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A data set over space and time is assumed to have a low rank representation in separated spatial and temporal modes. The problem of evaluating these modes from a temporal series of partial measurements is considered. Each elementary instantaneous measurement captures only a window (in space) of the observed data set, but the window position varies in time so as to cover the entire region of interest and would allow for a complete measurement would the scene be static.

A novel procedure, alternative to the Gappy Proper Orthogonal Decomposition (GPOD) methodology, is introduced. It is a xed point iterative procedure where modes are evaluated sequentially. Tested upon very sparse acquisition (1% of measurements being available) and very noisy synthetic data sets (10% noise), the proposed algorithm is shown to outperform two variants of the GPOD algorithm, with much faster convergence, and better reconstruction of the entire data set.

Introduction

In experimental mechanics, full eld measurements are an essential ingredient for the identication and validation of mechanical laws. Initially developed for 2D plane measurements with Digital Image Correlation, (DIC) [START_REF] Ma Sutton | Determination of displacements using an improved digital correlation method[END_REF], and extended to stereo-correlation [START_REF] Ma Sutton | Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications[END_REF] and 3D analyses (Digital Volume Correlation, Preprint submitted to Comptes-Rendus Mécanique August 19, 2019 DVC [START_REF] Bk Bay | Digital volume correlation: three-dimensional strain mapping using x-ray tomography[END_REF]), they provide rich data to challenge complex models or to feed datadriven approaches. Performed in-situ (i.e., during a mechanical test), the recent evolution of those approaches to space-time measurements (both for 2D [START_REF] Besnard | A spacetime approach in digital image correlation: Movie-dic[END_REF] and 3D [START_REF] Buljac | Digital volume correlation: review of progress and challenges[END_REF]) provided an enhanced sensitivity fostering the identication of strongly non-linear behaviors. Therefore, acquiring a complete set of in-situ space and time measurements is a grail in experimental mechanics.

However, the acquisition of a complete stack of data is generally inaccessible.

Incomplete acquisition, in a mechanical context, can be due to many reasons and to mention just of few of them:

Intrinsically incomplete measurement devices (e.g., mobile camera imaging a large or curved surface [START_REF] Newcombe | Live dense reconstruction with a single moving camera[END_REF], partial space-time measurements in a Continuous Scanning Laser Vibrometer (CSLV) [START_REF] Sj Rothberg | An international review of laser doppler vibrometry: Making light work of vibration measurement[END_REF], etc.)

Partially masked eld of view, either unwanted (e.g., due to the experimental setup [START_REF] Dufour | Shape, displacement and mechanical properties from isogeometric multiview stereocorrelation[END_REF]) or voluntary (e.g., because of the detector saturation of a part of the sample due to specular reection in [START_REF] Berny | On the analysis of heat haze eects with spacetime dic[END_REF] or due to the degradation of the imaged texture and speckles [START_REF] Ma Iadicola | Uncertainties of digital image correlation due to pattern degradation at large strain[END_REF]).

Fast rate phenomena that can be studied with an acquisition rate that is too low. This problem can be circumvented if the exploited image is processed from the fast acquisition of a collection of raw data (e.g., in computed-tomography, MRI, diraction patterns in EBSD, etc.). In tomography, while 3D measurements require the (very) long acquisition time of volumes, the development of projection-based measurement methods [START_REF] Leclerc | Projection savings in ct-based digital volume correlation[END_REF][START_REF] Jailin | Fast 4d tensile test monitored via X-CT: Single projection based digital volume correlation dedicated to slender samples[END_REF] made it possible to image fast phenomena. As they are based on projection and not on volumes, these methods exploit, at each time/loading step, only a partial (projected) spatial information.

An intentionally sparse acquisition aiming at a reduction of data storage and processing.

Although incomplete, other modalities / sensors are often coupled to full eld measurements as they provide complementary information (generally continu-ous in time and sparse in space) such as load measurements, extensometers, impedance measurements, etc.

In mechanical tests, the measurement of the kinematics is generally based on highly redundant (yet noisy) data [START_REF] Neggers | Big data in experimental mechanics and model order reduction: today's challenges and tomorrow's opportunities[END_REF] (e.g., refer to the 6050 (2048 × 2048 pix) images acquired in [START_REF] Berny | On the analysis of heat haze eects with spacetime dic[END_REF]). Moreover, those space-time measurements are themselves also redundant when dealing with model identication. Hence a natural trend to perform fast experiments and to tolerate noisy data, is to investigate the possibility to deal with as little information as possible. Namely, having a way to deal eciently with a sparse support in space and or time for the measurement would be highly desirable.

Field recovery from measurements with missing data or data corruption, is addressed in a very abundant and diverse literature relevant to various elds.

Dierent categories can be highlighted such as 1. Assumption on the low rank of the recovered eld which leads to the determination of few modes composed of space and time functions. Such is the case e.g., in robust-Principal Component Analysis (PCA) [START_REF] Netrapalli | Nonconvex robust pca[END_REF][START_REF] Wen | A survey on nonconvex regularizationbased sparse and low-rank recovery in signal processing, statistics, and machine learning[END_REF] where a low-rank dynamic background corrupted by sparse defects may be cleaned assuming few modes.

2. Methods based on a-priori knowledge. In model-based measurements (called Integrated-DIC [START_REF] Mathieu | Estimation of elastoplastic parameters via weighted femu and integrated-dic[END_REF][START_REF] Buljac | Experimental-numerical validation framework for micromechanical simulations[END_REF][START_REF] Buljac | Digital volume correlation: review of progress and challenges[END_REF]), the displacement eld is expressed from a model driven by a (partially-known) behavior. In previously introduced projection-based methods [START_REF] Jailin | Fast 4d tensile test monitored via X-CT: Single projection based digital volume correlation dedicated to slender samples[END_REF][START_REF] Jailin | Fast four-dimensional tensile test monitored via x-ray computed tomography: Elastoplastic identication from radiographs[END_REF], an incomplete data set is supplemented by assumptions regarding the smooth temporal evolution.

When the knowledge is on the variable statistics, optimal interpolation methods as Kriging, can be carried out.

3. Approaches based on regularization penalties (l 1 -norm and nuclear norm being the most popular in Compressed-Sensing [START_REF] Baraniuk | Compressive sensing[END_REF][START_REF] Wen | A survey on nonconvex regularizationbased sparse and low-rank recovery in signal processing, statistics, and machine learning[END_REF], e.g., applied for the image reconstruction of single-pixel cameras [START_REF] Mf Duarte | Single-pixel imaging via compressive sampling[END_REF]).

4. Other methods, based on prior full analyses (e.g., Gappy-POD, Gappy-PCA, (GPCA) for the recovery of images [START_REF] Everson | Karhunenloève procedure for gappy data[END_REF] and elds [START_REF] Willcox | Unsteady ow sensing and estimation via the gappy proper orthogonal decomposition[END_REF][START_REF] Ne | An application of gappy pod[END_REF]) allow recovering complete eld from learned dictionaries.

In the rst category (robust-PCA), the data corruption is assumed to be sparse, whereas we are motivated by the opposite limit where reliable measurement is sparse.

In the second approach, regularity assumptions issued from a physical model, or from an a priori assumption (as for Kriging) allows to swiftly interpolate from known data to ll missing patches. This category can be seen as the use of an appropriate lter. Although ecient and physically sound, such approaches are discarded from the present analysis to address the very question of incompleteness, but they can be easily merged with the proposed methodology to supplement it with a specic lter.

In the third approach, (Compressed Sensing), the sought information (after possibly an appropriate transformation ...) is assumed to have a sparse support, and it is this sparsity that is exploited to retrieve the information. For instance, when an image contains few phases, boundaries, being the support of non-zero gradients of the image, are sparse, and hence a total variation may be used to enforce a limited number of phases.

In the fourth approach, Gappy-PCA (as PCA itself ) does not necessitate any regularity assumption, although it is easy (and benecial when relevant) to supplement them with a specic lter. This is so common, that it is dicult to apprehend what contributes to the success of GPCA when both the PCA methodology and a regularizing lter are both present. In the present study, the choice is made to exclude all lters, or any recourse to continuity, to dierentiability or even to low power of high frequencies.

Thus, even if space and time are referred to, they may be thought of as disconnected positions in space and instant in time, that can be arbitrarily reshued either in space or in time. Hence, time is to be seen as a mere discrete labeling of measurement instant, and space is equally a labeling of discrete position. Hence, the focus is made only on the sparsity of the measurement. Nevertheless, it is obviously needed that the number of measurements is somewhat larger than the information content of the exploited signal, the low information content (compatible with the sparse measurement) lies in the low rank of separated mode representation of the signal. The latter is indeed robust with respect to any permutation in space or in time. In such a context, GPCA is the reference methodology.

In the present study, a variant algorithm is introduced that provides similar or better results, with fewer iterations, in the limit of very sparse and noisy data.

Dierent measurement methods in mechanics have been developed to exploit this low rank of separated mode representation. Such is the case for vibration measurements [START_REF] Passieux | High resolution digital image correlation using proper generalized decomposition: Pgd-dic[END_REF] and also for quasi-static behaviors for the measurement [START_REF] Jailin | Fast 4d tensile test monitored via X-CT: Single projection based digital volume correlation dedicated to slender samples[END_REF] and identication [START_REF] Jailin | Fast four-dimensional tensile test monitored via x-ray computed tomography: Elastoplastic identication from radiographs[END_REF] and ultra-fast dynamics with a crack propagation [START_REF] Berny | Mode-enhanced spacetime dic: applications to ultra-high-speed imaging[END_REF].

Inspired from the Proper Generalized Decomposition (PGD) technique [START_REF] Ladevèze | Nonlinear computational structural mechanics: new approaches and non-incremental methods of calculation[END_REF],

PGD-DIC consists of a progressive enrichment of the space-time modes for displacement corrections. As a side remark, those modal full eld measurement methods were initially applied for the decomposition of the dierent direction of the space displacements [START_REF] Passieux | High resolution digital image correlation using proper generalized decomposition: Pgd-dic[END_REF][START_REF] La Gomes Perini | A multigrid pgd-based algorithm for volumetric displacement elds measurements[END_REF]. As such, PGD algorithms can be seen as a complete Gappy-POD method with the progressive modal identication.

After a presentation of the treated problem in section 2, the proposed method is described and discussed in section 3. Then, various applications are carried out to challenge the approach considering dierent measurement protocol and noise. The comparison with Gappy-POD methods is nally shown and highlights the eciency of the proposed procedure.

Addressed problem

Notations

A space-time phenomenon is characterized by a physical quantity (which can be of any nature) whose space x and time t expression is denoted A(x, t) which is discretized in space and time and represented as a matrix A aα = A(x a , t α ).

Conventionally, in the following Latin (resp. Greek) indices will refer to space (resp. time). This eld is assumed to be well represented by an expansion over space-time modes

A aα = n i=1 f i ϕ i α Φ i a (1) 
where, conventionally, it is chosen to normalize all space Φ i and time ϕ i modes to unity, Φ i a = 1 and ϕ i α = 1, and hence f i is the amplitude of mode i.

The eld A aα is unknown, but it is studied through dierent measurement devices. The measurement device acting at time t α , is dened as a linear operator, [M α ], that extracts from the eld A aα , a set of measurements gathered in a vector B aα = [M α ] ab A bα . Although the problem could easily be generalized, measurements are assumed instantaneous. A measurement is said to be partial if [M α ] is rank decient and cannot be inverted (the entire eld A •α cannot be obtained from the snapshot B •α ). Additionally, in the following, the measurements B are polluted by a random Gaussian noise, characterized by its variance σ. Arbitrary spatial covariance matrix could be considered, using its inverse as the optimal metric tensor. For the sake of simplicity, noise will be considered as white (or spatially uncorrelated).

An example of such partial measurement is provided by a 3D phenomenon captured from a 2D detector. Inasmuch as one individual measurement device is incomplete, a full experiment consists in combining such partial measurements in time from dierent points of view so that the 3D consistency can be captured. For instance, using stereo-vision, one can access 3D shape measurements making the combination of two (or several) partial measurement devices (2D cameras) a complete system. In the similar case of radiography, the combination of a (potentially large) number of projection directions allows the entire 3D microstructure to be reconstructed provided the studied object remains still during the scan rotation, a process known as tomography.

Another trivial example of such partial measurements is such that, at each instant of time t α , [M α ] is simply the identity restricted to a limited set of points Ω(t α ). In this case, [M α ] = [I] Ω(tα) is a diagonal matrix (projection over Ω(t α )). In the following, this elementary case will be considered as a toy problem to investigate the retrieval of A from B, where the collection of data along time will supplement the partial measurement at each elementary instant, and exploit the property that only few space-time modes are sucient.

This example is chosen so as to focus on the key point of compensating for lacking data, and not on the specic particularities of the measurement operator

[M α ].
In space and time, Figure 1 shows several examples of partial measurements in space and time, for a rather low coverage. Often, measurements occur over a compact support (window) which appears here as intervals. It is chosen here to consider intervals of the same length at each instant of time, however the position of this set of measurement may move over time in discrete steps, in a regular fashion, and randomly. Those examples are representative of dierent acquisition strategies encountered in practice. The rst case is encountered in the Scanning Laser Vibrometry technique [START_REF] Ab Stanbridge | Modal testing using a scanning laser doppler vibrometer[END_REF]), or for the modal analysis of a vibrating object from radiographs acquired at few directions [START_REF] Jailin | Measurement of 1-10 Hz 3D vibration modes with a CT-scanner[END_REF]. The second case illustrates the projection-based measurement methods [START_REF] Jailin | Fast 4d tensile test monitored via X-CT: Single projection based digital volume correlation dedicated to slender samples[END_REF] in which the projection of the sample is imaged during rotation and loading. Another application for the same case is the Continuous Scanning Laser Vibrometry techniques [START_REF] Sj Rothberg | An international review of laser doppler vibrometry: Making light work of vibration measurement[END_REF]. The third case is met when the window motion is erratic, as for instance for random acquisition patterns of the single-pixel camera [START_REF] Mf Duarte | Single-pixel imaging via compressive sampling[END_REF].

In the limit of a very sparse acquisition, the question of invertibility will be discussed in the following. Eventually an additional information, coming from additional sensors (generally continuous in time and local in space) such as load measurements, can be included to make the problem well-posed.

Static problem

Before addressing the modal analysis, let us specify our notations and recall how a static problem would be characterized optimally with respect to the set of noisy measurements. Here, for the sake of illustration, a large fraction of possible measurements has been chosen, η = 35%, while in the test cases chosen in section 4, η = 1%

The following cost function is introduced

T = (1/2) α [M α ]{A α } -{B α } 2 (2) 
where the sought eld and measurement in space at each instant t α are gathered into a vector {A α }, and the norm is the one resulting from a maximum likelihood based on the noise covariance, Cov,

{X} 2 ≡ {X} • Cov -1 • {X} . (3) 
For the white noise considered herein, this norm reduces to the Euclidian (L2) one.

Minimizing the cost function with respect to {A} leads to

α [M α ] ([M α ]{A α } -{B α }) = 0 (4) or α [M α ] [M α ] • {A α } = α [M α ] {B α } (5) Let us dene [H α ] = [M α ] [M α ] and [H] [H] ≡ α [H α ] (6) 
It is this matrix, discussed in the introduction of section 2, that has to be inverted, whereas [H α ] cannot be as it is rank decient. The sum over α allows all complementary measurements to participate to the identication. The minimizer of T then reads

{A α } = [H] -1 • α [M α ] {B α } (7) 

Proposed algorithm

Let us rst recall the basic principle of the GPOD algorithm [START_REF] Everson | Karhunenloève procedure for gappy data[END_REF], and a variant of it [START_REF] Beckers | Eof calculations and data lling from incomplete oceanographic datasets[END_REF].

GPOD relies on a plain POD algorithm, applied to a complete set of data.

However, because some data are lacking, fake values are used over this missing part. To initiate the process, an average value of the known data is used to ll in those parts, where averages may be computed over time or space or both [START_REF] Everson | Karhunenloève procedure for gappy data[END_REF].

POD is run over the resulting data set, with a specied number of modes. Then, the same procedure is repeated after data completion with the identied modes, and keeping the actual measurements unchanged. Upon iterations, the missing part are progressively lled with data that are more and more consistent with the measured ones. The procedure is stopped when a stationary solution has been reached. This algorithm will be refered to as GPOD1. There exists variants of this algorithm that are faster but approximate and they are not discussed herein.

Let us however mention a variant hereafter referred to as GPOD2 such that the number of modes is not xed for the entire procedure. On may run the same GPOD1 procedure, searching for one single mode to start with. After convergence, the number of sought modes is incremented up to the desired value (or after the incremental benet of using an additional mode is not considered sucient). The resulting modes obtained with this variant is similar to the previous (when the problem admits a unique solution) because the last iteration loop is similar but convergence is faster [START_REF] Beckers | Eof calculations and data lling from incomplete oceanographic datasets[END_REF].

Let us stress that the beauty of the GPOD algorithms is to turn an absence of measurement into a fake one, but where the alleged measured value is tuned to be the least inconsistent with the actual ones. This substitutes to each Hessian [H α ], a completed one which restores invertibility and makes the identication from each measurement instant a well-posed problem.

Proposed algorithm

As for GPOD2 procedure, the initial step is to identify a single mode. However, in contrast to the above two algorithms, missing data are not fudged even temporarily. When no measurement is performed, no extraneous equation is introduced.

From a set of measurements, {B α }, one looks for the spatial mode {Φ}, the temporal function ϕ α and amplitude γ such that the following cost function is minimized

T ({Φ}, {ϕ}) = (1/2) α γϕ α [M α ]{Φ} -{B α } 2 (8) 
under two additional normalization conditions ϕ 2 α α = 1, and Φ 2 a a = 1. Thus, one has to solve the following two equations Eqs. ( 9) and [START_REF] Ma Iadicola | Uncertainties of digital image correlation due to pattern degradation at large strain[END_REF].

{Φ} = Argmin

{Φ * } T ({Φ * }, {ϕ}) (9) 
ϕ(t) = Argmin {ϕ * } T ({Φ}, {ϕ * }) (10) 
On the one hand, the minimization of T with respect to {Φ * }, leads to

γ α ϕ 2 α [M α ] [M α ] • {Φ} = α ϕ α [M α ] {B α } (11) 
On the other hand, the determination of the associated temporal amplitudes is obtained by a minimization of T with respect to ϕ α giving

γϕ α = {Φ} [M α ] {B α } {Φ} [H α ]{Φ} (12) 
It is proposed to use a xed point algorithm, where ϕ α is rst initialized to 1, and from Eq. ( 11), γ{Φ} is computed. The spatial mode and its amplitude are then obtained from their product by using the normalization condition Φ 2 a a = 1. Then from the determined spatial mode, the temporal evolution, γ{ϕ}, is computed from Eq. ( 12), and again, γ is determined by the normalization condition ϕ 2 α α = 1. The staggered determination of the spatial and temporal modes is iterated until a xed point is reached. This concludes the determination of the rst (dominant) POD mode.

As for PGD methods, the measurement is performed by adding modes progressively, one at a time. Once a rst mode is measured, a residual, expressed only on the measured areas, is computed as

{R α } = {B α } -γϕ α [M α ]{Φ} (13) 
This residual {R α } is substituted to the measurement data, {B α }, in the above single-mode procedure, providing the second mode, which is subtracted from the starting data to give a second residual. The latter substitution of successive residuals is iterated to generate as many modes as needed until the residual is comparable to noise.

It is to be underlined that the solution of Eqs. ( 9) never involves fake measurements. As compared to GPOD, where the latter are included to restore invertibility at each instant of time, they also endow the algorithm with a kind of inertia, that slows down convergence. Thus the proposed algorithm is expected to show a much faster convergence. Yet, in the absence of noise, all those algorithms should converge toward the same (exact) solution. For noisy data, the proposed scheme that always gives the proper weight to each measurement is expected to be more robust.

It is to be noted that such a greedy approach for the case of complete measurements is strictly equivalent to the plain POD approach where all modes are sought simultaneously. In the following, because of our choice of considering a toy problem for which the metric is just trivial, PCA, POD or PGD are three dierent names for an equivalent result. However, it is to be observed that, when the norm used in the functional to be minimized results from an arbitrary variational formulation, (a PGD type problem), the very same procedure can be duplicated providing the corresponding generalization to sparse data acquisition. Just to mention a simple example, when noise is spatially correlated, the introduction of a metric based on the inverse covariance matrix, (see Eq. ( 3)) is trivially taken into account in the above cost function, and it would prevent a straightforward use of GPOD.

Uniqueness for one single mode

Let us now consider the particular case of the toy model of direct measure-

ments, [M α ] = [I] Ω(tα) . Thus, [H] = α [M α ] 2 = α [M α ] is also diagonal
and the ath element along the diagonal is d a = α I α (a), or in other words, the number of times position a has been measured. Hence, the only condition for being able to invert the Hessian [H] is that all sites should be visited at least once. Obviously, this condition guaranties the uniqueness of the solution for the static case (where ϕ α = 1). More generally, when only one spatio-temporal mode is present, but the time evolution is not constant, then it is needed that all positions in space are visited at least once, but similarly along the time axis, at all considered instants, at least one measurement has been performed.

However, assessing uniqueness of the mode determination requires a more complete discussion. Let us consider the case of two batches of measurements, with for instance, a rst half of sites being measured during a rst period of time, after what the second half is measured over the same amount of time. The rst domain is labeled (X) and the second (Y ). These two domains corresponds to a natural partition in two sub-problems each of which being solved by a standard POD. Considered globally, this problem is within the class of partial measurements. Let us suppose that this problem has been solved and that a mode has been computed

A aα = γ (1) ϕ (1) α Φ (1) a ( 14 
)
We can now construct another triplet (γ (2) , ϕ (2) , Φ (2) ) such that

ϕ (2) α =    ω X ϕ (1) α when α ∈ (X) ω Y ϕ (1) α when α ∈ (Y ) Φ (2) a =    (λ/ω X )Φ (1) a when a ∈ (X) (λ/ω Y )Φ (1) a when a ∈ (Y ) (15) 
Let us dene ξ 2 = ϕ (1) 2 (X) and η 2 = Φ (1) 2 (X) . In order to fulll the nor- malization conditions of (ϕ (2) , Φ (2) ), the following two conditions are to be met

ω 2 X ξ 2 + ω 2 Y (1 -ξ 2 ) = 1 (λ/ω X ) 2 η 2 + (λ/ω Y ) 2 (1 -η 2 ) = 1 (16)
Provided these two conditions are satised, (f (2) , ϕ (2) , Φ (2) ) is just equivalent to (f (1) , ϕ (1) , Φ (1) ), however two conditions to determine three degrees of freedom λ/ω X is lacking a constraint. Thus, the solution cannot be unique. Hence, although all observables B may be accounted for as a single space-time mode (one separated representation), the solution is not unique if no overlap between the measurement domains exist. This solution can be further extended to a collection of blocks with no overlap. Note however that overlap is to be considered after an arbitrary permutation of measurement of sites or instants. To evaluate the degeneracy of the solution in terms of modes, it suces to count the number of connected components using simple graph-cut algorithms.

Furthermore, let us note that connectedness of the components is not yet the ultimate criterion: if connectedness of a single component is only due to a unique measurement at a particular location ã and time α, its value may be seen as providing the additional equation needed to complement Eq. [START_REF] Mathieu | Estimation of elastoplastic parameters via weighted femu and integrated-dic[END_REF] enforcing ω X = ω Y = λ = 1. However, this necessitates the value of the mode at this specic site and time, ϕ

(1) ã , be non-zero. This implies that the uniqueness of the solution is not only due to the measurement set-up (the choice of measurement positions and instants), but also to the modes which are measured. In particular, the locations where the mode vanishes (or simply assumes a low absolute value as compared to the surrounding) are potential sources of fragility for the solution. Those situations are typically those that are easily cured by requiring a smooth behavior for both spatial mode and/or time function.

As an alternative to having an overlap, let us note that adding an additional information may allow to recover a well posed problem. One natural assumption is that stationary modes are present, e.g., because a vibrating system is subjected to a random but steady excitation [START_REF] Jailin | Full eld modal measurement with a single standard camera[END_REF][START_REF] Jailin | Measurement of 1-10 Hz 3D vibration modes with a CT-scanner[END_REF]. In such a situation, possibly a wealth of information may be accessible (exploiting a statistical distribution that may be Gaussian), but the most robust ones rely on low order statistical moments of the distribution per block, i.e., having an equal total power per block of measurements, ϕ 2 α block = 1 (similar to the global normalization). This implies only that the number of measurements is large per block as the decay of uctuations (law of large numbers) is slow.

Uniqueness in the case of multiple modes

When multiple, N mode , space-time modes are present, one may generalize the previously mentioned graph theoretic argument based on connected components. However, at least N mode common sites should be shared between blocks so as to be considered connected.

The above discussion of uniqueness may be further extended to the analysis of uncertainty. Thus rather than just a determination of well-posedness of the problem, an assessment of the uncertainties may reveal ghosts of the above undeterminations. The least stable eigenmodes may display such block-like multiplicative features as those above analyzed. Such were indeed observed in test cases, especially when spatial and temporal modes crossed a 0 value. This point emphasizes the property that stability is not only a matter of experimental design, but also involves properties of the observed modes. This observation was the motivation for introducing the previous discussion.

Test cases

The procedure is applied for the recovery of dierent synthetic test cases.

In order to test the proposed method, we chose extreme cases of sparse acquisition representing η = 1% of the entire (x, t) domain, where the latter is chosen to be of size N x = 1024 locations in space and N t = 1024 instants of time for measurements. Therefore the number of measurements is ηN x N t .

Moreover, an additional Gaussian white noise is added to the measured data, with a standard deviation that represents 10% of the standard deviation of the reference data. (The signal to noise ratio is thus 20 dB).

The reference space-time eld was synthesized by the Fourier transform of random amplitudes and phases. High frequencies were cut out to produce smooth elds. However, as earlier mentioned no regularity assumption was exploited to retrieve the modes. Thus, this regularity is more relevant to pinpoint unsatisfactory recovery from visual inspection.

For the approach to make sense, some redundancy is necessary, and hence the reference data should require less data than the measured ones. Hence, it was chosen to consider only N mode = 4 separated modes. Each mode requires (N x + N t ) components. Therefore, (when the measurements are homogeneous in the space-time domain), the redundancy is

β = Measurements Information content = ηN x N t N mode (N x + N t ) = 1.28 (17) 
so that no more than 28% of the data is redundant and is to be used to reduce noise. The three cases of distribution of measurements in space and time that are shown in Figure 1 were tested together with a completely random distribution of measurements, but the subsampling was kept to a constant value η = 1%.

In order to evaluate the proposed algorithm a comparison is proposed with the two reference algorithms discussed earlier, GPOD1 and GPOD2. All algorithms are iterative, and hence the same criterion was chosen to terminate the iterative procedure. When the increment in relative error between two successive iteration became smaller than 10 -4 , iterations were stopped. Hence the number of iterations varies from one case to the other. Moreover, the maximum number of iterations was set to a maximum value of 400 if the previous criterion was not reached. However, because both GPOD2 and the proposed algorithm involve many loops, their total number of iterations (summed over all loops) may exceed 400.

Case Algorithm Iterations Final Error

Step scan GPOD1 1, the results of the four dierent cases illustrated in Fig. 1 for all three algorithms are reported. The nal error is computed as the norm (over space and time) of the dierence between the recovered eld, and the original reference eld without noise. This norm is scaled to the standard deviation of the original reference eld. The presence of a high level of noise and of the very sparse acquisition η = 1% is such that the computation cannot recover exactly the original data. The sole presence of noise would be responsible for an error of about 4 to 5%. The exploitation of the presence of only few modes, allows all algorithms to reduce this error to a lower level in all cases. However, all algorithms do not reach the same level of nal error. Both variants of Gappy-POD provide results of comparable quality in terms of errors, but GPOD2 requires often more iterations than GPOD1, so that the claimed of a progressive enrichment of modes does not appear so obvious in the studied case (which is clearly an extreme case). The proposed method shows generally a markedly lower residual error (down to 50% smaller), and yet with a much lower number of iterations.

Two cases are chosen for a more detailed illustration, the random acquisition case in Figure 2 and the continuous scan in Figure 3. In both gures, the reference eld (without noise) is shown on the top line together with the support of the measurement. The elds reconstructed from the four identied modes are displayed for the three algorithms. Finally, the evolution of the error with iterations is shown for the three algorithms. The fact that both GPOD2 and the proposed method consists of N mode = 4 loops can be seen from the error evolution. In this latter set of graph, the error that would correspond only to the presence of noise (but no missing data, and no mode recovery treatment) is indicated as a dotted line. It is to be noted that the range of variation of both axes dier from one algorithm to the next.

In Figure 2, GPOD1 shows a marked dissymmetry between time where the mode are well captured and space where amplitudes are depressed. It is also to be noted that convergence is quite slow, and the criterion for interrupting the mode recovery stopped the computation well before its asymptotic result. GPOD2 performs much better for the reconstructed eld, but required more than 200 additional iterations. The proposed algorithm has a residual error level better than that of noise after only 2 iterations (to be compared to 450 for GPOD1, and 420 for GPOD2).

In Figure 3, relative to the continuous scan case, the temporal evolution is well captured, but the spatial modes seem to have been erased, for both GPOD1 and GPOD2. (This dissymmetry between space and time originates from the way missing data are lled in with spatial averages at each instant of time.) This is to be contrasted with the present method which gives a much more balanced picture of the space-time eld, and reaches an error level which is cut down by a factor of 2 as compared to Gappy-POD results. For all three algorithms, convergence is faster than for the previous random case, and the convergence criterion is reached much earlier in terms of iterations. The very formulation of the introduced algorithm makes its extension to Proper Generalized Decomposition (PGD) straightforward. Namely, the cost function that was used herein, Eq. ( 8), involves a simple L2 norm, but can simply be tailored to any other problems where a variational formulation is accessible.

Figure 1 :

 1 Figure 1: An illustration of dierent partial measurements in space x and time t in the simple case of an indicator (shown in grey), for stepwise scan (a), continuous scan (b), randomly moving window (c), and random acquisitions (d).Here, for the sake of illustration, a large fraction of possible measurements has been chosen, η = 35%, while in the test cases chosen in section 4, η = 1%

Figure 2 :

 2 Figure 2: Random acquisition case. (a) Reference eld; (b) measurement support with random acquisitions; (c) reconstructed eld using GPOD1; (d) reconstructed eld using GPOD2; (e) reconstructed eld using the proposed method; (f) relative error between reconstruction and reference as a function of iteration number for GPOD1; (g) same relative error for GPOD2; (h) same relative error for the proposed method.

Figure 3 :

 3 Figure 3: Continuous scan case. (a) Reference eld; (b) measurement support; (c) reconstructed eld using GPOD1; (d) reconstructed eld using GPOD2; (e) reconstructed eld using the proposed method; (f) relative error between reconstruction and reference as a function of iteration number for GPOD1; (g) same relative error for GPOD2; (h) same relative error for the proposed method.

Table 1 :

 1 Comparison for dierent test cases (Step scan, Continuous scan, Randomly moving scan, and Random acquisition) of the three algorithms (GPOD1, GPOD1, Present Method). For each combination of test case and algorithm, the number of iterations at convergence is given, together with the relative error at the end of the computation In Table

	400 *	0.024
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