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Abstract : The mechanism responsible for the compaction of the genomic DNA of bacteria 

inside a structure called the nucleoid is a longstanding but still lively debated question. Most 

puzzling is the fact that the nucleoid occupies only a small fraction of the cell, although it is 

not separated from the rest of the cytoplasm by any membrane and would occupy a volume 

about thousand times larger outside from the cell. Here, by performing numerical simulations 

with coarse-grained models, we elaborate on the conjecture that the formation of the nucleoid 

may result from a segregative phase separation mechanism driven by the demixing of the 

DNA coil and non-binding globular macromolecules present in the cytoplasm, presumably 

functional ribosomes. Simulations performed with crowders having spherical, dumbbell or 

octahedral geometry highlight the sensitive dependence of the level of DNA compaction on 

the dissymmetry of DNA/DNA, DNA/crowder, and crowder/crowder repulsive interactions, 

thereby supporting the segregative phase separation scenario. Simulations also consistently 

predict much stronger DNA compaction close to the jamming threshold. Moreover, 

simulations performed with crowders of different sizes suggest that the final density 

distribution of each species results from the competition between thermodynamic forces and 

steric hindrance, so that bigger crowders are expelled selectively from the nucleoid only at 

moderate total crowder concentrations. This work leads to several predictions, which may 

eventually be tested experimentally. 
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1. Introduction 

 

 The mechanism leading to the formation of the bacterial nucleoid is a longstanding 

question, which is still lively debated.[1-5] The nucleoid is the region of the cell that contains 

the genomic DNA, as well as a certain number of proteins and other macromolecules.[6] Its 

volume varies according to several factors, including the richness of the nutrient,[7-11] the 

cell cycle step,[12,13] and the action of antibiotics,[9-11,14-18] but it is generally of the order 

of 25% of the volume of the cell.[19] This is precisely the point that has kept scientists 

puzzled for decades, because it is estimated (for example, from the Worm Like Chain 

model[20]) that the volume of the unconstrained genomic DNA of bacteria in physiological 

solution is approximately thousand times larger than the volume of the cell. Moreover, recent 

micro-piston experiments have shown that the free energy required to compress the 

chromosome of E. coli cells to its in vivo size is of the order of 
5

B10 k T .[21] Since in bacteria, 

as in all prokaryotes, the DNA is not separated from the main part of the cytosol by a 

bounding membrane, one is then left with the question of why the DNA does not expand 

throughout the cell but remains instead localized in the nucleoid. 

 The mechanisms, which are commonly evoked to explain the formation of the 

nucleoid, include (i) the formation of plectonemes, (ii) the bridging of DNA duplexes by 

nucleoid proteins, and (iii) the action of short-range attractive forces,[1] but their actual 

importance remains still unclear.[4] More precisely, there are corroborating indications that 

the formation of plectonemes resulting from negative supercoiling leads only to mild 

compaction of the DNA.[4,22] Physiological concentrations of nucleoid proteins able to 

bridge two DNA duplexes and keep them at a short distance from one another are, moreover, 

too low to provoke strong compaction.[4,23] Similarly, the ability of long cationic polymers 

to shrink progressively the DNA to compact coils that resemble the bacterial nucleoid has 

been demonstrated in vitro,[24] but bacterial cells do not contain significant amounts of such 

long polycations.[25] In contrast, short-range attractive forces between two DNA duplexes, 

like depletion forces[26] and fluctuation correlation forces[27], provoke a very abrupt 

condensation of the DNA to a globule with solid-like density above a certain threshold 

concentration of crowders and/or polycations,[24,28-31] with the threshold concentration 

decreasing markedly with increasing concentrations of bridging nucleoid proteins.[32] 

However, the intermediate DNA concentrations observed in living bacteria and the gradual 
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variations of the size of the nucleoid with environmental conditions[7-18] clearly do not 

support such an all-or-non mechanism. 

 Still another mechanism was proposed about 20 years ago on the basis of theoretical 

grounds.[33-35] The suggestion is that increasing amounts of non-binding spherical crowders, 

like nano-particles or globular neutral proteins, are able to compact the DNA gradually.[33-

35]. More precisely, the overall repulsion between all components of the system leads to a 

segregative separation into two phases,[36] one of them being rich in DNA and poor in 

spherical crowders, and the other one being composed essentially of crowders and almost 

deprived of DNA. While the outcome of theoretical predictions depends crucially on the 

details of the description of the interactions amongst crowders and between crowders and the 

DNA,[33-35,37,38] this mechanism has recently received strong support from two series of 

experiments. It was indeed first shown that the addition of 5-10% (w/v) of bovine serum 

albumin (BSA) to the buffer compacts long DNA molecules to densities close to that of the 

nucleoid.[39,40] Since the surface of BSA proteins displays small positive patches and the 

formation of weak BSA-DNA coacervates has been reported,[41] it can admittedly not be 

completely excluded that the observed compaction of the DNA by BSA proteins corresponds 

actually to complex coacervation (associative phase separation) rather than segregative phase 

separation. Still, unambiguous confirmation of the efficiency of the segregative phase 

separation mechanism came shortly after from experiments performed with negatively 

charged silica nanoparticles with diameter in the range 20-135 nm, which showed that 

introduction of a few percents thereof in the buffer also leads to the gradual compaction of the 

DNA.[42] 

 These two series of in vitro experiments therefore suggest that the formation of the 

nucleoid in vivo could result from the demixing of the DNA and other globular 

macromolecules of the cytosol, which interact repulsively with themselves and with the 

DNA.[5] A survey of the molecular species found in the cytosol further indicates that this role 

may be played by ribosomes,[5] which are ribonucleoprotein complexes that synthesize 

proteins from transfer RNA (tRNA) according to templates conveyed by messenger RNA 

(mRNA). In their 70S functional form, ribosomes contain approximately 4500 nucleotides 

and 7000 amino acid residues, have a diameter of 20-25 nm, are almost uniformly negatively 

charged, and account for approximately 30% of the dry mass of the cell. It has furthermore 

long been known that most functional ribosomes are excluded from the nucleoid, a point 

which has been confirmed by recent in vivo microscopy experiments.[16,17,43] 
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 Although the two series of experiments mentioned above have triggered renewed 

interest in this field,[44-47] much remains to be done to clarify the possible role of 

segregative phase separation in the compaction of the bacterial DNA inside the nucleoid. For 

example, the authors of the experiments with silica nanoparticles acknowledge the difficulty 

to estimate the effective nanoparticle volume occupancy ratio at which they observe 

segregation.[42] According to their calculations, this ratio lies around 15-20%, but they 

nevertheless do not exclude the possibility that it may instead approach the critical ratio for 

densely packed spheres (about 74%), because of the large uncertainty on the value of the 

Debye length. Recent simulations based on a coarse-grained model, where DNA is described 

as a freely jointed chain of blobs of radius ≈50 nm, predict that the occupancy ratio at which 

maximum compaction occurs is inversely proportional to the size of the crowders,[44-47] 

while other simulations based on a finer-grained semi-rigid model of the DNA molecule 

suggest instead that compaction of long DNA molecules by non-binding spherical crowders is 

governed by the volume occupancy ratio of the crowders and that it increases sharply up to 

nucleoid-like values slightly below the jamming transition.[48] This same work highlights the 

fact that the largest crowders demix preferentially from the DNA in systems containing 

crowders of different size.[48] 

 The purpose of the present work is to elaborate further on the predictions of this latter 

model[48] and to address several points, which may be deemed essential for understanding 

the formation of the nucleoid. First, one may wish to ascertain that the compaction of the 

DNA chain observed in the simulations is indeed appropriately described as a segregative 

phase separation.[49] According to the extension of Flory-Huggins theory to solutions 

containing two polymer species A and B, segregative phase separation occurs if the 

interaction parameter χ is positive, where χ denotes the strength of the pair interaction 

between A and B segments minus the average of the strengths of the pair interaction between 

two A segments and the pair interaction between two B segments[36,50] (segregative phase 

separation may actually also be driven by differences in polymer/solvent interactions,[36,51] 

but the coarse-grained model does not allow for such differences). If the segregative phase 

separation scenario is correct, significant variations of the level of compaction of the DNA 

chain are therefore expected upon variation of the strength of the DNA/crowder interaction 

compared to the strength of the DNA/DNA and crowder/crowder interactions. This is the first 

point addressed in the present work. 

 The second point deals with the geometry of the crowders. It is indeed known, that 

linear anionic polymers condense the DNA abruptly to a very compact globule[30,31] above 
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the threshold concentration where depletion forces[26] overcome electrostatic repulsion 

between DNA duplexes, while spherical anionic nanoparticles[42] and globular anionic 

proteins[39,40] provoke instead a gradual compaction of the DNA to intermediate 

concentrations. One is therefore led to wonder how sensitive against the geometry of globular 

crowders the segregative phase separation mechanism may be. The present paper reports on 

simulations that were performed with globular crowders with different geometries (spheres, 

dumbbells, and octahedra), in order to get an indication thereof. 

 Finally, several sets of simulations were performed in order to clarify the influence of 

the size dispersion of the crowders on the segregative phase segregation mechanism. Indeed, 

it was shown in the previous work that the DNA chain and the largest crowders demix 

preferentially when the DNA chain interacts with crowders of different size.[48] One may 

wonder whether such size selectivity is responsible for the fact that functional 70S ribosomes 

are excluded from the nucleoid, while 30S and 50S free subunits are able to diffuse inside the 

DNA coil.[43]. We will report on the various simulations that were launched to get a tentative 

answer to this question. 

 

2. Simulation models and methods 

 

 The models used in this study share several common points with those developed 

previously to investigate facilitated diffusion,[52-54] the interactions of H-NS proteins and 

DNA,[55-57], the formation of the bacterial nucleoid,[4,5,48,44-47] as well as questions 

dealing with spatial confinement and molecular crowding,[58,59] the collapse of DNA by 

combined bridging and self-adhesion,[60] and the dynamics of a DNA molecule confined into 

a cylindrical container and compressed by a piston.[61] 

 More precisely, genomic DNA is represented by a circular chain of 1440n =  beads of 

radius a separated at equilibrium by a distance 0 5.0l = nm, where each bead represents 15 

consecutive base pairs. The DNA chain is enclosed in a confining sphere of radius 0 120R =

nm (see Fig. 1(a)), so that the concentration of nucleotides is close to the physiological value 

(approximately 10 mM) in spite of the 200-fold reduction in length relative to the DNA of E. 

coli cells. N crowders are also enclosed in the confining sphere. For most of the simulations 

discussed below, crowders were taken in the form of independent spheres (see Fig. 1(b)), but 

several sets of simulations were run with crowders composed of two spheres (dumbbells, see 

Fig. 2(a)) or six spheres (octahedra, see Fig. 2(b)). The number N and the size of the crowders 
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were varied to investigate different levels of crowding, but the overall size of the crowders 

was usually kept in the range 15-25 nm, so as to mimic ribosomes and their free subunits. 

 The potential energy of the system, 
potE , is written as the sum of the internal energy of 

the DNA chain ( DNAV ), the DNA/crowder interactions ( DNA/CV ), the crowder/crowder 

interactions ( C/CV ), the repulsive potentials that maintain the DNA chain and the crowders 

inside the confining sphere ( wallV ), and eventually the internal energy of dumbbells and 

octahedral crowders ( CV ) 

pot DNA C DNA/C C/C wallE V V V V V= + + + + .       (1) 

 DNAV  is further expanded as the sum of 3 contributions 

2
2 2 2

DNA 0 DNA 0

1 1 1 2

( ) ( 2 )
2 2

n n n n

k k k j

k k k j k

h g
V l l e H aθ

−

= = = = +

= − + + − −∑ ∑ ∑ ∑ r r ,    (2) 

where 

1
( ) exp

4
D

r
H r

r rπε
 

= − 
 

,         (3) 

which describe the stretching, bending, and electrostatic energy of the DNA chain, 

respectively. kr  stands for the position of DNA bead k, kl  for the distance between two 

successive beads, and kθ  for the angle formed by three successive beads. The stretching 

energy is aimed at avoiding a rigid rod description and has no biological meaning. h was set 

to 2

B 01000 /k T l  to insure that 0kl l−  remains on average of the order of 00.02 l , in spite of 

the forces exerted by the remainder of the system (in this work, energies are expressed in units 

of Bk T , with 298T = K). The bending rigidity constant, B9.82g k T= , was chosen so as to 

provide the correct persistence length for DNA, 0 B/ ( ) 49gl k Tξ = ≈ nm.[62] Note that ξ 

corresponds approximately to a segment of 10 successive beads. It should also be stressed that 

the diameter of the confining sphere is consequently only about 5 times the persistence length 

of the DNA chain, so that mechanical consequences of the bending rigidity of the DNA chain 

may be somewhat overestimated. This is arguably the major effect of size reduction for this 

model. Finally, the electrostatic repulsion between DNA beads is written as a sum of Debye-

Hückel potentials,[63] where DNAe  denotes the value of the point charge placed at the centre 

of each DNA bead, 080ε ε=  is the dielectric constant of the medium, 1.07Dr = nm the Debye 

length inside the medium (corresponding to a concentration of monovalent salts close to 100 
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mM, as often assumed in bacteria), and 02a  the width of the (eventual) hard core of the 

interaction. Two different models of the DNA molecule were alternatively considered in this 

work. In the first model, DNA beads have a radius 1.78a = nm (which was shown to lead to 

the correct diffusion coefficient for the DNA chain)[64] and a charge DNA 12.15e e= −  (where 

e  is the absolute charge of the electron) and the interaction potential has a soft core ( 0 0a = ). 

This is the model, which was used in the previous work.[48] In the second model, DNA beads 

have a smaller radius 1.0a = nm and a smaller charge DNA 7.05e e= − , but their interaction 

potential has a hard core ( 0a a= ). The diffusion coefficient of the DNA chain is consequently 

slightly too large for this second model, but this is of little consequence because we are 

essentially interested in the equilibrium properties of the model. Note also that for both 

models DNAe  is significantly smaller than the net total charge carried by the phosphate groups 

of 15 base pairs ( 30 e− ), which reflects the importance of counter-ion condensation.[65,66] 

In spite of their differences (soft core vs hard core, DNA 12.15e e= −  vs DNA 7.05e e= − ), both 

models are in reasonable agreement with the Debye-Hückel approximation of the solution of 

the Poisson-Boltzmann equation.[63] It may also be worth emphasizing that the equilibrium 

separation of two DNA beads, 0 5.0l = nm, is too large compared to Dr  to warrant that 

different parts of the DNA chain will never cross. However, such crossings are rather 

infrequent and appear to affect the geometry of the DNA chain only to a limited extent. 

Finally, electrostatic interactions between nearest-neighbors are not included in eqn (2), 

because it is considered that they are already accounted for in the stretching and bending 

terms. 

 The internal energy of dumbbells and octahedral crowders contains only stretching 

contributions 

1
0 2

C , , ,

1 1 1

( )
2

N P P

K J K M J M

K J M J

h
V R

−

= = = +

= − −∑∑ ∑ R R ,       (4) 

where P denotes the number of connected spheres for each crowder ( 1P =  for independent 

spheres, 2P =  for dumbbells, and 6P =  for octahedra), 
,K J

R  the position of sphere J of 

crowder K, and 
0

,J MR  the equilibrium distance between spheres J and M of the same crowder. 

 In the same spirit as for DNA/DNA interactions, DNA/crowder and crowder/crowder 

interactions are expressed as sums of Debye-Hückel potentials 



8 

DNA/C DNA C , 0

1 1 1

1
2

C/C C , ,

1 1 1 1

( )

( ) ,

n N P

k K J K

k K J

N P N P

K J L M K L

K J L K M

V e e H a b

V e H b b

δ
= = =

−

= = = + =

= − − − −

= − − −

∑∑∑
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r R

R R

     (5) 

where Kb  denotes the radius of the spheres of crowder K, and Ce  is the electrostatic charge 

placed at their center. In this work, Ce  was set to C DNAe e= , as in previous work.[48] This 

choice, as well as the choice for the expressions of the various electrostatic potentials in eqns 

(2), (3), and (5), will be discussed in detail in the Results and Discussion section. Let us 

however emphasize right here that for C DNAe e=  the three functions 2

DNA 0( 2 )e H r a− , 

DNA C 0( )Ke e H r a b δ− − − , and 2

C ( )
K L

e H r b b− − , are equivalent to one another, except for the 

respective displacements 02a , 0 Ka b δ+ + , and K Lb b+ . For DNA/DNA and crowder/crowder 

interactions, these displacements are just the sum of the hard-core radii of the interacting 

particles. In contrast, for DNA/crowder interactions, the displacement 0 Ka b δ+ +  is the sum 

of the hard-core radii of the interacting particles only in the limit where 0δ = , which 

corresponds to the ‘symmetric’ case studied previously.[48] This symmetric case 0δ =  is 

characterized by the fact that the repulsion potential between a DNA bead and a crowding 

sphere is the median of the repulsion potential between two DNA beads and the repulsion 

potential between two crowding spheres. On the other hand, the symmetry of the interactions 

is broken towards comparatively more repulsive (respectively, less repulsive) DNA/crowder 

interactions for 0δ >  (respectively, 0δ < ). The dissymmetry coefficient δ will play a central 

role in the discussions of section 3. 

 Finally, wallV  is written in the form 

wall ,

1 1 1

( ( ) ( ))
n N P

k K J

k K J

V f fζ
= = =

= +∑ ∑∑r R  ,       (6) 

where the repulsive force constant ζ was set to 1000 Bk T  and the function ( )f r  is defined 

according to 

if 0r R≤  : ( ) 0f r =  

if 0r R>  : 

6

0

( ) 1
r

f r
R

 
= − 
 

.         (7) 

 The dynamics of the system was investigated by integrating numerically overdamped 

Langevin equations. Practically, the updated positions at time step n+1 were computed from 

the positions at time step n according to 
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( 1) ( ) ( ) ( )

( 1) ( ) ( ) ( )

, , ,

2

6 6

2
,

6 6

n n n nB
k k k k

n n n nB
K J K J K J K

K K

k T tt
x

a a

k T tt
X

b b

πη πη

πη πη

+

+

∆∆= + +

∆∆= + +

r r f

R R F

      (8) 

where 20t∆ = ps is the integration time step, ( )n

k
f  and 

( )

,

n

K JF  are vectors of inter-particle forces 

arising from the potential energy 
potE , 298T = K is the temperature of the system, ( )n

k
x  and 

( )n

K
X  are vectors of random numbers extracted from a Gaussian distribution of mean 0 and 

variance 1, and 0.00089η =  Pa s is the viscosity of the buffer at 298 K. 

 After each integration step, the position of the centre of the confining sphere was 

adjusted slightly, so as to coincide with the centre of mass of the DNA molecule. It was 

indeed observed that without this centering step the DNA coil sometimes sticks for long times 

to the confining sphere, which alters significantly its degree of compaction and the computed 

density profiles. Centering was therefore introduced in the simulation scheme, in order to 

prevent this possibility and ensure more meaningful comparisons between different runs. We 

note in passing that the location of the nucleoid close to (or away from) the membrane is in 

itself an interesting but complex question. Indeed, standard arguments predict that if both the 

compacted DNA and crowding macromolecules could be considered as solid particles, then 

the (comparatively larger) compacted DNA should have a marked tendency to localize close 

to the membrane, in order to increase the space available for the (comparatively smaller) 

crowding macromolecules,[26] which obviously contradicts the experimental fact that the 

nucleoid is most frequently observed away from the membrane. The ability of crowding 

macromolecules to penetrate inside the DNA coil thus likely plays a role in the positioning of 

the nucleoid inside the cell, as consequently also does the degree of compaction of the DNA 

molecule. Work in this direction is in progress, but in the present work it was chosen for 

clarity to disentangle DNA compaction and DNA location through the centering scheme. 

 Each point shown in the figures discussed in section 3 was obtained from a single 

trajectory, which was integrated for times as long as 100 ms close to the jamming threshold. 

The mean radius of gyration of the DNA chain, 
gR , as well as the mean density profiles for 

each species, were computed after equilibration of each conformation. It is estimated that the 

uncertainty for the computed values of the mean radius of gyration 
gR  is of the order of ±1 

nm away from the inflexion point of the curves and ±3 nm closer to the inflexion point, where 
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larger oscillations are observed. The estimated uncertainty for enrichment coefficients X/YQ  

(subsection 3.3) is of the order of ±5%. 

 It is important to note that the model for DNA described above is significantly finer-

grained compared to the model proposed in Refs. [44-47]. Indeed, each bead represents here 

15 consecutive base pairs of the DNA molecule, so that the persistence length of DNA (≈50 

nm) is equivalent to 10 beads and the bending rigidity has to be taken into account. In 

contrast, in Refs. [44-47] each DNA bead represents a blob of radius at least 50 nm (meant to 

consist of supercoiled DNA strands and DNA-bound proteins) and bending rigidity can be 

neglected in first approximation. This difference in the coarse-graining of the DNA molecule 

has an important consequence when crowders are assumed to consist of molecular complexes 

of radius ≈10 nm, like ribosomes. Indeed, spheres representing the crowders are consequently 

larger than DNA beads in the present model, while they are significantly smaller than DNA 

blobs in the model of Refs. [44-47]. The crucial point is that simulations performed with this 

latter model led to rather different results, depending on whether the size of crowders was 

assumed to be smaller (the “bacterial chromosome limit”) or larger (the “protein folding 

limit”) than the size of the connected beads.[45,46] It can consequently be expected that the 

results obtained with the present model will, somewhat paradoxically, be closer to those 

pertaining to the “protein folding limit” of Refs. [45,46] rather than the “bacterial 

chromosome limit”. This point will be discussed further throughout the remainder of this 

paper. 

 

3. Results and discussion 

 

3.1 Sensitivity of DNA compaction against dissymmetry of repulsive interactions 

 

 Simulations discussed in the present paper consisted in (i) letting the DNA chain 

equilibrate inside the confining sphere, (ii) introducing the crowders at random non-

overlapping positions inside the sphere, and (iii) letting the system equilibrate again, which 

eventually resulted in compaction of the DNA chain. This is illustrated in Fig. 1, which shows 

a representative conformation of the DNA chain after equilibration inside the confining 

sphere (Fig. 1(a)), the system after introduction of 1830 spherical crowders inside the 

confining sphere containing the equilibrated DNA chain (Fig. 1(b)), and a representative 

snapshot of the conformation of the DNA chain after equilibration of the full system (Fig. 
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1(c)). The degree of compaction of the DNA chain was quantified by the mean radius of 

gyration of the chain, 
gR . As indicated in Fig. 1, 

gR  is of the order of 83 nm in the absence of 

crowders and decreases down to about 64 nm after equilibration with the set of crowders 

shown in Fig. 1(b) and to about 50 nm when 500 additional small crowders are introduced in 

the confining sphere (Fig. 1(d)). 

 It was shown previously[48] that for spherical crowders with homogeneous radius 

Kb b=  the degree of DNA compaction is actually governed by the volume fraction of the 

crowders, ρ, computed according to 

( )3

3
10

1 N

K

K

b b
R

ρ
=

= + ∆∑ ,         (9) 

where Kb b+ ∆  denotes the effective radius of the crowders, that is, half the distance where 

the repulsion between two crowders is equal to the thermal energy Bk T  ( 1.8b∆ = nm for 

C 12.15e e= − , 1.3b∆ = nm for C 7.05e e= − ). One of the interesting points in describing 

crowder/crowder interactions through the potential in eqn (5), instead of the more usual 

DLVO potential[67,68] 

2
DLVO M

2 D

D

2
( ) exp( )

4 (1 )

K

K

e r b
W r

b r
r

r
πε

−= −
+

,       (10) 

where Me  is the total charge of the sphere, is precisely that b∆  does not depend on Kb  for the 

potential in eqn (5), while it does for the DLVO potential. By running simulations with 

different values of N and b, it could therefore be shown clearly that 
gR  decreases almost 

linearly with ρ down to 64
g

R ≈  nm for 0.55ρ ≈ , before dropping sharply to 50 55
g

R ≈ −  

nm for 0.65ρ ≈ , just below the jamming threshold at 0.75ρ ≈ .[48] As anticipated in the 

Simulation Models and Methods section, it is interesting to note that this result is indeed 

closer to the “protein folding limit” of Refs. [45,46], for which compaction was also shown to 

be governed by the volume fraction of the crowders, rather than the “bacterial chromosome 

limit”, for which it is the ratio of the volume fraction and the size of the crowders that 

matters.[45,46] It is nonetheless emphasized that the size of the DNA coil evolves much more 

smoothly and gradually with the volume fraction of the crowders for the “protein folding 

limit” of Refs. [45,46] than for the present model, a difference which is probably ascribable to 

the bending rigidity, which in the present model opposes compaction efficiently up to the 

jamming threshold, where intermolecular interactions finally become predominant. 
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 In the present work, we will take advantage of another property of the potential 

functions in eqns (2), (3) and (5), namely that the parameter δ in eqn (5) correlates tightly 

with the interaction parameter χ of Flory-Huggins solution theory.[36,50] Indeed, as pointed 

out in the Simulation Models and Methods section, the symmetric case 0δ =  is characterized 

by the fact that the repulsion potential between a DNA bead and a crowding sphere is the 

median of the repulsion potential between two DNA beads and the repulsion potential 

between two crowding spheres, while the symmetry of the interactions is broken towards 

comparatively more repulsive (respectively, less repulsive) DNA/crowder interactions for 

0δ >  (respectively, 0δ < ). Increasing (respectively, decreasing) δ therefore leads to an 

increase (respectively, a decrease) of χ. In contrast, variations of δ do not affect the volume 

ratio of crowders, ρ, which was shown to govern the compaction of the DNA chain for 0δ =

.[48] According to solution theory, demixing occurs only for positive values of the interaction 

parameter χ.[36,50] If the description of the compaction of the DNA chain as a segregative 

phase separation is appropriate,[48] then the symmetric case 0δ =  corresponds to positive 

values of χ for crowder densities close to the jamming threshold. Moreover, solution theory 

predicts that the extent of demixing between two solutes evolves continuously with the value 

of χ.[36,50] Increased (respectively, decreased) compaction of the DNA chain is therefore 

expected for positive (respectively, negative) values of δ. 

 We accordingly performed simulations with different values of δ and ρ to check the 

appropriateness of the description of the compaction of the DNA chain in terms of segregative 

phase separation and DNA/crowders demixing. These simulations were run with the soft core 

model for the DNA chain ( 1.78a = nm, DNA 12.15e e= − , 0 0a = , and 1.8b∆ = nm) and with 

500N =  spherical crowders having the same radius b. Four different values of b were 

plugged in the simulations, namely 9.0b = , 10.0, 11.0, and 11.5 nm, which correspond to 

crowder volume ratios 0.36ρ = , 0.48, 0.61, and 0.68, respectively and for each value of b, 

simulations were run for values of δ ranging from -1.5 nm to 2.0 nm. The plots of 
gR  vs δ are 

shown in Fig. 3 for the four different values of b. It is seen in this figure that the level of 

compaction of the DNA chain indeed increases with δ, as expected for the segregative phase 

separation scenario. For 11.5b = nm, that is, very close to the jamming transition, the 

evolution of 
gR  vs δ is almost step-like, with 

gR  decreasing by about 50% (from ≈75 nm 

down to ≈40 nm) upon increase of δ from -0.5 nm to 0.5 nm. The evolution of 
gR  with δ is 

smoother further away from the jamming transition but remains significant even at rather 
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moderate crowder volume ratios. For example, it is seen in Fig. 3 that for 0.36ρ =  (about 

half the value of ρ at the jamming transition), a dissymmetry coefficient 1.0δ = nm leads to a 

radius of gyration of the DNA chain as small as 
g 55R ≈ nm, which is the value observed close 

to the jamming transition for the symmetric case 0δ = . For the sake of completeness, we 

recall here that results obtained for different crowder size b and crowder number N (

500 3000N≤ ≤ ) were shown to superpose when plotted as a function of volume fraction 

ρ.[48] Finite size effects related to the relatively modest number of crowders used in the 

simulations discussed above ( 500N = ) therefore probably do not affect significantly the 

results. 

 In conclusion, Fig. 3 supports the description of the compaction of the DNA chain as a 

segregative phase separation mechanism. For symmetric repulsive interactions ( 0δ = ), the 

demixing of DNA beads and crowding spheres is attributable to the connectivity of DNA 

beads, because no compaction is ever observed when the bonds between DNA beads are 

broken (result not shown). Fig. 3 however indicates that the level of DNA compaction is also 

very sensitive to the dissymmetry of repulsive interactions. In particular, strong compaction 

can be obtained far from the jamming threshold, provided that the symmetry of repulsive 

interactions is sufficiently displaced towards stronger DNA/crowder repulsion. 

 

3.2 Sensitivity of DNA compaction against the shape of crowders 

 

 As mentioned in the Introduction, the shape of anionic crowders affects profoundly 

their ability to compact the DNA macromolecule. Indeed, linear polymers condense DNA 

abruptly to a very compact globule above a certain concentration threshold,[30,31] while 

spherical nanoparticles[42] and globular proteins[39,40] provoke instead a gradual and softer 

compaction. In order to get some insight into the sensitivity of the compaction properties of 

anionic crowders against their shape, we performed several sets of simulations with non-

spherical crowders. More precisely, we considered dumbbells, which are composed of two 

spheres of radius b separated at equilibrium by a distance 
0

1,2R b= , and octahedral crowders, 

which are composed of six spheres of radius b separated at equilibrium by a distance 

0

, 2
J M

R b=  from their neighbors and 
0

, 2J MR b=  from opposite spheres. These simulations 

were run with the hard core model for the DNA chain ( 1.0a = nm, DNA 7.05e e= − , 0a a= , 
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and 1.3b∆ = nm) and with 500N =  crowders. Zooms on representative conformations of the 

systems are shown in Fig. 2. 

 Four different values of b were plugged in the simulations performed with dumbbells, 

namely 8.2b = , 9.1, 10.0, and 10.3 nm, which correspond to crowder volume ratios 0.40ρ =

, 0.53, 0.68, and 0.73, respectively (the volume of the intersection of the two spheres of 

effective radius b b+ ∆  is obviously counted only once in the calculation of ρ). For each value 

of b, simulations were run for values of δ ranging from 0 to 1 nm and the mean radius of 

gyration of the DNA chain was computed after equilibration of each system. The plots of 
gR  

vs δ are shown in Fig. 4 for the four different values of b. It is seen in this figure, that 

dumbbell crowders share two important properties with spherical crowders, namely that the 

level of compaction of the DNA chain increases with δ and the evolution of 
gR  vs δ is sharper 

closer to the jamming transition. There is, however, one important difference between Figs. 3 

and 4. Indeed, for values of b close to the jamming transition, the inflexion point of the 
gR  vs 

δ curves is located close to 0δ =  (symmetric repulsive potentials) for spherical crowders, 

while it is shifted to 0.35δ ≈  for dumbbells. This implies that the symmetry of repulsive 

interactions must be displaced towards stronger DNA/crowder repulsion for significant 

compaction of DNA to take place. We will come back to this point shortly. 

 Four different values of b were also plugged in the simulations performed with 

octahedral crowders, namely 5.0b = , 5.5, 6.2, and 6.7 nm, which correspond to volume ratios 

0.28ρ = , 0.36, 0.49, and 0.60, respectively, and for each value of b simulations were run for 

values of δ ranging from 0 to 2 nm. The corresponding plots of 
gR  vs δ are shown in Fig. 5. It 

is seen in this figure that the compaction of the DNA chain increases with δ and the evolution 

of 
g

R  vs δ is sharper closer to the jamming transition, as for spherical crowders and 

dumbbells. The inflexion point of the 
gR  vs δ curves is moreover also shifted towards 

positive values of δ, with the shift being significantly larger for octahedral crowders ( 1.25δ ≈

) than for dumbbells ( 0.30δ ≈ ). For the sake of an easier comparison, representative plots of 

gR  vs δ for spherical, dumbbell, and octahedral crowders are superposed in Fig. 6 for both 

heavy and light crowding conditions. The mere displacement of the curves towards larger 

values of δ when going from spherical to octahedral through dumbbell crowders is clearly 

seen in this figure. These simulations therefore raise the question, why compaction of the 

DNA chain by dumbbells and octahedral crowders requires the displacement of the symmetry 
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of repulsive interactions towards stronger repulsion between DNA beads and individual 

crowding spheres. 

 Most probably, the answer to this question has to be sought in the fact that not only the 

shape, but also the distribution of charges, is different for spherical, octahedral, and dumbbell 

crowders (remember that a charge C DNAe e=  is placed at the center of each crowding sphere). 

This hypothesis can be tested quite straightforwardly in the case of octahedral crowders, 

because the symmetry of an octahedron is not far from the symmetry of a sphere. Instead of 

comparing the repulsive potentials between DNA beads and individual crowding spheres, as 

in subsection 3.1 above and Fig. 3 of the previous work,[48] one can therefore consider the 

evolution, as a function of the distance r between their centers, of the repulsion energy 

between a DNA bead and a full octahedron, or between two full octahedra. For the sake of 

simplicity, the geometry of each octahedron is frozen to its equilibrium conformation and the 

repulsion energy is minimized with respect to all orientations of the octahedra at fixed r. The 

result for 6.7b = nm and 0δ =  is shown in Fig. 7, where the blue long-dashed curve 

represents the repulsion energy between two DNA beads, the green short-dashed curve the 

repulsion energy between a DNA bead and an octahedron, and the red solid curve the 

repulsion energy between two octahedra. When calculated as sketched above, the interaction 

energy between a DNA bead and an octahedron is actually close to the repulsive potential 

between a DNA bead and a single crowding sphere of radius 3 / 2b , as can be checked in Fig. 

7, where the green short-dashed curve almost superposes on a grey one, which represents the 

repulsion energy between a DNA bead of radius 1.0a = nm and a crowding sphere of radius 

9.75b = nm. Note that we did not seek for a formal derivation of this empirical result, which 

holds for all investigated values of b. Similarly, the repulsion energy between two octahedra 

composed of spheres of radius 6.7b = nm is very close to the repulsive potential between two 

crowding spheres of radius 10.75b = nm, as can be checked in Fig. 7, where this latter 

potential is represented by a grey solid curve, which nearly superposes on the red one. The 

curve representing the repulsion energy between a DNA bead and an octahedron is therefore 

clearly shifted towards lower values of r compared to the median of the curves representing 

the repulsion energy between two DNA beads and the repulsion energy between two 

octahedra. Stated in other words, the potentials that describe the interactions between DNA 

beads and full octahedra are not symmetric for 0δ = , that is for symmetric interactions 

between DNA beads and individual crowding spheres. A given amount of dissymmetry must 

instead be introduced in the interactions between DNA beads and individual crowding spheres 
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( 0δ > ) to restore the symmetry of the potentials involving DNA beads and full octahedra. 

For 6.7b = nm, the corresponding value of the dissymmetry coefficient is 

10.75 9.75 1.0δ = − = nm, which is indeed of the correct order of magnitude compared to the 

location of the inflexion points in Fig. 5 ( 1.25δ ≈ ). 

 Similarly, when plotted as a function of the distance between their centers of mass, the 

interaction energy (computed as described above) between a DNA bead and a dumbbell 

composed of two spheres of radius 10.0b = nm is very close to the repulsive potential 

between a DNA bead and a single crowding sphere of radius 9.5b = nm, while the interaction 

energy between two dumbbells is very close to the repulsive potential between two crowding 

spheres of radius 10.0b = nm. For dumbbells composed of two spheres of radius 10.0b = nm, 

the value of the dissymmetry coefficient, which is required to get symmetric interactions 

between DNA beads and dumbbell crowders, is therefore 10.0 9.5 0.5δ = − = nm. This is 

again of the correct order of magnitude compared to the location of the inflexion points in Fig. 

4 ( 0.30δ ≈ ). 

 In conclusion, simulations performed with globular but non-spherical crowders 

(dumbbells and octahedra) provide evidence that the compaction of the DNA chain by these 

crowders is also driven by the symmetry/dissymmetry of the potentials describing the 

repulsive interactions between DNA beads and the crowders. These simulations consequently 

also support the description of the compaction of the DNA chain as a segregative phase 

separation and suggest that the compaction mechanism is not too sensitive to the precise 

shape of the crowders. 

 

3.3 Influence of crowders’ size dispersion on DNA/crowders demixing 

 

 As mentioned in the Introduction, it was shown previously that the DNA and the 

largest crowders demix preferentially when the DNA chain interacts with crowders of 

different size[48], thus raising the question whether this may explain the experimental 

observation that functional 70S ribosomes are excluded from the nucleoid, while 30S and 50S 

free subunits are able to diffuse inside the DNA coil.[43] (note that the influence of crowders’ 

size dispersion was not investigated for the “protein folding limit” of Refs. [45,46], while the 

“bacterial chromosome limit” displays only limited sensitivity against size dispersion[44]). 

Several sets of simulations were launched to answer this question, which all involved the soft 
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core model for the DNA chain ( 1.78a = nm, DNA 12.15e e= − , 0 0a = , and 1.8b∆ = nm), 

spherical crowders, and symmetric repulsive interactions ( 0δ = ). 

 In the first set of simulations, the total number of crowders was set to 2000N =  and 

their volume occupancy ratio to 0.66ρ = , as if all crowders were of radius 6.5b = nm. This 

value of ρ is only slightly smaller than the jamming threshold for solid spheres and leads to 

strong compaction of the DNA chain.[48] Crowders were however divided into a first set of 

B 1000N =  big spheres of radius Bb  and a second set of S 1000N =  smaller spheres of radius 

Sb . Bb  was varied from 6.7 to 8.1 nm with increments of 0.2 nm and, for each value of Bb , 

the value of Sb  was adjusted according to eqn (9) to match the volume ratio 0.66ρ = . At time 

0t = , the crowders were placed at random non-overlapping positions inside the confining 

sphere containing the relaxed DNA chain, so that all species (DNA beads, big and small 

crowding spheres) initially had rather similar and nearly uniform density distributions ( )Xp r  

(defined so that the mean number of particles of species X with center located in the distance 

interval [ ],r r dr+  from the center of the confining sphere is 
2

4 ( )X Xn p r r drπ , where Xn n= , 

BN , or SN , denotes the total number of particles of type X). Upon relaxation of the full 

system, the DNA chain compacts progressively in the central region of the confining sphere, 

while a certain number of crowding spheres move simultaneously towards its periphery. This 

is illustrated in the inset of Fig. 8, which shows the resulting mean density distributions for 

the equilibrated system with B 7.1b = nm and S 5.77b = nm. In particular, it is seen in this plot 

that the density distribution of big crowding spheres is smaller than that of small spheres in 

the central region of the confining sphere, meaning that big crowders are expelled 

preferentially from the DNA coil during its compaction. This differential effect can be 

quantified by computing S/BQ , the enrichment inside the DNA coil of small crowding spheres 

relative to big ones 

S thresh B
S/B

B thresh S

( )

( )

N r r N
Q

N r r N

<=
<

 .         (11) 

In this expression, B thresh( )N r r<  and S thresh( )N r r<  denote the number of big and small 

crowding spheres with center located at a distance smaller than threshr  from the center of the 

confining sphere. In the following, we will use thresh 0 / 2 60r R= = nm, which is indicated as a 

dot-dashed vertical line in the insert of Fig. 8. The evolution of S/BQ  as afunction of B S/b b  is 

shown in the main plot of Fig. 8. It is seen in this plot that the enrichment inside the DNA coil 



18 

of small crowding spheres relative to big ones increases almost linearly with B S/b b  over a 

relatively narrow range, before saturating for values of B S/b b  close to 2 and decreasing 

slowly above this value. The increase of S/BQ  for values of B S/b b  slightly larger than 1 is a 

clear indication that the interaction parameter χ of DNA and the crowders increases with the 

size of the crowders, so that bigger crowders demix preferentially from the DNA coil. The 

saturation around S/B 2Q ≈  for B S/ 2b b ≥  may in turn be interpreted as a kinetic effect. Indeed, 

because of their size, big crowders are much less mobile than smaller ones in systems close to 

the jamming threshold. If the difference in radii is sufficiently large, smaller crowders 

consequently move outside from the compacting DNA coil faster than big ones, even if their 

interaction coefficient is smaller, and a certain number of big crowders remain eventually 

trapped inside the DNA coil before the system is able to equilibrate thermodynamically. 

 In the second set of simulations, the radii of big and small crowding spheres were set 

to B 10.0b = nm and S 5.0b = nm, respectively, and the number of big crowding spheres to 

B 400N = , while the number of small crowding spheres, SN , was varied from 1300 to 2100. 

The evolution, as a function of SN , of the mean radius of gyration of the DNA chain, 
gR , and 

the enrichment inside the DNA coil of small crowders relative to big ones, S/BQ , is displayed 

in Fig. 9. As in Figs. 3, 4 and 5, 
gR  drops again sharply close to the jamming threshold. Quite 

interestingly, the drop of 
gR  is here accompanied by a similar drop of S/BQ . At moderate 

DNA compaction ( S 1500N = , 0.65ρ = , and 
g 64R ≈ nm), the enrichment inside the DNA 

coil of small crowders relative to big ones is indeed close to 10, meaning that big crowders 

are almost completely excluded from the DNA coil. However, at stronger DNA compaction (

S 2000N = , 0.74ρ = , and 
g 52R ≈ nm), S/BQ  drops down to almost 1, which indicates very 

little enrichment. This second set of simulations therefore confirms that when crowders of 

different size are present in the confining sphere, the final density distribution of each species 

results from a competition between thermodynamic forces, which tend to let bigger crowders 

escape the compacting DNA coil preferentially, and steric hindrance, which slows down the 

motion of big crowders relative to smaller ones. Very close to the jamming threshold, the 

motion of all crowders, whether big or small, is strongly hindered, so that it is essentially the 

thin DNA chain that moves in a quasi-static network of crowders to achieve compaction, thus 

explaining why very little enrichment is observed in this limit. 
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 Finally, we performed a third set of simulations, which may reflect more accurately 

the actual content of the cytoplasm of bacteria than the first two sets. Three different crowder 

species were taken into account in these latter simulations, namely B 320N =  big crowders of 

radius B 10.0b = nm, which represent functional ribosomes, M 160N =  medium-sized crowders 

of radius M 7.94b = nm, which represent free ribosomal subunits, and a variable number 

S1250 2050N≤ ≤  of small crowders of radius S 5.0b = nm, which represent the other 

macromolecules present in the cytosol. A typical initial conformation of the system with 

S 1350N =  small crowders is shown in vignette (b) of Fig. 1 and representative conformations 

of the DNA chain after relaxation of the full system in vignettes (c) ( S 1350N = ) and (d) (

S 1850N = ) of the same figure. Also shown in Fig. 10 are the evolution, as a function of SN , 

of the mean radius of gyration of the DNA chain, 
gR , the enrichment inside the DNA coil of 

small crowders relative to big and medium-sized ones,  

S thresh M B
S/(M+B)

M thresh B thresh S

( )

( ) ( )

N r r N N
Q

N r r N r r N

< +=
< + <

 ,      (12) 

and the enrichment of medium crowders relative to big ones, 

M thresh B
M/B

B thresh M

( )

( )

N r r N
Q

N r r N

<=
<

 .         (13) 

It is seen in this figure that the evolution of S/(M+B)Q  is similar to the evolution of S/BQ  in the 

previous set of simulations, in the sense that the drop of S/(M+B)Q  close to the jamming 

threshold parallels the drop of 
gR . The evolution of M/BQ is instead somewhat different, 

although M/BQ  is also very large (of the order of 10) at moderate DNA compaction (

S 1250N = , 0.62ρ = , and 
g 66R ≈ nm), meaning that big crowders are almost completely and 

quite selectively excluded from the DNA coil under these conditions. However, M/BQ  drops 

sharply down to about 1, and size selectivity among big and medium-sized crowders is lost, at 

substantially lower values of SN  compared to S/(M+B)Q  ( S 1550N ≈ , 0.67ρ = , and 
g 62R ≈

nm, against S 2050N ≈ , 0.76ρ = , and 
g 52R ≈ nm). This indicates that, in the presence of a 

large number of small crowders, the density distributions of the remaining crowders inside the 

compacted DNA coil decrease with their relative sizes only at rather moderate total crowder 

concentrations, where all crowders are able to diffuse almost freely. However, as soon as 
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steric hindrance comes into play, kinetic and caging effects oppose thermodynamic forces and 

eventually overwhelm them. 

 In conclusion, simulations performed with spherical crowders of different radii show 

that the biggest crowders are expelled selectively from the DNA coil only at relatively low 

total crowder concentrations, that is, for conditions that favor only moderate DNA 

compaction. In contrast, the size of the nucleoid of living bacteria agrees with the strong 

compaction of the DNA chain predicted by the model at large crowder concentrations, close 

to the jamming threshold. The hypothesis that the bacterial cytoplasm is close to the jamming 

threshold is further supported by the recent observation that the motion of macromolecules is 

much slower in the bacterial cytoplasm than in water and in eukaryotic cells[69] and exhibits 

non-Gaussian sub-diffusive behavior[70], as well as the observation that the cytoplasm itself 

displays properties that are characteristic of glass-forming liquids.[71] On the basis of the 

simulations, and owing to the probable proximity to the jamming threshold, one consequently 

expects that the expulsion of large crowders from the nucleoid is only mildly sensitive to their 

size. This suggests in turn that size effects cannot be responsible for the fact that functional 

70S ribosomes are expelled from the nucleoid, while 30S and 50S free subunits diffuse inside 

the DNA coil.[43]. Moreover, simulations show that it is essentially the volume occupancy 

ratio of crowders that matters for the purpose of DNA compaction, not their exact size, so that 

similar compaction ratios are expected when ribosomes are in their 70S functional form or 

separated into free 30S and 50S subunits. This implies that, in the absence of full ribosomes, 

free ribosomal subunits should be expelled from the nucleoid while compacting the DNA coil. 

This prediction is, however, in contradiction with recent experiments involving cells treated 

with rifampicin (an antibiotic that causes all ribosomes to convert to free 30S and 50S 

subunits), which showed fully decondensed nucleoids extending throughout the cell.[9-

11,14,16-18] One is thus led to the conclusion that the interaction parameter χ of DNA and 

free subunits is probably either zero or negative, meaning that free subunits tend to associate 

with DNA rather than segregate, while that of DNA and functional ribosomes is positive, 

meaning that DNA and full ribosomes tend to segregate. This can happen, for example, if the 

faces of the two subunits, which bind together to form a functional ribosome, are also able to 

bind DNA duplexes weakly and unspecifically, while the rest of their surfaces is not. 

 

4. Conclusions 
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 The work reported in this paper elaborates on the conjecture that the formation of the 

bacterial nucleoid may result from a segregative phase separation mechanism driven by the 

demixing of the DNA coil and non-binding globular macromolecules present in the 

cytoplasm, presumably functional ribosomes. Liquid-liquid phase separation is being 

increasingly recognized as one of the important organizers of the cytoplasm,[72-74] but most 

examples up to date, like the formation of the nucleolus, the centrosomes, and stress granules, 

actually involve associative phase separation (complex coacervation), where different 

components selectively attract each other and form regions enriched in these components 

(droplets) surrounded by the remaining species-poor cytoplasm. For the bacterial nucleoid, we 

argue here that it is instead the overall repulsion between the components, which creates a 

phase rich in DNA and poor in the other macromolecule (the nucleoid) and a second phase 

almost deprived of DNA but with large concentrations of the other macromolecule (the rest of 

the cytosol). Note that associative and segregative phase separations share the common 

property that the resulting phases are able to exchange many molecular species very rapidly, 

in sharp contrast with membrane bound organelles. 

 Let us first mention that the results discussed here are in better agreement with the 

“protein folding limit” than the “bacterial chromosome limit” of a model proposed 

previously.[44-47] The reason is that the “protein folding limit” of Refs. [45,46] was defined 

as the case where crowders are larger than the hard spheres composing the polymer chain, 

which is also the case for the model proposed in this work, while the “bacterial chromosome 

limit” corresponds to the opposite case where crowders are smaller than the hard spheres 

composing the polymer chain. The term “bacterial chromosome limit” was introduced in Refs 

[44-47] because it was considered that each hard sphere of the polymer chain represents a 

blob of radius larger than 50 nm consisting of supercoiled DNA strands and DNA-bound 

proteins, while most other macromolecular complexes have a smaller size. The implicit 

assumption underlying the “bacterial chromosome limit” of the model of Refs. [44-47] is 

consequently that blobs of radius 50 nm (or more) are mostly incompressible. It turns out that 

the finer-grained model proposed here suggests that this is not the case and that DNA blobs 

with a typical size of a few tens of nm can actually be compacted to an important extent. If 

this is correct, then the “bacterial chromosome limit” of the model of Refs. [44-47] is just too 

coarse-grained to describe adequately the bacterial chromosome, while the “protein folding 

limit” is a more reasonable approximation, provided that one considers, as is done in the 

present work, that each sphere of the polymer represents a short track of the DNA duplex 
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(note that it is then important to take the bending rigidity of the DNA molecule into account, 

as in the present model). 

 The simulations discussed in the main body of this paper display a high sensitivity 

against the dissymmetry of DNA/DNA, DNA/crowder, and crowder/crowder repulsive 

interactions, thereby supporting the description of the compaction of the DNA chain as a 

phase separation mechanism, especially as simulations performed with dumbbells and 

octahedra back up the results obtained with spherical crowders. However, these findings also 

imply that a definitive confirmation of the segregative phase separation scenario of bacterial 

nucleoid formation will probably have to await a thorough examination of the interactions 

between actual macromolecules in vivo, which probably represents a rather difficult challenge 

in the highly charged electrolyte formed by the cytosol. In contrast, the prediction of larger 

compaction and higher sensitivity against external factors closer to the jamming threshold is 

perhaps easier to bring out experimentally. 

 Moreover, simulations performed with crowders of different sizes suggest that the 

final density distribution of each species results from the competition between thermodynamic 

forces, which tend to let bigger crowders escape the compacting DNA coil preferentially, and 

steric hindrance, which slows down the motion of big crowders relative to smaller ones. As a 

consequence, the model predicts that bigger crowders are expelled selectively from the 

nucleoid only at rather moderate total crowder concentrations. This prediction may perhaps 

not be too difficult to check experimentally, for example by performing in vitro experiments 

with anionic nanoparticles of different sizes. Simulations furthermore suggest that the 

interaction parameter χ of DNA and free ribosomal subunits is either zero or negative, while 

that of DNA and functional ribosomes is positive, a point which may eventually receive 

independent confirmation. 

 Last but not least, let us mention that it is quite possible that several mechanisms 

actually work together to compact the bacterial nucleoid and that the segregative phase 

separation scenario discussed here represents only the first level of compaction, which affects 

uniformly the whole genome, and on top of which more specialized mechanisms eventually 

work. In particular, it is believed that the nucleoid of E. coli cells is divided into four different 

regions, called macro-domains, with the property that contacts between DNA sites belonging 

to the same domain are much more frequent than between DNA sites belonging to different 

domains.[75-78] A certain number of nucleoid proteins are responsible for the organization of 

each of these domains and modulate their physical properties quite sensitively.[79-81] For 

example, the MatP protein is responsible for the organization of the Ter domain, which 
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contains the replication terminus.[79,80] In the absence of MatP, the DNA in the Ter domain 

is less compacted, has larger mobility, and segregates earlier in the cell cycle.[79,80] Such 

considerations suggest a multilayered formation of the nucleoid, with segregative phase 

separation inducing a general but partial compaction of the DNA coil and more specific 

mechanisms being responsible for the finer organization and additional compaction. 
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FIGURE CAPTIONS 

 

Figure 1 : Representative snapshots of simulations performed with spherical crowders. (a) 

Equilibrated conformation of the DNA chain (red beads) inside the confining sphere before 

introduction of the crowders. Only a quarter of the confining sphere is shown, as in vignettes 

(c) and (d). (b) Initial conformation of the system after introduction of 320 crowders with 

radius 10.0 nm (green spheres), 160 crowders with radius 7.94 nm (yellow spheres), and 1350 

crowders with radius 5.0 nm (cyan spheres), at random non-overlapping positions inside the 

confining sphere containing the equilibrated DNA chain. The confining sphere is not shown. 

(c) Conformation of the DNA chain after equilibration of the system shown in vignette (b). 

Crowders are not shown. (d) Conformation of the DNA chain after equilibration of a system 

similar to that shown in vignette (b), except that the number of crowders with radius 5.0 nm is 

1850 instead of 1350. Crowders are not shown. 

 

Figure 2 : Zooms on representative snapshots of simulations performed with 500N =  

dumbbells (a) and 500N =  octahedral crowders (b). Each vignette shows a 100 nm × 100 nm 

section. Dumbbells are composed of two spheres of radius 10b =  nm and octahedral 

crowders of 6 spheres of radius 5.5b =  nm. The small red beads represent the DNA chain. 

The crowders are colored randomly for the sake of clarity. 

 

Figure 3 : Plot of 
gR , the mean radius of gyration of the DNA chain, as a function of δ, the 

dissymmetry of the repulsive electrostatic potential (eqn (5)), for different values of b, the 

radius of spherical crowders. Simulations were run with the soft core model for the DNA 

chain and 500N =  spherical crowders having the same radius b. 
gR  was computed after 

equilibration of the full system. 

 

Figure 4 : Plot of 
gR , the mean radius of gyration of the DNA chain, as a function of δ, the 

dissymmetry of the repulsive electrostatic potential (eqn (5)), for different values of b, the 

radius of crowding spheres. Simulations were run with the hard core model for the DNA 

chain and 500N =  dumbbells, each dumbbell being composed of two spheres of radius b. 
gR  

was computed after equilibration of the full system. 
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Figure 5 : Plot of 
gR , the mean radius of gyration of the DNA chain, as a function of δ, the 

dissymmetry of the repulsive electrostatic potential (eqn (5)), for different values of b, the 

radius of crowding spheres. Simulations were run with the hard core model for the DNA 

chain and 500N =  octahedral crowders, each octahedron being composed of six spheres of 

radius b. 
gR  was computed after equilibration of the full system. 

 

Figure 6 : Plot of 
gR , the mean radius of gyration of the DNA chain, as a function of δ, the 

dissymmetry of the repulsive electrostatic potential (eqn (5)), for spherical (disks), dumbbell 

(squares), and octahedral (triangles) crowders at heavy (filled symbols) and light (empty 

symbols) crowding conditions. These plots are taken from Figs. 3, 4, and 5, and are 

superposed here for the sake of an easier comparison. The crowder volume occupancy ratio ρ 

for each curve is indicated in the legend. 

 

Figure 7 : Plot, as a function of the distance r between their centers, of the repulsion energy 

between two DNA beads (blue long-dashed curve), a DNA bead and an octahedron (green 

short-dashed curve), and two octahedra (red solid curve), for C DNAe e= , 6.7b = nm, and 

0δ = . The geometry of octahedra is frozen at the equilibrium conformation and energy is 

minimized over all orientations of the octahedra, as described in section 3.2. The grey short-

dashed curve, which nearly superposes on the green short-dashed one, describes the 

interaction energy between a DNA bead and a single crowding sphere of radius 9.75b = nm. 

The grey solid curve, which nearly superposes on the red solid one, describes the interaction 

energy between two crowding spheres of radius 10.75b = nm. The horizontal dot-dashed line 

denotes thermal energy. 

 

Figure 8 : (Inset) Plot of ( )Xp r , the mean density distributions of DNA beads and crowding 

spheres, for the equilibrated system composed of the DNA chain, 1000 big crowding spheres 

of radius B 7.10b = nm, and 1000 smaller crowding spheres of radius S 5.77b = nm. The 

vertical dot-dashed line is located at 60r = nm. (Main plot) Plot of S/BQ , the enrichment of 

small crowding spheres relative to big ones in the central part of the confining sphere ( 60r ≤

nm), as a function of B S/b b , the ratio of the radii of big and small crowding spheres. Besides 
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The system is composed of the DNA chain, 1000 big crowding spheres of radius Bb  and 1000 

smaller crowding spheres of radius Sb . 

 

Figure 9 : Plot, as a function of SN , the number of small crowding spheres, of 
gR , the mean 

radius of gyration of the DNA chain (red disks, left axis), and S/BQ , the enrichment of small 

crowding spheres relative to big ones in the central part of the confining sphere (blue 

lozenges, right axis), for the equilibrated system composed of the DNA chain, SN  small 

crowding spheres of radius S 5.0b = nm, and B 400N =  bigger crowding spheres of radius 

B 10.0b = nm. 

 

Figure 10 : Plot, as a function of SN , the number of small crowding spheres, of 
gR , the mean 

radius of gyration of the DNA chain (red disks, left axis), S/(B+M)Q , the enrichment of small 

crowding spheres relative to big and medium-sized ones in the central part of the confining 

sphere (blue filled lozenges, right axis), and M/BQ , the enrichment of medium-sized crowding 

spheres relative to big ones in the central part of the confining sphere (blue empty lozenges, 

right axis), for the equilibrated system composed of the DNA chain, SN  small crowding 

spheres of radius S 5.0b = nm, M 160N =  medium-sized crowding spheres of radius M 7.94b =

nm, and B 320N =  big crowding spheres of radius B 10.0b = nm. 
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