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ANALYSIS OF THE PRESSURE EFFECT ON THE CRYSTALLIZATION KINETICS: DILATOMETRIC MEASUREMENTS AND THERMAL GRADIENT MODELING
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Dilatometric measurements in isobaric cooling mode are performed to study the pressure effects on the crystallization kinetics of polypropylene up to 100 MPa. The rough experimental specific volume curves are analyzed by taking into account the thermal gradient which appears in the sample even for relatively low cooling rates. The Tait equation is used to describe the specific volume of the purely amorphous phase and linear variations of the purely crystalline phase specific volume are considered. The relative crystallinity is modeled using the Nakamura equation which is relevant for non constant cooling rates. Considering an Avrami exponent of 3, the Nakamura rate constant is obtained first at atmospheric pressure and then generalized for higher pressures considering the equilibrium melting temperature variation. The obtained intrinsic specific volume is validated by computing the thermal gradient in the sample and comparing the calculated average specific volume to the experimental one.

INTRODUCTION

The Pressure-Volume-Temperature (PVT) behavior is an important characteristic of thermoplastic polymers either for fundamental aspects (thermodynamics) or for practical applications (injection molding for example). Moreover when studying the polymer crystallization, one classical procedure to assess the kinetics of the transition is to investigate the influence of the cooling rate on the transition temperature. In that case, because of the poor thermal conductivity of the polymers, one must take care of the temperature gradient in the sample. When using a DSC, for example, the sample is so small that the temperature is reasonably considered homogeneous.

Nevertheless, for pressure studies by dilatometry, the sample must be large enough (typically 1 cm 3 ) to obtain an accurate measurement of the volume change. In that case, when the cooling rate increases, the thermal gradient in the sample must be considered, especially in the vicinity of the phase change where the enthalpy of crystallization can affect the temperature field. For these reasons the PVT measurements are generally achieved in isothermal or very low cooling rates conditions 1-3 . The objective of this study is to establish a methodology in order to obtain reliable PVT diagrams for semi-crystalline polymers. Particularly, the thermal gradient effect in the experimental results is extracted in order to obtain the specific volume of the polymer independently of the sample size. The present study follows and completes a previous one where the thermal aspect was already described 4 . In this work, the specific volume evolution, and especially the cooling rate and the pressure effects on the crystallization kinetics are thoroughly analyzed.

EXPERIMENTAL

In this work, the studied polymer was a injection grade of isotactic polypropylene (i _ PP) supplied by Solvay (Brussels, Belgium) with the commercial name Eltex HV252. The Melt Flow Index of this polypropylene was MFI2/230=11g/10min. The PVT experimental results were obtained using a piston type dilatometer (PVT100) commercialized by SWO Polymertechnik GmbH (Krefeld, Germany). The detailed description of the system was given elsewhere 4 hence, only the main characteristics are recalled in this paper. The diameter of the cylindrical cell is 7.7 mm and the length of the sample is typically around 15 mm. The temperature is controlled using a thermocouple located very close to the periphery of the sample, in the middle of its height. The pressure on the sample is ensured by a lower fixed piston and an upper mobile one. In order to avoid polymer leakage, PTFE seals are placed between the sample and the pistons. From the length of the sample, measured by a displacement sensor, the specific volume is obtained. Experiments were performed in isobaric cooling mode for different pressures ranged between 20 and 100 MPa and different cooling rates ranged between 1°C/min and 35°C/min. At atmospheric pressure, crystallization experiments were carried out using a DSC7 from Perkin-Elmer (Norwalk, Connecticut) calibrated with indium and zinc. The procedure for isothermal crystallization experiments was as follows: The sample of about 10 mg was molten at 210°C during five minutes. Then, it was first rapidly cooled down to a temperature of ten Celsius degrees higher than the chosen crystallization temperature Tc. Second, it was cooled down to Tc using a cooling rate of 10°C/min. This procedure allowed us to prevent an undershoot below Tc. The crystallization temperatures were ranged between 124°C and 140°C. For constant cooling rate crystallization experiments, the sample was also molten at 210 °C during five minutes and cooled with the chosen cooling rate ranged between 1 and 40 °C/min. Heating runs at 10°C/min were then performed on the same samples to determine their crystallinity and its evolution with the previous cooling rate.

Measured enthalpies of melting H were compared to the enthalpy of fusion of the infinite crystal 5 H = 148 J/g. Furthermore, the crystallinity of samples crystallized at 1°C/min at different pressures in the PVT analyzer were also determined from DSC melting experiments.

RESULTS AND DISCUSSION

Thermal Modeling

The thermal modeling of the PVT sample was achieved following a procedure previously described 4 . Considering that the problem is axisymmetric and that there is no heat flux through the pistons thanks to the PTFE seals, the heat equation for a radius r and a time t is expressed by:
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where Cp is the heat capacity,  is the thermal conductivity, Vsp is the specific volume,  is the relative crystallinity, X is the final crystallinity and T is the temperature.

Obviously, all the parameters which appear in eq. ( 1) can be temperature, pressure and even time dependent. These parameters will be detailed in the next section. A Crank-Nicholson finite difference scheme was used to solve the thermal problem with the following bounding conditions.

At time equal to zero, the temperature is homogeneous in the sample. For each time, the temperature gradient is null in the axis and the peripheral temperature is given by the control temperature.

Heat Capacity and Thermal Conductivity

Following previous results 4, 6 , the heat capacity and the thermal conductivity were described using simple mixing rules between the solid state and the liquid state values weighted by the relative crystallinity:

pa ps p C C C ) 1 (      (2)
where Cps and Cpa are the heat capacity of the solid state and the liquid state respectively.
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where s and a are the thermal conductivity of the solid state and the liquid state respectively.

It must be pointed out that a simple mixing rule is not rigorously appropriate for the thermal conductivity (eq. 3) because it is not an additive property. Nevertheless, this approximation was reasonably considered adequate for our purpose because it can introduce only a small error in the crystallization temperature domain which is relatively narrow as it will be shown further.

Moreover, linear temperature dependences for Cps, Cpa, s and a were obtained leading to:
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Besides, a pressure dependence could also be considered but, because of a lack of experimental results, this pressure dependence was not introduced in our analysis. Nevertheless, as it will be shown further in this article, a pressure dependence as well as a cooling rate dependence of the relative crystallinity  were taken into account. Consequently, the change of the transition temperature domain with the pressure and the cooling rate appears in the Cp and  values.

Specific Volume

The specific volume (Vsp) evolution with the temperature was described considering a blending law of the amorphous (or liquid) phase and the crystalline phase specific volumes (respectively Va and Vc). The balance between each phase is given by the mass crystallinity equal to the product
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First, the amorphous phase specific volume Va was described using the well known empirical
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where C is considered as a universal constant equal to 0.0894.

The functions V0(T) and B(T) can be described by linear, second order polynomial or, more currently, by exponential expressions. In this work, exponential expressions were used. The parameters of the Tait equation were fitted on the liquid part of experimental PVT data obtained in isobaric cooling mode with a low cooling rate (1°C/min) to avoid the thermal gradient effect. The results of the fitting were:
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where T is in °C.

It can be pointed out that eq.10 and eq.11 are similar to those given by Rodgers 7 . As shown in Figure 1, the calculated curves are very close to the experimental specific volume in the liquid part.

Moreover, the specific volume of the purely amorphous phase, calculated at atmospheric pressure and ambient temperature is consistent with literature data 8 (see Figure 1).

As concerns the solid part of the PVT diagrams (eq.8 with =1), the description appeared incorrect by assuming no variation of the purely crystalline specific volume Vc with P and T.

Indeed, as shown in Figure 2, considering a constant Vc, the slopes of the calculated curves is much lower than the experimental ones and the shift between each pressure is not large enough. In that case, the change of the calculated specific volume is only due to the amorphous contribution given by the Tait equation. Moreover, this description remains inaccurate whatever the used final crystallinity (X) in a reasonable range. Therefore, despite no explicit establishment in the literature, linear variations of Vc with the pressure and the temperature were assumed to describe the solid state of the specific volume. The parameters of these variations were determined using the solid part of a low cooling rate (1°C/min) PVT diagram to avoid thermal gradient effects. Moreover, it was imposed that the calculated value of Vc at ambient temperature and atmospheric pressure was consistent with literature data given for the density of the  crystalline form 9 (c=0.936 g/cm 3 ). It must be added that for this calculation, X was considered independent of the pressure and adjusted together with the parameters. Following these criterions, the best fit was obtained with X=0.684 leading to:

P T T P V c 4 4 10 901 . 1 10 2.071 0632 . 1 ) , (        (12)
where T is in °C, P is in MPa and Vc is in cm 3 /g.

As shown in Figure 2, the solid part of the experimental PVT diagram is correctly described by eq.8

(with =1 and X=0.684) and eq.12. Moreover, the calculated value of X is consistent with the experimental results obtained for samples crystallized at different pressures with a cooling rate of 1°C/min (Table 1). Indeed, for a crystallization pressure varying from 0.1 MPa to 100 MPa, only a slight decrease of the crystallinity is observed from 0.677 to 0.623.

Relative Crystallinity

The crystallization kinetics was analyzed on the basis of the Nakamura equation 10-11 which is expressed by:
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where K(T) is the Nakamura rate constant and n is the Avrami exponent. The main advantage of this expression is its ability to describe the relative crystallinity for a non-constant cooling rate which is the case inside the PVT sample. First, the determination of the rate constant K(T) was achieved at atmospheric pressure from isothermal and constant cooling rate crystallization DSC experiments.

Indeed, the DSC crystallization results were analyzed using the Avrami 12-14 (eq.14) and the Ozawa 15

(eq.15) expressions for isothermal and constant cooling rate experiments respectively:
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where k is the Avrami rate constant.
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where  is the Ozawa rate constant and  is the cooling rate.

Moreover, the Nakamura rate constant is mathematically linked to the Avrami and Ozawa rate constants 16-17 :

dT d k K n n           1 1 (16)
Although the Avrami exponent n could have been an outcome of the analysis, it was fixed to n=3 in our work because this value is frequently encountered in the literature for i-PP 17-20 which commonly exhibits a heterogeneous nucleation process.

From isothermal crystallization DSC experiments, the relative crystallinity function (t) was obtained by the ratio of the crystallization peak area before time t over its total area. Then, for each experimental temperature, the Avrami rate constant k(T) was deduced from eq.14 with n=3.

For constant cooling rates experiments, the relative crystallinity function (T) was calculated for every cooling rate by dividing the crystallization peak area above the temperature T by its total area.

Then, the Ozawa rate constant (T) was calculated by fitting eq.15 with n=3 on the whole collection of relative crystallinity curves considering a polynomial evolution of ln((T)).

Knowing k(T) and (T), the Nakamura rate constant K(T) was then obtained from eq.16. The results are plotted in Figure 3 showing the agreement between data deduced from isothermal and non isothermal experiments in the overlapping domain. Then, K(T) was described by the following equation:
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with T in °C and K(T) in s -1 .

Moreover, the suitability of eq.13 and eq.17 is shown in Figure 4 where the calculated relative crystallinity curves are very close to the experimental ones for cooling rates ranged between 1 and 40°C/min.

Furthermore, the pressure effect on the crystallization kinetics was evaluated by considering first the temperature of the crystallization onset (Tc) for low cooling rate experiments (2°C/min) and different pressures. The crystallization temperature versus the pressure is shown in Figure 5. Then, it was described by a second order polynomial:
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where Tc is in °C and P is in MPa.

In order to generalize the pressure effect for any cooling rate, it was considered that the crystallization kinetics is mainly driven by the supercooling 21-22 which is the difference between the equilibrium melting temperature and the actual temperature (

T T T m    0
). In other words, for a given cooling rate the crystallization occurs at the same supercooling whatever the pressure. Therefore, the previous polynomial which describes the crystallization temperature (eq.18)

directly reflects the variation of the equilibrium melting temperature with the pressure which is mainly due to the change of the liquid phase entropy. Consequently, this evolution can be written: In eq.18, the first term is the crystallization temperature at atmospheric pressure (126.1°C for a cooling rate of 2°C/min). This term is cooling rate dependent. In eq.19, the first term is the equilibrium melting temperature at atmospheric pressure which is the melting temperature of an hypothetical infinite crystal. There are different values for Patm m T 0 in the literature 5,9,23,24 but it should be pointed out that it does not influence our further calculations. In this work, the value of 210°C was chosen 5 . Besides, Mezghani and Phillips 9 reported the variation of 0 As a result, the Nakamura rate constant can be obtained for every pressure by a shift along the temperature scale given by the two last terms of eq.19. In other words, it means that when K(T) is expressed versus the temperature, it obviously depends on the pressure but, when expressed versus the supercooling, it becomes pressure independent as shown in Figure 6. Therefore the relative crystallinity can be calculated from eq.13 whatever the pressure.

Comparison with Experiments

At this stage, all the parameters in the heat equation (eq.1) were evaluated. So this equation can be resolved and the temperature and the specific volume for each time and each location in the sample can be obtained. Knowing this specific volume distribution for each time, an average specific volume, analogous to experimental data, can be deduced. This average specific volume is defined by the simple ratio between the sample volume and the sample weight:
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The modeling of the specific volume was validated by calculating Vsp and comparing it to experimental results for different cooling rates (up to 35°C/min) and three pressures. For these calculations, the input final crystallinity values were measured on samples crystallized at atmospheric pressure with different cooling rates. These values are displayed in Table 2. Although there is not a great evolution of X with the cooling rate, the general trend is a decrease of X when the cooling rate increases. However, the slight effect of pressure on X (see Table 1) was not taken into account in the calculations.

Figure 7, 8 and 9 show the specific volume measured with cooling rates of 2, 10 and 35 °C/min respectively and for three pressures up to 100 MPa. As it can be seen in these Figures, the calculated average specific volumes Vsp are very close to the experimental points for all the cooling rates and pressures. Hence, it can be concluded that the modeling is quite suitable and, particularly, it correctly describes the pressure and the cooling rates effects on the crystallization. Moreover, in these Figures, the intrinsic specific volume int sp V versus the control temperature is also plotted. Actually, this intrinsic specific volume stands for the result that would be obtained experimentally if there was no thermal gradient in the sample. Practically, it corresponds to the specific volume obtained at the sample periphery. Obviously, for a low cooling rate, the difference between the experimental and the intrinsic specific volumes is not significant (Figure 7). However, when the cooling rate increases, this difference becomes more and more important, especially, but not only, in the crystallization zone (Figures 8 and9).

In Figure 10, the results are plotted for cooling rates of 2 and 35 °C/min and a pressure of 60 MPa. As it can be seen, in the liquid part, the rough experimental results are different from one cooling rate to the other, only because of the thermal gradient in the sample. Nevertheless, the intrinsic specific volume curves are obviously identical because the real specific volume in the liquid state is independent of the cooling rate. In the solid part of the diagram, the slight difference between the intrinsic curves is only due to a difference of final crystallinities caused by the different cooling rates. However, in the transition zone, experimental results show an important difference due not only to the thermal gradient but also to the effect of the cooling rate on the crystallization.

As it can be noticed in Figure 10, the half of the difference between the two presented cooling rates arises from the crystallization kinetics which is revealed by the intrinsic specific volume curves.

The other half of the difference is given by the thermal gradient. Therefore, both effects can be distinguished by the presented method.

The other output of the modeling is the temperature evolution inside the sample. As an example, Figure 11 shows the temperature in the sample axis and at the sample periphery versus time for three pressures and a cooling rate of 20°C/min. Outside the crystallization zone the temperature difference between the axis and the periphery is about 13°C. Compared to the solid state, the thermal gradient is slightly higher in the liquid state because the thermal conductivity is lower.

Moreover, during the crystallization the temperature difference between the periphery and the axis can increase up to more than 30°C. Furthermore, In Figure 12, the radial temperature distribution for different times is plotted showing a sliding regime before and after the crystallization (the lines are parallel). However, during the transition, the heat release leads to an alteration of this temperature profile.

CONCLUSION

In this study, it was shown that dilatometric measurements in isobaric cooling mode can be used to characterize the crystallization kinetics of polymers under pressure. Nevertheless, the rough experimental results must be analyzed by taking into account the thermal gradient in the sample. In our case, the specific volume of the purely amorphous phase was described using the Tait equation fitted on low cooling rate PVT experiments. The purely crystalline phase specific volume was considered linearly dependent on temperature and pressure. Then, the relative crystallinity was modeled by the Nakamura equation, suitable for non constant cooling rates. The rate constant of the Nakamura equation was obtained at atmospheric pressure from DSC experiments, with an Avrami exponent of 3. The pressure effect was drawn from the crystallization temperature pressure dependence which is directly linked to the equilibrium melting temperature variation with the pressure. Finally, the obtained intrinsic specific volume was validated by calculating the thermal gradient in the sample and comparing the average specific volume to the experimental one. eq.8 with =1, X=0.684 and Vc given by eq.12.

Figure 3:

Nakamura rate constant obtained at atmospheric pressure from isothermal and constant cooling rate DSC experiments. Solid line given by eq.17.

Figure 4:

Relative crystallinity obtained at constant cooling rate and atmospheric pressure. Experimental data and Nakamura equation. 
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TABLE 1 :

 1 Evolution of the crystallinity with the crystallization pressure (Cooling rate: 1°C/min).PVT diagram of i-PP obtained in isobaric mode with a cooling rate of 1°C/min. Symbols are experimental data. Solid lines are calculated using eq.9, eq.10 and eq.11. The arrow indicates the specific volume of the amorphous phase at ambient pressure and temperature given in Ref 8.Solid part of the PVT diagram of i-PP obtained in isobaric mode with a cooling rate of 1°C/min.

	Pressure (MPa)	0.1	20	60	100		
		X		0.677 0.663 0.634 0.623		
	TABLE 2:								
	Evolution of the crystallinity with the cooling rate (samples crystallized at atmospheric pressure)
	Cooling rate (°C/min)	1	2	5	10	20	30	35	40
	X	0.677 0.669 0.597 0.582 0.587 0.545 0.602 0.568

Symbols: Experimental data. Dashed lines: eq.8 with =1, X=0.684 and constant Vc. Solid lines:
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