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QUANTUM EVOLUTION AND SUB-LAPLACIAN OPERATORS

ON GROUPS OF HEISENBERG TYPE

CLOTILDE FERMANIAN-KAMMERER AND VÉRONIQUE FISCHER

Abstract. In this paper we analyze the evolution of the time averaged energy densities associated
with a family of solutions to a Schrödinger equation on a Lie group of Heisenberg type. We use
a semi-classical approach adapted to the stratified structure of the group and describe the semi-
classical measures (also called quantum limits) that are associated with this family. This allows
us to prove an Egorov’s type Theorem describing the quantum evolution of a pseudodifferential
semi-classical operator through the semi-group generated by a sub-Laplacian.

1. Introduction

We consider groups of Heisenberg type, or H-type groups G, which are a special case of simply
connected Lie groups stratified of step 2 as described more precisely later. As a step 2 stratified
group, its Lie algebra g is equipped with a vector space decomposition

g = v⊕ z ,

such that [v, v] = z 6= {0} and z is the center of g. Choosing a basis Vj of v and identifying g with
the Lie algebra of left-invariant vector fields on G, one defines the sublaplacian

∆G =
∑

1≤j≤dim v

V 2
j

together with the associated Schrödinger propagator eit∆G . We are interested in the asymptotic
analysis as ε goes to 0 of quantities of the form

(1.1)
1

T

∫ T

0

∫
G
φ(x)|ei

t

2εℵ
∆Gψε0(x)|2dx dt

for φ ∈ C∞c (G), T ∈ R, ℵ ∈ R and (ψε0)ε>0 a bounded family of L∞(R, L2(G)) which satisfies

(1.2) ∃s, Cs > 0, ∀ε > 0 εs‖(−∆G)
s
2ψε0‖L2(G) + ε−s‖(−∆G)−

s
2ψε0‖L2(G) ≤ Cs,

so that the oscillations of the initial data are exactly of size 1/ε. Taking into account that the
operator ∆G is homogeneous of degree 2 and writing

t

εℵ
∆G =

t

εℵ+2
ε2∆G,

we choose ℵ > −2. Considering the asymptotics ε → 0 then consists in doing an analysis in large
times (times of sizes O

(
ε−ℵ−2

)
) simultaneously with the study of the dispersion of the concentration

or oscillation effects that are present in the initial data. A consequence of our main results is the
next theorem where we denote by M+(Z) the set of finite positive Radon measures on a locally
compact Hausdorff set Z (see Definition 2.7 for L∞(R,M+(Z))).
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Theorem 1.1. Let G be a H-type group and (ψε0)ε>0 a bounded family of L2(G) satisfying (1.2).

Any weak limit of the measure |ei
t

2εℵ
∆Gψε0(x)|2dx dt is of the form d%t(x) ⊗ dt where t 7→ %t is a

map in L∞(R,M+(G)). Moreover, for almost all t ∈ R, the measure %t writes

%t = %v
∗
t + %z

∗

t , with t 7−→ %z
∗

t and t 7−→ %v
∗
t in L∞(R,M+(G)),

and has the following properties.

• If ℵ ∈ (−2,−1), for all t ∈ R, %v
∗
t = %v

∗
0 and %z

∗

t = %z
∗

0 are independent of the time t ∈ R,

and %v
∗

0 + %z
∗

0 is equal to a weak limit of |ψε0(x)|2dx.

• If ℵ = −1, then %z
∗

t = %z
∗

0 where %z
∗

0 ∈M+(G) depends only on (ψε0), and

(1.3) %v
∗
t (x) =

∫
v∗
ς0 (Exp(t ω · V )x, dω) .

for ς0 ∈M+(G× v∗) which depends only on (ψε0).

• If ℵ ∈ (−1, 0), then %v
∗
t = 0 and ∂t%

z∗

t = 0 holds in the sense of distributions on R×G.

• If ℵ = 0, then %v
∗
t = 0 and %z

∗

t decomposes into

%z
∗

t =
∑
n∈N

∫
z∗\{0}

γn,t(x, dλ)

where t 7→ γn,t is in L∞(R,M+(G × (z∗ \ {0})); furthermore we have in the sense of
distributions on R×G× (z∗ \ {0}),(

∂t −
2n+ d

2|λ|
Z(λ)

)
γn,t = 0,

where Z(λ) is the left invariant vector field corresponding to λ ∈ z∗.
• If ℵ > 0, then %t = 0 for all t ∈ R.

Several aspects are interesting to notice. Firstly, there exists a threshold, ℵ = 0, above which
the weak limits of the time-averaged energy density is 0; this means that for sufficiently large
scale of times, all the concentrations and oscillations effects have disappeared: the dispersion is
complete. A similar picture holds in the Euclidean setting, however the threshold occurs at ℵ = −1
(see [2] and the Appendix in this article). This illustrates the fact that the dispersion is slower
in sub-Riemanian geometries than in Euclidean ones, as already noticed in [6, 13, 5]. Secondly,

one observes a decomposition of these weak limits into two parts %t = %v
∗
t + %z

∗

t which turn out to

have different transitional regimes: ℵ = −1 for %v
∗
t and ℵ = 0 for %z

∗

t . This splitting is also present
in the works [7] about Grushin-Schrödinger equation and [34, 10] about sublaplacians on contact
manifolds. The part %v

∗
t behaves like in the Euclidean setting and equation (1.3) also presents

Euclidean features. However, the other part %z
∗

t looks completely different and is specific to the
nilpotent Lie group context, showing that the structure of the limiting objects is more complex
than in the Euclidean case.

Similar questions have been addressed for the Laplace operator in different geometries, including
compact ones: in the torus and for integrable systems ([3, 2]), in Zoll manifolds (see [28, 25] and
the review [26]), or on manifolds such as the sphere ([27]). In contrast with the non-compact
case (which is ours here), the compactness of the manifold implies that the complete dispersion of
the energy is not possible; furthermore, the weak limits of the energy densities possess structural
properties due to the geometry of the manifold, such as invariance by some flows, that may allow
for their determination. For example, on compact Riemanian manifolds, such a measure belongs
to the set of measures which are invariant under the geodesic flow, and this property is at the root
of quantum ergodicity theorem [30, 9, 33] (see the introductory survey [1] and the articles [35, 14]
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for more recent developments in the topic). The question of quantum ergodicity also arises in sub-
riemanian geometries and have been addressed for contact [34, 10] and quasi-contact [29] manifolds.
As will be made precise in the next sections, we observe invariance properties by a flow that turns
out to coincide with the Reeb flow used in [34, 10] when G is the Heisenberg group.

Theorem 1.1 is a consequence of the main results of this paper which use the semi-classical
approach introduced in [16] for H-type Lie groups and are in the spirit of the article [25] for the
treatment of the large time evolution together with the oscillations. They are as follows:

(1) The first result is an Egorov’s type Theorem on H-type groups (see Theorem 2.5), which
describes as ε goes to 0 the asymptotics of quantities of the form

(1.4)

∫
R
θ(t)

(
e
−i t

2εℵ
∆GOpε(σ)e

i t

2εℵ
∆Gf, f

)
L2(G)

dt

for θ ∈ C∞c (R), f ∈ L2(G) and where the operator Opε(σ) is the semi-classical operator of
a symbol σ as introduced in [16] (see also [15, 19, 4, 32]) All these elements are carefully
explained in Section 2.

(2) The second result concerns the structure of the limiting objects when passing to the limit
in (1.4). We extend the notion of semi-classical measure introduced in [16] to a time-
dependent context and analyze the properties of the semi-classical measures associated in

that manner with the family (e
i t

2εℵ
∆Gψε0)ε, depending on the value of ℵ. We give a complete

description of these limiting objects in Theorems 2.8 and 2.10 below.

The proof of Theorem 1.1 is based on the fact that, under certain hypothesis on the size of the
oscillation, the analysis of the weak limits of the energy density can be deduced from those of its
semi-classical measures, which are also called quantum limits in some geometric contexts. This
idea was introduced in the 90’s in the Euclidean case (see [12, 20, 24]), and adapted for H-type
groups in [16]. The hypothesis on the size of the oscillation of (ψε0)ε is a uniform strict ε-oscillation
property (see Section 5.2) which guarantees that the oscillations are of sizes ε−1 and is implied
by the condition in (1.2). Then, using the semi-classical pseudodifferential operators constructed

in [16], we determine the semi-classical measures that are associated with the family e
i t

2εℵ
∆Gψε0 and

prove Theorem 1.1.

A straightforward generalization of our result would consist in adding a scalar potential εθV (x)
for a smooth function V defined on G and a parameter θ ∈ R+. Then, one could exhibit regimes
depending on the position of θ with respect to ℵ and the vector fields to consider should be
modified in a non-trivial manner. One should then consider operations on symbols σ(x, λ) that
involve differentials of the potential V (x) and difference operators acting on the operator part of
σ(x, λ). A second generalization would be to consider more general stratified and graded groups.
This would require to obtain in this more general setting similar results to those of Appendix B
which at the moment heavily rely on the special case of H-type groups. However, the authors think
this is doable and they have this generalization in mind. They also think that this approach can
be adapted to homogeneous spaces.

In the next section, we recall the definition of H-type groups and present our two main results
shortly described above, the Egorov theorem 2.5 and the analysis of the semi-classical measures
associated with a family of the Schrödinger equation in Theorem 2.10. After some preliminary
results on semi-classical symbols in Section 3, we prove both theorems in Section 4. Theorem 1.1
is a consequence of this analysis and is proved in Section 5. An Appendix is devoted to a short
description of the Euclidean case and to some technical auxiliary results.
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2. Main results

2.1. H-type groups, notations and definitions. A simply connected Lie group G is said to be
stratified of step 2 if its Lie algebra g is equipped with a vector space decomposition

g = v⊕ z ,

such that [v, v] = z 6= {0} and z is the center of g. Via the exponential map

exp : g→ G

which is a diffeomorphism from g to G, one identifies G and g as a set and a manifold. Under
this identification, the group law on G (which is generally not commutative) is provided by the
Campbell-Baker-Hausdorff formula, and (x, y) 7→ xy is a polynomial map. More precisely, if x =
Exp(vx + zx) and y = Exp(vy + zy) then

xy = Exp(v + z), v = vx + vy ∈ v, z = zx + zy +
1

2
[vx, vy] ∈ z.

If x = Exp(v) then x−1 = Exp(−v). We may identify g with the space of left-invariant vector fields
via

Xf(x) =
d

dt
f(Exp(tX)x)

∣∣∣∣
t=0

, x ∈ G.

For any λ ∈ z? (the dual of the center z) we define a skew-symmetric bilinear form on v by

(2.1) ∀U, V ∈ v , B(λ)(U, V ) := λ([U, V ]) .

Following [23], we say that G is of H-type (or of Heisenberg type) when, once the inner products
on v and on z are fixed, the endomorphism of this skew symmetric form (that we still denote by
B(λ)) satisfies

(2.2) ∀λ ∈ z∗, B(λ)2 = −|λ|2Idv.

This implies in particular that the dimension of v is even. We set

dim v = 2d, dim z = p.

2.1.1. Orthonormal basis of g. One can find an orthonormal basis (P1, . . . , Pd, Q1, . . . , Qd) where
B(λ) is represented by

(2.3) B(λ)(U, V ) = |λ|U tJV, where J =

(
0 Id
−Id 0

)
.

for two vectors U, V ∈ v written in the (P1, . . . , Pd, Q1, . . . , Qd)-basis. We decompose v in a λ-
depending way as v = pλ + qλ with

p := pλ := Span
(
P1, . . . , Pd

)
, q := qλ := Span

(
Q1, . . . , Qd

)
.

The fundamental property (2.2) satisfied by B(λ) considered as an endomorphism on v implies that
for all V ∈ v, |B(λ)V |2v = |λ|2|V |2v, and, by linearization, we deduce

∀U,U ′ ∈ v, ∀λ, λ′ ∈ z∗, (B(λ)U,B(λ′)U ′)v = (λ, λ′)z∗(U,U
′)v.

As (B(λ)U,B(λ′)U ′)v = (λ, [U,B(λ′)U ′]〉z∗,z, we deduce for any λ ∈ z∗ \ {0}

(2.4) ∀j = 1, . . . , d, [Pj , Qj ] = |λ|−1Z(λ),

where Z(λ) is the unique vector of z equal to λ through the identification of z∗ to z via the inner
product, and for all 1 ≤ j1, j2 ≤ d
(2.5) j1 6= j2 =⇒ [Pj1 , Pj2 ] = 0, [Qj1 , Qj2 ] = 0, [Pj1 , Qj2 ] = 0.
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2.1.2. Realisation of the elements in G. Denoting by z = (z1, · · · , zp) the coordinate of Z in a fixed
orthonormal basis (Z1, · · · , Zp) of z, and once given λ ∈ z∗, we will often use the writing of an
element x ∈ G or X ∈ g as

(2.6) x = Exp(X), X = p1P1 + . . .+ pdPd + q1Q1 + . . .+ qdQd + z1Z1 + . . .+ zpZp,

where p = (p1, · · · , pd) are the λ-dependent coordinates of P on the vector basis (P1, · · · , Pd),
by q = (q1, · · · , qd) those of Q on (Q1, · · · , Qd), while the coordinates z = (z1, · · · , zp) of Z are
independent of λ. We will also fix an orthonormal basis (V1, . . . , V2d) of v to write the coordinates

v = (v1, . . . , v2d), of an element V = v1V1 + . . .+ v2dV2d

of v independently of λ.

2.1.3. Functional spaces on G. The inner products on v and z allow us to consider the Lebesgue
measure dv dz on g = v⊕ z. Via the identification of G with g by the exponential map, this induces
a Haar measure dx on G. This measure is invariant under left and right translations:

∀f ∈ L1(G) , ∀x ∈ G ,
∫
G
f(y)dy =

∫
G
f(xy)dy =

∫
G
f(yx)dy .

Note that the convolution of two functions f and g on G is given by

(2.7) f ∗ g(x) :=

∫
G
f(xy−1)g(y)dy =

∫
G
f(y)g(y−1x)dy

and as in the Euclidean case we define Lebesgue spaces by

‖f‖Lq(G) :=

(∫
G
|f(y)|q dy

) 1
q

,

for q ∈ [1,∞), with the standard modification when q =∞.

We define the Schwartz space S(G) as the set of smooth functions on G such that for all α, β
in N2d+p, the function x 7→ xβXαf(x) belongs to L∞(G), where Xα denotes a product of |α|
left invariant vector fields forming a basis of g and xβ a product of |β| coordinate functions on
G ∼ v× z. The Schwartz space S(G) can be naturally identified with the Schwartz space S(R2d+p);
in particular, it is dense in Lebesgue spaces.

2.1.4. Dilations. Since G is stratified, there is a natural family of dilations on g defined for t > 0
as follows: if X belongs to g, we decompose X as X = V + Z with V ∈ v and Z ∈ z and we set

δtX := tV + t2Z .

This allows us to define the dilation on the Lie group G via the identification by the exponential
map:

g
δt−→ g

exp ↓ ↓ exp

G
exp ◦ δt ◦ exp−1

−→ G

To simplify the notation, we shall still denote by δt the map exp ◦ δt ◦ exp−1. The dilations δt,
t > 0, on g and G form a one-parameter group of automorphisms of the Lie algebra g and of the
group G. The Jacobian of the dilation δt is tQ where

Q := dim v + 2dim z = 2d+ 2p

is called the homogeneous dimension of G. A differential operator T on G (and more generally
any operator T defined on C∞c (G) and valued in the distributions of G ∼ R2d+p) is said to be
homogeneous of degree ν (or ν-homogeneous) when T (f ◦ δt) = tν(Tf) ◦ δt.
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2.2. The irreducible unitary representations and the Fourier transform.

2.2.1. Irreducible unitary reresentations. For λ ∈ z∗ \{0}, the irreducible unitary representation πλx
of G on L2(pλ) is defined by

πλxΦ(ξ) = exp

[
iλ(z) +

i

2
|λ| pq + i

√
|λ| ξq

]
Φ
(
ξ +

√
|λ|p

)
,

where x has been written as in (2.6). The representations πλ, λ ∈ z∗ \{0}, are infinite dimensional.
The other unitary irreducible representations of G are given by the characters of the first stratum
in the following way: for every ω ∈ v∗, we set

π0,ω
x = eiω(V ), x = Exp(V + Z) ∈ G, with V ∈ v and Z ∈ z.

The set Ĝ of all unitary irreducible representations modulo unitary equivalence is then parametrized
by (z∗ \ {0}) t v∗:

(2.8) Ĝ = {class of πλ : λ ∈ z∗ \ {0}} t {class of π0,ω : ω ∈ v∗}.

We will often identify each representation πλ with its equivalence class; in this case, we may writeHλ
for the Hilbert space of the representation instead of L2(pλ) ∼ L2(Rd); we also set H(0,µ) = C. Note

that the trivial representation 1
Ĝ

corresponds to the class of π(0,ω) with ω = 0, i.e. 1
Ĝ

:= π(0,0).

2.2.2. The Fourier transform. In contrast with the Euclidean case, the Fourier transform is defined

on Ĝ and is valued in the space of bounded operators on L2(pλ). More precisely, the Fourier
transform of a function f in L1(G) is defined as follows: for any λ ∈ z∗, λ 6= 0,

f̂(λ) := Ff(λ) :=

∫
G
f(x)

(
πλx

)∗
dx ,

Note that for any λ ∈ z∗, λ 6= 0, we have
(
πλx
)∗

= πλx−1 and the map πλx is a group homomorphism

from G into the group U(L2(pλ)) of unitary operators of L2(pλ), so functions f of L1(G) have
a Fourier transform (F(f)(λ))λ which is a bounded family of bounded operators on L2(pλ) with
uniform bound:

(2.9) ‖Ff(λ)‖L(L2(pλ)) ≤
∫
G
|f(x)|‖(πλx)∗‖L(L2(pλ))dx = ‖f‖L1(G).

since the unitarity of πλ implies ‖(πλx)∗‖L(L2(pλ)) = 1.

2.2.3. Plancherel formula. The Fourier transform can be extended to an isometry from L2(G) onto
the Hilbert space of measurable families A = {A(λ)}(λ)∈z∗\{0} of operators on L2(pλ) which are
Hilbert-Schmidt for almost every λ ∈ z∗ \ {0}, with norm

‖A‖ :=

(∫
z∗\{0}

‖A(λ)‖2HS(L2(pλ))|λ|
d dλ

) 1
2

<∞ .

We have the following Fourier-Plancherel formula:

(2.10)

∫
G
|f(x)|2 dx = c0

∫
z∗\{0}

‖Ff(λ)‖2HS(L2(pλ))|λ|
d dλ ,

where c0 > 0 is a computable constant. This yields an inversion formula for any f ∈ S(G)
and x ∈ G:

(2.11) f(x) = c0

∫
z∗\{0}

Tr
(
πλxFf(λ)

)
|λ|d dλ ,
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where Tr denotes the trace of operators of L(L2(pλ)). This formula makes sense since for f ∈ S(G),

the operators Ff(λ), λ ∈ z∗ \ {0}, are trace-class and
∫
z∗\{0}Tr

∣∣∣Ff(λ)
∣∣∣ |λ|d dλ is finite.

2.2.4. Fourier transform and finite dimension representations. Usually, the Fourier transform of a

locally compact group G would be defined on Ĝ, the set of unitary irreducible representations of G
modulo equivalence, via

f̂(π) = Ff(π) =

∫
G
f(x)π(x)∗dx,

for a representation π of G, and then considering the unitary equivalence we obtain a measur-

able field of operators Ff(π), π ∈ Ĝ. Here, the Plancherel measure is supported in the subset

{class of πλ : λ ∈ z∗ \ {0}} of Ĝ (see (2.8)) since it is c0|λ|ddλ. This allows us to identify Ĝ
and z∗ \ {0} when considering measurable objects up to null sets for the Plancherel measure. How-
ever, our semiclassical analysis will lead us to consider objects which are also supported in the other

part of Ĝ. For this reason, we also set for ω ∈ v∗ and f ∈ L1(G):

f̂(0, ω) = Ff(0, ω) :=

∫
G
f(x)(π(0,ω)

x )∗dx =

∫
v×z

f(Exp(V + Z))e−iω(V )dV dZ.

2.2.5. Convolution and Fourier operators. The Fourier transform sends the convolution, whose
definition is recalled in (2.7), to composition in the following way:

(2.12) F(f ? g)(λ) = Fg(λ) Ff(λ) .

We recall that a convolution operator T with integrable convolution kernel κ ∈ L1(G) is defined by
Tf = f ∗ κ and we have F(Tf) = FκFf by (2.12); hence, T appears as a Fourier multiplier with
Fourier symbol Fκ acting on the left of Ff . Consequently, T is invariant under left-translation
and bounded on L2(G) with operator norm

‖T‖L(L2(G)) ≤ sup
λ∈Ĝ
‖Fκ(λ)‖L(L2(pλ)).

In other words, T is in the space L(L2(G))G of the left-invariant bounded operators on L2(G).

2.2.6. The von Neumann algebra of the group. Let us denote by L∞(Ĝ) the space of bounded

symbols, that is, here, measurable fields of operators σ = {σ(λ) : λ ∈ Ĝ} which are bounded in the
sense that the essential supremum for the Plancherel measure c0|λ|ddλ

‖σ‖
L∞(Ĝ)

:= supess
λ∈Ĝ‖σ‖L(Hλ)

is finite. The space L∞(Ĝ) is naturally equipped with a von Neummann algebra, and is called the

von Neumann algebra of the group. As explained above, we already know L∞(Ĝ) ⊃ FL1(G) by
(2.9), but this inclusion is strict.

The full Plancherel theorem [11] implies that the von Neumann algebras L∞(Ĝ) and the space
L(L2(G))G of left-invariant bounded operators on L2(G) introduced above are isomorphic via the
mapping σ 7→ Op1(σ) where Op1(σ) is the operator with Fourier operator symbol σ,

i.e. F (Op1(σ)f) = σ Ff, f ∈ L2(G).

The isomorphism between L∞(Ĝ) and L(L2(G))G allows us to naturally extend the group Fourier
transform to distributions κ ∈ S ′(G) such that the convolution operator f 7→ f ∗ κ is bounded on
L2(G) by setting that F(κ) is the symbol of the corresponding operator in L(L2(G))G.
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2.2.7. Infinitesimal representations and Fourier transforms of left-invariant vector fields. The group
Fourier transform can also be extended to certain classes of distributions whose convolution oper-
ators yield left-invariant operators. Indeed, denoting by π(X) the infinitesimal representation of π
at X ∈ g, i.e. π(X) = d

dtπ(Exp(tX))|t=0, we have

F(Xf)(π) = π(X)Ff(π);

here, (the class of) π is equal to (the class of) πλ or π(0,ω) identified with λ or ω respectively. For
instance, we have for j = 1, . . . , p

F(Zjf)(λ) = iλjFf(λ), or in other words πλ(Zj) = iλj .

We also compute for any λ ∈ z∗ \ {0}

(2.13) πλ(Pj) =
√
|λ|∂ξj , πλ(Qj) = i

√
|λ|ξj and πλ(Z(λ)) = i|λ|2,

and for ω ∈ v? and j ∈ {1, · · · , p},

(2.14) π0,ω(Vj) = iωj and π0,ω(Z(λ)) = 0.

The infinitesimal representation of π extends to the universal enveloping Lie algebra of g that we
identify with the left invariant differential operators on G. Then for such a differential operator T
we have F(Tf)(π) = π(T )Ff(π) and we may write π(T ) = F(T ). For instance, if as before Xα
denotes a product of |α| left invariant vector fields forming a basis of g, then

F(Xαf)(π) = π(X )αFf(π) and F(Xα) = F(X )α.

Note that π(X )α may be considered as a field of unbounded operators on Ĝ defined on the smooth
vectors of the representations [19].

2.3. The sublaplacian. The sublaplacian on G is defined by

∆G :=
2d∑
j=1

V 2
j .

One checks easily that ∆G is a differential operator which is left invariant and homogeneous of
degree 2. In this paper, we shall consider its associated Schrödinger equation

i∂tψ = −1

2
∆Gψ, ψt=0 = ψ0.

The operator ∆G is essentially self-adjoint on C∞c (G) (see [19, Section 4.1.3] or [31, Proof of Lemma
12.1]), so the Schrödinger equation has a unique solution for any data ψ0 ∈ L2(G) by Stone’s
theorem. We keep the same notation for its unique self-adjoint (unbounded) extension to L2(G).
More precisely, to deal with high-frequencies data, we shall be concerned with the semi-classical
Schrödinger equation

(2.15) iετ∂tψ
ε = −ε

2

2
∆Gψ

ε, (ψε)|t=0 = ψε0,

where ε > 0 is a small parameter taking into account the size of the oscillations of the initial data
and τ > 0 is a parameter allowing us to consider large time behaviour, and as the same time the
asymptotics ε→ 0.

The definition of ∆G is independent of the chosen orthonormal basis for v - although it depends
on the scalar product that we have fixed at the very beginning on v. In particular, choosing the
basis fixed in Section 2.1 for any λ ∈ z∗ \ {0} we have

(2.16) ∆G =
d∑
j=1

(P 2
j +Q2

j ).
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The infinitesimal representation (or Fourier transform) of ∆G can be computed thanks to the

equalities in (2.13), (2.14) and (2.16): at π(0,ω), ω ∈ v∗, it is the number

F(−∆G)(0, ω) = |ω|2,

and at πλ, λ ∈ z∗ \ {0}, it is the operator

(2.17) F(−∆G)(λ) = H(λ),

where H(λ) is defined on L2(Rd) through the identification pλ ∼ Rd, by

(2.18) H(λ) = |λ|
∑

1≤j≤d

(
−∂2

ξj
+ ξ2

j

)
.

Up to a constant, this is the quantum harmonic oscillator. The spectrum {|λ|(2n + d), n ∈ N}
of H(λ) is discrete and the eigenspaces are finite dimensional. To each eigenvalue |λ|(2n + d), we

denote by Π
(λ)
n and V(λ)

n the corresponding spectral orthogonal projection and eigenspace. The
well-known description of the eigenspaces in terms of Hermite functions is recalled in Appendix B.

In particular, for each n ∈ N, all the eigenspaces V(λ)
n , λ ∈ z∗ \ {0}, are isomorphic, and may be

denoted by Vn.

2.4. Semi-classical pseudodifferential operators.

2.4.1. The space A0 of semi-classical symbols. We denote by A0 the space of symbols σ = {σ(x, π) :

(x, π) ∈ G× Ĝ} of the form

σ(x, λ) = Fκx(λ) =

∫
G
κx(z)(πλz )∗dz,

where x 7→ κx(·) is a smooth and compactly supported function from G to S(G). Being compactly
supported means that κx(z) = 0 for x outside a compact of G and any z ∈ G.

Remark 2.1. The algebra A0 is the space of smoothing symbols with compact support in x. We will
recall the definition of the space S−∞ of smoothing symbols introduced in [19] at the beginning of
Section 3.4 below. Examples of smoothing symbols include the spectrally defined symbols f(H(λ))
for any f ∈ S(R) [19, Chapter 4].

As the Fourier transform is injective, it yields a one-to-one correspondence between the symbol σ
and the function κ: we have σ(x, λ) = Fκx(λ) and conversely the Fourier inversion formula (2.11)
yields

∀x, z ∈ G, κx(z) = c0

∫
Ĝ

Tr
(
πλz σ(x, λ)

)
|λ|ddλ.

The set A0 is an algebra for the composition of symbols since if σ1(x, λ) = Fκ1,x(λ) and σ2(x, λ) =
Fκ2,x(λ) are in A0, then so is σ1(x, λ)σ2(x, λ) = F(κ2,x ∗ κ1,x)(λ) by (2.12).

In the case of representations of finite dimension, we distinguish between all the finite dimensional
representations by replacing λ = 0 with the parameters (0, ω), ω ∈ v∗. The operator Fκx(0, ω) =
σ(x, (0, ω)) then reduces to a complex number since H(0,µ) = C.

2.4.2. Semi-classical pseudodifferential operators. Given ε > 0, the semi-classical parameter, that
we use to weigh the oscillations of the functions that we shall consider, we quantify the symbols of
A0 by setting as in [15] (see also [19, 4, 32])

(2.19) Opε(σ)f(x) = c0

∫
Ĝ

Tr
(
πλxσ(x, ε2λ)Ff(λ)

)
|λ|d dλ, f ∈ S(G).
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The kernel of the operator Opε(σ) is the function

G×G 3 (x, y) 7→ κεx(y−1x)

where κεx(z) = ε−Qκx (δε−1z) and κx, which is such that F(κx)(λ) = σ(x, λ), is called the convolu-

tion kernel of σ. Note that ε2λ can be understood as the action on λ of the dilation induced on Ĝ
by the dilation δε of G (see Remark 3.3 in [15]).

Following [15], the action of the symbols in A0 on L2(G) is bounded:

∃C > 0, ∀σ ∈ A0, ∀ε > 0, ‖Opε(σ)‖L(L2(G)) ≤ C
∫
G

sup
x∈G
|κx(z)|dz.

One also has to mention that there exists a symbolic calculus for these operators (see [16]). In
this paper, we will mainly use the description of the commutator between the sub-Laplacian and a
semi-classical pseudodifferential operator, which comes from the explicit computation and writes:
for all σ ∈ A0,

(2.20) [−ε2∆G,Opε(σ)] = Opε ([H(λ), σ]) − 2εOpε

(
V · πλ(V )σ

)
− ε2Opε (∆Gσ) ,

where H(λ) = F(−∆G) has been defined in (2.17) and (2.18).

2.4.3. The subspace AH of A0. The Egorov Theorem that we are going to state in the next section is
valid for symbols compactly supported with respect to both the Fourier transform and the spectral
decomposition of H(λ):

Definition 2.2. A symbol σ ∈ A0 is in AH when it vanishes for λ in a neighbourhood of {λ = 0}
and when its kernel and image contain a finite number of Vn, in the sense that we have

∀(x, λ) ∈ G× (z∗ \ {0}) Π(λ)
n σ(x, λ) Π

(λ)
n′ = 0,

for all but a finite number of integers n, n′ ∈ N.

One checks readily that AH is a subalgebra of A0. It is non-trivial since it contains for instance all
the symbols of the form a(x)f(H(λ))b(λ) where a ∈ C∞c (G), f ∈ C∞c (R) and where b ∈ S(z∗) vanish
in a neighbourhood of 0 (see Remark 2.1); for other symbols in AH , see Remark 3.13. Although
AH cannot be dense in A0 for the Fréchet topology of A0, we will see in Corollary 3.11 that it
satisfies a property of weak density. Besides, symbols σ ∈ AH can be decomposed in commuting
and non-commuting symbols according to the following definition.

Definition 2.3. With the setting of Defintion 2.2, the symbol σ ∈ AH is called H-diagonal when

σ(x, λ) =
∑

n∈N Π
(λ)
n σ(x, λ) Π

(λ)
n and anti-H-diagonal when σ(x, λ) =

∑
n6=n′ Π

(λ)
n σ(x, λ) Π

(λ)
n′ . We

denote by A(d)
H the space of H-diagonal symbols.

Lemma 2.4. A symbol σ ∈ AH is uniquely decomposed as the sum σ = σ(d)+σ(a) of an H-diagonal
symbol σ(d) ∈ AH with an anti-H-diagonal symbol σ(a) ∈ AH . Furthermore, for each n, n′ ∈ N, the
symbol ΠnσΠn′ given by

(ΠnσΠn′)(x, λ) =

{
Π

(λ)
n σ(x, λ) Π

(λ)
n′ for (x, λ) ∈ G× z∗ \ {0},

0 for x ∈ G and λ = 0,

is in AH .

Lemma 2.4 will be a consequence of Corollary 3.9, see Remark 3.10.
10



2.5. The Egorov Theorem on H-type groups. For s ∈ R, we define the flow Ψs on G×(z∗\{0})
via

(2.21) Ψs :

{
G× (z∗ \ {0}) −→ G× (z∗ \ {0})

(x, λ) 7−→
(
Exp(sZ(λ))x, λ

) .

In particular, this map may be composed with symbols with support in G× (z∗ \ {0}) such as the

symbols in AH . This and Lemma 2.4 allows us to define the following action on A(d)
H :

(2.22) Φs :

{
A(d)
H −→ A(d)

H

σ =
∑

n ΠnσΠn 7−→ Φs(σ) =
∑

n(ΠnσΠn) ◦Ψ
2n+d
2|λ| s

, s ∈ R.

Theorem 2.5. Let (ψε0)ε>0 be a bounded family in L2(G) and ψε(t) = eiε
2−τ t∆Gψε0 be the solution

to (2.15). Let σ = σ(d) + σ(a) ∈ AH be decomposed into H-diagonal and anti-H-diagonal as in
Lemma 2.4. Let θ ∈ C∞c (R).

(i) For the anti-H-diagonal part, we have∫
R
θ(t)

(
Opε(σ

(a))ψε(t), ψε(t)
)
L2(G)

dt = O(εmin(τ,1)).

(ii) For the H-diagonal part, we have the following alternative:
(1) if τ ∈ (0, 2),∫

R
θ′(t)

(
Opε(σ

(d))ψε(t), ψε(t)
)
dt = O(εmin(1,2−τ)),

(2) if τ = 2, for all s ∈ R (transport)∫
R
θ(t)

(
Opε(σ

(d))ψε(t), ψε(t)
)
dt =

∫
R
θ(t+ s)

(
Opε(Φ

−s(σ(d)))ψε(t), ψε(t)
)
dt+O(ε),

(3) if τ > 2, for all s ∈ R (invariance)∫
R
θ(t)

(
Opε(σ

(d))ψε(t), ψε(t)
)
dt =

∫
R
θ(t)

(
Opε(Φ

−s(σ(d)))ψε(t), ψε(t)
)
dt+O(εmin(1,τ−2)).

In Parts (2) and (3), we use the action Φs defined in (2.22).

It may appear unusual to have an Egorov Theorem holding in the space of distributions in
the time variable. However, it is already the case in the Euclidean case when one works with

the propagator of a Schrödinger operator with matrix-valued potential − ε2

2 ∆ Id + V (x) with V
matrix-valued (see [22, 17, 18]). The proof of this Theorem is postponed until Section 4.

2.6. Time averaged semi-classical measures and the quantum limits. We now want to pass
to the limit ε → 0 in expressions of the form (1.4) and to identify the limiting objects, together
with their properties. For this purpose, we follow [15, Section 5] with slightly different notation
and introduce the following vocabulary for operator valued measures:

Definition 2.6. Let Z be a complete separable metric space, and let ξ 7→ Hξ a measurable field
of complex Hilbert spaces of Z.

• The set M̃ov(Z, (Hξ)ξ∈Z) is the set of pairs (γ,Γ) where γ is a positive Radon measure on Z
and Γ = {Γ(ξ) ∈ L(Hξ) : ξ ∈ Z} is a measurable field of trace-class operators such that

‖Γdγ‖M :=

∫
Z

TrHξ |Γ(ξ)|dγ(ξ) <∞.
11



• Two pairs (γ,Γ) and (γ′,Γ′) in M̃ov(Z, (Hξ)ξ∈Z) are equivalent when there exists a mea-
surable function f : Z → C \ {0} such that

dγ′(ξ) = f(ξ)dγ(ξ) and Γ′(ξ) =
1

f(ξ)
Γ(ξ)

for γ-almost every ξ ∈ Z. The equivalence class of (γ,Γ) is denoted by Γdγ, and the
resulting quotient set is denoted by Mov(Z, (Hξ)ξ∈Z).

• A pair (γ,Γ) in M̃ov(Z, (Hξ)ξ∈Z) is positive when Γ(ξ) ≥ 0 for γ-almost all ξ ∈ Z. In this

case, we may write (γ,Γ) ∈ M̃+
ov(Z, (Hξ)ξ∈Z), and Γdγ ≥ 0 for Γdγ ∈M+

ov(Z, (Hξ)ξ∈Z).

By convention and if not otherwise specified, a representative of the class Γdγ is chosen such
that TrHξΓ = 1. In particular, if Hξ is 1-dimensional, Γ = 1 and Γdγ reduces to the measure dγ.
One checks readily that Mov(Z, (Hξ)ξ∈Z) equipped with the norm ‖ · ‖M is a Banach space.

When the field of Hilbert spaces is clear from the setting, we may write

Mov(Z) =M(Z, (Hξ)ξ∈Z), and M+
ov(Z) =M+(Z, (Hξ)ξ∈Z),

for short. For instance, if ξ 7→ Hξ is given by Hξ = C for all ξ, thenM(Z) coincides with the space

of finite Radon measures on Z. Another example is when Z is of the form Z = Z1 × Ĝ where Z1

is a complete separable metric space, and H(z1,λ) = Hλ, where the Hilbert space Hλ is associated

with the representation of λ ∈ Ĝ (that is, using the description in (2.8), Hλ is equivalent to L2(pλ)
if the representation corresponds to λ ∈ z∗ \ {0} and H(0,ω) = C if λ = 0 and the representation
corresponds to (0, ω) with ω ∈ v∗).

We will often consider measurable bounded maps of the time variable, valued in the space of
measures that are positive as scalar-valued or operator-valued measures:

Definition 2.7. If X denotes the Banach space M(Z) or more generally Mov(Z) as in Definition
2.6, then L∞(R, X+) denotes the space of maps of t ∈ R and valued in X in L∞(R, X) with positive
values for almost every t ∈ R.

2.6.1. Time-averaged semi-classical measures. With a bounded family (uε)ε>0 in L∞(R, L2(G)),
we associate the quantities

(2.23) `ε(θ, σ) =

∫
R
θ(t) (Opε(σ)uε(t), uε(t))L2(G) dt, σ ∈ A0, θ ∈ L1(R),

the limits of which are characterized by a map in L∞(R,M+
ov(G× Ĝ)).

Theorem 2.8. Let (uε)ε>0 be a bounded family in L∞(R, L2(G)). There exist a sequence (εk)k∈N
in (0,+∞) with εk −→

k→+∞
0 and a map t 7→ Γtdγt in L∞(R,M+

ov(G× Ĝ)) such that we have for all

θ ∈ L1(R) and σ ∈ A,∫
R
θ(t)

(
Opεk(σ)uεk(t), uεk(t)

)
L2(G)

dt −→
k→+∞

∫
R×G×Ĝ

θ(t)Tr (σ(x, λ)Γt(x, λ)) dγt(x, λ)dt.

Given the sequence (εk)k∈N, the map t 7→ Γtdγt is unique up to equivalence. Besides,∫
R

∫
G×Ĝ

Tr (Γt(x, λ)) dγt(x, λ) dt ≤ lim sup
ε→0

‖uε‖L∞(R,L2(G)).

We call the map t 7→ Γtdγt satisfying Theorem 2.8 (for some subsequence εk) a time-averaged
semi-classical measure of the family (uε(t)). Note that we have not assumed any estimate of
the form (1.2) on the family uε in order to define its time averaged semi-classical measure; such
additional property will however be useful to determine the limits of the time-averaged densities
associated with uε in terms of time-averaged semi-classical measures, as we shall see in Section 5.
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Remark 2.9. (1) Note that this result can be generalised to any graded Lie group: for any
bounded family (uε)ε>0 in L∞(R, L2(G)), there exist a sequence (εk)k∈N in (0,+∞) with

εk −→
k→+∞

0 and a map t 7→ Γtdγt in L∞(R,M+
ov(G× Ĝ)) such that we have∫

R
θ(t)

(
Opεk(σ)uεk(t), uεk(t)

)
L2(G)

dt −→
k→+∞

∫
R×G×Ĝ

θ(t)Tr (σ(x, π)Γt(x, π)) dγt(x, π)dt,

for every θ ∈ C∞c (R) and σ ∈ A0.

(2) In the case of this article where G is H-type, the special structure of Ĝ implies that Γtdγt
consists of two pieces, one localized above λ ∈ z∗ \ {0} and another one which is scalar
above v∗, see (2.8).

2.6.2. Semi-classical measures and Schrödinger equation. Our main theorem regarding semi-classical
measures of solutions to the Schrödinger equation is the following:

Theorem 2.10. Let (ψε0)ε>0 be a bounded family in L2(G) and ψε(t) = eiε
2−τ t∆Gψε0 be the solution

to (2.15). Then any semi-classical measure t 7→ Γtdγt ∈ L∞(R,M+
ov(G × Ĝ)) as in Theorem 2.8

for the family uε(t) = ψε(t), satisfies the following additional properties:

(i) For almost every (t, x, λ) ∈ R×G× Ĝ, the operator Γt(x, λ) commutes with ∆̂G(λ) = H(λ):

(2.24) Γt(x, λ) =
∑
n∈N

Γn,t(x, λ) with Γn,t(x, λ) := Π(λ)
n Γt(x, λ)Π(λ)

n ,

where Πn is the homogeneous symbol given by the spectral projection of H(λ) for the eigen-
value |λ|(2n+ d) (see Section 2.3).

(ii) For each n ∈ N, the map (t, x, λ) 7→ Γn,t(x, λ)dγt(x, λ) defines a distribution on R×G×(z∗\
{0}) valued in the finite dimensional space L(Vn) which satisfies the following alternatives:
(1) if τ ∈ (0, 2),

∂t (Γn,t(x, λ)dγt(x, λ)) = 0,

(2) if τ = 2, (
∂t −

2n+ d

2|λ|
Z(λ)

)
(Γn,t(x, λ)dγt(x, λ)) = 0

where Z(λ) ∈ z is the vector corresponding to λ (see Section 2.1.1),
(3) if τ > 2, then the distribution Γn,tdγt is invariant under the flow of the vector field

Z(λ) and thus is equal to 0.
(iii) Above λ = 0, the map t 7→ ςt in L∞(R,M+(G× v∗)) defined via

dςt(x, ω) = Γt(x, (0, ω))dγt(x, (0, ω))1λ=0,

satisfies the following alternatives:
(1) if τ ∈ (0, 1), the map t 7→ ςt is constant from R to M+(G× v∗),
(2) if τ = 1, then the map t 7→ ςt is weakly continuous from R to M(G× v∗), and for all

t ∈ R
ςt(x, ω) = ς0 (Exp(t ω · V )x, ω) ,

where ω · V =
∑d

j=1 ωjVj ∈ g,

(3) if τ > 1, the measures ςt are invariant under the flow of the vector field ω · V and thus
supported on G× {ω = 0}.

The existence of the semi-classical measure Γtdγt follows from Theorem 2.8, while its additional
properties come from the fact that ψε(t) solves the Schrödinger equation. Point (i) of Theorem 2.8
is a consequence of (i) of Theorem 2.5. It will then appear that we will need to only use symbols
which commute with H(λ).
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Before closing this section, we discuss why the invariance of a semi-classical measure by vector
fields imply that it is 0 (as in (3) of (ii)) or that its support has special properties (as in (3) of (iii)).

Proof of Part (3) in (ii) and Part (3) in (iii). The invariance properties have consequences that
have been already studied in the Euclidean case in [8, Lemma 3.6]. We adapt them to the setting

of (3) of (ii) in the following way. First let N
Ĝ

: Ĝ→ [0,+∞) be defined via

N
Ĝ

(λ) :=

{ √
|λ| if λ 6= 0

|ω| if λ = (0, ω), ω ∈ v∗;

by [15, Section 2.3], it is continuous. We also define the usual quasi-norm on G via

|Exp(V + Z)| = (|X|4 + |Z|2)1/4, with V ∈ v and Z ∈ z.

We can now define the continuous function N : G× Ĝ→ [0,+∞) with

N(x, λ) = (|x|4 +N
Ĝ

(λ)4)1/4.

Let x = Exp(V + Z) ∈ G with V ∈ v and z ∈ z. In view of

Exp(sZ(λ))x = Exp(V + Z + sZ(λ))

we deduce

|Exp(sZ(λ))x|4 = |V |4 + |Z + sZ(λ)|2 +N
Ĝ

(λ)4.

As a consequence, if K is any compact subset of G × (z∗ \ {0}), then there exist constants
α1, β1, α2, β2, s0 > 0 such that

∀s ≥ s0, ∀(x, λ) ∈ K α1|s|1/2 − β1 < |Exp(sZ(λ))x| < α2|s|1/2 + β2,

which is enough for the proof of Lemma 3.6 in [8]. The measure Tr(Γt)dγt which is invariant under
the flow Ψs is 0 above K.
A similar argument can be performed for (3) of (iii) since the only invariant set by the action of Ξs

is the set G× {0} and if K is a compact subset of G× v∗ such that K ∩ (G× {0}) = ∅, then there
exists α1, β1, α2, β2, s0 > 0 such that for s ≥0,

α2|s| − β2 < |Exp(s ω · V )x)| < α2|s|+ β2.

Therefore, the measure ςt(x, ω) is supported on G× {ω = 0}. �

3. The C∗-algebra A associated with semi-classical symbols

In this section we introduce the C∗-algebra formalism which can be associated with semi-classical
symbols. The properties of this algebra, introduced in Section 3.1 are at the roots of our analysis and
allow us to prove Theorem 2.8 in Section 3.2. The proofs of Theorems 2.5 and 2.10 will use several

ingredients. First, it requires the analysis of the symbolic properties of the eigenprojectors Π
(λ)
n

performed in Section 3.4. Then, in order to pass to the limits in the relations of the Egorov
theorem 2.5, we will need to approximate general symbols in A0 by symbols belonging to the class
AH , which is done in Section 3.5. Finally, it will use symbols that commute with H, the space of
which is studied in Section 3.6.
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3.1. The C∗-algebra A and its states. We introduce the algebra A which is the closure of A0

for the norm ‖ · ‖A given by

(3.1) ‖σ‖A := sup
(x,λ)∈G×Ĝ

‖σ(x, λ)‖L(L2(pλ)).

Clearly, A is a sub-C∗-algebra of the tensor product of the commutative C∗-algebra C0(G) of

continuous functions on G vanishing at infinity together with L∞(Ĝ).
It turns out that one can identify its spectrum in the following way:

Proposition 3.1. The set A is a separable C∗-algebra of type 1. It is not unital but admits an

approximation of identity. Besides, if π0 ∈ Ĝ and x0 ∈ G, then the mapping{
A0 −→ L(Hλ0)
σ 7−→ σ(x0, π0)

extends to a continuous mapping ρx0,π0 : A → L(Hπ0) which is an irreducible non-zero representa-
tion of A. Furthermore, the mapping{

G× Ĝ −→ Â
(x0, π0) 7−→ ρx0,π0

is a homeomorphism which allows for the identification of Â with G× Ĝ.

The proof follows the lines of [15, Section 5]. It utilises the fact that, by definition, the C∗ algebra
C∗(G) of the group G is the closure of FS(G) for sup

λ∈Ĝ ‖ ·‖L(Hλ) and that the spectrum of C∗(G)

is Ĝ. This implies readily that A may be identified with the C∗-algebra of continuous functions
which vanish at infinity on G and are valued on C∗(G) and that its spectrum is as described in
Proposition 3.1. Furthermore, the algebraic span of the symbols of the form τ(x, λ) = a(x)b(λ) with
a(x) in C∞c (G) and the Fourier multiplier b(λ) in S−∞ is dense in A. Notice that their boundedness
is easier to obtain since Opε(τ) simply is the composition of the operator of multiplication by a(x)
and of the Fourier multiplier b(ε2λ), and one has

(3.2) ‖Opε(τ)‖L(L2(G)) ≤ sup
x∈G,λ∈Ĝ

‖τ‖L(L2(pλ)).

We can also describe the states of the C∗-algebra A.

Proposition 3.2. If ` is a state of the C∗-algebra A, then there exists a pair (γ,Γ) unique up to

its equivalence class in M+
ov(G× Ĝ) which satisfies

(3.3)

∫
G×Ĝ

Tr (Γ(x, λ)) dγ(x, λ) = 1,

and

(3.4) ∀σ ∈ A `(σ) =

∫
G×Ĝ

Tr (σ(x, λ)Γ(x, λ)) dγ(x, λ).

Conversely, if Γ dγ ∈M+
ov(G× Ĝ) satisfies (3.3), then the linear form ` defined via (3.4) is a state

of A.

Proof. This proposition is a corollary of Proposition 4.1 in [16]. Its proof follows the lines of [15,
Section 5] and is performed in details in the Appendix of [16]. �

The description of the states of the C∗-algebra A yields the following corollary:

Corollary 3.3. The topological dual A∗ of A may be identified as a Banach space withMov(G×Ĝ)
in the following way:
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• If ` : A → C is a continuous linear form, then there exists a unique element Γdγ ∈
Mov(G× Ĝ) satisfying (3.4).
• Conversely, (3.4) defines a continuous linear form ` on A.

Moreover, we have the following properties:

(1) ‖`‖A∗ = ‖Γdγ‖M.
(2) Γdγ ≥ 0 if and only if `(σ) ≥ 0 for every positive element σ in the C∗-algebra A.
(3) ` is a state if and only if Γdγ ≥ 0 and (3.3) holds.

3.2. Time dependent states and the proof of Theorem 2.8. With this precise description
of the topological dual A∗, one can now consider functionals defined on C∞c (R)×A0.

Proposition 3.4. Let ` : C∞c (R)×A0 → C be a non-zero bilinear map satisfying

(3.5) ∀σ ∈ A0, ∀θ ∈ C∞c (R), `(θ, σ) ≤ ‖σ‖A‖θ‖L1(R),

and

(3.6) ∀σ ∈ A0, ∀θ ∈ C∞c (R), `(|θ|2, σ∗σ) ≥ 0,

Then ` extends uniquely to a continuous bilinear map ` : L1(R) × A → C for which we keep the

same notation. Furthermore, there exists a unique map t 7→ Γtdγt in L∞(R,M+
ov(G×Ĝ)) satisfying

‖Γtdγt‖M = 1 for almost all t ∈ R, and:

∀σ ∈ A, ∀θ ∈ L1(R), `(θ, σ) =

∫
R
θ(t)

∫
G×Ĝ

Tr (σ(x, λ)Γt(x, λ)) dγt(x, λ) dt.

Proof. The estimate in (3.5) implies that the bilinear map ` extends uniquely into a continuous
bilinear map on L1(R) × A for which we keep the same notation. Furthermore, for each σ ∈ A,
we identify the continuous linear map θ 7→ `(θ, σ) on the Banach space L1(R) with the function
`σ ∈ L∞(R) given via

∀θ ∈ L1(R) `(θ, σ) =

∫
R
θ(t) `σ(t) dt.

Note that ‖`σ‖L∞(R) ≤ ‖σ‖A and that the map σ 7→ `σ is a linear mapping on A to L∞(R). Hence,
we can view the map L : t 7→ (σ 7→ `σ(t)) as a measurable bounded map from R to the Banach
space A∗. Moreover, the assumption in (3.6) implies that

∀θ ∈ C∞c (R)

∫
R
|θ(t)|2`σ∗σ(t)dt = `(|θ|2, σ∗σ) ≥ 0,

hence `σ∗σ(t) ≥ 0 for almost every t ∈ R. In other words, σ 7→ `σ(t) is a state for almost every
t ∈ R. Hence, the map L ∈ L∞(R,A∗) is valued in the set of state of A. Corollary 3.3 with the

identification of A∗ with Mov(G× Ĝ) allows us to conclude. �

With these concepts in mind, one can now sketch the proof of Theorem 2.8 as its arguments are
an adaptation of the ones in [15, 16].

Sketch of proof of Theorem 2.8. If lim supε→0 ‖uε‖L∞(R,L2(G)) = 0, then the map given by Γtdγt = 0
for all t ∈ R answers our problem. Hence, by dividing uε by lim supε→0 ‖uε‖L∞(R,L2(G)) if necessary,
we can assume that

lim sup
ε→0

‖uε‖L∞(R,L2(G)) = 1.

We then consider the quantities `ε(θ, σ) defined in (2.23) and we observe the three following facts:

(1) For any θ ∈ C∞c (R) and σ ∈ A0, the family `ε(θ, σ) is bounded and there exists a subsequence
(εk(σ))k∈N such that `εk(σ)(θ, σ) has a limit `(θ, σ).
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(2) Using the separability of C∞c (R) × A0 and a diagonal extraction, one can find a sequence
(εk)k∈N such that for all θ ∈ C∞c (R) and σ ∈ A0, the sequence (`εk(θ, σ))k∈N has a limit
`(θ, σ) and the sequence (‖uεk‖L∞(R,L2(G)))k∈N converges to 1.

(3) The map (θ, σ) 7→ `(θ, σ) constructed at point (2) satisfies (3.6). It also satisfies (3.5) for
symbols of the form τ(x, λ) = a(x)b(λ), see (3.2), therefore for all σ ∈ A (since the algebraic
span of such τ is dense in A, see Section 3).

We conclude with Proposition 3.4. �

3.3. Some comments on time-dependent states. The result in Proposition 3.4 calls for some
comments which will not be used in the following paper but are of interest in themselves. Indeed,
with a straightforward adaptation of the arguments given for the proof of Proposition 3.1, we obtain
an analogue description for the closure of C∞(J)⊗A0 if J is a compact interval, and of C∞c (R)⊗A0

if J = R. Note first that in both cases, the closure is for the norm

‖τ‖C0(J,A) := inf

∑
j

‖θj‖L∞(J)‖σj‖A : τ =
∑
j

θjσj

 ,

and we identify them respectively with the C∗-algebra C(J,A) of continuous functions on J valued
in A when J is a compact interval and with the Banach space C0(R,A) of continuous functions
on R valued in A and vanishing at infinity when J = R. In order to unify the presentation, we may
write C0(J,A) for C(J,A) when J is a compact interval of R.

Then, an analysis similar to the one of the proof of Proposition 3.1 gives that the C∗-algebra
C0(J,A) for J compact interval and for J = R is a separable C∗-algebra of type 1. It is not unital

but admits an approximation of identity. Its spectrum may be identified with J ×G× Ĝ. Its states

may be identified with the elements Γ dγ in M+
ov(J ×G× Ĝ) satisfying∫

J×G×Ĝ
Tr (Γ(t, x, λ)) dγ(t, x, λ) = 1,

via

∀σ ∈ C0(J,A) `(σ) =

∫
J×G×Ĝ

Tr (σ(t, x, λ)Γ(t, x, λ)) dγ(t, x, λ).

Finally, a map ` : C∞c (R) × A0 → C as in Proposition 3.4. extends uniquely into a continuous
linear map on L1(R) × A, and also into a state of C(J,A) up to the normalisation |J | for any
compact interval. Using the characterisation above and the uniqueness, we can define a pair

(γ,Γ) ∈ M̃+
ov(R×G× Ĝ), unique up to equivalence, such that

∀σ ∈ A0, ∀θ ∈ C∞c (R), `(θ, σ) =

∫
R×G×Ĝ

θ(t) Tr (σ(x, λ)Γ(t, x, λ)) dγ(t, x, λ);

here γ is a measure on R×G× Ĝ. This is a weaker result than the one obtained in Proposition 3.4,
which states that the measure above is absolutely continuous with respect to dt, and this explains
why we proceed in this manner.

Note that we can proceed as in Proposition 3.2 and Corollary 3.3 to obtain a description of the
dual of C0(J,A) that we will use later on:

Corollary 3.5. The topological dual C0(J,A)∗ of C0(J,A) may be identified as a Banach space

with Mov(J ×G× Ĝ) in the following way:

• If ` : C0(J,A) → C is a continuous linear form, then there exists a unique element Γdγ ∈
Mov(J ×G× Ĝ) satisfying (3.4).
• Conversely, (3.4) defines a continuous linear form ` on C0(J,A).
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Moreover, we have the following properties:

(1) ‖`‖C0(J,A)∗ = ‖Γdγ‖M.
(2) Γdγ ≥ 0 if and only if `(σ) ≥ 0 for all any positive element σ in the C∗ algebra C0(J,A).

3.4. Symbolic properties of the eigenprojectors. In this section, we analyse the fields of the

spectral projectors Π
(λ)
n of H(λ). We use the notion of homogeneous symbols introduced in [15]

(see Definition 4.1 therein).
Following [19] (Section 5.2 for any graded nilpotent Lie group and Section 6.5 for the Heisenberg

group), the class Sm of symbols of order m in G consists of fields of operators σ(x, λ) such that for
each α, β ∈ Nn and γ ∈ R we have

(3.7) sup
x∈G,λ∈Ĝ

‖(Id +H(λ))
[α]−m+γ

2 Xβ
x∆ασ(x, λ)(Id +H(λ))−

γ
2 ‖L(Hλ) <∞.

Using the dilation induced on Ĝ by the one of G, one defines for m ∈ R, m-homogeneous fields of

operators σ(x, λ) by asking that σ(x, ε·λ) = εmσ(x, λ) for all x ∈ G, almost all λ ∈ Ĝ and dε-almost
all ε > 0 (in the preceding formula, ε · λ = ε2λ for λ ∈ z∗ and ε · (0, ω) = (0, εω) for ω ∈ v∗). In
parallel to what is done in the Euclidean setting, one then defines regular m-homogeneous symbols
as the set Ṡm of m-homogeneous fields of operators σ(x, λ) which satisfy for any α, β ∈ Nn, γ ∈ R:

(3.8) sup
λ∈Ĝ
x∈G

‖H(λ)
[α]−m+γ

2 Xβ
x∆ασ(x, λ)H(λ)−

γ
2 ‖L(Hλ) <∞.

In both the inhomogeneous and homogeneous case, it was proved that an equivalent characteri-
sation is (3.7) and (3.8) respectively, for all α, β but only γ = 0.

Proposition 3.6. Let n ∈ N. The spectral projectors Π
(λ)
n associated with H(λ), λ ∈ z∗ \{0}, form

a field Πn of operators which is a homogeneous symbol in Ṡ0.
Consequently, for any function ψ ∈ C∞(R) with ψ ≡ 0 on (−∞, 1/2) and ψ ≡ 1 on (1,+∞),

ψ(H)Πn is in S0. Moreover, for every λ ∈ z∗ \ {0}, ψ(uH(λ))Πn converges to Πn in the strong
operator topology (SOT) of L2(pλ) as u→ 0. Furthermore, ψ(uH)Πn converges to Πn in SOT for

L∞(Ĝ) as u→ 0.

Remark 3.7. A remark on the notations: we shall use Πn when denoting the field of operators

acting on L2(pλ) and write Π
(λ)
n when some λ ∈ z∗ is fixed.

The proof of Proposition 3.6 relies on the spectral expression:

(3.9) Π(λ)
n =

1

2iπ

∮
Cn

(|λ|−1H(λ)− z)−1dz,

where Cn is any circle of the complex plane with centre 2n + d and radius ρ ∈ (0, 2), and the
following lemma:

Lemma 3.8. The field of operators |λ|IL2(pλ), λ ∈ z∗ \ {0}, yields a homogeneous regular symbol

in Ṡ2.

Proof of Lemma 3.8. The first thing to notice is that |λ|H(λ)−1 is a bounded operator (as a self-
adjoint operator with bounded eigenvalues). Then, we look at ∆q|λ|IL2(pλ). The kernel correspond-

ing to the symbol |λ|IL2(pλ) is the distribution δv=0⊗F−1
z |λ|, so the corresponding convolution oper-

ator on G acts only on the central component. Furthermore ∆q|λ|IL2(pλ) = 0 for q = vj . For q = zk,

∆q|λ|IL2(pλ) is up to a constant the group Fourier transform of the distribution δv=0 ⊗ F−1
z ∂λk |λ|,
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so

sup
λ∈z∗\{0}

‖∆q|λ|IL2(pλ)‖L(L2(pλ) = ‖f 7→ f ∗
(
δv=0 ⊗F−1

z ∂λk |λ|
)
‖L(L2(G))

≤ ‖g 7→ g ∗
(
F−1
z ∂λk |λ|

)
‖L(L2(z)) = sup

λ∈z∗\{0}
∂λk |λ| <∞.

For q = zjzk, ∆q|λ|IL2(pλ) is up to a constant the group Fourier transform of the distribution

δv=0 ⊗F−1
z ∂λj∂λk |λ|. We see that for q = zk, [q] = 2 and

H(λ)−1+
[q]
2 ∆q|λ| = ∆q|λ|.

Therefore

sup
λ∈z∗
‖H(λ)−1+

[q]
2 ∆q|λ|IL2(pλ)‖L(L2(pλ)) <∞.

Recursively, we obtain for any monomial q, we have the estimates required by (3.8):

sup
λ∈z∗
‖H(λ)−1+

[q]
2 ∆q|λ|IL2(pλ)‖L(L2(pλ)) <∞,

where [q] denotes the degree of homogeneity of q. This shows Lemma 3.8. �

Proof of Proposition 3.6. In order to show that the field of operators consisting of the Π
(λ)
n is in Ṡ0,

it suffices to show that (H(λ)− |λ|z)−1 is in Ṡ2 with uniform semi-norms estimates of the form (3.8)
with respect to z ∈ Cn because of (3.9), Lemma 3.8 and(

|λ|−1H(λ)− z
)−1

= |λ| (H(λ)− |λ|z)−1 .

The rest of the statement will then follow by [15] (see Section 4.2 therein).

The semi-norms estimates of the form (3.8) with α = β = 0 and γ = 0 are satisfied for all z ∈ Cn
with

sup
λ∈z∗\{0}

‖H(λ) (H(λ)− |λ|z)−1 ‖L(L2(pλ)) ≤ sup
n∈N

2n+ d

2n+ d− ρ
<∞.

For q = vj or zk, since ∆qIL2(pλ) = 0, the Leibniz formula implies

∆q (H(λ)− |λ|z)−1 = − (H(λ)− |λ|z)−1 ∆q (H(λ)− |λ|z) (H(λ)− |λ|z)−1 .

Note that

∆q (H(λ)− |λ|z) = ∆qH(λ)− z∆q|λ|IL2(pλ),

and that both terms in the right-hand side are in Ṡ2−[q] (for the first one see [15], Example 4.5, for

the second by Lemma 3.8), so ∆q (H(λ)− |λ|z) ∈ Ṡ2−[q]. This and the estimates above yield that

‖H(λ)1+
[q]
2 ∆q (H(λ)− |λ|z)−1 ‖L(L2(pλ))

≤ ‖H(λ) (H(λ)− |λ|z)−1 ‖2L(L2(pλ)) ‖H(λ)
[q]
2 ∆q (H(λ)− |λ|z)H(λ)−1‖L(L2(pλ)),

so its supremum over λ 6= 0 is finite. Proceeding recursively shows (H(λ)− |λ|z)−1 ∈ Ṡ−2 and thus

(|λ|−1H(λ) − z)−1 ∈ Ṡ0, with uniform semi-norms estimates with respect to z ∈ Cn. This yields
Part (1). �
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3.5. Approximation of H-diagonals and anti-H-diagonals symbols. We now use the sym-

bolic properties of Section 3.4 for the projections Π
(λ)
n to decompose symbols as described in

Lemma 2.4.
We first notice that if σ = {σ(λ), λ ∈ Ĝ} ∈ S−∞ is a smoothing symbol independent of x, we

can then define the symbol σ(n,n′) := ΠnσΠn′ for each n, n′. For n = n′, σ(n,n′) commutes with H;
for general pairs of integers (n, n′), it satisfies

H(λ)σ(n,n′)(λ) = |λ|(2n+ d)σ(n,n′)(λ) and σ(n,n′)H(λ) = |λ|(2n′ + d)σ(n,n′)(λ).

However, σ(n,n′) is usually not smoothing but may be weakly approximated by the smoothing
symbols ψ(uH)ΠnσΠn′ψ(uH) with u→ 0 with ψ as in Proposition 3.6.

Proposition 3.6 allows us to modify the previous construction to symbols which also depend on
x ∈ G in order to obtain the following weak approximation of the Πn-projections of smoothing
symbols:

Corollary 3.9. We fix a smooth function ψ : R→ [0, 1] satisfying ψ ≡ 0 on (−∞, 1/2) and ψ ≡ 1
on (1,+∞). Let σ ∈ S−∞.

(1) For each n, n′ ∈ N and u ∈ (0, 1], the symbol

(3.10) σ(n,n′,u) := ψ(uH)ΠnσΠn′ψ(uH)

is smoothing, i.e. σ(n,n′,u) ∈ S−∞. Moreover, for every x ∈ G and λ ∈ z∗\{0}, σ(n,n′,u)(x, λ)

converges to σ(n,n′)(x, λ) := Πnσ(λ)Πn′ in SOT of L2(pλ) as u → 0; and σ(n,n′,u)(x, ·)
converges to σ(n,n′) = Πnσ(x, ·)Πn′ in SOT for L∞(Ĝ) as u→ 0, for every x ∈ G.

(2) If σ ∈ A0, then σ(n,n′,u) ∈ A0 for every n, n′ ∈ N and u ∈ (0, 1).
(3) If σ is supported in K× (z∗ \{0}) with K a compact of G and vanish identically near λ = 0,

then σ(n,n′,u) ∈ AH for every n, n′ ∈ N and u ∈ (0, 1).

(4) If σ ∈ AH , we can write σ as the finite sum σ =
∑

n,n′ σ
(n,n′) and for u small enough we

have σ(n,n′) = σ(n,n′,u).
(5) If σ ∈ A then σ(n,n′,u) ∈ A for every n, n′ ∈ N and u ∈ (0, 1). If in addition σ is a positive

element in the C∗-algebra A, then so is σ(n,n′,u) for n = n′.

Proof. Part (1) follows from Proposition 3.6 and [15]. Parts (2), (3) and (4) follows from Part (1).

Let σ ∈ A. Since σ 7→ σ(n,n′,u) is linear and ‖σ(n,n′,u)(x, ·)‖
L∞(Ĝ)

≤ ‖σ(x, ·)‖
L∞(Ĝ)

, σ(n,n′,u) ∈ A.

Furthermore, for any σ ∈ A, (σ∗σ)(n,n,u) is positive in C0(G) ⊗ L∞(Ĝ), therefore also in A. This
shows Part (5). �

Remark 3.10. Note that Part (4) of Corollary 3.9 proves Lemma 2.4.

The same ideas also gives the approximations of symbols in A0 by symbols in AH :

Corollary 3.11. Let σ ∈ A0. Then there exists a sequence (σn)n∈N of symbols in AH converging
to σ in the following sense:

• for each λ ∈ z∗ \ {0}, we have the convergence σn(x, λ) −→ σ(x, λ) in SOT of L2(pλ) as
n→ +∞ uniformly in x ∈ G, and

• we have the convergence σn(x, ·) → σ(x, ·) in SOT of L∞(Ĝ) as n → +∞ uniformly in
x ∈ G.

Corollary 3.11 follows from Proposition 3.6 and Proposition 4.6 of [15] together with a smooth
cut-off in λ ∈ z∗. The latter property is granted by the following lemma:

Lemma 3.12. Let σ ∈ A0.

(1) For any g ∈ S(z∗), the symbol given by g(λ)σ(x, λ) is in A0.
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(2) Let (gn)n∈N ⊂ C∞c (z∗\{0}) be a sequence of functions which are bounded by 1 and converges
to the constant function 1 pointwise. Then (gnσ(x, ·))n∈N converges to σ(x, ·) in SOT of

L∞(Ĝ) uniformly in x ∈ G.

Proof. Let κσ be the kernels associated with the symbols which may be identified with a map in
C∞c (G;S(G)). Part (1) follows from the kernel κg associated with the symbol g(λ) being the central
distribution δv=0⊗F−1

z g and the kernel associated with g(λ)σ being κg ∗ κσ. Part (2) follows from
the Lebesgue dominated convergence theorem and the Plancherel formula. �

Remark 3.13. If σ = {σ(x, π), (x, π) ∈ G×Ĝ} ∈ S−∞, then constructing as above ψ(uH)ΠnσΠnψ(uH)
yields a smoothing symbol commuting with H(λ). The closure of their span form a much larger
class than the class of spectral multipliers of H(λ). Indeed, spectral multipliers are constant on the
vector sets Vn which is not the case of ψ(uH)ΠnσΠnψ(uH). The reader can refer to [19, Chapter
4] for considerations on symbols that are functions of H(λ).

3.6. The sub-C∗-algebra B of H-commuting symbols. In order to prove Theorem 2.10, we
shall use symbols in A which commute with H(λ). The set B of such symbols satisfies the following
properties:

Lemma 3.14. Let B be the sub-C∗-algebra of A consisting of symbols σ ∈ A which commute with

H(λ), i.e. σ(x, λ)H(λ) = H(λ)σ(x, λ) for almost every (x, λ) ∈ G× Ĝ.

(1) The space B contains the symbols of the form a(x)σ(λ) with a ∈ C∞c (G) and σ smoothing
and commuting with H(λ), and the algebraic span of these symbols are dense in B.

(2) The states of B are in one-to-one correspondence as in Proposition 3.2 with the measures

Γdγ ∈M+
ov(G× Ĝ) such that Γ =

∑
n∈N ΠnΓΠn.

Proof of Lemma 3.14. Part (1) is readily checked. Let us prove Part (2). Let ` be a state of B. For
any N ∈ N and u ∈ (0, 1), Part (5) of Corollary 3.9 implies that

`N,u(σ) :=

N∑
n=0

`(σ(n,n,u)),

defines a continuous linear functional `N,u on A which is a state or 0. We denote by ΓN,udγN,u ∈
M+

ov(G × Ĝ) the measure corresponding to `N,u by Proposition 3.2. We observe that for any
N1 ≤ N2 and 2u1 < u2 < u3/2

`u1,N1(σ) = `u2,N2(

N1∑
n=0

σ(n,n,u3)).

The uniqueness in Proposition 3.2 implies that there exists Γdγ ∈M+
ov(G×Ĝ) of mass 1, commuting

with H(λ) and such that ΓN,udγN,u =
∑N

n=0 ψ(uH)ΠnΓΠn′ψ(uH)dγ. This implies Part (2). �

It readily follows from Lemma 3.14 that the pure states of the C∗-algebra B are given either by
|v〉〈v| δx0⊗δπλ0 for some v ∈ Vn when λ0 ∈ z∗ \{0} and x0 ∈ G, or by δx0⊗δπ(0,ω0) for some ω0 ∈ v∗

and x0 ∈ G. One can thus describe easily the dual of B by identification with the subset

S := {(x, λ0, n) ∈ G× Ĝ× N : n = 0 if λ0 6∈ z∗ \ {0}} of G× Ĝ× N.

4. Proof of Theorems 2.5 and 2.10

The core of our results are Theorems 2.5 and 2.10 from which Theorem 1.1 will derive in Section
5.3, so we focus on these two first statements. Their proofs rely on a careful analysis of the
commutator [Opε(σ), ε2∆G] based on Equation (2.20). Considering anti-H-commuting symbols in
Section 4.1 allows us to prove first Point (i) of both Theorems 2.5 and 2.10. We successively prove
Points (ii) of the two theorems in Sections 4.2 and (iii) of Theorem 2.10 in Section 4.3 respectively.
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4.1. Spectral decomposition of the time-averaged semi-classical measure. Here, we prove
Part (i) of Theorems 2.10 and 2.5, together with equation (2.24). We take σ ∈ A0. The Schrödinger
equation (2.3) yields

iετ
d

dt
(Opε(σ)ψε(t), ψε(t))L2(G) =

([
Opε(σ),−ε

2

2
∆G

]
ψε(t), ψε(t)

)
L2(G)

.

By use of (2.20), we obtain

1

2
(Opε ([σ,H(λ)]ψε(t), ψε(t))L2(G) =

1

2

([
Opε(σ),−ε2∆G

]
ψε(t), ψε(t)

)
L2(G)

+O(ε) +O(ε)

=
i

2
ετ
d

dt
(Opε(σ)ψε(t), ψε(t))L2(G) +O(ε).

Therefore,

(4.1)

∫
R
θ(t) (Opε ([σ,H(λ)])ψε(t), ψε(t))L2(G) dt = O(ετ ) +O(ε).

4.1.1. Proof of Theorem 2.10 (i). Firstly, taking the limit as ε → 0 in (4.1) for a subsequence
defining a semi-classical measure Γtdγt, it gives for all σ ∈ A0 and for all θ ∈ C∞c (R),∫

R
θ(t)

∫
G×Ĝ

Tr ([σ(x, λ), H(λ)] Γt(x, λ)) dγt(x, λ)dt = 0.

We apply this to any symbol σ(n,n′,u) ∈ A0 given by (3.10), see Corollary 3.9. By Corollary 3.5,

this implies that the element in Mov(R×G× Ĝ) given by

[H(λ) , Πn′ψ(uH(λ))Γt(x, λ)ψ(uH(λ))Πn] dγtdt

is zero. For any pair of integers with n 6= n′, taking u → 0 implies that Πn′ΓtΠn = 0 for almost

every (x, λ) ∈ G× Ĝ, this shows Point (i) of Theorem 2.10. As Γt is a positive compact operator,
it admits the spectral decomposition (2.24).

4.1.2. Proof of Theorem 2.5 (i). Secondly, we can apply (4.1) for the symbols

σ̃(g,n,n′,u)(x, λ) := g(λ)(2|λ|(n− n′))−1σ(n,n′,u)

where σ(n,n′,u) is as above and g ∈ S(z∗) supported away from 0; by Lemma 3.12, this symbol is
indeed in A0. We obtain that for n 6= n′∫

R
θ(t)

(
Opε

(
gσ(n,n′,u)

)
ψε(t), ψε(t)

)
L2(G)

dt = O(εmin(1,τ)).

This implies Point (i) of Theorem 2.5 for σ ∈ AH by taking g ∈ C∞c (z∗ \ {0}) identically 1 on the

λ-support of σ, and u small enough so that σ(n,n′) = σ(n,n′,u) where σ =
∑

n,n′ σ
(n,n′) with the

notation of Corollary 3.9 Part (2).

4.1.3. A more precise computation. In order to prove the rest of Theorems 2.5 and 2.10, we write
down more precisely the equalities we have obtained above using (2.20)

iετ
d

dt
(Opε(σ)ψε(t), ψε(t))L2(G) =

1

2
(Opε [σ,H(λ)]ψε(t), ψε(t))L2(G)(4.2)

− ε
(

Opε

(
V · πλ(V )σ

)
ψε(t), ψε(t)

)
L2(G)

− ε2

2
(Opε (∆Gσ)ψε(t), ψε(t))L2(G) .
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It is actually convenient to use the notation `ε(θ, σ) introduced in (2.23). By Theorem 2.8, we
know that up to extraction of a subsequence εk, `ε(θ, σ) has a limit that we denote by `∞(θ, σ).
With these notations, equation (4.2) writes

(4.3) − iετ `ε(θ′, σ) =
1

2
`ε (θ, [σ,H(λ)])− ε`ε

(
θ, V · πλ(V )σ

)
− ε2

2
`ε (θ,∆Gσ) .

4.2. Proof of (ii) Theorems 2.10 and 2.5. In this paragraph, we prove Parts (ii) in Theo-
rems 2.10 and 2.5. We consider symbols supported away from λ = 0 and commuting with H(λ).
We are going to use some properties that are summarised in the following technical lemma, the
proof of which is in Appendix B.

Lemma 4.1. If σ0 ∈ A0 commutes with H and if g ∈ S(z∗) is supported away from 0, then the
symbol σ ∈ A0 given via σ(x, λ) = g(λ)σ0(x, λ) satisfies the following properties:

(1) The symbol σ1 given via

σ1(x, λ) =
−1

2i|λ|

d∑
j=1

(
Pjπ

λ(Qj)−Qjπλ(Pj)
)
σ(x, λ)

is in A0.
(2) For any (x, λ) ∈ G× Ĝ,

[σ1(x, λ), H(λ)] = V · πλ(V )σ(x, λ).

(3) For any n ∈ N, (x, λ) ∈ G× Ĝ,

Πn(V · πλ(V )σ1(x, λ))Πn =
1

4

(
(2n+ d)i|λ|−1Z(λ) −∆G

)
Πnσ(x, λ)Πn.

4.2.1. The case τ ∈ (0, 2) - Proof of Part (ii) (1) of Theorems 2.10 and 2.5. Continuing with the
setting of Lemma 4.1, its parts (1) and (2) together with equation (4.3) applied to the symbol σ1

yield the development of the term:

`ε

(
θ, V · πλ(V )σ

)
= `ε (θ, [σ1, H(λ)])

= −2iετ `ε(θ
′, σ1) + 2ε`ε(θ, V · πλ(V )σ1) + ε2`ε(θ,∆Gσ1).

Plugging this into (4.3) shows that we have

`ε(θ
′, σ) = iε−τ

(
−ε`ε

(
θ, V · πλ(V )σ

)
− ε2

2
`ε (θ,∆Gσ)

)
= 2ε`ε(θ

′, σ1)− 2iε2−τ `ε(θ, V · πλ(V )σ1)− i

2
ε2−τ `ε (θ,∆Gσ)− iε3−τ `ε(θ,∆Gσ1)(4.4)

= O(ε) +O(ε2−τ ).

Proceeding as in Section 4.1, this implies the case τ ∈ (0, 2), i.e. (ii) Part (1) of Theorems 2.10
and 2.5.

4.2.2. A more precise computation. Before focusing on the cases τ ≥ 2, let us make more explicit
the computation in Section 4.2.1 (which is valid for any τ) by setting for any σ as in Lemma 4.1:

(4.5) jε(θ, σ) := 2`ε(θ, V · πλ(V )σ1) +
1

2
`ε(θ,∆Gσ).

Rewriting (4.4), we obtain

(4.6) jε(θ, σ) = iετ−2`ε(θ
′, σ)− 2iετ−1`ε(θ

′, σ1) + ε`ε(θ,∆Gσ1).
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Theorem 2.5 (i) and Lemma 4.1 (3) together with (4.5) give for any σ ∈ AH ,

(4.7) jε(θ, σ) = i
∑
n∈N

`ε

(
θ,

2n+ d

2|λ|
Z(λ)ΠnσΠn

)
+O(εmin(1,τ)),

as the terms in ∆G cancel each other.

We set for any σ as in Lemma 4.1:

j∞(θ, σ) := lim
εk→0

jεk(θ, σ).

Theorem 2.8 and (4.6) imply

(4.8) j∞(θ, σ) = 0 when τ > 2,

while passing to the limit by Theorem 2.8, we have for any τ > 0:

(4.9) j∞(θ, σ) =

∫
R
θ(t)

∫
G×Ĝ

i
∞∑
n=0

2n+ d

2|λ|
Tr
((
Z(λ)Πnσ(x, λ)Πn

)
Γn,t(x, λ)

)
dγt(x, λ)dt.

4.2.3. Proof of Parts (2) and (3) of Theorem 2.5 (ii). We now consider σ ∈ A(d)
H . We may assume

that σ = ΠnσΠn for some fixed n ∈ N.

In the case τ = 2, the computations in Section 4.2.2 give (using first equation (4.6) and then (4.7))

d

ds
`ε
(
θ(·+ s), σ ◦Ψ

− 2n+d
2|λ| s

)
= `ε

(
θ′(·+ s), σ ◦Ψ

− 2n+d
2|λ| s

)
+ `ε

(
θ(·+ s),−2n+ d

2|λ|
Z(λ)σ ◦Ψ

− 2n+d
2|λ| s

)
= −ijε(θ(·+ s), σ ◦Ψ

− 2n+d
2|λ| s) + `ε

(
θ(·+ s),−2n+ d

2|λ|
Z(λ)σ ◦Ψ

− 2n+d
2|λ| s

)
+ O(ε)

= O(ε).

An integration over s shows Part (1).

Part (3) for τ > 2 is proved in a similar manner: using again (4.6) and (4.7)

d

ds
`ε

(
θ, σ ◦Ψ

− 2n+d
2|λ| s

)
= `ε

(
θ,−2n+ d

2|λ|
Z(λ)σ ◦Ψ

− 2n+d
2|λ| s

)
(4.10)

= ijε

(
θ, σ ◦Ψ

− 2n+d
2|λ| s

)
+O(ε) = O(εmin(1,τ−2)).

This concludes the proof of Theorem 2.5.

4.2.4. Proof of Part (2) of Theorem 2.10 (ii). Here τ = 2. For any σ ∈ AH satisfying σ = ΠnσΠn

for some fixed n ∈ N, the considerations in Section 4.2.2 (see equations (4.4), (4.5) and (4.9)) give

`∞(θ′, σ) = `∞

(
θ,

2n+ d

2|λ|
Z(λ)σ

)
if τ = 2.

The weak density of AH in A0 (see Corollary 3.9) implies that Part (2) of Theorem 2.10 (ii).
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4.2.5. Proof of Part (3) Theorem 2.10 (ii). Here τ > 2. For any σ ∈ AH satisfying σ = ΠnσΠn for
some fixed n ∈ N, passing to the limit in (4.10) give (in view of (4.8))

`∞(θ, |λ|−1Z(λ)σ) = 0.

The weak density of AH in A0 (see Corollary 3.9) implies that Γn,t(x, λ)dγt(x, λ) is invariant

under Z(λ) away from λ = 0. As this is true for every n ∈ N, the measure 1λ 6=0Tr(Γt)dγt =
1λ6=0

∑
n∈N Tr(Γn,t)dγt is invariant under the flow Ψs defined in (2.21). This concludes the proof

of Theorem 2.10 (ii) in view of the discussion at the end of Section 2.6.2.

4.3. Proof of Theorem 2.10 (iii). We recall that the measure Γtdγt is scalar above {λ = 0},
and we can define the measure dςt(x, ω) := Γt(x, (0, ω))dγt(x, (0, ω))1λ=0. In order to compute this
measure, we observe the following fact.

Lemma 4.2. The map σ 7→ σ|G×{λ=0} is a C∗ algebra morphism from A to C0(G × v∗). This
map as well as its restriction to the sub-C∗-algebra B of H-commuting symbols (see Section 3.6)
are surjective.

We observe that the map Θ : σ 7→ σ|G×{λ=0} maps A0 on C∞c (G;S(v∗)) in the following way

Θ(σ)(x, ω) := σ(x, (0, ω)) =

∫
G
κx(v, z)e−iω·vdvdz,

where we write σ ∈ A0 as σ(x, λ) = κ̂x(λ) with the map x 7→ κx in C∞c (G;S(G)). In fact,
Θ(A0) = C∞c (S(v∗)) and we can easily construct a right inverse via

(x 7→ φx(ω)) 7−→ FG(F−1
v∗ φx F

−1
z∗ χ(z)),

where χ ∈ C∞c (z∗) with χ(0) = 1. From this, we easily check that Θ extends to a C∗-algebra mor-
phism from A onto C0(G× v∗). However, we now give below another argument for the surjectivity
of Θ which has the advantage that it also holds for its restriction to B.

Proof of Lemma 4.2. Using the notation just above, Θ : σ 7→ σ|G×{λ=0} maps A0 on C∞c (G;S(v∗))
and extends to a C∗-algebra morphism from A to C0(G × v∗). The set Θ(A) is a sub-C∗-algebra
of C0(G× v∗), their spectrum are included accordingly with equality if and only if they are equal.
Any state of C0(G× v∗) is given by a measure inM+(G× v∗) which may be viewed as an operator

valued measure in M+
ov(G × Ĝ) vanishing on G × {λ 6= 0}. This shows that the spectrum of the

commutative algebra Θ(A) is G× v∗, so Θ(A) = C0(G× v∗). The same argument holds for B. �

For any θ ∈ C∞c (R) and any σ ∈ A0 ∩ B, we decompose the integrals in `∞(θ′, σ) and `∞(θ, V ·
πλ(V )σ) over G× Ĝ as the sum of two integrals, one over G×{λ 6= 0} and one over G×{λ = 0} ∼
G × v∗. The two integrals over G × {λ 6= 0} are zero by Part (ii) and by Lemma 4.1 respectively.
Then, using this when passing to the limit in (4.3), we have the following alternatives.

(1) If τ ∈ (0, 1), the relation `∞(θ′, σ) = 0 gives

∀σ ∈ A0 ∩ B
∫
R
θ′(t)

∫
G×v∗

σ(x, (0, ω))dςt(x, ω)dt = 0,

whence ∂tςt = 0 in the sense of distributions by Lemma 4.2.
(2) If τ = 1, using (2.14), we obtain `∞(θ′, σ) = `∞(θ, V · πλ(V )σ), whence∫

R
θ′(t)

∫
G×v∗

σ(x, (0, ω))dςt(x, ω)dt =

∫
R
θ(t)

∫
G×v∗

ω · V σ(x, (0, ω))dςt(x, ω)dt,

from which we deduce in the sense of distributions by Lemma 4.2

∂tςt = ω · V ςt.
25



(3) If τ > 1, using again (2.14) and Lemma 4.2 yields `∞(θ, V · πλ(V )σ) = 0 and this implies
that the measure ςt(x, ω) is invariant under the flow Ξs, s ∈ R, defined by

Ξs :

{
G× v∗ −→ G× v∗

(x, ω) 7−→ (Exp(s ω · V )x, ω) =
(

Exp
(
s
∑d

j=1 ωjVj

)
x, ω

)
.

And this invariance translates in terms of localisation of the support of ςt in view of the
discussion of the end of Section 2.6.2, whence Part (iii) (3) of Theorem 2.10 .

In the situation when τ ∈ (0, 1], Part (iii) (1) and (2) of Theorem 2.10 comes from the resolution of
the transport equations satisfied by ςt by using the continuity of t 7→ ςt that is proved in the next
section. This concludes the proof of Theorem 2.10.

4.4. An improvement in the case τ ∈ (0, 1]. Here, we show the following improvement for the
case τ ∈ (0, 1]:

Proposition 4.3. Assume τ ∈ (0, 1] and consider, as in Theorem 2.10, a semi-classical mea-

sure t 7→ Γtdγt ∈ L∞(R,M+
ov(G × Ĝ)) corresponding to the family of solutions of (2.15) for

an initial data (ψε0)ε>0 which is a bounded family in L2(G). Then, for any σ ∈ B, the map
t 7→

∫
G×Ĝ Tr(σΓt)dγt is locally Lipschitz on R.

The proof of Proposition 4.3 relies on (4.2) and Lemma 3.14.

Remark 4.4. (1) The weak continuity of the map t 7→ Γtdγt granted in Proposition 4.3 allows
us to solve the transport equations of (ii) Point (1), and so for (i) and (ii) Point (2).

(2) The proof of Proposition 4.3 implies that, under the assumptions of Proposition 4.3, if εk
is the sub-sequence realising a semi-classical measure Γtdγt, then we have for all t ∈ R

(4.11) ∀σ ∈ A(d)
H (Opε(σ)ψεk(t), ψεk(t)) −→

k→+∞

∫
G×Ĝ

Tr(σ(x, λ)Γt(x, λ))dγt(x, λ),

meaning that one can pass to the limit t-by-t and not only when averaged in time as in the
original statement of Theorem 2.10.

Proof of Proposition 4.3. For any σ ∈ B, (4.2) gives

(4.12)
d

dt
`ε,t(σ) = Oσ(ε1−τ ), where `ε,t(σ) := (Opε (σ)ψε(t), ψε(t)) ,

in the sense that we may assume the distribution t 7→ `ε,t(σ) to be continuous and even C1 on R
and that d

dt`ε,t(σ) is uniformly bounded with respect to t in a bounded interval of R and ε ∈ (0, 1).
Consider a sequence (εj)j∈N in (0, 1) converging to 0 as j → ∞. By the Arzéla-Ascoli theorem
and (4.12), we can extract a subsequence (εjk)k∈N such that, as k →∞, εjk → 0 and (`εjk ,·(σ))k∈N
converges to a continuous function t 7→ `t(σ) locally uniformly on R for all σ ∈ B (this requires to
consider a dense subset of B and a diagonal extraction procedure). We proceed as in the proof of
Theorem 2.8 (see also [15, 16]) using the C∗-algebra B with its properties in Lemma 3.14 instead

of A: either L := lim supk→0 ‖ψ
εjk
0 ‖L2(G) = 0 and `t = 0 or L−1`t is a state of B for each t ∈ R.

Let Γtdγt ∈Mov(G× Ĝ) with Γt =
∑

n∈N ΠnΓtΠn corresponding to `t. Up to a further extraction
of a converging subsequence (for which we keep the same notation), we may assume that Γtdγt
coincides with the semi-classical measure in Part (i) and Part (ii) (1) of Theorem 2.10, whence the
result. �

5. Uniform ε-oscillation and marginals of semi-classical measures

We prove here Theorem 1.1 in Section 5.3, using the notion of ε-oscillation explained in Sec-
tion 5.2, which allows to relate the weak limits of energy density and marginals of semi-classical
measures, that we first study in Section 5.1.
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5.1. Marginals of semi-classical measures. In this section, we describe the consequence of
Theorem 2.10 for the marginals of semi-classical measures for the solutions to the Schrödinger
equation. Let (ψε0)ε>0 be a bounded family of L∞(R, L2(G)), the associated semi-classical mea-
sure Γtdγt and subsequence εk given by Theorem 2.10 whose notation we use. We also consider
the corresponding measurable map t 7→ %t in L∞(R;M+(G)) given by the marginal on G of the
measure Tr (Γt(x, λ)) dγt(x, λ), that is, formally

%t :=

∫
Ĝ

Tr (Γt) dγt(x, dλ),

or more precisely, for all φ ∈ C∞c (G) and θ ∈ L1(R),∫
R×G

θ(t)φ(x)d%t(x)dt =

∫
R
θ(t)

∫
G×Ĝ

φ(x)Tr (Γt(x, λ)) dγt(x, λ) dt.

We define two measurable maps in L∞(R;M+(G)) via

%z
∗

t (x) :=

∫
z∗\{0}

1λ 6=0Tr Γt(x, λ)dγt(x, λ),

%v
∗
t (x) :=

∫
v∗

1λ=0Tr Γt(x, (0, ω))dγt(x, (0, ω)) =

∫
v∗
ςt(x, dω),

and, because of the decomposition of Ĝ recalled in Section 2.2.2, %t = %z
∗

t + %v
∗
t . Besides, Theo-

rem 2.10 directly implies the next proposition.

Proposition 5.1. In the setting just above, we have the following properties:

(1) If τ ∈ (0, 1], the maps t 7→ ρt, t 7→ ρz
∗

t and t 7→ ρv
∗
t are weakly continuous from R to M(G).

(2) The measures %z
∗

t satisfy the following properties:

(a) If τ ∈ (0, 2), ∂t%
z∗

t = 0 in the sense of distribution on R×G,
(b) If τ = 2,

%z
∗

t =
∑
n∈N

∫
z∗\{0}

γn,t(x, dλ) where γn,t(x, λ) := 1λ 6=0Tr Γn,t(x, λ)dγt(x, λ),

and in the sense of distributions on R×G× (z∗ \ {0}), we have(
∂t −

2n+ d

2|λ|
Z(λ)

)
γn,t = 0.

(c) If τ > 2, then %z
∗

t = 0,
(3) The measures %v

∗
t satisfy the following properties:

(a) If τ ∈ (0, 1), for all t ∈ R, %v
∗
t = %v

∗
0 .

(b) If τ = 1, for all t ∈ R, %v
∗
t (x) =

∫
v∗
ς0 (Exp(t ω · V )x, dω) .

(c) if τ > 1, %v
∗
t (x) = ςt(x, 0).

This statement is the core of the proof of Theorem 1.1 by use of the concept of ε-oscillation that
we now discuss.

5.2. ε-oscillating families. We stick here to a general framework and consider a family (uε(t))ε>0

bounded in L∞(R, L2(G)). Our aim is to link here the weak limits of the measure |uε(t, x)|2dxdt and
the semi-classical measures of the family (uε(t))ε>0. In analogy with [20] and Section 4.4 of [15] for
H-type groups, we introduce the notion of uniform strict ε-oscillations for time-dependent families
of L∞(R, L2(G)).
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Definition 5.2. Let (uε)ε>0 be a bounded family in L∞(R, L2(G)). We shall say that (uε) is
uniformly ε-oscillating when we have for all T > 0,

lim sup
ε→0

sup
t∈[−T,T ]

∥∥1−ε2∆G>Ru
ε(t)
∥∥
L2(G)

−→
R→+∞

0.

If moreover, we have
lim sup
ε→0

sup
t∈[−T,T ]

∥∥1−ε2∆G<δu
ε(t)
∥∥
L2(G)

−→
δ→0

0,

then the family (uε) is said to be uniformly strictly ε-oscillating.

The interest of the notion of ε-oscillation relies on the fact that it gives an indication of the
size of the oscillations that have to be taken into account. It legitimates the use of semi-classical
pseudodifferential operators and semi-classical measures in order to describe the time-averaged
densities (1.1) of these families. Indeed, we have the following proposition.

Proposition 5.3. (1) Let (uε) ∈ L∞(R, L2(G)) be a uniformly ε-oscillating family admitting
a time-averaged semi-classical measure t 7→ Γtdγt for the sequence (εk)k∈N. Then for all
φ ∈ C∞c (G) and θ ∈ L1(R),

lim
k→+∞

∫
R×G

θ(t)φ(x)|uεk(t, x)|2dxdt =

∫
R
θ(t)

∫
G×Ĝ

φ(x)Tr (Γt(x, λ)) dγt(x, λ) dt,

(2) If moreover (uε) is uniformly strictly ε-oscillating family, then the semi-classical measure
does not charge the trivial representation 1

Ĝ
in the sense that

γt(G× {1Ĝ}) = 0 for almost every t ∈ R.

Proof. Let φ ∈ C∞c (G) and let θ ∈ L1(R). We can write for any R > 0∫
R×G

θ(t)φ(x)|uε(t, x)|2dtdx = I1,ε,R + I2,ε,R,

where

Ij,ε,R :=

∫
R
θ(t) (Opε(σj,R)uε(t), uε(t))L2(G) dt, j = 1, 2,

with

σ1,R(x, λ) := φ(x)χ

(
ε2

R
H(λ)

)
and σ2,R(x, λ) := φ(x) (1− χ)

(
ε2

R
H(λ)

)
,

having fixed a function χ ∈ C∞(R) such that 0 ≤ χ ≤ 1, χ = 0 on ]−∞, 1] and χ = 1 on [2,+∞[.
Note that the symbol σ2,R is in A0 while, using the notation of [15], the symbol σ1,R is in S0. For
I1,ε,R, let us first assume that θ is compactly supported in [−T, T ] for some T > 0. We have

|I1,ε,R| ≤ ‖θ‖L1(R)‖φ‖L∞(G)‖uε‖L∞(R,L2(G)) sup
t∈[−T,T ]

∥∥χ (−ε2R−1∆G

)
uε
∥∥
L2(G)

,

so
lim

R→+∞
lim sup
k→∞

I1,εk,R = 0.

since (uε) is ε-oscillating and 0 ≤ χ ≤ 1x>1. By density of C∞c (R) in L1(R), this is also true for
any θ ∈ L1(R).
For I2,ε,R, by Theorem 2.8, we have

lim
k→∞

I2,εk,R =

∫
R
θ(t)

∫
G×Ĝ

Tr (σ2,R(x, λ)Γt(x, λ)) dγt(x, λ) dt.

Since we have
|Tr (σ2,R(x, λ)Γt(x, λ)) | ≤ ‖φ‖L∞(G)Tr (Γt(x, λ)) ,
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and

lim
R→+∞

Tr (σ2,R(x, λ)Γt(x, λ)) = φ(x)Tr (Γt(x, λ)) ,

the Lebesgue dominated convergence theorem implies

lim
R→+∞

lim
k→∞

I2,εk,R =

∫
R
θ(t)

∫
G×Ĝ

φ(x)Tr (Γt(x, λ)) dγt(x, λ) dt.

This yields Part (1).

For Part (2), we see that if moreover (uε) is uniformly strictly ε-oscillating family, then for any
θ ∈ Cc(R) and φ ∈ C∞c (G), the expression∫

R
θ(t)(φ(x)(1− χ)(−ε

2

δ
∆G)uε(t), uε(t))L2(G)dt

is bounded by

‖θ‖L1(R) sup
t∈suppθ

‖(1− χ)(−ε
2

δ
∆G)uε(t)‖L2(G) sup

t∈R
‖uε(t)‖L2(G)‖φ‖L∞(G),

which tends to 0 when ε = εk with k → +∞ and then δ → 0. However, by Theorem 2.8, the limit
of the same expression as ε = εk with k → +∞ is∫

R
θ

∫
G×Ĝ

Tr

(
φ(x)(1− χ)(−1

δ
F∆G(λ))Γt(x, λ)

)
dγt(x, λ),

which, by Lebesgue’s dominated convergence theorem, converges as δ → 0 to∫
R
θ(t)

∫
G×Ĝ

φ(x)1π=1
Ĝ
dγt(x, λ),

since (1 − χ)(1
δF∆G)(π) tends to 0 in SOT for any non-trivial representation π ∈ Ĝ while at

π = 1
Ĝ

it is equal to 1. Consequently this last expression is zero, and this concludes the proof of
Proposition 5.3. �

The fact that a family is uniformly ε-oscillating can be derived from Sobolev bounds.

Proposition 5.4. • If there exists s > 0 and C > 0 such that

∀ε > 0, sup
t∈[−T,T ]

‖(−ε2∆G)
s
2uε(t)‖L2(G) ≤ C,

then (uε)ε is ε-oscillating.
• If there exists s > 0 and C > 0 such that

∀ε > 0, sup
t∈[−T,T ]

‖(−ε2∆G)
s
2uε(t)‖L2(G) + sup

t∈[−T,T ]
‖(−ε2∆G)−

s
2uε(t)‖L2(G) ≤ C,

then (uε)ε is strictly ε-oscillating.

Proof. We use Plancherel formula (2.10) and the facts that for s > 0,

χ

(
−ε

2

R
∆G

)
≤ (−ε2∆G)

s
2

Rs
χ

(
−ε

2

R
∆G

)
≤ (−ε2∆G)

s
2

Rs

and (1− χ)

(
−ε

2

δ
∆G

)
≤ δs(−ε2∆G)−

s
2 (1− χ)

(
−ε

2

δ
∆G

)
≤ δs(−ε2∆G)−

s
2 .

�
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For families of solutions to the Schrödinger equation (2.15), the uniform ε-oscillating property

is inherited from the initial data. Indeed, using that operators of the form χ
(
− ε2

R∆G

)
commute

with the sublaplacian, the following result follows by energy estimates as a consequence of Propo-
sition 5.4:

Proposition 5.5. Let (ψε0)ε>0 be a bounded family of L∞(R, L2(G)). If it satisfies

∃s, C > 0, ∀ε > 0 ‖(−ε2∆G)
s
2ψε0‖L2(G) ≤ C,

then the family of solutions ψε(t) to the equation (2.15) for the initial data (ψε0) is uniformly
ε-oscillating. Moreover, if (ψε0) satisfies (1.2), then (ψε(t)) is uniformly strictly ε-oscillating.

From Propositions 5.3 (2) and 5.5, it follows that:

Corollary 5.6. We continue with the setting and the notation in Proposition 5.1. Assume in
addition that (ψε0) satisfies (1.2). If τ > 1 then %v

∗
t = 0.

5.3. Proof of Theorem 1.1. Let (ψε0)ε>0 be a bounded family of L∞(R, L2(G)) satisfying (1.2).

We set ψε(t) = e
i t

2εℵ
∆Gψε0. Then ψε(t) satisfies the semi-classical Schrödinger equation (2.15) with

τ = ℵ+ 2, and (ψεt ) is uniformly strictly ε-oscillating by Proposition 5.5.

We consider a weak limit of |ei
t

2εℵ
∆Gψε0(x)|2dx dt for a converging subsequence (εj). Up to

another extraction of a subsequence, it admits a semi-classical measure Γtdγt as in Theorem 2.10.
By Proposition 5.3, the marginals ρt defined in Proposition 5.1 coincide with the weak limit of

|ei
t

2εℵ
∆Gψε0(x)|2dx dt. The result now readily follows from Proposition 5.1 and Corollary 5.6.

Remark 5.7. The case ℵ ∈ (−2,−1] in Theorem 1.1 holds under the weaker hypothesis

∃s, C > 0, ‖(−ε2∆G)
s
2ψε0‖L2(G) ≤ C.

Appendix A. Dispersion in the Euclidean case

We describe here the analogue of Theorem 1.1 in the Euclidean setting for the Laplace operator
∆ =

∑
1≤j≤d ∂

2
xj . The assumption (1.2) then writes in the same manner replacing the sub-Laplacian

by the Laplace operator ∆. We point out that the result below is only an elementary version of
results that hold in more general setting and for more general Hamiltonian, including integrable
systems (see [2, 8]). We use the semi-classical measures as introduced in the 90’s in [20, 21, 22, 24].

Lemma A.1. Let (ψε0) be a bounded family in L2(Rd) satisfying (1.2) for the Laplace operator ∆.

Then any limit point of the measure
∣∣∣e−i t

2εℵ
∆
ψε0

∣∣∣2 dxdt is of the form %t(x)dt where %t is a measure

on Rd. Besides

(1) If ℵ ∈ (−2,−1), then ∂t%t = 0.
(2) If ℵ = −1 then %t(x) =

∫
Rd µ0(x− tξ, dξ).

(3) If ℵ > −1 then %t = 0.

Proof. A simple proof of this fact can be given by use of semi-classical measures. Denoting by Opε(a)
the semi-classical pseudodifferential operator of symbol a, a semi-classical measure µt of the family

ψε(t, x) := e
−i t

2εℵ
∆
ψε0 is such that for a subsequence εk, for all θ ∈ C∞c (R) and a ∈ C∞c (R2d),

(A.1)
(
Opεk(a)ψεk(t) , ψεk(t)

)
−→
k→+∞

∫
R×R2d

θ(t)a(x, ξ)µt(dx, dξ)dt.

The fact that (ψε0) satisfies (1.2) implies that it is a strictly ε-oscillating family and that it is also
the case for the family ψε(t). One then has µt({ξ = 0} = 0 and for the subsequence εk of (A.1),
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θ ∈ C∞c (R) and φ ∈ C∞c (Rd),∫
R×Rd

θ(t)φ(x)|ψεkt, x)|2dxdt −→
k→+∞

∫
R×R2d

θ(t)φ(x)µt(dx, dξ)dt.

The knowledge of the semi-classical measures determines all the limit points of the energy density.

Let us now take a ∈ C∞c (R2d), we observe that

d

dt
(Opε(a)ψε(t) , ψε(t)) =

1

iεκ

([
Opε(a) , −ε

2

2
∆

]
ψε(t) , ψε(t)

)
.

Since [
Opε(a) , −ε

2

2
∆

]
= iεOpε(ξ · ∇a) + ε2Opε(∆a).

We obtain immediately the following description:

(1) For κ ∈ (0, 1),

(Opε(a)ψε(t) , ψε(t)) = (Opε(a)ψε0 , ψ
ε
0) +O(ε1−κ),

whence µt(x, ξ) = µ0(x, ξ) for all times t ∈ R.
(2) For κ = 1, the map t 7→ µt is weakly continuous form R to M+(R2n) and can be realised

by the same subsequence εk for all t ∈ [0, T ], T > 0 with

∂tµt(x, ξ) = ξ · ∇xµt(x, ξ) in the sense of distributions.

(3) For κ > 1, we observe that

d

ds
(Opε(a(x+ sξ, ξ))ψε(t) , ψε(t))

∣∣∣∣
s=0

= (Opε(ξ · a)ψε(t) , ψε(t))

= εκ−1 d

dt
(Opε(a)ψε(t) , ψε(t)) +O(ε).

In the last case, we deduce that for θ ∈ C∞c (R),∫
θ(t)

d

ds
(Opε(a(x+ sξ, ξ))ψε(t) , ψε(t))

∣∣∣∣
s=0

dt

= −iεκ−1

∫
θ′(t) (Opε(a)ψε(t) , ψε(t)) dt = O(εκ−1).

Therefore, the measure µt is invariant under the flow (x, ξ) 7→ (x + sξ, ξ) and, since µt is of finite
mass, µt is supported on {ξ = 0}, whence µt = 0 by the strict ε-oscillating assumption �

Appendix B. Proof of Lemma 4.1 and Hermite functions

The proof of Lemma 4.1 uses the bracket structure of g via the two following lemmata:

Lemma B.1. For any λ ∈ z∗ \ {0} and j = 1, . . . , d, we have:

[∆G, Pj ] = −2|λ|−1Z(λ)Qj and [∆G, Qj ] = 2|λ|−1Z(λ)Pj .

Proof of Lemma B.1. By (2.5), Pj0 commutes with Qj if j 6= j0 and with any Pj , so (2.16) yields

[∆G, Pj0 ] =
d∑
j=1

(
[P 2
j , Pj0 ] + [Q2

j , Pj0 ]
)

= [Q2
j0 , Pj0 ] = Qj0 [Qj0 , Pj0 ] + [Qj0 , Pj0 ]Qj0 .

Using now (2.4), we obtain the first equality of the statement. The second equality is proved in a
similar way. �
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Lemma B.2. Considering for λ ∈ z∗ \ {0},

T :=

 2d∑
j1=1

Vj1π
λ(Vj1)

 d∑
j2=1

(
Pj2π

λ(Qj2)−Qj2πλ(Pj2)
) ,

we have:

Π(λ)
n TΠ(λ)

n =
|λ|
2

(
|λ|−1Z(λ)(2n+ d) + i∆G

)
Π(λ)
n .

The proof of B.2 will use the properties of a special family of H(λ)-eigenfunctions we now recall.
The family of Hermite functions (hn)n∈N given by

hn(ξ) =
(−1)n√
2nn!
√
π
e
ξ2

2
d

dξ
(eξ

2
), n ∈ N,

is an orthonormal basis of L2(R) which satisfies

−h′′n(ξ) + ξ2hn(ξ) = (2n+ 1)hn(ξ) .

Hence, for each multi-index α ∈ Nd, the function hα defined by

hα(ξ) :=
d∏
j=1

hαj (ξj), ξ = (ξ1, . . . , ξd) ∈ Rd,

is an eigenfunction of the operator H(λ) (see Section 2.3):

H(λ)hα = |λ|(2|α|+ d) hα.

The eigenvalues |λ|(2|α|+ d), α ∈ Nd, describe the entire spectrum of H(λ) since the functions hα,
α ∈ Nd form an orthonormal basis of L2(Rd).

For each λ ∈ z∗ \ {0}, the symplectic structure on v given by B(λ) naturally suggests to consider
a complex structure by setting:

Rj :=
1

2
(Pj − iQj), and R̄j :=

1

2
(Pj + iQj).

By (2.13), the operators

πλ(Rj) =

√
|λ|
2

(∂ξj + ξj) and πλ(R̄j) =

√
|λ|
2

(∂ξj − ξj)

are the creation-anihilation operators associated with the harmonic oscillator H(λ). The well known
recursive relations of the Hermite functions

h′n(ξ) =

√
n

2
hn−1(ξ)−

√
n+ 1

2
hn+1(ξ), ξhn(ξ) =

√
n

2
hn−1(ξ) +

√
n+ 1

2
hn+1(ξ),

gives for each λ ∈ z∗ \ {0}, n ∈ N and j = 1, . . . , d,

πλ(Rj)hα =

√
|λ|
2

√
2αjhα−1j πλ(R̄j)hα = −

√
|λ|
2

√
2(αj + 1)hα+1j .

Consequently, we have πλ(R̄j)(Vn) = Vn+1 and πλ(Rj)(Vn) = Vn−1 with the convention that
V−1 = {0}. Moreover

πλ(Rj)π
λ(R̄j)hα = −|λ|

2
(αj + 1)hα πλ(R̄j)π

λ(Rj)hα = −|λ|
2
αjhα
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Proof of Lemma B.2. We observe that

(B.1)
2d∑
j=1

Vjπ
λ(Vj) =

d∑
j=1

(Pjπ
λ(Pj) +Qjπ

λ(Qj)) =
d∑
j=1

(Rjπ
λ(R̄j) + R̄jπ

λ(Rj)),

whence
T = −4i

∑
j1,j2

(
Rj1π

λ(R̄j1) + R̄j1 · πλ(Rj1)
)(

Rj2π
λ(R̄j2)− R̄j2πλ(Rj2)

)
.

Hence the properties of the Rj ’s given above yield

ΠnTΠn = −4i

d∑
j=1

Πn

(
−RjR̄jπλ(R̄j)π

λ(Rj) + R̄jRjπ
λ(Rj)π

λ(R̄j)
)

Πn

= −4i
d∑
j=1

∑
|α|=n

Πn

(
|λ|
2
αjRjR̄j −

|λ|
2

(αj + 1)R̄jRj

)
Πα

since Πn =
∑
|α|=n Πα where Πα = |hα〉 〈hα|. We compute

d∑
j=1

(
αjRjR̄j − (αj + 1)R̄jRj

)
=
i

4
|λ|−1Z(λ)(2|α|+ d)− 1

4
∆G,

and the result follows. �

We can now show Lemma 4.1.

Proof of Lemma 4.1. By Lemma 3.12 Part (1), σ ∈ A0. To prove Part (1), we first observe that,
since the endomorphism B(λ) defined via (2.1) is represented by J in the (P1, . . . , Pd, Q1, . . . , Qd)-
basis, we have in vector notation

d∑
j=1

(
Pjπ

λ(Qj)−Qjπλ(Pj)
)

=

(
P
Q

)t
J

(
π(P )
π(Q)

)
= |λ|−1V t B(λ)π(V )

= |λ|−1
∑
j,k

B(λ)j,kVjπ(Vk).

Hence we can write

σ1(x, λ) =
−1

2i|λ|2
2d∑

j,k=1

B(λ)j,kπ
λ(Vk)Vjσ(x, π) =

2d∑
j,k=1

πλ(Vk)Vjgj,k(λ)σ0(x, π),

As g is smooth and supported away from 0 and B(λ) depends linearly on λ ∈ z∗ \{0}, each function
gj,k := Bj,kg is smooth on z∗ \ {0}; it is also Schwartz as g is Schwartz. By Lemma 3.12 Part (1),
each symbol gj,k(λ)σ0 is in A0 so σ1 ∈ A0. This shows Part (1).

Part (2) follows from the observation that, as σ commutes with H(λ), we have:

[σ1(x, λ), H(λ)] =
−1

2i|λ|

 d∑
j=1

Pj

[
πλ(Qj), H(λ)

]
−Qj

[
πλ(Pj), H(λ)

]σ(x, λ).

We then use Lemma B.1 and write

Pj

[
πλ(Qj), H(λ)

]
−Qj

[
πλ(Pj), H(λ)

]
= −2|λ|−1πλ(Z(λ))(Pjπ

λ(Pj) +Qjπ
λ(Qj)),

which allows us to conclude in view of (2.13) and (B.1).

Part (3) follows from the commutativity of σ with H and Lemma B.2. �
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[7] N. Burq, C. Sun. Time optimal observability for Grushin Schrödinger equation (arXiv:1910.03691).
[8] V. Chabu, C. Fermanian Kammerer and F. Macià. Semiclassical analysis of dispersion phenomena
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