ability to restrict legal
interleavings. To remedy this we extend the standard model of CKA,
namely pomsets, with a new feature, called boxes, which can specify
that part of the system is protect from outside interference. We study
the algebraic properties of this new model. Another drawback of CKA
is that the language used for expressing properties of programs is the
same as that which is used to express programs themselves. This is often
too restrictive for practical purposes. We provide a logic, ‘pomset logic’,
that is an assertion language for specifying such properties, and which
is interpreted on pomsets with boxes. We develop the basic metatheory
for the relationship between pomset logic and CKA and illustrate this
relationship with simple examples.

Keywords: Concurrent Kleene Algebra· Pomsets· Atomicity· Seman-
tics· Separation· Local reasoning· Bunched logic.

1 Introduction

Concurrent Kleene Algebra (CKA) [8] is an elegant tool for equational rea-
soning about concurrent programs. However, the language used for expressing
properties of programs is the same as that which is used to express programs
themselves.

It is clear that this situation is not ideal for specifying and reasoning about
properties of programs. Any language specifiable in CKA terms has bounded
width (i.e., the number of processes in parallel; the size of a maximal inde-
pendent set) and bounded depth (i.e., the number of alternations of parallel
and sequential compositions). However, any property involving the existence of
a pattern — e.g., the set of pomsets satisfying a given property — has both
unbounded width and unbounded depth.

In this paper, we provide a logic, ‘pomset logic’, that is an assertion language
for specifying such properties. We develop the basic metatheory for the relation-
ship between pomset logic and CKA and illustrate this relationship with simple
examples. In addition, to the usual classical or intuitionistic connectives — both

2 P. Brunet & D. Pym

are possible — the logic includes connectives that characterise both sequential
and parallel composition.

In addition, we note that CKA allows programs with every possible inter-
leaving of parallel threads. However, to prove the correctness of such programs,
some restrictions must be imposed on what are the legal interleavings. We pro-
vide a mechanism of ‘boxes’ for this purpose. Boxes identify protected parts
of the system, so restricting the possible interleavings. From the point of view
of the outside of the box, the behaviour of the box is as though the program
within box be atomic. However, boxes can be nested, with this atomicity obser-
vation holding at each level. Pomset logic has context and box modalities that
characterise this situation.

Example 1 (Running example: a distributed counter).

We consider here a program where a counter is incremented in parallel by two
processes. The intention is that the counter should be incremented twice, once
by each process. However, to do so each process has to first load the contents
of the counter, then compute the increment, and finally commit the result to
memory. A naive implementation is presented in Table 1.

print(counter);

x:=counter; y:=counter;

x:=x+1; y:=y+1;

counter:=x; counter:=y;

print(counter);

Table 1: Distributed counter

To get simpler pictures, we represent the print instruction print(counter)by
Ò, the read instruction x:=counter by x, the increment instruction x:=x+1

by Ix, and finally the write instruction counter:=x by bx. Doing so, we may
represent the program from Table 1 as follows:

Ò
x Ix bx

y Iy by

Ò

This program does not comply with our intended semantics: indeed a possible
run of this program goes as follows:

Ò x Ix bxy Iy by Ò

The result is that the counter has been incremented by one. We can identify
a subset of instructions that indicate there is a fault: the problem is that both
read instructions happened before both write instructions, i.e.:

Pomsets with Boxes 3

x bx

y by

To fix this problem, a simple solution is to make the sequence “read;compute;write”
atomic. This yields the program in Table 2.

print(counter);

atomic{ atomic{

x:=counter; y:=counter;

x:=x+1; y:=y+1;

counter:=x; counter:=y;

} }

print(counter);

Table 2: Distributed counter with atomic increment

Diagrammatically, this can be represented by drawing solid boxes around the
atomic{} blocs:

Ò

x Ix bx

y Iy by

Ò

With these boxes, it is no longer possible for problematic behaviour we described
earlier to happen. We will show in this paper how to make this formal.

The paper has a number of remaining sections. In Section 2, we extend pom-
sets with a new construct for protection, namely boxes. We provide a syntax for
specifying such pomsets and characterise precisely its expressivity. This enables
us, for example, to correctly represent the program from Table 1. We axiomatize
the equational theory of this model.

In Section 3, we introduce pomset logic. This logic comes in both classical
and intuitionistic variants. In addition to the usual classical or intuitionistic
connectives, this logic includes connectives corresponding to each of sequential
and parallel composition. These two classes of connectives are combined to give
the overall logics in the same way as BI’s additives and multiplicatives [14,1,16].
The logics also include modalities that characterise respectively protection and
locality. These correspondences are made precise by a van Benthem–Hennessy–
Milner-type theorem asserting that two programs are (operationally) equivalent
iff they satisfy the same formulae.

Finally, in Section 4, we briefly discuss how local reasoning principles can be
established for our framework of programs and their logics.

For space considerations, some proofs are deferred to the appendix.

4 P. Brunet & D. Pym

Ò

x bx

y by

ÒÒ x bxy by Ò v

Ò

x bx

y by

ÒÒ x bx y by Ò v

Ò

x bx

y by

ÒÒ x bxy by Ò 6v

Fig. 1: Poset subsumption

2 Algebra of Pomsets with Boxes

In this section we define our semantic model, and the corresponding syntax. We
characterise the expressivity of the syntax, and axiomatise its equational theory.
The results in this section have been fully formalised in Coq; the development
is available on GitHub: https://github.com/monstrencage/AtomicCKA.

For the remainder of this section, we fix an set Σ of atomic actions.

2.1 Pomsets with boxes

Definition 1 (Poset with boxes). A poset with boxes is given by a tuple
P := 〈EP ,≤P , λP ,BP 〉, where EP is a finite set of events; ≤P⊆ EP × EP is a
partial order; λP : EP → Σ is a labelling function; BP ⊆ P (EP) is a set of
boxes, such that ∅ /∈ BP .

Definition 2 (Poset morphisms). A (poset with boxes) homomorphism is a
map between event-sets that is bijective, label respecting, order preserving, and
box preserving. In other words, a map φ : EP → EQ such that (i) φ is a bijection;
(ii) λQ ◦ φ = λP ; (iii) φ(≤P) ⊆≤Q; (iv) φ(BP) ⊆ BQ. If in addition (iii) holds
as an equality, φ is called order-reflecting. If on the other hand (iv) holds as
an equality φ is box-reflecting. A homomorphism that is both order- and box-
reflecting is a (poset with boxes) isomorphism.

In Figure 1 are some examples and a non-example of subsumption between
posets. We introduce some notations. PΣ is the set of posets with boxes. If φ
is a homomorphism from P to Q, we write φ : P → Q. If there exists such a
homomorphism (respectively an isomorphism) from P to Q, we write Q v P
(resp. Q ∼= P).

https://github.com/monstrencage/AtomicCKA

Pomsets with Boxes 5

P :

〈0, 0〉 : a 〈1, 0〉 : a 〈2, 0〉 : a 〈3, 0〉 : a · · ·

〈0, 1〉 : a 〈1, 1〉 : a 〈2, 1〉 : a 〈3, 1〉 : a · · ·

〈0, 2〉 : a 〈1, 2〉 : a 〈2, 2〉 : a 〈3, 2〉 : a · · ·

Q :
〈0, 0〉 : a 〈1, 0〉 : a 〈2, 0〉 : a 〈3, 0〉 : a · · ·

〈0, 1〉 : a 〈1, 1〉 : a 〈2, 1〉 : a 〈3, 1〉 : a · · ·

Fig. 2: Example of mutual homomorphic pomsets that are not isomorphic

Lemma 1. ∼= is an equivalence relation. v is a partial order with respect to ∼=.

Remark 1. Note that the fact that v is antisymmetric with respect to ∼= relies
on the finiteness of the posets considered here. Indeed, we can build infinite
pomsets that are not isomorphic but have nevertheless homomorphism between
them in both directions. An example is provided in Figure 2.

Definition 3 (Pomsets with boxes). Pomsets with boxes are equivalence
classes of ∼=. The set PomΣ of pomsets with boxes is defined as PΣ/∼=.

We now define some elementary operations to build posets.

Definition 4 (Constants). Given a symbol a ∈ Σ, the atomic poset associated
with a is defined as a :=

〈
{0} , [0 7→ a] , Id{0}, ∅

〉
∈ PΣ.

The empty poset is defined as � := 〈∅, ∅, ∅, ∅〉 ∈ PΣ.

Remark 2. For any poset P ∈ PΣ , P v � ⇔ P w � ⇔ P ∼= �. This is because
each of those relations imply there is a bijection between the events of P and
E� = ∅. So we know that P has no events, and since boxes cannot be empty, P
has no boxes either. Hence P ∼= �.

Definition 5 (Compositions). Let P,Q be two posets with boxes. The sequen-
tial composition P ⊗Q and parallel composition P ‖ Q are defined by:

P ⊕Q := 〈EP] EQ,≤P ∪ ≤Q, λP t λQ,BP ∪ BQ〉
P ⊗Q := 〈EP] EQ,≤P ∪ ≤Q ∪ (EP × EQ) , λP t λQ,BP ∪ BQ〉

where the symbol t denotes the union of two functions, i.e. given f : A → C
and g : B → C, the function f t g : A] B → C associates f(a) to a ∈ A and
g(b) to b ∈ B.

Intuitively, P ⊕Q consists of disjoint copies of P and Q side by side. P ⊗Q also
contains disjoint copies of P and Q, but also considers every event in P to be
smaller that any event in Q.

6 P. Brunet & D. Pym

Definition 6 (Boxing). Given a pomset P its boxing is denoted by [P] and is
defined by: [P] := 〈EP ,≤P , λP ,BP ∪ {EP }〉.

Boxing a pomset simply amounts to drawing a box around it.

Definition 7 (Restriction, sub-poset). For a set of events A ⊆ EP , we may
define the restriction of P to A as:

P �A := 〈A,≤P ∩ (A×A) , λP �A,BP ∩ P (A)〉 .

We say that P is a sub-poset of Q, and write P D Q, if there is a set A ⊆ EQ
such that P ∼= Q�A.

Definition 8 (Pomset terms, SP-Pomsets). A (pomset) term is a syntactic
expression generated from the following grammar:

s, t ∈ SPΣ ::= 1 | a | s ; t | s ‖ t | [s] .

By convention ; binds tighter than ‖. A term is interpreted as a poset as follows:

JaK := a J1K := � J[s]K := [JsK]
Js ; tK := JsK⊗ JtK Js ‖ tK := JsK⊕ JtK

A pomset [P]∼= is called series-parallel if it is the interpretation of some term,
i.e. ∃s ∈ SPΣ : JsK ∼= P .

Example 2. The program in Table 1 of the running example corresponds to:

JÒ ; (x ;Ix ;bx ‖ y ;Iy ;by) ;ÒK .

The corrected program, from Table 2, corresponds to:

JÒ ; ([x ;Ix ;bx] ‖ [y ;Iy ;by]) ;ÒK .

Finally, the problematic pattern we identified may be represented as:

J(x ‖ y) ; (bx ‖by)K .

Sets of posets We now lift our operations and relations to sets of posets.

Definition 9 (Orderings on sets of posets). Let A,B ⊆ PΣ be two sets of
posets. We define the following relations:

Isomorphic inclusion A ⊂∼ B iff ∀P ∈ A, ∃Q ∈ B : P ∼= Q.
Isomorphic equivalence A ∼= B iff A ⊂∼ B ∧B ⊂∼ A.
Subsumption A v B iff ∀P ∈ A, ∃Q ∈ B : P v Q.

Remark 3. Isomorphic inclusion and subsumption are a partial orders with re-
spect to isomorphic equivalence, which is an equivalence relation.

Pomsets with Boxes 7

Definition 10 (Operations on sets of posets). We will use the set-theoretic
union of sets of posets, as well as the pointwise liftings of the two products of
posets and the boxing operators:

A⊗B := {P ⊗Q | 〈P,Q〉 ∈ A×B} [A] := {[P] | P ∈ A}
A⊕B := {P ⊕Q | 〈P,Q〉 ∈ A×B} .

Definition 11 (Closure of a set of posets). The (downwards) closure of a set
of posets S is the smallest set containing S that is downwards closed with respect
to the subsumption order, i.e.: S↓ := {P ∈ PΣ | ∃Q ∈ S : P v Q}. Similarly,
the upwards closure of S is defined as: S↑ := {P ∈ PΣ | ∃Q ∈ S : P w Q}.

Remark 4. () ↓ and () ↑ are Kuratowski closure operators [11], i.e. they satisfy
the following properties:

∅↓ = ∅ A ⊆ A↓ A↓↓ = A↓ (A ∪B) ↓ = A↓ ∪B↓.

(And similarly for the upwards closure.) Using downwards-closures, we may ex-
press subsumption in terms of isomorphic inclusion:

A v B ⇔ A ⊂∼ B↓ ⇔ A↓ ⊂∼ B↓.

Similarly, the equivalence relation associated with v, defined as the intersection
of the relation and its converse, corresponds to the predicate A↓ ∼= B↓.

Definition 12. Terms are defined by the following grammar:

e, f ∈ TΣ ::= 0 | 1 | a | e ; f | e ‖ f | e+ f | [e]

The can be interpreted as finite sets of posets with boxes as follows:

J0K := ∅ J1K := {�} JaK := {a}

J[e]K := [JeK] Je ; fK := JeK⊗JfK Je+ fK := JeK∪JfK Je ‖ fK := JeK⊕JfK .

Remark 5. Interpreted as programs, 0 represents failure: this is a program that
aborts the whole execution. + on the other hand represents non-deterministic
choice. It can be used to model conditional branching.

2.2 A characterisation of series-parallel pomsets

Theorem 1. A pomset [P]∼= is series-parallel iff and only if it does not contain
any of the patterns in Figure 3, i.e. none of the following properties are satisfied:

P1: ∃e1, e2, e3, e4 ∈ EP : e1 ≤P e3 ∧ e2 ≤P e3 ∧ e2 ≤P e4 ∧ e1 6≤P e4 ∧ e2 6≤P e1 ∧
e4 6≤P e3.

P2: ∃e1, e2, e3 ∈ EP ,∃A,B ∈ BP : e1 ∈ A \B ∧ e2 ∈ A ∩B ∧ e3 ∈ B \A.
P3: ∃e1, e2, e3 ∈ EP ,∃A ∈ BP : e1 /∈ A ∧ e2, e3 ∈ A ∧ e1 ≤P e2 ∧ e1 6≤P e3.
P4: ∃e1, e2, e3 ∈ EP ,∃A ∈ BP : e1 /∈ A ∧ e2, e3 ∈ A ∧ e2 ≤P e1 ∧ e3 6≤P e1.

8 P. Brunet & D. Pym

P1:

•

•

•

•
P2: • • •

P3: •
•

•
P4: •

•

•

Fig. 3: Forbidden patterns of SP-pomsets: dashed arrows (in red) are negated.

Before we discuss the proof of this result, we make a number of comments.
The four properties in Theorem 1 are invariant under isomorphism, since they

only use the ordering between events and the membership of events to boxes.
This is consistent with SP being a property of pomsets, not posets.

Pattern P1 is known as N , and is the forbidden pattern of series-parallel
pomsets (without boxes), as proved by Gischer [5]. Pattern P2 indicates that
the boxes in an SP-pomset are well nested: two boxes are either disjoint, or one
is contained in the other. Patterns P3 and P4 reflect that if an event e is outside
of a box B, then e cannot distinguish events in B by the order: e can be smaller
than all of B, larger than all of B, or incomparable with every event in B.

Together, P2, P3, and P4 provide an alternative view of pomsets with boxes:
one may see them as hyper-pomsets, i.e. pomsets where some events (the boxes)
can be labelled with non-empty pomsets (the contents of the boxes). However,
even though this definition is equivalent to the one we use, it seems that for
our purposes the definition we provide is more convenient. In particular, the
definition of hyper-pomset homomorphism is more involved.

Proof (Sketch). By a simple induction on terms, we can easily show that sp-
posets avoid all four forbidden patterns. The more challenging direction is the
converse: given a poset P that does not contain any of the forbidden patterns,
can we build a term s ∈ SPΣ such that P ∼= JsK. We construct this by induction
on the size of P , defined as number of boxes plus the number of events. Notice
that if a poset does not contain a pattern, any sub-poset does not either.

If P has at most one event, then the following property holds:

– if P has no events, then P ∼= J1K;
– if P has a single event e, let a = P](e); we know that

BP ⊆ {β ⊆ {e} | β 6= ∅} = {{e}}

• if BP = ∅ then P ∼= a = JaK;
• if BP = {{e}} then P ∼= [a] = J[a]K.

If EP ∈ BP , then let P ′ be the poset obtained by removing the box EP . The
size of P ′ is strictly smaller than that of P , and P ∼= [P ′]. By induction we get
a term s such that JsK ∼= P ′, so P ∼= J[s]K.

Pomsets with Boxes 9

e = f ∈ A
A ` e = f

A ` e = e
A ` e = f

A ` f = e

A ` e = f A ` f = g

A ` e = g

σ, τ : Σ → TΣ ,
∀a ∈ Σ, A ` σ(a) = τ(a)

A ` σ̂(e) = τ̂(e).

e = f ∈ A
A ` e ≤ f

f = e ∈ A
A ` e ≤ f

e ≤ f ∈ A
A ` e ≤ f

A ` e ≤ e
A ` e ≤ f A ` f ≤ g

A ` e ≤ g

σ, τ : Σ → TΣ ,
∀a ∈ Σ, A ` σ(a) ≤ τ(a)

A ` σ̂(e) ≤ τ̂(e).

Table 3: Equational and inequational logic

Consider now a pomset P with at least two events, and such that EP /∈ BP .
A set of events A ⊆ EP is called:

– non-trivial if A /∈ {∅, EP };
– nested if for any box β ∈ BP either β ⊆ A or A ∩ β = ∅;
– prefix if for any e ∈ A and f /∈ A we have e ≤P f ;

– isolated if for any e ∈ A and f /∈ A we have e 6≤P f and f 6≤P e.

If P contains a non-trivial, nested, prefix set A, then we may conclude by in-
duction, since: P ∼= P �A ⊗ P �A. If P contains a non-trivial, nested, isolated set
A, then we may conclude by induction, since: P ∼= P �A ⊕ P �A. To conclude, it
suffices to show the following pair of claims (whose proofs are omitted):

(Claim 1) if P contains a non-trivial prefix set, it contains one that is nested;

(Claim 2) if P contains a non-trivial isolated set, it contains one that is nested.

Indeed, as a corollary of Gischer’s characterisation theorem [5, Theorem 3.1], we
know that since P is N-free (i.e. does not contain P1) and contains at least two
events, it contains either a non-trivial prefix set or a non-trivial isolated set. ut

2.3 Axiomatic presentations of pomset algebra

We now introduce axioms to capture the various order and equivalence relations
we introduced over posets and sets of posets. Given a set of axioms A (i.e. uni-
versally quantified identities), we write A ` e = f to denote that the pair 〈e, f〉
belongs to the smallest congruence containing every axiom in A. Equivalently,
A ` e = f holds iff this statement is derivable in equational logic, as described in
Table 3. Similarly, A ` e ≤ f is the smallest precongruence containing A, where
equality axioms are understood as pairs of inequational axioms. An inference

10 P. Brunet & D. Pym

s ;(t ;u) = (s ; t) ;u (A1)

s ‖(t ‖u) = (s ‖ t) ‖u (A2)

s ‖ t = t ‖ s (A3)

1 ; s = s (A4)

s ; 1 = s (A5)

1 ‖ s = s (A6)

[[s]] = [s] (A7)

[1] = 1. (A8)

e+(f + g) = (e+ f) + g (B1)

e+ f = f + e (B2)

e+ e = e (B3)

0 + e = e (B4)

0 ; e = e ; 0 = 0 (B5)

0 ‖ e = 0 (B6)

e ;(f + g) = (e ; f) +(e ; g) (B7)

(e+ f) ; g = (e ; g) +(f ; g) (B8)

e ‖(f + g) = (e ‖ f) +(e ‖ g) (B9)

(s ‖ t) ;(u ‖ v) ≤ (s ;u) ‖(t ; v) (C1)

[s] ≤ s. (C2)

[0] = 0 (D1)

[e+ f] = [e] + [f] (D2)

(s ‖ t) ;(u ‖ v) +(s ;u) ‖(t ; v) = (s ;u) ‖(t ; v) (E1)

[s] + s = s. (E2)

Table 4: Axioms

system is also provided in Table 3. We will consider the following sets of axioms:

BiMon� := (A1)− (A8) (Bimonoid with boxes)

CMon� := BiMon�, (C1), (C2) (Concurrent monoid with boxes)

SR� := BiMon�, (B1)− (B9) (Bisemiring with boxes)

CSR� := CSR�, (E1), (E2). (Concurrent semiring with boxes)

Remark 6. One can show that for A ∈ {SR�,CSR�}, we have:

A ` e ≤ f ⇔ A ` e+ f = f A ` e = f ⇔ A ` e ≤ f ∧A ` f ≤ e.

Posets up to isomorphisms: the free bimonoid In this section, we prove
the following soundness and completeness theorem:

Theorem 2. JsK ∼= JtK⇔ BiMon� ` s = t.

The key ingredient in this proof is the construction of a syntactic version of
the restriction operator, which extracts a subpomsets out of a pomsets, guided
by a subset of events.

Definition 13 (Syntactic restriction). Let s ∈ SPΣ be a term and A ⊆ EJsK
a set of events. The syntactic restriction of s to A, written πA (s) is defined by

Pomsets with Boxes 11

induction on terms as follows:

πA (1) := 1 πA (s ; t) := πA∩EJsK (s) ;πA∩EJsK (t)

πA (a) :=

{
1 if A = ∅
a otherwise

πA (s ‖ t) := πA∩EJsK (s) ‖πA∩EJsK (t).

πA ([s]) :=

{
[s] if A = EJeK
πA (s) otherwise

The main properties of this operator are stated in the following lemma:

Lemma 2. For any s ∈ SPΣ and A ⊆ EJsK the following holds:

(i) JπA (s)K ∼= JsK�A;
(ii) if A is prefix and nested (see Section 2.2 for definitions), then

BiMon� ` πA (s) ;πA (s) = s;

(iii) if A is isolated and nested (see Section 2.2 for definitions), then

BiMon� ` πA (s) ‖πA (s) = s.

(Here A denotes the complement of A relative to EJsK, i.e. A := EJeK \A.)

The proof of Theorem 2 then follows by induction on terms.

Posets up to subsumption: the free concurrent monoid

Theorem 3. JsK v JtK⇔ CMon� ` s ≤ t

To prove this result, we will deal with the two extra axioms (C1) and (C2)
separately. In order to do so, we define the following sub-orders of v:

Box-subsumption We write P vb Q if there is an order-reflecting poset ho-
momorphism φ : Q→ P .

Order-subsumption We write P vo Q if there is an box-reflecting poset ho-
momorphism φ : Q→ P .

Lemma 3 (Factorisation of subsumption). If P v Q, then there are R1, R2

such that: P vo R1 vb Q and P vb R2 vo Q. In other words, v=vo ◦ vb and
v=vb ◦ vo.

Proof. Let φ : Q → P be a poset homomorphism witnessing P v Q. We may
define R1 := 〈EQ,≤Q, λQ, {B | φ (B) ∈ BP }〉 and R2 := 〈EP ,≤P , λP , φ (BQ)〉 .
Checking that P vo R1 vb Q and P vb R2 vo Q hold is a simple matter of
unfolding definitions. ut

We also notice the following properties ofvb andvo with respect to the forbidden
patterns of series parallel posets:

Lemma 4. Let P,Q be two posets:

12 P. Brunet & D. Pym

(i) if P vb Q, then P contains P1 iff Q contains P1;
(ii) if P vo Q, then P contains P2 iff Q contains P2;

(iii) if P vb Q and Q contains P3, then P contains P3;
(iv) if P vb Q and Q contains P4, then P contains P4.

We now prove the first half of the theorem:

Lemma 5. If JsK vb JtK, then CMon� ` s ≤ t.

Proof. First, we define the following operator H () : PΣ → Pf (PΣ):

H (P) := {〈EP ,≤P , λP , B〉 | B ⊆ BP } .

From the definitions it is straightforward to show that P vb Q iff Q is isomorphic
to some P ′ ∈ H (P). This operator H (P) can be mirrored on terms, i.e. we
can associate inductively to each term s a finite set of terms H (s) such that
∀P ∈ H (JsK) ,∃t ∈ H (s) : JtK ∼= P and ∀t ∈ H (s) , CMon� ` s ≤ t. We may
therefore conclude:

JsK vb JtK⇒ ∃P ∈ H (JsK) : JtK ∼= P

⇒ ∃t′ ∈ H (s) : Jt′K ∼= JtK
⇒ ∃t′ ∈ H (s) : BiMon� ` t′ = t ∧ CMon� ` s ≤ t′

⇒ CMon� ` s ≤ t′ = t. ut

We now prove the second half of the theorem:

Lemma 6. If JsK vo JtK then CMon� ` s ≤ t.

Remark 7. The proof we give below relies on Gischer’s completeness theorem [5].
In the Coq proof however, we make no assumptions, and we do not have access
to Gischer’s result. Therefore we perform a different, more technically involved
proof there, with Gischer’s theorem as a corollary.

Proof. We will perform this proof by induction on the number of boxes in s. Let
φ : JtK→ JsK be the box-reflecting homomorphism witnessing JsK vo JtK.

If s contains no boxes, then by Gischer’s completeness theorem we know that

JsK vo JtK⇒ BiMon�, (C1) ` s ≤ t.

Hence, as we have BiMon�, (C1) ⊆ CMon�, we get CMon� ` s ≤ t.
If on the other hand s has boxes, consider the following set of boxes:

B :=
{
B ∈ BJsK

∣∣ ∀C ∈ BJsK, B ⊆ C ⇒ B = C
} (

= maxBJsK
)
.

Notice that since φ is box-reflecting, we have that B = φ
(
maxBJtK

)
. Further-

more, we have the following property: for any box B ∈ maxBJtK, the map φ�B
is a box-reflecting homomorphism from JtK�B to JsK�φ(B). We pick new sym-
bols for the elements of B, i.e. we find a set Σ′ disjoint from Σ and a bijection

Pomsets with Boxes 13

` () : B → Σ′. Using the observation (A.4) we made earlier, we find two maps
s () , t () : Σ′ such that:

∀B ∈ B, BiMon� ` πB (s) = [s (` (B))] . (2.1)

∀x ∈ Σ′, EJs(x)K /∈ BJs(x)K. (2.2)

∀B ∈ maxBJtK, BiMon� ` πB (t) = [t (` (φ(B)))] . (2.3)

∀x ∈ Σ′, EJt(x)K /∈ BJt(x)K. (2.4)

Clearly, for every x ∈ Σ′, s (x) has strictly less boxes than s. Our previous
observations imply that Js (x)K vo Jt (x)K. Therefore, by induction hypothesis,
we get that ∀x ∈ Σ′, CMon� ` s (x) ≤ t (x), hence:

∀x ∈ Σ′, CMon� ` [s (x)] ≤ [t (x)] .

Combined with (2.1) and (2.3) this yields:

∀B ∈ maxBJtK, CMon� ` πφ(B) (s) ≤ πB (t).

We define two substitutions σ, τ : Σ ∪Σ′ → SPΣ as follows:

σ(x) :=

{
πB (s) if x = ` (B)
x if x ∈ Σ τ(x) :=

{
πB (t) if x = ` (φ (B))
x if x ∈ Σ

Finally, we syntactically substitute maximal boxed subterms with letters from Σ′

in s, t, yielding terms s′, t′ ∈ SPΣ∪Σ′ such that σ̂ (s′) = s, τ̂ (t′) = t, and neither
s′ nor t′ has any box. By unfolding the definitions, we can check that since
JsK vo JtK we have JsK′ vo JtK′. Furthermore, since s′ and t′ do not contain any
box, we may use Gischer’s theorem to prove that CMon� ` s′ ≤ t′. We may now
conclude: by applying σ everywhere in the proof of CMon� ` s′ ≤ t′, we get that
CMon� ` s = σ̂ (s′) ≤ σ̂ (t′). Since ∀a ∈ Σ ∪Σ′ we have CMon� ` σ(a) ≤ τ(a),
we get CMon� ` σ̂ (t′) ≤ τ̂ (t′) = t. ut

Finite sets of posets as free algebras The following lemma allows us to
extend seamlessly our completeness theorem from BiMon� to SR� and from
CMon� to CSR�.

Lemma 7. There is a function T : TΣ → Pf (SPΣ) such that:

SR� ` e =
∑
s∈Te

s. JeK ∼= {JsK | s ∈ Te} .

Proof. Simple induction on terms. ut

Corollary 1. JeK ∼= JfK⇔ SR� ` e = f

Corollary 2. JeK ↓ ∼= JfK ↓ ⇔ CSR� ` e = f .

14 P. Brunet & D. Pym

3 Logic for pomsets with boxes

We introduce a logic for reasoning about pomsets with boxes. The logic we intro-
duce is a bunched modal logic, in the sense of [14,6,4,1,16], with substructural
connectives corresponding to each of sequential and concurrent composition.
Modalities characterise boxes and locality. The logic is also conceptually related
to Concurrent Separation Logic [13,3].

3.1 Pomset logic: definitions

We generate the set of formulas FΣ and the set of positive formulas F+Σ as follows:

φ, ψ ∈ F+Σ ::= ⊥ | a | φ ∨ ψ | φ ∧ ψ | φIψ | φ ?ψ | [φ] | LβφM

φ, ψ ∈ FΣ ::= ⊥ | a | φ ∨ ψ | φ ∧ ψ | φIψ | φ ?ψ | [φ] | LβφM | ¬φ

Remark 8. Here the atomic predicates are chosen to be exactly Σ. Another
natural choice would be a separate set Prop of atomic predicates, together with
a valuation v : Prop→ P (Σ) to indicate which actions satisfy which predicate.
It is equivalent:

– to encode a formula over Prop as a formula over Σ, simply replace every
predicate p ∈ Prop with the formula

∨
a∈v(p) a

– to encode a formula over Σ as one over Prop, we need to make the customary
assumption that ∀a ∈ Σ, ∃p ∈ Prop : v(p) = {a}.

These formulas are interpreted over posets. We define two satisfaction rela-
tions: |=K allows one to reason on posets modulo isomorphism, while |=J↑ and
|=J↓ consider them up to subsumption:

P |=K φ is defined by induction on φ ∈ FΣ :

– P |=K ⊥ iff P ∼= �
– P |=K a iff P ∼= a
– P |=K ¬φ iff P 6|=K φ
– P |=K φ ∨ ψ iff P |=K φ or P |=K ψ
– P |=K φ ∧ ψ iff P |=K φ and P |=K ψ
– P |=K φIψ iff P ∼= P1 ⊗ P2 such that P1 |=K φ and P2 |=K ψ
– P |=K φ ?ψ iff P ∼= P1 ⊕ P2 such that P1 |=K φ and P2 |=K ψ
– P |=K [φ] iff P ∼= [Q] and Q |=K φ
– P |=K LβφM iff P E Q and Q |=K φ.

P |=J↑ φ is defined by induction on φ ∈ F+Σ :

– P |=J↑ ⊥ iff P ∼= �
– P |=J↑ a iff P w a
– P |=J↑ φ ∨ ψ iff P |=J↑ φ or P |=J↑ ψ
– P |=J↑ φ ∧ ψ iff P |=J↑ φ and P |=J↑ ψ
– P |=J↑ φIψ iff P w P1 ⊗ P2 such that P1 |=J↑ φ and P2 |=J↑ ψ
– P |=J↑ φ ?ψ iff P w P1 ⊕ P2 such that P1 |=J↑ φ and P2 |=J↑ ψ

Pomsets with Boxes 15

– P |=J↑ [φ] iff P w [Q] and Q |=J↑ φ
– P |=J↑ LβφM iff P w P ′ E Q and Q |=J↑ φ.

P |=J↓ φ is defined by induction on φ ∈ F+Σ :

– P |=J↓ ⊥ iff P ∼= �
– P |=J↓ a iff P v a
– P |=J↓ φ ∨ ψ iff P |=J↓ φ or P |=J↓ ψ
– P |=J↓ φ ∧ ψ iff P |=J↓ φ and P |=J↓ ψ
– P |=J↓ φIψ iff P v P1 ⊗ P2 such that P1 |=J↓ φ and P2 |=J↓ ψ
– P |=J↓ φ ?ψ iff P v P1 ⊕ P2 such that P1 |=J↓ φ and P2 |=J↓ ψ
– P |=J↓ [φ] iff P v [Q] and Q |=J↓ φ
– P |=J↓ LβφM iff P v P ′ E Q and Q |=J↓ φ.

Example 3. Recall the problematic pattern we saw in the running example, i.e.

x bx

y by

This pattern can be represented by the following formula:

conflict := Lβ(x ? y)I (bx ?by)M.

We may also interpret these formulas over sets of posets. We consider here
two ways a set of posets X may satisfy a formula:

– X satisfies φ universally if every poset in X satisfies φ;
– X satisfies φ existentially if some poset in X satisfies φ.

Combined with our three satisfaction relations for individual pomsets, this yields
six definitions:

X |=∀K φ iff ∀P ∈ X,P |=K φ X |=∃K φ iff ∃P ∈ X,P |=K φ

X |=∀J↑ φ iff ∀P ∈ X,P |=J↑ φ X |=∃J↑ φ iff ∃P ∈ X,P |=J↑ φ

X |=∀J↓ φ iff ∀P ∈ X,P |=J↓ φ X |=∃J↓ φ iff ∃P ∈ X,P |=J↓ φ.

For a term e ∈ TΣ , we write e |=y
x φ to mean JeK |=y

x φ.

3.2 Some facts about pomset logic

Lemma 8. For every formula φ ∈ F+Σ, if P |=K φ then P |=J↑ φ and P |=J↓ φ.

Proof. This is straightforward, since |=K is obtained from |=J↑ by replacing w
with ∼=, and since P ∼= Q⇒ P w Q. A similar argument holds for |=J↓. ut

Lemma 9. For a formula Φ ∈ FΣ and a pair of posets P,Q ∈ PΣ, if P ∼= Q
then P |=K Φ iff Q |=K Φ.

Proof. We proceed by induction on Φ.

16 P. Brunet & D. Pym

– If Φ = ⊥, P |=K ⊥ means that � ∼= P ∼= Q, i.e. Q |=K ⊥.
– If Φ = ¬φ, Φ = φ∨ψ, or Φ = φ∧ψ, we use the induction hypothesis to show

that P |=K Φ iff Q |=K Φ.
– If Φ = a, Φ = φIψ, Φ = φ ?ψ, Φ = [φ], or Φ = LβφM, then the satisfaction

relation says P |=K Φ iff P ∼= P ′ and h(P ′). Since Q ∼= P , Q also satisfies
Q ∼= P ′ and h(P ′) so we get Q |=K Φ without using the induction hypothesis.
By symmetry, the converse implication holds as well. ut

In other words, two isomorphic posets K-satisfy the same formulas. This means
K-satisfiability is defined on pomsets.

Lemma 10. For a formula Φ ∈ F+Σ and a pair of posets P,Q ∈ PΣ, if P v Q
then the following hold: P |=J↑ Φ⇒ Q |=J↑ Φ, and Q |=J↓ Φ⇒ P |=J↓ Φ.

We can build formulas from series-parallel terms: φ(a) := a, φ(1) := ⊥,
φ ([s]) := [φ(s)], φ(s ; t) := φ(s)Iφ(t), and φ(s ‖ t) := φ(s) ? φ(t).

Lemma 11. For any sp-term s and any poset P , we have:

P |=K φ(s)⇔ P ∼= JsK P |=J↑ φ(s)⇔ P w JsK P |=J↓ φ(s)⇔ P v JsK .

3.3 Algebraic presentation

Given a formula φ and a satisfaction relation |=X , with X ∈ {J↑, J↓,K}, we may
define the X-semantics of φ as JφKX := {P ∈ PΣ | P |=X φ}. We may rephrase
the results of the previous subsection from this perspective:

Lemma 8 : JφKK ⊆ JφKJ↑ ∩ JφKJ↓.
Lemma 9 : JφKK is closed under ∼=.
Lemma 10 : JφKJ↑ = JφKJ↑ ↑ and JφKJ↓ = JφKJ↓ ↓, i.e. the J↑ semantics is

upwards-closed and the J↓-semantics is downwards-closed.
Lemma 11 : Jφ(s)KK ∼= {JsK}, Jφ(s)KJ↓ ∼= {JsK} ↓, Jφ(s)KJ↑ ∼= {JsK} ↑.

We may also use this to describe the satisfaction relations for sets of posets:

e |=∃X φ⇔ JeK ∩ JφKX 6= ∅ e |=∀X φ⇔ JeK ⊆ JφKX . (3.1)

With these definitions, we make the following observations:

Lemma 12. The following statements hold universally:

e |=∀K φ⇔ JeK ⊂∼ JφKK (3.2)

e |=∀J↓ φ⇔ JeK v JφKJ↓ (3.3)

e |=∀J↑ φ⇔ ∀P ∈ JeK , ∃Q ∈ JφKJ↑ : P w Q. (3.4)

e ⊂∼ f ⇒ ∀φ, e |=
∃
K φ⇒ f |=∃K φ (3.5)

e v f ⇒ ∀φ, e |=∃J↑ φ⇒ f |=∃J↑ φ (3.6)

e ⊂∼ f ⇒ ∀φ, f |=
∀
K φ⇒ e |=∀K φ (3.7)

e v f ⇒ ∀φ, f |=∀J↓ φ⇒ e |=∀J↓ φ (3.8)

e |=∃K φ(s)⇔ JsK ∈ JeK (3.9)

e |=∃J↑ φ(s)⇔ JsK ∈ JeK ↓ (3.10)

Pomsets with Boxes 17

We may use φ() and T to generate formulas out of terms: let e ∈ TΣ be a
term, we define the formula Φ(e) :=

∨
s∈Te

φ(s).

Lemma 13. Φ(e) satisfies the following equivalences:

e |=∀K Φ(f)⇔ JeK ⊂∼ JfK (3.11)

e |=∀J↓ Φ(f)⇔ JeK v JfK (3.12)

Proof. Recall that since ↑ and ↓ are Kuratowski closure operators, they dis-
tribute over unions. We may thus obtain:

JΦ(e)KK =
⋃
s∈Te

Jφ(s)KK ∼=
⋃
s∈Te

{JsK} ∼= JeK .

JΦ(e)KJ↓ =
⋃
s∈Te

Jφ(s)KJ↓ ∼=
⋃
s∈Te

{JsK} ↓ ∼= JeK ↓.

The statements then follow by (3.2) and (3.3). ut

3.4 Adequacy of pomset logic

In this section, we present adequacy lemmas. These should be understood as ap-
propriate formulations of the completeness theorems relating operational equiv-
alence and logical equivalence in the sense of van Benthem [2] and Hennessy–
Milner [7,12] for this logic (cf. [1]). From the results we have established so far,
we may directly prove the following:

Proposition 1. For a pair of series parallel terms s, t, the identity BiMon� `
s = t is derivable if and only if for any formula φ, JsK |=K φ iff JtK |=K φ.

Proposition 2. For a pair of terms s, t ∈ SPΣ, the identity CMon� ` s ≤ t is
derivable if and only if for any formula φ, JsK |=J↑ φ implies JtK |=J↑ φ.

Proposition 3. Given two terms e, f ∈ TΣ, the following equivalences hold:

SR� ` e ≤ f ⇔
(
∀φ, e |=∃K φ⇒ f |=∃K φ

)
⇔
(
∀φ, f |=∀K φ⇒ e |=∀K φ

)
(3.13)

SR� ` e = f ⇔
(
∀φ, e |=∃K φ⇔ f |=∃K φ

)
⇔
(
∀φ, e |=∀K φ⇔ f |=∀K φ

)
. (3.14)

Proof. (3.13) We prove both directions:
(⇒) Assume SR� ` e ≤ f . By Corollary 1 this means JeK ⊂∼ JfK. Therefore,

we may conclude by (3.5) and (3.7).
(⇐) We show that each LHS implies JeK ⊂∼ JfK, i.e. SR� ` e ≤ f :

– Assume ∀φ, f |=∀K φ⇒ e |=∀K φ. Then in particular, since JfK ⊂∼ JfK
by Lemma 13 we have f |=∀K Φ(f), hence e |=∀K Φ(f) ergo JeK ⊂∼ JfK.

– Assume ∀φ, e |=∃K φ ⇒ f |=∃K φ, and let P ∈ JeK. By Lemmas 7 we
know that there is s ∈ Te such that P ∼= JsK, and by Lemma 11 we get
e |=∃K φ(s), hence f |=∃K φ(s). Hence by (3.9) we get P ∼= JsK ∈ JfK.

(3.14) follows from (3.13), and the fact that ≤ is antisymmetric. ut

18 P. Brunet & D. Pym

We may also prove the variants of this proposition for J↓ and J↑:

Proposition 4. Given two terms e, f ∈ TΣ, the following equivalences hold:

CSR� ` e ≤ f ⇔
(
∀φ, e |=∃J↑ φ⇒ f |=∃J↑ φ

)
(3.15)

CSR� ` e = f ⇔
(
∀φ, e |=∃J↑ φ⇔ f |=∃J↑ φ

)
. (3.16)

Proposition 5. Given two terms e, f ∈ TΣ, the following equivalences hold:

CSR� ` e ≤ f ⇔
(
∀φ, f |=∀J↓ φ⇒ e |=∀J↓ φ

)
(3.17)

CSR� ` e = f ⇔
(
∀φ, e |=∀J↓ φ⇔ f |=∀J↓ φ

)
. (3.18)

4 Local Reasoning

The discussion in this section does not rely on which satisfaction relation we pick,
so in the remainder we assume we picked some relation |=∈ {|=K , |=J↑, |=J↑}.

The modality LβM provides an explicit way of performing local reasoning (in
the sense of (Concurrent) Separation Logic [10,17,13,3]). Indeed, if a program
satisfies some formula φ, then, if we insert this program in any context, the
resulting program will satisfy LβφM. (Relationships between Concurrent Separation
Logic and CKA have bee explored in [15].)

Pomset logic enjoys a high level of compositionality, much like algebraic logic.
Formally, this comes from the following principle:

If e |= φ and ∀a, σa |= τa, then σ̂e |= τ̂φ.

This makes possible the following verification scenario. Let P be a large program,
involving a number of simpler sub-programs p1, . . . , pn. We may simplify P by
replacing the sub-programs by uninterpreted symbols x1, . . . , xn. We then check
that this simplified program satisfies a formula Φ, the statement of which might
involve the xi. We then separately determine for each sub-program pi some
specification φi. Finally, using the principle we just stated, we can show that the
full program P satisfies the formula Φ′, obtained by replacing the xi with φi.

To illustrate how the box modality relates to protection, consider the classi-
cal formula Lβ[¬LβaM]M. A poset satisfies this formula iff it contains a box that do
not contain any a-labelled event. Note that the negation is used here to express
a closed-world property, which is not intrinsically classical, but cannot be ex-
pressed in our intuitionistic language. If a program p satisfies Lβ[¬LβaM]M, then any
program featuring p positively also satisfies it. This can be understood as saying
that if p contains a correct box, then no use of p can introduce an a-bug inside
that box, justifying our claim that boxes embody protection.

Acknowledgements

This work has been supported by UK EPRSC Research Grant EP/R006865/1:
Interface Reasoning for Interacting Systems (IRIS). The authors are grateful to
their colleagues at UCL and within the IRIS project for their interest.

Pomsets with Boxes 19

References

1. G. Anderson and D. Pym. A calculus and logic of bunched resources and processes.
Theoretical Computer Science 614:63-96, 2016.

2. J. van Benthem. Logical Dynamics of Information and Interaction. Cambridge
University Press, 2014.

3. S. Brookes and P. O’Hearn. Concurrent Separation Logic. ACM SIGLOG News
3(3), 47–65, 2016.

4. M. Collinson and D. Pym. Algebra and Logic for Resource-based Systems
Modelling. Mathematical Structures in Computer Science 19:959–1027, 2009.
doi:10.1017/S0960129509990077.

5. Gischer, J.L.: The equational theory of pomsets. Theor. Comput. Sci. 61(2-3),
199–224 (1988). https://doi.org/10.1016/0304-3975(88)90124-7

6. D. Galmiche, D. Méry, and D. Pym. The semantics of BI and resource tableaux.
Math. Str. Comp. Sci., 15(06):1033–1088, 2005.

7. M. Hennessy and G. Plotkin. On observing nondeterminsm and concurrency. Proc.
7th ICALP. LNCS 85:299–309, 1980.

8. Hoare, T., Möller, B., Struth, G., Wehrman, I.: Concurrent Kleene algebra. In:
CONCUR. pp. 399–414 (2009). https://doi.org/10.1007/978-3-642-04081-8 27

9. Tony Hoare, Bernhard Möller, Georg Struth, Ian Wehrman. Concurrent Kleene
Algebra and its Foundations. Journal of Logic and Algebraic Programming 80,
266–296, 2011.

10. S. Ishtiaq and P. O’Hearn. BI as an assertion language for mutable data structures.
Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 14–26, 2001.

11. Kuratowski, C.: Sur l’opération Ā de l’Analysis Situs. Fundamenta Mathematicae
3(1), 182–199 (1922)

12. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
13. P. O’Hearn. Resources, concurrency, and local reasoning. Theoretical Computer

Science 375 (1–3), 2007, 271–307.
14. P. O’Hearn and D. Pym. The logic of bunched implications. Bull. Symb. Log.,

5(2):215–244, 1999.
15. P. O’Hearn, R. L. Petersen, J. Villard and A. Hussain. On the relation between

Concurrent Separation Logic and Concurrent Kleene Algebra. Journal of Logical
and Algebraic Methods in Programming 84(3), 285–302, 2015.

16. D. Pym. Resource Semantics: Logic as a Modelling Technology. ACM SIGLOG
News, April 2019, Vol. 6, No. 2, 5–41.

17. J. Reynolds. Separation Logic: a logic for shared mutable data structures. In Proc
LICS ’02, IEEE Comp. Soc. Press, 55–74 2002.

https://doi.org/10.1016/0304-3975(88)90124-7
https://doi.org/10.1007/978-3-642-04081-8_27

20 P. Brunet & D. Pym

A Omitted proofs

Proof (Claim 1). assume there exists non-trivial prefix set. We pick a minimal
one, i.e. a non-trivial prefix set A such that for any non-trivial prefix B, if B ⊆ A,
then B = A (this is always possible since ⊆ is a well-founded partial order on
finite sets). If A is nested, then A satisfies our requirements. Otherwise, there is
a box that is not contained in A while intersecting A. Since P does not contain
the pattern P2, we know that we may pick a maximal such box β. This means
that we know the following:

β ∈ BP (∀α ∈ BP , β ⊆ α⇒ β = α) ∃e1 ∈ β ∩A ∃e2 ∈ β \A.

First, we show that A ⊆ β. Consider the set A′ := A \ β. Clearly A′ (A
(since e1 ∈ A \ A′). We may also show that A′ is prefix. Let e ∈ A′ and f /∈ A′.
There are two cases:

– either f /∈ A, then since A is prefix and e ∈ A′ ⊆ A we have e ≤P f ;
– or f ∈ A∩ β. In this case, we use the fact that P does not have pattern P3:

we know that e2 ∈ β \ A, so since e ∈ A′ ⊆ A we have e ≤P e2, and since
e /∈ β and e2, f ∈ β we may conclude that e ≤P f .

Therefore A′ is prefix and strictly contained in A. By minimality of A, A′ has
to be trivial. Since A is non-trivial this means that A′ = ∅, hence that A ⊆ β.

Now we know that A ⊆ β. Because we know that β is not empty, and that
EP /∈ BP , we deduce that β is non-trivial. Since P does not contain pattern P2,
and by maximality of β, we know that β is nested. We now conclude by showing
that β is in fact prefix. Let e ∈ β, and f /∈ β. Since A ⊆ β we get that f /∈ A.
By the prefix property of A we get e1 ≤P f , and since e1, e ∈ β and f /∈ β, by
the absence of pattern P4 we get that e ≤P f . ut

Proof (Claim 2). This proceeds in a similar manner as Claim 1. We pick a
minimal non-trivial isolated set A, and try to find a maximal box β such that
β ∩A 6= ∅ and β \A 6= ∅. If no such box exists, A is already nested. If we do find
such a box, we first show that A has to be contained in β. Then we use this to
show that β is a non-trivial nested isolated set.

As noted before, this concludes the proof, Claim 1 and Claim 2 being enough
to call on our inductive hypothesis and build a term out of the poset. ut

Theorem 2. JsK ∼= JtK⇔ BiMon� ` s = t.

Before proving this theorem, we need to check the following statements:

EJtK = ∅ ⇒ BiMon� ` t = 1 (A.1)

EJsK ∈ BJsK ⇒ ∃t : BiMon� ` s = [t] ∧ EJtK /∈ BJtK (A.2)

Proof (statement (A.3)). Since EJtK = ∅, t does not feature any symbol from
Σ, meaning t ∈ SP∅. We may then show that for every term t ∈ SP∅ we have
BiMon� ` t = 1. ut

Pomsets with Boxes 21

Proof (statement (A.4)). We proceed by induction on s:

s = 1, s = a contradicts the premise;
s = [s′] we have to consider two cases:

– EJs′K ∈ BJs′K: in this case, by induction we get t such that EJtK /∈ BJtK,
and BiMon� ` s = [s′] = [[t]] = [t] .

– EJs′K /∈ BJs′K: pick t = s′.
s = s1 ; s2 we know the following facts:

EJs1K ∪ EJs2K = EJsK ∈ BJsK = BJs1K ∪ BJs2K

∀β ∈ BJsiK, β ⊆ EJsiK
EJs1K ∩ EJs2K = ∅

From them we deduce that either EJs1K = ∅ or EJs2K = ∅. We conclude by
applying the induction hypothesis to the appropriate subterm, and use (A.3)
to conclude.

s = s1 ‖ s2 same as s1 ; s2. ut

We will also need the following observations:

EJtK = ∅ ⇒ BiMon� ` t = 1 (A.3)

EJsK ∈ BJsK ⇒ ∃t : BiMon� ` s = [t] ∧ EJtK /∈ BJtK (A.4)

We may now prove Theorem 2:

Proof (Theorem 2). As often for this kind of result, the right-to-left implication,
i.e. soundness, is very simple to check, by a simple induction on the derivation.

For the converse direction, we prove the following statement by induction on
the term s:

∀t ∈ SPΣ , JsK ∼= JtK⇒ BiMon� ` s = t.

s = 1 : follows from (A.3).
s = a : we prove the result by induction on t:

t = 1, t = [t′] : impossible since JtK ∼= a;
t = b : since JtK ∼= a this means a = b, i.e. by reflexivity BiMon� ` t = a;
t = t1 ; t2 : since a has a single event, and EJt1 ; t2K = EJt1K] EJt2K, that event

must be either in EJt1K or in EJt2K, and the other term has no event.
The term that has no event, by (A.3), is provably equal to 1. The term
containing an event is isomorphic to a, so by induction it is provably
equal to a. Hence we get that t is provably equal to either a ; 1 or 1 ; a,
both of which are provably equal to a.

t = t1 ‖ t2 : same as t1 ; t2.
s = s1 ; s2 : letA := EJs1K ⊆ EJsK. Notice thatA = EJsK\EJs1K = EJs2K. Let φ be the

isomorphism from JsK to JtK and let t1 := πφ(A) (t) and t2 := π
φ(A)

(t). Since

A is nested and prefix, so is its image by the isomorphism φ. Therefore by
Lemma 2 we get that: BiMon� ` t = t1 ; t2. By properties of isomorphisms,
we can also see that for any set X ⊆ EJsK we have JsK�X ∼= JtK�φ(X). Hence

22 P. Brunet & D. Pym

we have Jt1K ∼= JtK�φ(A)
∼= JsK�A ∼= Js1K. Similarly, and because by bijectivity

of φ we have φ(A) = φ
(
A
)
, we get Jt2K ∼= Js2K. We may thus conclude by

induction that BiMon� ` si = ti (i ∈ {1, 2}), i.e.

BiMon� ` s = s1 ; s2 = t1 ; t2 = t.

s = s1 ‖ s2 : same as s1 ; s2. ut

Lemma 4. Let P,Q be two posets:

(i) if P vb Q, then P contains P1 iff Q contains P1;
(ii) if P vo Q, then P contains P2 iff Q contains P2;

(iii) if P vb Q and Q contains P3, then P contains P3;
(iv) if P vb Q and Q contains P4, then P contains P4.

Proof. (i) if φ : Q→ P is order reflecting, then by definition we have

x ≤Q y ⇔ φ(x) ≤P φ(y).

The result follows immediately.
(ii) if φ : Q→ P is order reflecting, then by definition we have

B ∈ BQ ⇔ φ (B) ∈ BP

e ∈ B \ C ⇔ φ(e) ∈ φ (B) \ φ (C) e ∈ B ∩ C ⇔ φ(e) ∈ φ (B) ∩ φ (C) .

The result follows immediately.
(iii) if φ : Q→ P is order reflecting and Q contains P3 then by definition of the

pattern we have e1, e2, e3 ∈ EQ and B ∈ BQ such that

e1 /∈ B e2 ∈ B e3 ∈ B e1 ≤Q e2 e1 6≤Q e3.

Since φ is a poset homomorphism, we know that φ (B) ∈ BP and φ(e1) ≤P
φ(e2). By definition of the direct image, we also know that φ(e1) /∈ φ (B)
and φ(e2), φ(e3) ∈ φ (B). Finally, since φ is order reflecting φ(e1) 6≤P φ(e3).

(iv) similar to the proof for (iii). ut

Lemma 7. There is a function T : TΣ → Pf (SPΣ) such that:

SR� ` e =
∑
s∈Te

s. JeK ∼= {JsK | s ∈ Te} .

Proof. Te is defined by induction on e:

T0 := ∅ T1 := {1}
Ta := {a} T[e] := {[s] | s ∈ Te}

Te ; f := {s ; t | 〈s, t〉 ∈ Te × Tf} Te ‖ f := {s ‖ t | 〈s, t〉 ∈ Te × Tf}
Te+ f := Te ∪ Tf .

Checking the lemma is done by a simple induction. ut

Pomsets with Boxes 23

Corollary 1. JeK ∼= JfK⇔ SR� ` e = f

Proof. Soundness is easy to check: by a simple induction on the derivation tree,
we can ensure that SR� ` e = f ⇒ JeK ∼= JfK.

Using Lemma 7 we may rewrite any term e as a finite union of series parallel
terms. Let s ∈ Te. By soundness, there is P ∈ JeK such that P ∼= JsK. Since
JeK ∼= JfK, there is Q ∈ JfK such that P ∼= Q. Since SR� ` f =

∑
s∈Tf

s, by

soundness there is t ∈ Tf such that Q ∼= t. Therefore JsK ∼= JtK, so by Theorem 2
we have BiMon� ` s = t. Since BiMon� ⊆ SR�, we also have SR� ` s = t,
and because t ∈ Tf we get SR� ` s ≤ f . Since this holds for every s ∈ Te, this
means that:

SR� ` e =
∑
s∈Te

s ≤ f.

By a symmetric argument we obtain SR� ` f ≤ e, allowing us to conclude by
antisymmetry that SR� ` e = f . ut

Corollary 3. JeK ↓ ∼= JfK ↓ ⇔ CSR� ` e = f .

Proof. Again, soundness is straightforward. For completeness, it is sufficient to
show if JeK v JfK then CSR� ` e ≤ f . Assume JeK v JfK, i.e. every poset in JeK
is subsumed by some poset in JfK. Since SR� ⊆ CSR�, we get by Lemma 7:

CSR� ` e =
∑
s∈Te

s CSR� ` f =
∑
t∈Tf

t.

Let s ∈ Te, since JeK v JfK, and because of Lemma 7, we know that there is
a term t ∈ Tf such that JsK v JtK. By Theorem 3, that means CMon� ` s ≤
t. Since CMon� ⊆ CSR�, we get CSR� ` s ≤ t ≤ f . This means that for
every s ∈ Te, we have CSR� ` s ≤ f , hence that CSR� ` e =

∑
s∈Te

s ≤ f . ut

Lemma 10. For a formula Φ ∈ F+Σ and a pair of posets P,Q ∈ PΣ, if P v Q
then the following hold: P |=J↑ Φ⇒ Q |=J↑ Φ, and Q |=J↓ Φ⇒ P |=J↓ Φ.

Proof. We proceed by induction on Φ, first to prove the statement with J↑.

– If Φ = ⊥, P |=J↑ ⊥ means that � ∼= P v Q, which implies, thanks to
Remark 2, that Q ∼= �, i.e. Q |=J↑ ⊥.

– If Φ = φ ∨ ψ or Φ = φ ∧ ψ, we use the induction hypothesis to show that
P |=J↑ Φ implies Q |=J↑ Φ.

– If Φ = a, Φ = φIψ, Φ = φ ?ψ, Φ = [φ], or Φ = LβφM, then the satisfaction
relation says P |=J↑ Φ iff P w P ′ and h(P ′). Since Q w P , Q also satisfies
Q w P ′ and h(P ′) so we can conclude that Q |=J↑ Φ without using the
induction hypothesis.

Now we do another induction on Φ to prove the statement with J↓.

– If Φ = ⊥, Q |=J↓ ⊥ means that P v Q ∼= �, which implies, thanks to
Remark 2, that P ∼= �, i.e. P |=J↓ ⊥.

24 P. Brunet & D. Pym

– If Φ = φ ∨ ψ or Φ = φ ∧ ψ, we use the induction hypothesis to show that
Q |=J↓ Φ implies P |=J↓ Φ.

– If Φ = a, Φ = φIψ, Φ = φ ?ψ, Φ = [φ], or Φ = LβφM, then the satisfaction
relation says Q |=J↓ Φ iff Q v Q′ and h(Q′). Since P v Q, P also satisfies
P v Q′ and h(Q′) so we can conclude that P |=J↓ Φ without using the
induction hypothesis. ut

Lemma 11. For any sp-term s and any poset P , we have:

P |=K φ(s)⇔ P ∼= JsK P |=J↑ φ(s)⇔ P w JsK P |=J↓ φ(s)⇔ P v JsK .

Proof. By induction on s:

s = 1 : P |=K φ(1) = ⊥ ⇔ P ∼= � = J1K .
P |=J↑ φ(1) = ⊥ ⇔ P ∼= �⇔ P w � = J1K .
P |=J↓ φ(1) = ⊥ ⇔ P ∼= �⇔ P v � = J1K .

s = a : P |=K φ(a) = a⇔ P ∼= a = JaK .
P |=J↑ φ(a) = a⇔ P w a = JaK .
P |=J↓ φ(a) = a⇔ P v a = JaK .

s = [t] : P |=K [φ(t)]⇔ P ∼= [Q] ∧Q |=K φ(t)

⇔ P ∼= [Q] ∧Q ∼= JtK
⇔ P ∼= [JtK] = J[t]K .

P |=J↑ [φ(t)]⇔ P w [Q] ∧Q |=J↑ φ(t)

⇔ P w [Q] ∧Q w JtK
⇔ P w [JtK] = J[t]K .

P |=J↓ [φ(t)]⇔ P v [Q] ∧Q |=J↓ φ(t)

⇔ P v [Q] ∧Q v JtK
⇔ P v [JtK] = J[t]K .

s = s1 ; s2 : P |=K φ(s1)Iφ(s2)⇔ P ∼= P1 ⊗ P2

⇔ ∧ P1 |=K φ(s1) ∧ P2 |=K φ(s2)

⇔ P ∼= P1 ⊗ P2 ∧ P1
∼= Js1K ∧ P2

∼= Js2K
⇔ P ∼= Js1K⊗ Js2K = Js1 ; s2K .

P |=J↑ φ(s1)Iφ(s2)⇔ P w P1 ⊗ P2

⇔ ∧ P1 |=J↑ φ(s1) ∧ P2 |=J↑ φ(s2)

⇔ P w P1 ⊗ P2 ∧ P1 w Js1K ∧ P2 w Js2K
⇔ P w Js1K⊗ Js2K = Js1 ; s2K .

P |=J↓ φ(s1)Iφ(s2)⇔ P v P1 ⊗ P2

⇔ ∧ P1 |=J↓ φ(s1) ∧ P2 |=J↓ φ(s2)

⇔ P v P1 ⊗ P2 ∧ P1 v Js1K ∧ P2 v Js2K
⇔ P v Js1K⊗ Js2K = Js1 ; s2K .

Pomsets with Boxes 25

s = s1 ‖ s2 : P |=K φ(s1) ? φ(s2)⇔ P ∼= P1 ⊕ P2

⇔ ∧ P1 |=K φ(s1) ∧ P2 |=K φ(s2)

⇔ P ∼= P1 ⊕ P2 ∧ P1
∼= Js1K ∧ P2

∼= Js2K
⇔ P ∼= Js1K⊕ Js2K = Js1 ‖ s2K .

P |=J↑ φ(s1) ? φ(s2)⇔ P w P1 ⊕ P2

⇔ ∧ P1 |=J↑ φ(s1) ∧ P2 |=J↑ φ(s2)

⇔ P w P1 ⊕ P2 ∧ P1 w Js1K ∧ P2 w Js2K
⇔ P w Js1K⊕ Js2K = Js1 ‖ s2K .

P |=J↓ φ(s1) ? φ(s2)⇔ P v P1 ⊕ P2

⇔ ∧ P1 |=J↓ φ(s1) ∧ P2 |=J↓ φ(s2)

⇔ P v P1 ⊕ P2 ∧ P1 v Js1K ∧ P2 v Js2K
⇔ P v Js1K⊕ Js2K = Js1 ‖ s2K .

ut

Lemma 12. The following statements hold universally:

e |=∀K φ⇔ JeK ⊂∼ JφKK (3.2)

e |=∀J↓ φ⇔ JeK v JφKJ↓ (3.3)

e |=∀J↑ φ⇔ ∀P ∈ JeK , ∃Q ∈ JφKJ↑ : P w Q. (3.4)

e ⊂∼ f ⇒ ∀φ, e |=
∃
K φ⇒ f |=∃K φ (3.5)

e v f ⇒ ∀φ, e |=∃J↑ φ⇒ f |=∃J↑ φ (3.6)

e ⊂∼ f ⇒ ∀φ, f |=
∀
K φ⇒ e |=∀K φ (3.7)

e v f ⇒ ∀φ, f |=∀J↓ φ⇒ e |=∀J↓ φ (3.8)

e |=∃K φ(s)⇔ JsK ∈ JeK (3.9)

e |=∃J↑ φ(s)⇔ JsK ∈ JeK ↓ (3.10)

Proof. We prove each statement in sequence:

(3.2),(3.4),(3.3) By (3.1) and Lemmas 9 and 10.
(3.5) if e |=∃K φ and e ⊂∼ f , then f |=∃K φ:

The first premise the existence of a poset P ∈ JeK∩ JφKK . The second allows
us to find a poset Q ∈ JfK such that P ∼= Q. Since P ∈ JφKK and JφKK is
closed under ∼= we get Q ∈ JfK ∩ JφKK .

(3.6) if e |=∃J↑ φ and e v f , then f |=∃J↑ φ:
The first premise the existence of a poset P ∈ JeK∩ JφKJ↑. The second allows
us to find a poset Q ∈ JfK such that P v Q. Since P ∈ JφKJ↑ and JφKJ↑ is
upwards-closed we get Q ∈ JfK ∩ JφKJ↑.

(3.7) if f |=∀K φ and e ⊂∼ f , then e |=∀K φ:
The premise tells us that JfK ⊂∼ JφKK and JeK ⊂∼ f , so by transitivity we get
that JeK ⊂∼ JφKK , i.e. e |=∀K φ.

26 P. Brunet & D. Pym

(3.8) if f |=∀J↓ φ and e v f , then e |=∀J↓ φ:
The premise tells us that JfK v JφKJ↓ and JeK v f , so by transitivity we get

that JeK v JφKJ↓, i.e. e |=∀J↓ φ.

(3.9) e |=∃K φ(s)⇔ JeK ∩ Jφ(s)KK 6= ∅ ⇔ JeK ∩ {JsK} 6= ∅ ⇔ JsK ∈ JeK.
(3.10) e |=∃J↑ φ(s)⇔ JeK ∩ Jφ(s)KJ↑ 6= ∅ ⇔ JeK ∩ {JsK} ↑ 6= ∅ ⇔ JsK ∈ JeK ↓. ut

Proposition 1. For a pair of series parallel terms s, t, the identity BiMon� `
s = t is derivable if and only if for any formula φ, JsK |=K φ iff JtK |=K φ.

Proof.

BiMon� ` s = t⇔ JsK ∼= JtK (Theorem 2)

⇒ ∀φ ∈ FΣ , JsK |=K φ⇔ JtK |=K φ. (Lemma 9)

⇒ JsK |=K φ(t) (Since JtK |=K φ(t) follows from Lemma 11)

⇔ JsK ∼= JtK (Lemma 11)

⇔ BiMon� ` s = t (Theorem 2)

ut

Proposition 2. For a pair of terms s, t ∈ SPΣ, the identity CMon� ` s ≤ t is
derivable if and only if for any formula φ, JsK |=J↑ φ implies JtK |=J↑ φ.

Proof.

CMon� ` s ≤ t⇔ JsK v JtK (Theorem 3)

⇒ ∀φ ∈ F+Σ , JsK |=J↑ φ⇒ JtK |=J↑ φ. (Lemma 10)

⇒ JtK |=J↑ φ(s) (Since JsK |=J↑ φ(s) follows from Lemma 11)

⇔ JtK w JsK (Lemma 11)

⇔ CMon� ` s ≤ t. (Theorem 3)

ut

	Pomsets with Boxes: Protection, Separation, and Locality in Concurrent Kleene Algebra

