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Abstract— As a field of research arc fault detection in domestic 

appliances has existed for a long time and many detection 

algorithms have been published, patterned or implemented on 

commercial products. None of them, however, guarantees perfect 

discrimination and all are susceptible to false negatives or false 

positives (i.e. indicating the absence of arcing fault, when in 

reality it is present, or recognizing normal functioning as an 

arcing condition). This phenomenon can be explained by the fact 

that all methods have been based on some features of arc fault 

which can be shared with load and network conditions such as 

noisy loads, the plugging-in or unplugging of appliances, the 

change of functioning mode of an appliance on a network and so 

on. A solution for limiting this phenomenon is multi arc-fault 

feature recognition. This research presents a method for finding 

and combining arc fault features in order to obtain better 

performance than using a single arc fault feature. The choice of 

arc-fault features and the algorithm for combining them are 

based on machine learning techniques. The method proposed 

here can be used for different network conditions and loads. The 

effectiveness of this method has been verified by a number of 

experimental tests including not only the requirements of 

standard arc fault detection, but also the most difficult situations 

such as multiple loads masking and transient loads.    

 
Index Terms— Arc fault detection device; feature selection; 

series arc fault; multi features arc fault detection; machine 

learning 

I. INTRODUCTION 

A RC fault is a harmful condition which may lead to 

electrical fires. Arc Fault Circuit Interrupters (AFCI) have 

been introduced in the USA and the National Electrical Code 

requires their installation in all living areas. A standard IEC 

already exists in Europe for arc fault detection devices. Line to 

ground and line to line arc faults can be easily detected due to 

their effect on current level [1]. However, it is more 

complicated to detect series arc fault and this is an active area 

of research. No solution has been found so far which 

guarantees the detection of all arc faults without ever 

producing undesirable tripping. 

 
Figure.1 Arc fault detection algorithm. 

 

In general an arc fault detection algorithm (figure 1) can 

be divided to three main parts: Measurement - feature 

extraction (1), classification between normal and abnormal 

situation (2) and decision (3). The purpose of feature 

extraction part is: inferring arc fault feature (AFF) from 

acquired signals. To achieve a good performance at detection, 

appropriate AFFs are mandatory. 

 
Figure.2 Arc fault features extraction. 

Some detection algorithms have a direct feature extraction 

part such as fractal, current integral and current variation [2] 

[3] [4], thus AFF can be inferred without any additional steps. 

For the others, the feature extraction part can be divided into 

two sub-parts - transformation and descriptors (Figure 2). A 

number of transformations have been used on arc fault 

detection fields, including Fourier transform [5] [6], Wavelet 

transform [5] [7] [8], filtering [6] and correlation [9]. A variety 

of descriptors have also been mentioned with either frequency 

or temporal analysis [5] [10] [11] [12] [13].  These include a 

variation of sub-spectrum energy between two adjacent power 

cycles as a descriptor for discrete Fourier transform (DFT) [5], 

harmonic ratio - DFT [10], mean value of the differences [11] 

on low-frequency spectra of the current measured in two 

subsequent observations with chirp zeta transform [12] as well 

as eigenvalue – Kalman filtering [13]. 
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The classification part can be simple, with a fixed 

threshold for AFF [14], or more complicated with an artificial 

neural network (ANN) [5] [15] [16] and a support vector 

machine (SVM) [2] [17]Counting techniques or fuzzy logic are 

used as a decision strategy [12] [18] [19].     

The main difficulty of series arc fault detection lies in 

discriminating between arcing and normal situations. In 

general, in order to detect a dangerous arcing condition one or 

more AFFs can be used [4] [11]. Some of the most commonly 

used AFFs include current zero crossing, broadband noise and 

randomness of current variation [9] [20] [21]. However, these 

features can also be found in normal functioning networks. A 

vacuum cleaner, for example, may produce a number of arc 

features at zero crossing. The randomness of current variation 

can also be mimicked by changing the functioning mode of an 

appliance, e.g. by switching the power supply to an appliance 

on and off within a short space of time. Broadband noise may 

also be generated by electromagnetic interference or noisy 

loads. 

As a result of this problem, every detection algorithm 

proposes a threshold for discriminating between dangerous 

arcing and normal situations, thus maintaining a compromise 

between an unwanted trip (a false negative) and failure to 

detect an arc fault (a false positive). Each of these situations 

has a cost associated with it.  An unwanted trip may lead to a 

loss in work time or an interrupted service whilst failure to 

detect an arc fault is more problematic and may lead to a loss 

of equipment and even possibly life. It is therefore essential 

that these errors should be minimized are minimized as far as 

possible. It can be seen that one AFF may give better detection 

performance than another AFF in a number of situations and 

vice versa for the rest [22]. 
TABLE I 

REPRESENTATIVE METHODS AND CORRESPONDING ACCURACIES 

Method 

Feature type Lowest 

prediction 

accuracy  

Problematic

al loads  

 

Direct 

feature 

Transform 

 

 

Sparse 

representation 

and neural 

network [16] 

250 sparse 

coefficient from 

every  current half 

cycles  

- 88%  Computer 

Chirp Zeta 

Transform 

and current 

difference 

[12] 

The mean value of 

the difference 

between two 

subsequent 

observation 

windows 

CZT 

transform with 

low frequency    

96.7%  Electrical 

drill 

     

Fractal theory 

and SVM [2] 

Box-Counting 

Dimension and 

Information 

dimension 

- 98%  Micro oven 

and 

induction 

cooker 

Autoregressiv

e Bispectrum 

Analysis [17] 

- Two-

dimensional 

Fourier 

transform of  

third-order 

cumulants 

 

97% Vacuum 

cleaner 

High-

frequency 

energy and 

current 

variation [3] 

Current integral of 

one period 

Short-time 

Fourier 

transform  

96% Electrical 

drill 

 

 

Table I presents several detection methods with different 

features and prediction accuracies and the most problematic 

type of load for each method. In the case of a simple load, such 

as resistive or inductive, the prediction accuracy of some 

methods can reach 100%. Even with nonlinear loads 

(computers, electric drills etc.) some algorithms still stay very 

close to 100% when the detection task becomes more 

complicated. Each method struggles only with one or several 

types of load and therefore a multi-criteria approach may lead 

to a state-of-the-art result, if all available methods can be 

correctly combined.  

The idea of using more than one several AFF to increase 

detection performance has been mentioned in some 

publications and patents, such as verifying the presence of 

different AFFs [11], or using time characteristics together with 

the analysis of frequency [3]. However, some very important 

elements for multi AFF detection are still missing.  Amongst 

these are the choice of AFFs which should be used together 

and the combination algorithm used to make an efficient 

detection algorithm from chosen AFFs. This paper presents a 

methodology for achieving multi-feature arc fault detection 

and the aim of our research is to take advantage of the 

numerous arc fault features and to create the most efficient 

detection algorithm from them.  

In this paper we propose a method that involves two 

successive stages of selection and combination which  

The proposed method involves two successive stages of 

selection and combination which are briefly described in 

Section II. Section III presents the first step for selecting the 

best set of descriptors for a given transformation and expected 

performance. Section IV presents the second step, which aims 

to select the features and the best combinations between them. 

The experimental results based on transforms and descriptors 

found in the literature are presented in section V .and 

demonstrate that superior performances can be obtained using 

the proposed method. 

II. GENERAL DESCRIPTION 

The proposed method consists of two main steps: building a 

pool of arc fault features, selecting the relevant features then 

using them together in an efficient way (Figure 3). 
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Figure.3 Multi AFFs detection methodology 

A. Arc fault feature pool construction   

1. Transform and descriptor selection 

For AFFs which have separate transforms and descriptors, 

the wrapper selection method was applied in order to 

guarantee the best set of descriptors for a given transformation. 

Selection was based on a classification algorithm, which may 

be any machine learning technique such as an artificial neural 

network, a support vector machine etc. Prediction mean 

squared error was used as the criterion for evaluating the 

chosen classification method. This is the most commonly used 

cost function for evaluating classification machine learning 

based techniques [23].  

2. Direct feature extraction 

Some AFFs can be obtained by the direct feature extraction 

method [2] [3]. The only information required before adding 

them into the AFF pool is their respective accuracy in the 

detection task.  Each AFF should be evaluated using the 

chosen classification algorithm at the descriptor selection stage 

in order to determine the information required.    

B.  Arc fault feature combination 

The second step consists in ranking all AFFs, removing the 

irrelevant ones and keeping only those performing well. The 

combined arc fault feature (CAFF) is then made by combining 

the best AFF with the other AFFs which have passed the 

ranking stage. Euclidean distance on feature space has been 

used as the criterion for selecting which AFF should be 

combined with the best performing AFF. To be more precise, 

the ratios of the distance between the false positive (FP) and 

the false negative (FN) elements and the correct classified 

elements of the best performing AFF after concatenation were 

evaluated. The CAFF was considered the best if it had the 

highest ratio of distance. At the end, the CAFF was used as 

input for arc fault recognition. 

III. WRAPPER DESCRIPTOR SELECTION 

This section explains the necessity for descriptor selection 

for each transform and the development approach with the 

wrapper method.  

A. Transform and optimal descriptor sets 

Many possible descriptors can be used for a given 

transform.  All feature extraction methods employ one or 

several descriptors. For example Artale et al used chirp zeta as 

transform (CZT) and the mean value of the differences 

between the two low-frequency spectra of the current 

measured in two subsequent observation windows and the 

differences between the maximum values of spectra in 

specified frequency intervals [12]. Hadziefendic et al presented 

an algorithm which used Fourier transform (FT) and the fifth 

current harmonic [10]. These descriptors are interchangeable 

between different transforms. The fifth current harmonic may 

also be worth using with CZT and the other descriptors with 

FT.     

      Descriptors are often chosen based on the observation of 

experimental data. A review of the literature shows that 

descriptor sets are frequently chosen with the help of a 

relatively small (generally less than 10) number of appliances 

[2] [9] [12] [14] [22]. Consequently, the performance of a 

descriptor set can only be justified by the relevant 

experimental test.  

Further, an arc fault detection method should be able to 

work on a number of different installations. The step for 

determining the optimal set of descriptors is very important for 

obtaining the desired AFF. It should be noted that the optimal 

descriptor set will be strictly related to the transform. 

If only a few descriptors from all the available descriptors 

are used, a large amount of information provided by the 

transform will be wasted. Conversely, using a large number of 

descriptors also has disadvantages, requiring sophisticated 

detection rules which are hard to achieve with the classical 

heuristic method of observation and multi-thresholds. 

Detection rules based on machine learning can simplify the 

task. However, too many descriptors may induce a loss of 

generalization and an over fitting problem due to noise and 

redundancy [24]. Therefore only an optimal number of 

descriptors should be used.  

B. Wrapper descriptor selection 

 Technically, both heuristic and machine learning based 

rules may help to establish the optimal descriptor set. The 

classic observation and thresholds technique can perform well 

if all possible situations are taken into account. However, in 

domestic electrical networks, there are a large number of 

frequently used appliances and network conditions and it is 

unrealistic to perform a sufficient number of tests to cover all 

cases. Thus, the generalization property of a descriptor must be 

given priority. For this reason, the machine learning technique 

was chosen instead of hand-crafted heuristic rules. The feature 

selection approach on machine learning was used to determine 

the best set of descriptors for each transformation.  

Machine learning based selection method can be divided 

into three categories: supervised, unsupervised and semi-

unsupervised. Supervised selection can be categorized as the 

filter method, wrapper method and embedded method. The 
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filter method separates descriptor selection from the 

classification algorithm and relies on the measurement of 

general characteristics from data, namely distance, 

dependence, mutual information and correlation. The wrapper 

method uses the predictive accuracy of a given classification 

algorithm to determine the quality of the selected subset. The 

embedded method is a hybrid of the wrapper and filter 

methods and uses both statistical analysis and model fitting 

with a classification algorithm [23] [24]. In this case, wrapper 

selection is the most appropriate method as it measures the 

usefulness of descriptors rather than the relevance of their 

correlation with training data such as principal component 

analysis and the filter method. This property of the wrapper 

method is very important because a descriptor which is 

inefficient by itself can provide a significant improvement in 

performance when taken with others descriptors [24] [25] . 

Computation costs and the risk of over fitting can be ignored 

since the number of descriptors considered for each transform 

is less than twenty for arc fault application. 

 

 
Figure.4 Wrapper descriptor selection 

Figure 4 presents the wrapper descriptor selection 

principle which works by generating candidate subsets from all 

available descriptors and then evaluating each subset with a 

classification algorithm. Several strategies for generating 

subsets can be listed, each with their own advantages and 

disadvantages, including exhaustive search (brute force [26], 

branch and bound [27]), heuristic (hill climbing, best first 

search) and meta-heuristic (genetic algorithm and particle 

swarm) [28] [29]. Compared to the other methods, the 

exhaustive search method guarantees that the best subset of 

features will be found. The drawback of exhaustive search, 

however, is computation cost, which may increase 

exponentially with the number of descriptors. This method 

therefore becomes impractical as the number of descriptors 

increases. In arc fault application this same drawback can be 

ignored and in our work exhaustive search has been retained.    

Each generated subset was evaluated with the same 

classification algorithm. The best subset can be obtained when 

every generated subset has been examined. 

C. Development approach 

The method proposed requires a database of electrical 

signals collected from experimental domestic networks.  This 

database is divided into two datasets - training and test. Ideally 

the training dataset contains a fixed number of appliances and 

network situations and the test dataset contains more situations 

and appliances than the training dataset. 

 Every feature extraction method which is composed of 

transform and descriptor steps is evaluated. For each transform 

all possible descriptors are used to create the set of all 

descriptors. Figure 5 illustrates the selection method.  

 

 
 

Figure.5 Wrapper method for descriptor selection  

The training dataset contains a very large number of labeled 

samples 𝑆𝑖, each sample containing a discrete time sequence 
{𝑥} of current or voltage measured, and the associated 

label 𝐿𝑆𝑖: 

{
𝐿𝑆𝑖 = 1  𝑖𝑛 𝑐𝑎𝑠𝑒 𝑜𝑓 𝑎𝑟𝑐 𝑓𝑎𝑢𝑙𝑡

𝐿𝑆𝑖 = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

n transformation methods will be considered: 

  𝑇𝐹1, 𝑇𝐹2 , … 𝑇𝐹𝑛  
The result obtained after a transformation can be noted as: 

{𝑦 }   𝑤𝑖𝑡ℎ {𝑥}  
𝑇𝐹
→  {𝑦 } 

For a transform under evaluation k descriptor D can be used, 

for example: 

  𝐷1 , …𝐷𝑘 ∶ {𝑦}  
𝐷1 ,…𝐷𝑘
→      {𝑧𝑘} ∶=  𝑧1, 𝑧2, … 𝑧𝑘    

For a given subset {𝑧𝑖}, {𝑧𝑖} ⊆ {𝑧𝑘} a classification 

algorithm can be deployed on the training data to discriminate 

between arc and no arc samples. Mean square error (MSE) is 

the objective function used for evaluating trained classifier on 

test data.  

𝑀𝑆𝐸({𝑧𝑖}) =
1

𝑁𝑇
∑ (𝐿𝑚 − 𝐿𝑃𝑚)

2

𝑁𝑇

𝑚=1 

 

NT is number of samples on the test dataset. 

𝐿𝑃𝑚 is the prediction of label given by the trained 

classifier of a sample m . 

{𝑧𝑖} is the chosen subset  . 

 The subset{𝑧𝑜𝑝𝑡 } is the optimal subset ↔ {𝑧𝑜𝑝𝑡} ⊆ {𝑧𝑘} ,  

MSE ({𝑧𝑜𝑝𝑡} ) ≤ MSE ({𝑧𝑖}) ∀  {𝑧𝑖} ⊆ {𝑧𝑘} .  

The descriptor selection problem consists in finding the 
{𝑧𝑜𝑝𝑡} and MSE ({𝑧𝑜𝑝𝑡})  for every transformation.  
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One simple solution for obtaining a result consists in 

evaluating every possible subset of {𝑧𝑘}. However, this 

solution has the highest computational cost and many 

unnecessary subsets would be evaluated.  For example, if one 

of the most relevant descriptors is removed, the classification 

performance is affected. It is no use evaluating all the subsets 

without this relevant descriptor. In order to avoid this problem, 

the search solution, the branch and bound elimination 

algorithm, can be deployed.    

 First the MSE({𝑧𝑘}) 𝑖𝑠 calculated, the bound value 𝜃= 

MSE ({𝑧𝑘}) is set to the child nodes (subset derived from {𝑧𝑘}) 
on the first level of depth. On this level, all descriptors will be 

removed one by one from 𝑧1 to 𝑧𝑘 and the corresponding 

subset: {𝑧𝑘1}, … , {𝑧𝑘𝑘}  𝑤𝑖𝑡ℎ  {𝑧𝑘𝑖 }\ {𝑧𝑘 } =  𝑧𝑖   (1 <  𝑖 <
 𝑘 ) is evaluated. 𝑧𝑖 can be defined as a significant descriptor if 

MSE({𝑧𝑖}) ≥ θ or less-significant descriptor if MSE({𝑧𝑖}) < θ. 

After this first level, either depth-first search or breadth-

first search algorithms [30] can be used. The depth-first search 

algorithm gives priority to investigating on branch before 

backtracking, and the breadth-first search to exploring 

neighbor nodes first before going deeper. If the number of 

descriptors is too high the breadth-first algorithm may help to 

limit the calculation time by fixing a depth level. Conversely, 

if a performance has been defined, the depth-first algorithm 

may converge faster to optimal solution with the lowest 

number of descriptors. In this paper the depth-first algorithm 

has been used.            

The child nodes are created by removing one less-

significant descriptor from the parent nodes. This newly 

created child node must be different from any node on the left 

in order to avoid any unnecessary computation. The upper 

bound for the any child node can be defined as follows: 

θ𝐶ℎ𝑖𝑙𝑑 = 𝑀𝑆𝐸 ( {𝑧𝑃𝑎𝑟𝑒𝑛𝑡})  where {𝑧𝑃𝑎𝑟𝑒𝑛𝑡}   is the subset 

which generates the child node.   

For a given transformation the algorithm stops when every 

node has been evaluated. As a result both optimal subsets of 

descriptor -  {𝑧𝑜𝑝𝑡 } and MSE ({𝑧𝑜𝑝𝑡})  are determined. Figure 

6 shows an example using a depth-first search.  
 

 
Figure.6. Example of depth-first branch and bound elimination for 

descriptor selection.  MSE should be minimized. The descriptor subset was 

evaluated from S1 to S9. After the first depth level evaluation, in the step 
5(S5), descriptor 4 (d4) is considered as a significant descriptor and therefore 

all subsets without d4 are not evaluated. Red nodes violate the upper bound 

(MSE of parent node), therefore no more child nodes are generated from these 
nodes. Subset (d3, d4) is the optimal subset in this example.  

 

Pseudo code for descriptor subset selection based on 

backward elimination: 
1.  Descriptor set  {𝑧𝑘} ∶= 𝑧1 , 𝑧2,…𝑧𝑘   
2. 𝑀𝑆𝐸{𝑧𝑘} = Compute (MSE of classifier trained from {𝑧𝑘}) 

3. Global variable min_MSE = 𝑀𝑆𝐸{𝑧𝑘} ,best_set = {𝑧𝑘}  ,  
4. List of evaluated descriptor set : EVA_list    

5. List of MSE value corresponds for each removed descriptor : 

MSE_list  

6. List of less significant descriptor : LSD_list    

7. for each 𝑧𝑖 of {𝑧𝑘} 
8.  {𝑧𝑘𝑖} =  remove 𝑧𝑖  from {𝑧𝑘} 
9.  𝑀𝑆𝐸{𝑧𝑘𝑖}  = Compute (MSE of classifier trained from {𝑧𝑘𝑖}) 
10. MSE_list[i] = 𝑀𝑆𝐸{𝑧𝑘𝑖}   
11.   if 𝑀𝑆𝐸{𝑧𝑘𝑖}  < min_MSE  

12.     LSD_list = LSD_list append  𝑧𝑖   
13.   end if   

14.  end for 

15.  for each 𝑧𝑖 of LSD_list  

16.   {𝑧𝑛} =  remove 𝑧𝑖  from {𝑧𝑘} 
17.    B_ELI( {𝑧𝑛} , MSE_list[i ] ) 

18.  end for 

19. end of program 

20.  

21. Function B_ELI is 

22. Input: Descriptor set {𝑧𝑛} and MSE 

23. for each 𝑧𝑖 of LSD_list 

24.  {𝑧𝑛𝑖} = remove 𝑧𝑖  from {𝑧𝑛} 
25.   if {𝑧𝑛𝑖} ∈  EVA_list 

26.    continue 

27.   end if 

28.   EVA_list  = EVA_list  append  {𝑧𝑛𝑖}     

29.   𝑀𝑆𝐸{𝑧𝑛𝑖}  =  Compute (MSE of classifier trained from {𝑧𝑛𝑖}) 
30.   if  MSE {𝑧𝑛𝑖} <  MSE 

31.    if  MSE {𝑧𝑛𝑖}  < min_MSE 

32.     min_MSE = MSE{𝑧𝑛𝑖}   
33.     best_set = {𝑧𝑛𝑖}   
34.    end if 

35.    B_ELI( {𝑧𝑛𝑖} , MSE{𝑧𝑛𝑖} ) 
36.   end if 

37.  end for 

38. return 

 

Descriptor selection for AFF pool construction is 

completed when all optimized descriptor sets for every 

transformation have been found. The pool of available arc 

fault features is noted as P.             
          

IV. ARC FAULT FEATURE COMBINATION  

The combination method consists of 3 steps: the ranking 

step on P, the distance evaluation of different generated CAFFs 

and the classification step which uses the CAFFs with the 

highest ratio of distance. The ranking step helps to find the 

most relevant arc fault feature (𝐴𝐹𝐹1) and to remove the 

irrelevant (poor detection performance) AFFs.  {𝐴𝐹𝐹1}  has the 

lowest MSE ( MSE ({𝐴𝐹𝐹1})  ≤ MSE ({𝐴𝐹𝐹𝑖}) ∀ i≠1, 
{𝐴𝐹𝐹𝑖} ⊆ 𝑃 ).  

If MSE ({𝐴𝐹𝐹1}) is higher than the desired error (noted 

d_mse), a solution for obtaining the performance we want 

might be to combine 𝐴𝐹𝐹1  with the other AFFs. The simplest 

method for combining features without losing any information 

is concatenation of features to create a new feature vector. For 

example in the case of two AFFs, from {𝐴𝐹𝐹1} =
: 𝑧1, 𝑧2 , … 𝑧𝑖   and {𝐴𝐹𝐹2} =: 𝑧 , 𝑧 +1 , … 𝑧 +𝑘  concatenated 

feature {𝐶𝐴𝐹𝐹 } =: 𝑧1, 𝑧2 , … 𝑧𝑖 , 𝑧 , 𝑧 +1… 𝑧 +𝑘   can be 

formed.  

MSE(  ,   ,   )= 0.4 

Depth 0

MSE(  ,   ,   ,   )= 0.5 

MSE(  ,   ,   )= 0.4 MSE(  ,   ,   )= 0.6

MSE(  ,   )= 0.3

MSE(  )= 0.35 

MSE(  ,   )= 0.45

Depth 1

Depth 2

Depth 3

MSE(  ,   ,   )= 0.4 

  

        

  

  

    

MSE(  ,   )= 0.25
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By using the result from 𝐴𝐹𝐹1 and its trained classifier, the 

data set {𝑆} can be divided into four groups:  

 ∀𝑆𝑖  ∈ {𝑆}

{
 

 
 𝑆𝑖  ∈ { 𝑇𝑃 𝐹𝐹1} ↔  𝐿𝑆𝑖 = 1 , 𝐿𝑃𝑆𝑖 > 𝑇ℎ𝑆 

𝑆𝑖  ∈ { 𝑇𝑁 𝐹𝐹1} ↔ 𝐿𝑆𝑖 = 0 , 𝐿𝑃𝑆𝑖 ≤ 𝑇ℎ𝑆  

𝑆𝑖  ∈ { 𝐹𝑁 𝐹𝐹1} ↔ 𝐿𝑆𝑖 = 1 , 𝐿𝑃𝑆𝑖 ≤ 𝑇ℎ𝑆 

𝑆𝑖  ∈ { 𝐹𝑃 𝐹𝐹1} ↔ 𝐿𝑆𝑖 = 0 , 𝐿𝑃𝑆𝑖 > 𝑇ℎ𝑆 

        

TP, FP, FN and TN stand for true positive, false positive, 

false negative and true negative groups. The calculated label 

𝐿𝑃𝑆𝑖  is a real number between 0 and 1, thus a threshold 𝑇ℎ𝑆  is 

needed to define these groups. Since the sensitivity and 

specificity (proportion of false positives and false negatives) of 

the model are not of concern in this paper, the threshold 𝑇ℎ𝑆  

is fixed at 0.5 (which is analog to the balanced value).     

Since AFF1 is insufficient to completely resolve the 

detection problem, the four groups 𝐹𝑃𝐴𝐹𝐹1 , 𝐹𝑁𝐴𝐹𝐹1, 𝑇𝑃𝐴𝐹𝐹1  
and  𝑇𝑁𝐴𝐹𝐹1  cannot be easily distinguished. The groups 

 𝐹𝑃𝐴𝐹𝐹1 and  𝐹𝑁𝐴𝐹𝐹1 always overlap with groups  𝑇𝑁𝐴𝐹𝐹1 

and 𝑇𝑃𝐴𝐹𝐹1. An illustration of group distribution is shown in 

Figure 7.  

If any other AFF is more efficient than 𝐴𝐹𝐹1  for sensitive 

elements ( 𝐹𝑃𝐴𝐹𝐹1  or 𝐹𝑁𝐴𝐹𝐹1 ), this AFF may help to better 

separate the groups 𝐹𝑃𝐴𝐹𝐹1 , 𝐹𝑁𝐴𝐹𝐹1 from  𝑇𝑃𝐴𝐹𝐹1  
and 𝑇𝑁𝐴𝐹𝐹1 . As the distance between these groups and their 

distribution on feature space are related to prediction 

performance [31], higher detection performance can be 

expected after this combination. An illustration of group 

distribution on CAFF feature space is show in Figure 7. 

 If it is assumed that the group  𝑇𝑃𝐴𝐹𝐹1 has k element, the 

centroid of this group after concatenation (CAFF feature 

space) can be determined with the following relation: 

𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 ( 𝑇𝑃 𝐹𝐹1 ) =  
𝑇𝑃 𝐹𝐹1

1 + 𝑇𝑃 𝐹𝐹1
2 +⋯+ 𝑇𝑃 𝐹𝐹1

𝑘

𝑘
 

The centroids of the other groups can be determined with 

the same formula. Let �⃗�  , �⃗�  ∈  𝑅𝑛  be the centroids of group 

 𝑇𝑃𝐴𝐹𝐹1 and 𝑇𝑁𝐴𝐹𝐹1, the inter-group distance 𝑑1 between 

 𝑇𝑃𝐴𝐹𝐹1 and  𝑇𝑁𝐴𝐹𝐹1 can be calculated:   

𝑑1 =  √(𝑢1 − 𝑣1)
2 + (𝑢

2
− 𝑣2)

2 … (𝑢
𝑛
− 𝑣𝑛)

2
 

Similarly for the other inter-group distances: 

    𝑑2: 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (  𝑇𝑃 𝐹𝐹1 ,  𝐹𝑃 𝐹𝐹1 ) 
𝑑3: 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (  𝑇𝑁𝐴𝐹𝐹1 ,  𝐹𝑁𝐴𝐹𝐹1 )  

The most efficient CAFF is that which has the best 

separation between groups 𝑇𝑃𝐴𝐹𝐹1 −  𝐹𝑃𝐴𝐹𝐹1 and 𝑇𝑁𝐴𝐹𝐹1 −
  𝐹𝑁𝐴𝐹𝐹1 .   In other words, the one with highest sum of ratio 

distances: 

𝑑2 + 𝑑3
𝑑1

 

The higher the inter-group distances 𝑑2 , 𝑑3  , the better we 

can expect separation. However, it is also important to take 

into consideration the dimensions of different CAFFs feature 

space and it is for this reason that distance 𝑑1 has been used as 

a normalized coefficient.  

The next step consists in discriminating between arc fault 

and non-arc situations with the help of a classification method 

and the most efficient CAFF (created from AFF1 and another 

AFF).  

If the mse of CAFF is still higher than the desired mse, the 

number of AFFs used for combination should be increased. 

More specifically, after each stage of evaluation if the desired 

performance is still out of reach, the number of complementary 

AFFs is increased by one. The algorithm stops when the 

desired error has been achieved or all possible CAFFs have 

been examined. In the second case, the pool of arc fault 

features should be revised (add new transforms and use more 

suitable descriptors).     

 

 
Figure.7 Illustrative of group distribution when CAFF provides a better 

discrimination than AFF  

 

  
Figure.8 Arc fault feature combination based on inter-group Euclidean 

distance. L mse is the lowest mse up to the current stage, R_CAFF is the best 

CAFF that can be achieved up to the current stage, i: the number of 

complementary AFFs used for combination at the current stage, n: the number 

of complementary AFFs available. 

Figure 8 describes the combination method in detail.  At the 

beginning i is equal to 1 (stage 1). Every possible CAFF 

(AFF1 concatenate with another AFF) is evaluated.  The 

𝑇𝑁 𝐹𝐹1

AFF1

Feature space

CAFF

Feature space
d2

d1

d3

𝐹𝑁 𝐹𝐹1

𝐹𝑃 𝐹𝐹1

𝑇𝑃 𝐹𝐹1

𝐹𝑃 𝐹𝐹1

𝑇𝑁 𝐹𝐹1

𝐹𝑁 𝐹𝐹1

𝑇𝑃 𝐹𝐹1

Distance calculation 

and evaluation

AFF1

P

AFF set 

generator

i

Concatenation

CAFF

Highest ratio 

distance 

CAFF

Complementary

AFF /AFFs

Classification

yes

i = i+1

no

no

mse < d_mse

i < n

yes

mse

End
Current CAFF 

satisfies 
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R_AFF is the most

efficient AFF 

that can be achieved

mse < l_mse

no yes

l_mse = mse

R_CAFF = CAFF

End

Starti =1
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highest distance CAFF is used to train a classifier and then the 

classifier’s performance is compared to the desired mse. If the 

current CAFF satisfies the condition, the combination 

algorithm reaches its end. Otherwise, CAFF will be noted as 

R_CAFF and its mse as l_mse. The variable i will be 

incremented by 1 (stage 2) and every CAFF (concatenated 

from AFF1 and two other AFFs) is evaluated. The process is 

repeated until a satisfied CAFF has been found or i equals n. In 

the second scenario, R_CAFF is the most efficient CAFF and 

l_mse is the lowest error that can be achieved.  

In comparison to the wrapper selection method used in the 

previous section, the distance evaluation method greatly 

reduces the computation cost because there is only one 

classifier which requires training at each stage. The 

computation of ratio distance is negligible compared to the 

cost of the training classifier. If the AFF pool has n elements, 

in the worst case scenario the wrapper method needs to train 

∑
𝑛!

𝑘!(𝑛−𝑘)!
𝑛
𝑘=1  classifiers and only n classifiers for the distance 

evaluation method.    

V. EXPERIMENTAL RESULT 

This section describes in detail how the method presented in 

this paper has been applied. The results obtained can be found 

at the end of the section.  

A. Arc fault detection database  

A database is essential for the proposed method and the 

construction of the database is very important as it directly 

affects how efficient the obtained detection method can be. 

The number of appliances, combinations and disturbances 

presented in an electrical network are very large and it is 

impractical to build a universal database that covers all 

possible situations. There is no need to make a universal 

detection method for all installations and it is always possible 

to construct a useful database for any installation when the 

number of situations is narrow. 

    In this series of experiments the European household 

network was studied. For this installation, the standard IEC 

62606 –“General requirements for arc fault detection devices” 

was used as the main reference for database construction. The 

database contained the sample with arc fault and non-arc fault 

situations.  

In order to generate arc fault samples, the following 

configurations were used: 

 
 

Figure.9 R: Resistive load, M: Masking load – list of masking loads can be 

found below. Several network disturbances are also added to each 

configuration. The AC source (230V – 50 Hz) generated in accordance with 

the standard for distribution networks in Europe 
The arc fault is created by a carbonized cable specimen 

according to standard IEC 62606.   

The non-arc samples are also generated with the same 

configuration. In order to guarantee good performance against 

false positive errors, many samples contain the transient state 

of appliances. In addition, the standard cross-talk test has been 

also taken into account in the database. The following types of 

appliances were used for constructing the database: masking 

loads (air conditioner, air compressor, computer, dimming 

lamp, electric drill, vacuum cleaner, halogen lamp, fluorescent 

lamp and hair dryer) and resistance.  At least two or three 

different brands were used for each type of appliance. 

Each sample contains a measurement of network voltage, 

current and arc voltage for a fixed duration. It is essential to 

measure the current for the method presented. 

Measuring arc voltage helps to accurately label the samples 

and every period of each sample is labelled. If arc voltage 

stays at noise level for one period, the period is labelled as 

normal. If the arc voltage wave form corresponds to an arcing 

situation, the period is labelled as arc influenced. The period 

which is not completely affected by arc fault is not labelled 

(example shown in Figure 10).  There are a total of 16,231 

samples – 3,405 samples with arc fault, and 12,826 without arc 

fault. The signals were acquired with the sampling frequency 

of 1 MHz, because all feature extraction methods in this study 

operated at a frequency lower than 1 MHz   

 

 
Figure.10 Example of signal 

 

B. AFFs pool construction 

After the database was established, the next step consisted in 

creating an arc fault features pool. This step was accomplished 

by applying different feature extraction methods to the current 

signature of the database. In this series of experiments only 

those feature extraction methods which are composed of 

transforms and descriptors were used.   

1. Transformations 

Five different transforms were chosen in this study because 

they are used in arc fault detection literature [12] [18] [22] 

[32].    
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All transforms are defined below;  {𝑥𝑛}  represents the 

current time series input and {𝑦𝑘}   is the result obtained with 

the respected transform, N is the number of elements in a 

current series:  

 Current finite difference: 

𝑦𝑘 = |𝑥𝑘+1 − 𝑥𝑘|; 1 ≤ k ≤ N-1 

 Discrete Fourier transform (FFT): 

 𝑦𝑘 = |∑ 𝑥𝑚. 𝑒
−𝑖
2𝜋

𝑁
𝑘𝑚  𝑁

𝑚=1 |;  1 ≤ k ≤ N 

 Chirp Zeta transform (CZT): 

𝑦𝑘 = |∑ 𝑥𝑚 . 𝑒
−𝑖
2𝑓𝜋

𝑓𝑠𝑁
𝑘𝑚
  𝑁

𝑚=1 |;  1 ≤ k ≤ N 

 

Four different frequency bands were considered for FFT and 

CZT:  

1 kHz - 10 kHz  

10 kHz - 20 kHz  

50 kHz - 80 kHz  

80 kHz - 100 kHz  

100 kHz - 150 kHz  

 Wavelet  

 

𝑦(𝑚, 𝑘) =  
1

𝑎𝑚
∑ 𝑥𝑛 . 𝑔(

𝑘 − 𝑏

𝑎𝑚
)

𝑁−1

𝑚=0

 

         𝑔(. ) is the mother wavelet 

         𝑚 is the decomposition level, in this paper  a=2 .   
For mother wavelet: Daubechies 4 (DB4) and Meyer (Dmey) 

were selected with decomposition level 2, 3, 4 and 5 (LVL2, 3, 

4, 5) for each wavelet respectively. 

Figure 11 shows an example of transform with arc fault and 

non-arc signal.  
 

 
 

Figure.11 Fourier transform with non-arc and arc fault signal 
 

2. Descriptors 

The results after each transformation are discrete series and 

they can be noted as {𝑦𝑛} ∶=  𝑦1 , 𝑦2 , … . , 𝑦𝑛. In order to finish 

the feature extraction step, every transform needs to be 

associated with several descriptors. Based on the literature of 

arcing detection [32], the groups of descriptors were chosen as 

follows.    

The first group of descriptors is based on statistical analysis. 

In this paper, the first, second, third and fourth order moment 

were chosen with the aim of measuring the shape of {𝑦𝑛} .    

 Mean value: �̅� =
1

𝑛
∑ 𝑦𝑛
𝑛
𝑖=1  

 Variance:  𝑠2 =
1

𝑛
∑ (𝑦𝑛 − �̅�)

2𝑛
𝑖=0   

 Skewness: 
1

𝑛
∑ (

𝑦𝑛−�̅�

𝑠
)3𝑛

𝑖=1  

 Kurtosis : 
1

𝑛
∑ (

𝑦𝑛−�̅�

𝑠
)4𝑛

𝑖=1   

The second group of descriptors relates to the analysis of the 

first peak of {𝑦𝑛} (the peak’s value, location and duration). 

Finding all the points of {𝑦𝑛} around the first peak, which are 

higher than the average value, allows the duration of the signal 

to be found. An illustration of these descriptors can be found in 

Figure 12. 

 The max value: 𝑦𝑚 ∈ {𝑦𝑛}  , 𝑦𝑚 ≥  𝑦𝑖  ∀ 𝑦𝑖  ∈ {𝑦𝑛}   

 Normalized index of the max: 
𝑚

𝑛
  

 Normalized highest pulse duration:  

𝑘− 

𝑛
 , {

𝑗 ≤ 𝑚 , 𝑦𝑖 ≥ �̅�  ∀  𝑗 ≤ 𝑖 ≤ 𝑚   
𝑦 −1 < �̅� 𝑜𝑟 𝑗 = 1

𝑘 ≥ 𝑚 , 𝑦𝑖 ≥ �̅�  ∀  𝑚 ≤ 𝑖 ≤ 𝑘 
𝑦𝑘+1 < �̅� 𝑜𝑟 𝑘 = 𝑛

  

 
Figure.12 Illustrative of customize descriptors 2 - 7 

 

The last group of descriptors gives information about the 

second peak of data series {𝑦𝑛}. The highest pulse is removed 

(all points between j and k of  {𝑦𝑛} ) in order to find the second 

peak. The truncated series {𝑦′𝑛′}  can be defined as: 

   {𝑦′𝑛′} : = 𝑦′1′  , 𝑦′2′  , … , 𝑦′𝑛′ 
= 𝑦1 , 𝑦2 , … 𝑦 , 𝑦𝑘 , … , 𝑦𝑛 

The first peak of {𝑦′𝑛′}  is now equivalent to the second 

peak of the data series.    

The second peak value is:  

𝑦′𝑚′  ∈ {𝑦′𝑛′} ,   𝑦′𝑚′ ≥  𝑦′𝑖  ∀ 𝑦′𝑖  ∈ {𝑦′𝑛′}   

Normalized index of the second peak: 
𝑚′

𝑛′
   

Normalized second pulse duration:  

Note that        𝑦 ′̅ =
1

𝑛′
∑ 𝑦𝑛′
𝑛′

𝑖=1  
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𝑘′− ′

𝑛′
 ,

{
 
 

 
 𝑗
′ ≤ 𝑚′ , 𝑦′𝑖 ≥ 𝑦

′̅  ∀  𝑗′ ≤ 𝑖 ≤ 𝑚′   

𝑦′ −1 < 𝑦
′̅ 𝑜𝑟 𝑗′ = 1

𝑘′ ≥ 𝑚′ , 𝑦𝑖 ≥ 𝑦
′̅  ∀  𝑚′ ≤ 𝑖 ≤ 𝑘′ 

𝑦′𝑘+1 < 𝑦
′̅ 𝑜𝑟 𝑘′ = 𝑛′

 

The figure 13 shows an example of 10 descriptors for a given 

transform and their numbering.

 
Figure.13 Example of ten descriptors, DFT frequency band 1-10 KHz with non-arc and arc fault signal 

a-Current without arc fault at steady state; b-Current with arc fault at steady state; c-Current with arc fault and transient (change of functioning mode).  
 

 

3. Neural network wrapper descriptor selection 

It was our objective to select the set of descriptors that 

provides the best performance for each transform selected in 

this article; irrelevant descriptors for each transform were 

eliminated. In order to accomplish this, a fully connected feed 

forward artificial neural network (ANN comprising four 

layers) was used as the classifier. The first hidden layer is 

composed of 20 neurons and the second one of 8 neurons 

(Figure 15). 

The inputs of the neural network are composed of the arc 

features obtained from the different descriptors whose 

calculation procedure is explained in Figure 14. 

The analysis is based on the line current without 

arcing (labeled 0) or with arc (labeled 1). The calculation is 

performed in a window of 20 ms for each descriptor. Three 

successive periods (60 ms) with the same label provide three 

different sets of values (𝑧𝑖, 𝑧𝑖+1, 𝑧𝑖+2). Based on the ten 

descriptors selected, the neural network therefore has 30 

entries. One of the 10 descriptors was subsequently excluded 

and this was done for each of the ten descriptors. In each case, 

the new generated subset is composed of 27 values for the 

ANN input. Two or more descriptors can then be removed 

from the list for analysis. 

 
Figure.14 Label and arc fault feature construction 

For each generated subset, the mean squared error (when 

the value of the ANN output equals LP)   is estimated 

according to the following equation: 

𝑀𝑆𝐸({𝑧𝑖}) =
1

𝑁𝑇
∑ (𝐿𝑚 − 𝐿𝑃𝑚)

2

𝑁𝑇

𝑚=1 
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In this experiment, NT = 16231 and for any given sample m 

of the database, the squared error can be calculated as follows   

𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟({𝑧𝑖}) = {
(1 − 𝐿𝑃)2 When an arc occurs

(0 − 𝐿𝑃)2  When no arc occurs
 

 
Figure.15 Neural network for arc fault detection 

Figure 16 shows the results obtained from the error 

depending on the descriptors considered. A « removed 

descriptor » of 0 indicates that all the 10 descriptors have been 

considered, 1 refers to the fact that the first descriptor has been 

removed and so on. In some cases two or more descriptors can 

be removed with the backward elimination algorithm 

mentioned above.   

 The results are presented with respect to the frequency 

band rather than by the type of transform. 

 

 
Figure.16 Descriptor selection with low frequency FFT and CZT (1- 20 KHz)  

 

At the frequency band 1-10 kHz the FFT has lower MSE 

than CZT. For the frequency band 10-20 kHz, FFT and CZT 

give similar results (the red and magenta lines respectively), 

their respected minimal MSE are 0.0171 and 0.0178. The 

optimized descriptor sets are almost the same (all descriptors 

are important) except for FFT at 10-20 KHz.  Descriptor 6 

should be removed in order to achieve the lowest MSE. 

(Figure 16)     
     

 
Figure.17 Descriptor selection with middle frequency FFT and CZT (20 - 80 

KHz)  
 

The frequency bands 20-50, 50-80 kHz show poorer 

performance compare to the 1-10 kHz and 10-20 kHz band. 

All descriptor are necessary for FFT and CZT at the frequency 

band 20-50 kHz. The descriptor 6 needs to be removed for 

CZT 50- 80 kHz. The analysis of the results obtained from 

FFT in the band 50-80 kHz show that descriptors 2,3,5,6,9 and 

10 are relevant for the detection (Figure 17). 

It remains to be decided whether the other descriptors 

should be retained or not. The process is illustrated in Figure 

18. By considering the set that contains all descriptors (z), the 

mean square error is equal to 0.0803. When one of the 

descriptors 1, 4, 7 or 8 is removed, the error decreases 

(𝑧1 , 𝑧4 , 𝑧7, 𝑧8). Three subsets, derived from subset 𝑧1, can be 

generated, namely 𝑧1,4 , 𝑧1,7, 𝑧1,8 ( descriptor {1,4}; {1,7} or 

{1,8}  removed). Only subset 𝑧1,7 reduces the error (MSE = 

0.077 < 0.081) and subsets 𝑧1,4 and 𝑧1,8 show higher errors in 

comparison to the parent subset; therefore descriptor 4 or 8 

should not be removed with descriptor 1.  As a result, subsets 

𝑧1,7,4 and 𝑧1,7,8 were not evaluated. The subsets derived from 

subset 𝑧4, that is subsets 𝑧4,1 , 𝑧4,7, 𝑧4,8, can be created. Subset 

𝑧4,1 was evaluated before and the error of subset 𝑧4,7 and 𝑧4,8 
is yet to be found. Since their errors are higher than the error 

obtained with 𝑧4, there is no need to evaluate further. 

Similarly, the last subset 𝑧7,8  has a higher error than the error 

obtained with 𝑧8. In conclusion, descriptors 1 and 7 should be 

removed in order to achieve the best performance.  

 

Output

layer

Input

layer

Hidden

layer 1

Hidden

layer 2

𝑧1

𝑧2

𝑧3

𝑧4

𝑧𝑛

LP

z

                     

0.0803

  , 

0.0801 0.0804 0.0812 0.0771

0.0815

  ,   , 

0.077 0.0804

  ,   , 

0.0785 0.0815

0.0832 0.0826 0.0788

  , 
0.0798

0.0791 0.0821 0.0806

Best subset : 2,3,4,5,6,8,9,10



 11 

Figure.18 Descriptor selection process 

 
 

Figure.19 Descriptor selection for high frequency FFT and CZT (80 - 150 

KHz)  

Figure 19 shows that the detection performances of 

frequency bands 80-100 and 100-150 kHz are mostly identical 

to the results obtained with frequency bands 20 -50 and 50-80 

kHz. Some descriptors, such as 8, 6, and 4, are less efficient 

for this band.     

 
Figure.20 Descriptor selection for wavelet transforms-decomposition level 4 

and 5  

 

 

Fig.21.Descriptor selection for wavelet transforms- decomposition level 2 and 
3 

 

Same as FFT and CZT, wavelet transform shows better 

performance at lower frequency band (high level of 

decomposition).According to the results, the Daubechies 4 

wavelet gives better results than the Dmey wavelet but overall 

performance lower than FFT and CZT. For the decomposition 

level 5 of Daubechies 4 and Dmey wavelets the respected 

descriptor 7 and 1 should be removed. For the decomposition 

level 2, 3 and 4 the descriptor 5, 8 are most the irrelevant.  

(Figure 20 and 21)        

 
Figure.22 Descriptor selection for derivative  

 

Figure 22 shows the results from the transform based on 

derivative analysis. The minimum value of mse (0.016) is 

obtained when all descriptors are used together. The 

performance of derivative transform is good and only slightly 

lower than that obtained with FFT at frequency band 1-10 

kHz.  

The small variations in error show that some arc fault 

features should be fine-tuned in order to achieve the best 

performance. As fine-tuned elements, their associated 

descriptors need to be carefully evaluated for the aimed 

specific requirements or installation with the corresponding 

database. For a given transform, the optimal subset of 

descriptor is not absolute it depends on different situations 

considered. Table II summarizes the results obtained for all 

the analyzed transforms.   
TABLE II 

ARC FAULTS FEATURES EXTRACTION  

Transform 
 

   

Optimized 
descriptor list 

MSE Accuracy 

FFT 1-10 kHz 1,2,3,4,5,6,7,8,9,10 0.0092 99.11% 

CZT 1-10 kHz 1,2,3,4,5,6,7,8,9,10 0.0234 97.6% 

FFT 10-20 kHz 1,2,3,4,5,7,8,9,10 0.0171 98.13% 

CZT 10-20 kHz 1,2,3,4,5,6,7,8,9,10 0.0178 98.12% 

FFT 20-50 kHz 1,2,3,4,5,6,7,8,9,10 0.0274 96.87% 

CZT 20-50 kHz 1,2,3,4,5,6,7,8,9,10 0.0617 92.07% 

FFT 50-80 kHz 2,3,4,5,6,8,9,10 0.077 91.54% 

CZT 50-80 kHz 1,2,3,4,5,7,8,9,10 0.0806 89.68% 

FFT 80-100 kHz 1,2,3,4,5,6,7,8,9,10 0.0912 89.68% 

CZT 80-100 kHz 1,2,3,4,5,6,7,9,10 0.0766 90.04% 

FFT 100-150 kHz 1,2,3,4,5,7,8,9,10 0.0897 89.80% 

CZT 100-150 kHz 1,2,3,5,6,7,8,9,10 0.0786 89.56% 

DB4 LVL5 1,2,3,4,5,6,8,9,10 0.0233 97.58% 

Dmey LVL5 2,3,4,5,6,7,8,9,10 0.0389 95.57% 
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DB4 LVL4 1,2,4,5,6,7,8,9,10 0.0316 96.34% 

Dmey LVL4 1,2,3,4,6,7,8,9,10 0.0891 88.59% 

DB4 LVL3 1,2,3,4,5,6,7,8,9,10 0.0711 91.59% 

Dmey LVL3 1,2,3,4,5,6,7,9,10 0.0957 87.90% 

DB4 LVL2 1,2,3,4,6,7,8,9,10 0.1009 87.75% 

Dmey LVL2 1,2,3,4,5,6,7,9,10 0.1057 87.20% 

Derivative 1,2,3,4,5,6,7,8,9,10 0.0164 98.26% 

    

 

Many transforms keep all descriptors in order to achieve a 

superior performance. A redundant descriptor was added to 

demonstrate the efficiency of the selection process. Descriptor 

11 is equal to (1 – descriptor 2); the value 1 was chosen 

because the value of descriptor 2 is normalized between [0; 1] 

and the result is shown in Table III. The MSE of each 

transform is increased when the redundant descriptor is added. 

Removing descriptor 2 may decrease the error in some cases.  

This may be explained by the fact that descriptor 11 contains 

information on descriptor 2. Removing any other descriptor 

other than descriptor 11 (for example descriptor 9) increases 

the error. Using redundant descriptor may affect the detection 

performance. This phenomenon has been studied with 

theoretical analysis and empirical evidence on several 

researches [33].Redundant descriptor does not provide 

addition information and it may confuse the learning 

algorithm. During the learning process, interesting relations 

between relevant descriptors can be ignored because the 

presence of redundant descriptor (there is a chance that the 

learning algorithm focus on redundant relations) therefore a 

lower performance can be expected. 
TABLE III 

DESCRIPTOR SELECTION WITH REDUNDANT DESCRIPTOR  

Transform 

 

MSE 

All descriptor Descriptor 2 

removed 

Descriptor 9 

removed 

FFT 1-10 kHz 0.0118 0.0117 0.0145 

CZT 1-10 kHz 0.0256 0.0262 0.0347 

CZT 10-20 kHz 0.0212 0.0239 0.0280 

FFT 20-50 kHz 0.0282 0.0289 0.0320 

CZT 20-50 kHz 0.0662 0.0636 0.0689 

FFT 80-100 kHz 0.0954 0.0928 0.0955 

DB4 LVL3 0.0725 0.0718 0.0827 

Derivative 0.0176 0.0175 0.0232 

  

 

C. Features combination 

 Descriptor selection shows that the most efficient AFF is 

discrete Fourier transform with all descriptors at frequency 

band 1-10 kHz (noted as AFF1). One way to achieve a better 

performance on the detection task consists in combining arc 

fault features, including AFF1. As mentioned above, the 

method to find complementary AFF is based on the sum of 

ratio distances between true and false positives, false negatives 

and true negative groups of AFF1 after concatenation. There 

are 42 FP and 101 FN samples when only AFF1 is used for the 

classification.     

The results with one complementary AFF are shown in 

Table IV. The number of shared FN and FP samples between 

AFF1 and the other AFFs are much lower than the number of 

samples in AFF1 (FN and FP) groups which means that 

complementary AFF can provide additional information and 

increase detection performance.      

The sums of ratio distance are listed in the fourth column; in 

this case AFF1 with the CZT transform 10-20 kHz has the 

highest sum of ratio distance. As expected, this combination 

has the lowest mean squared error and the highest accuracy.  

 Combination with the derivate method also gives an 

exceptional result. Overall, CAFFs always give better results 

than single AFFs. The best accuracy can be achieved with a 

single AFF of 99.11% and an MSE equal to 0.0092.  With 

CAFF the accuracy can go higher, up to 99.81%, and lower 

the MSE to 0.00173.   

The combination of AFF1 and derivative leads to a higher 

MSE but is more accurate compared to Debauchie’s wavelet. 

This can be explained by the fact that all classifiers have been 

trained with MSE as objective functions and therefore 

accuracy is not optimized.   
TABLE IV 

ARC FAULTS FEATURES AND RATIO DISTANCE  

      

Complement 
AFF 

Shared 
FP 

With 

AFF1 
 

Shared 
FN 

With 

AFF1 

Sum of 
ratio 

distance 

MSE Accurac
y 

CZT 10-20 kHz 21 11 1.51 0.00173 99.81% 

CZT 1-10 kHz 16 13 1.44 0.00293 99.7% 

DB4 LVL5 35 13 1.43 0.00386 99.61% 

Derivative 13 6 1.36 0.00396 99.7% 

FFT 10-20 kHz 30 10 1.34 0.0041 99.58% 

FFT 20-50 kHz 21 27 1.34 0.00452 99.56% 

      

The results with two complementary AFFs are shown in 

Table V. The best performance combination is composed of 

CZT 10 – 20 kHz, DB4 LVL5 and FFT 1-10 kHz. As 

expected, this combination has the highest sum of ratio 

distance. The overall results are slightly better compared to the 

combination of two AFFs. Variation in performance gain 

across different combinations of AFFs can be observed. In 

several cases, using two complementary AFF perform worse 

than the best performance combination at the previous stage.            
 

TABLE V 
ARC FAULTS FEATURES AND RATIO DISTANCE  

    

Complement 

AFFs 

Sum of 

ratio 

distance 

MSE Accuracy 

CZT 10-20 kHz  &  DB4 LVL5 1.52 0.00049 99.85% 

CZT 10-20 kHz  &  CZT 1-10 kHz 1.49 0.00066 99.84% 

CZT 1-10 kHz  & DB4 LVL5 1.43 0.00100 99.83% 

CZT 10-20 kHz  & Derivative 1.41 0.00112 99.84% 

DB4 LVL5 & FFT 10 - 20 kHz 1.39 0.00145 99.82% 

CZT 10-20 kHz  & FFT10-20 kHz 1.38 0.00151 99.81% 

CZT 1-10 kHz  & Derivative 1.37 0.00158 99.8% 

DB4 LVL5 & Derivative  1.37 0.00160 99.8% 

Derivative & FFT 10 - 20 kHz  1.37 0.00160 99.8% 

CZT 10-20 kHz  & FFT20-50 kHz 1.36 0.00163 99.81% 

CZT 1-10 kHz  & FFT 20-50 kHz 1.36 0.00185 99.73% 

CZT 1-10 kHz  & FFT 10-20 kHz 1.34 0.00200 99.75% 

DB4 LVL5 & FFT 20 - 50 kHz 1.34 0.00230 99.71% 
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Derivative & FFT 20 - 50 kHz 1.33 0.00300 99.7% 

FFT 10-20 kHz & FFT 20-50 kHz 1.24 0.00402 99.6% 

    

 

In this experiment, the number of AFFs used for 

combination steps is limited to 3. Using more than three AFFs 

for combination can give better results in the training process 

but the ANN tends to lead to over-fitting (accuracy on the 

training set is higher than accuracy on the testing set). This 

phenomenon can be explained by the fact that adding more 

AFFs consequently increases the size of input vector and the 

ANN becomes more complex. More data is therefore needed 

to correctly train the ANN. Approximately 10 minutes training 

time is required for each CAFF made from 2 AFFs and 30 

minutes for CAFF when composed of 3 AFFs. Eight and a 

half hours are required to find the optimal CAFF with the 

exhaustive selection method whilst the distance evaluation 

method requires only 42 minutes. This demonstrates the 

usefulness of the proposed AFF combination method.     

D. Computational costs and hardware platform 

All the calculations in this paper were performed with an 

average CPU (Core i7-2600) and the total time needed to 

obtain the final results from raw data is about one day. It 

varies, depending on the complexity and the number of 

transform-descriptor used. The proposed method can be run in 

any typical desktop PC; it can also be accelerated with the use 

of GPU. The final proposed detection solution can be 

implemented in an embedded platform for example Xilinx- 

Zynq7010 without real-time issues. The idea of integrate 

directly the time and resources constraints in the selection and 

combination process may be interesting for the future work.     

VI. CONCLUSION 

In this paper, a methodology for optimizing arc fault 

detection performance with plural arc fault features has been 

presented. The main originality of the proposed method is the 

use of supervised feature selection. The method consists in 

creating an arc fault feature pool and finding a combination of 

those features which satisfy the desired performance. The 

wrapper selection method was first used on every transform to 

find the most efficient descriptor set. This selection step which 

examines all possible descriptors and removes the irrelevant or 

redundant descriptors was necessary in order to make a 

reliable arc fault feature pool. Secondly, a supervised selection 

method based on Euclidean distance was used to find an 

appropriate combination in the pool of arc fault features. The 

combination of several arc fault features helps to reach a 

detection performance that cannot be achieved by using only 

one arc fault feature. Experimental results with basic (standard 

IEC 62606) and complicated situations (transient, multiple 

masking loads or disturbance on power network etc.) have 

demonstrated the efficiency of the proposed methods. Twenty-

one specific transforms associated with 10 different 

descriptors were evaluated and in terms of accuracy, the 

combination of FFT, CZT and DB4 can reach 99.85%.  

 

ACKNOWLEDGEMENT 

This work was supported by Hager Group.  

 

 

REFERENCES 

 

[1]  P.Muller, S.Tenbohlen, R.Maier and M.Anheuser, 

"Characteristics of series and parallel low current arc 

faults in the time and frequency domain," Proceedings of 

the 56th IEEE Holm Conference on Electrical Contacts, 

pp. 1-7, 2010.  

[2]  B. Jieqiu, Z. Yi, D. Zhiqiang and Z. Hongqiang, "Arc 

fault identification method based on fractal theory and 

SVM," 2014 International Conference on Power System 

Technology, pp. 1182-1187, 2014.  

[3]  K. Yang, R. Zhang, J. Yang, C. Liu, S. Chen and F. 

Zhang, "A Novel Arc Fault Detector for Early Detection 

of Electrical Fires," Sensors, 2016.  

[4]  R. Zhang, K. Yang, Q. Wu and J. Yang, "Research on 

Low-voltage Arc Fault Detection Based on BP Neural 

Network," Applied Mechanics and Materials, pp. 499-

502, 2014.  

[5]  L. Yu-Wei, W. Chi-Jui and W. Yi-Chieh, "Detection of 

serial arc fault on low-voltage indoor power lines by 

using radial basis function neural network," Electrical 

Power and Energy Systems, pp. 149-157, 2016.  

[6]  S. Jovanovic, A. Chahid, J. Lezama and P. Schweitzer, 

"Shunt active power filter-based approach for arc fault 

detection," Electric Power Systems Research, vol. 141, 

pp. 11-21, 2016.  

[7]  C.-J. Wu, Y.-W. Liu and C.-S. Hung, "Intelligent 

Detection of Serial Arc Fault On Low Voltage Power 

Lines," Journal of Marine Science and Technology, vol. 

25, pp. 43-53, 2017.  

[8]  A. T. Renjini Raveeendran, "Series Arc Fault Detection 

Using Discrete Wavelet Transform," International 

Journal of Science and Research, 2014.  

[9]  J. Lezama, P. Schweitzer, E. Tisserand, J.-B. Humbert, S. 

Weber and P. Joyeux, "An embedded system for AC 

series arc detection by inter-period correlations of 

current," Electric Power Systems Research, vol. 129, pp. 

227-234, 2015.  

[10]  N. Hadziefendic and Z. Radakovic, "Detection of series 

arcing in low-voltage electrical installations," European 

Transactions on Electrical Power, pp. 423-432, 2009.  

[11]  C. Restrepo and J. Henson, "Systems, devices, and 

methods for detecting arcs". US Patent US7110864B2, 8 

3 2004. 

[12]  G. Artale, A. Cataliotti, V. Cosentino, D. D. Cara, S. 

Nuccio and G. Tine, "Arc Fault Detection Method Based 

on CZT Low-Frequency Harmonic Current Analysis," 

IEEE Transactions on Instrumentation and Measurement, 

vol. 66, pp. 888-896, 2017.  

[13]  S. Zhang, F. Zhang, P. Liu and Z. Han, "Identification of 

Low Voltage AC Series Arc Faults by using Kalman 

Filtering Algorithm," Elektronika ir Elektrotechnika , 

ISSN, vol. 5, 2014.  

[14]  H. Guan, B. Wang, Z. Zhao, S. Bimenyimana and Q. 



 14 

Wang, "Arc fault Current's Power Spectrum 

Characteristics and Diagnosis Based on Welch 

Algorithm," International Journal of Engineering 

Science and Computing, vol. 6, 2016.  

[15]  T. A.Kawady, N. I.Elkalashy, A. E.Ibrahim and A.-M. 

I.Taalab, "Arcing Fault Identification using combined 

Gabor Transform-neural network for transmission lines," 

Electrical Power and Energy System, pp. 248 - 258, 

2014.  

[16]  Y. Wang, F. Zhang and S. Zhang, "A New Methodology 

for Identifying Arc Fault by Sparse Representation and 

Neural Network," IEEE Transactions on Instrumentation 

and Measurement, vol. 67, pp. 2526-2537, 2018.  

[17]  K. Yang, R. Zhang, S. Chen, F. Zhang, J. Yang and X. 

Zhang, "Series Arc Fault Detection Algorithm Based on 

Autoregressive Bispectrum Analysis," Algorithms, vol. 8, 

pp. 929-950, 2015.  

[18]  S. Lesecq and A. Barraud, "Arcing Fault Detection Using 

Wavelet Transform," IFAC Symposium on Fault 

Detection, Supervision and Safety of Technical 

Processes, vol. 36, pp. 345-350, 2003.  

[19]  C. R. Jr., "Arc fault detection using fuzzy logic". US 

Patent 8 054 592 B2, 8 11 2011. 

[20]  Y. Liu, F. Guo, Z. Ren, P. Wang, T. N. Nguyen, JiaZheng 

and X. Zhang, "Feature Analysis in Time-domain and 

Fault Diagnosis of Series Arc Fault," IEEE Holm 

Conference on Electrical Contacts, pp. 306-311, 2017.  

[21]  C. E.Restrepo, "Arc Fault Detection and Discrimination 

Methods," Electrical Contacts - 2007 Proceedings of the 

53rd IEEE Holm Conference on Electrical Contacts, pp. 

115-122, 2007.  

[22]  P. Qi, S. Jovanovic, J. Lezama and P. Schweitzer, 

"Discrete Wavelet Transform Optimal Parameters 

Estimation for Arc Fault Detection in Low-voltage 

Residential Power Networks," Electrical Power Systems 

Research, pp. 130-139, 2017.  

[23]  J. Tang, S. Alelyani and H. Liu, "Feature Selection for 

Classification: A Review," Data Classification: 

Algorithms and Applications, 2014.  

[24]  G. Isabelle and E. Andre, "An Introduction to Variable 

and Feature Selection," Journal of Machine Learning 

Research, pp. 1157-1182, 2003.  

[25]  J. C. Ang, A. Mirzal, H. Haron and H. N. A. Hamed, 

"Supervised, Unsupervised, and Semi-Supervised Feature 

Selection: A Review on Gene Selection," IEEE 

Transactions on Computational Biology and 

Bioinformatics, vol. 13, pp. 971-989, 2016.  

[26]  M. M. Christiansen, K. R. Duffy, F. d. P. Calmon and M. 

Medard, "Brute force searching, the typical set and 

Guesswork," IEEE International Symposium on 

Information Theory, pp. 1257-1261, 2013.  

[27]  P. Somol, P. Pudi and J. Kittler, "Fast Branch & Bound 

Algorithms for Optimal Feature Selection," IEEE 

Transactions on Pattern Analysis and Machine 

Intelligence, vol. 26, pp. 900-912, 2004.  

[28]  A. A. Naeini, M. Babadi, S. M. J. Mirzadeh and S. 

Amini, "Particle Swarm Optimization for Object-Based 

Feature Selection of VHSR Satellite Images," IEEE 

Geoscience and Remote Sensing Letters, vol. 15, pp. 379 

- 383, 2018.  

[29]  X.-Y. Liu, Y. Liang, S. Wang, Z.-Y. Yang and H.-S. Ye, 

"A Hybrid Genetic Algorithm with Wrapper-Embedded 

Approaches for Feature Selection," IEEE Access, vol. 6, 

pp. 22863-22874, 2018.  

[30]  R. Webster, "Useful AI tools-a review of heuristic search 

methods," IEEE Potentials , pp. 51-54, 1991.  

[31]  L. J.-H. and O. S.-Y., "Feature selection based on 

geometric distance for high-dimensional," Electronics 

Letters, vol. 52, pp. 473-475, 2016.  

[32]  J. Lezama, P. Schweitzer, S. Weber, E. Tisserand and P. 

Joyeux, "Arc Fault Detection Based on Temporal 

Analysis," IEEE 60th Holm Conference on Electrical 

Contacts, pp. 1-5, 2014.  

[33]  L. Yu and H. Liu, "Efficient Feature Selection via 

Analysis of Relevance and Redundancy," Journal of 

Machine Learning Research, pp. 1205-1224, 2004.  

 

 

 

 

 


