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Abstract

A data set over space and time is assumed to have a low rank representation in

separated spatial and temporal modes. The problem of evaluating these modes

from a temporal series of partial measurements is considered. Each elementary

instantaneous measurement captures only a �window� (in space) of the observed

data set, but the window position varies in time so as to cover the entire region of

interest and would allow for a complete measurement would the scene be static.

A novel procedure, alternative to the Gappy Proper Orthogonal Decomposition

(GPOD) methodology, is introduced. It is a �xed point iterative procedure

where modes are evaluated sequentially. Tested upon very sparse acquisition

(1% of measurements being available) and very noisy synthetic data sets (10%

noise), the proposed algorithm is shown to outperform two variants of the GPOD

algorithm, with much faster convergence, and better reconstruction of the entire

data set.

Keywords: Modal analysis; Proper Generalized Decomposition; Dynamic

stereo-vision; Dynamic tomography; Field recovery; Gappy Proper Orthogonal

Decomposition

1. Introduction

In experimental mechanics, full �eld measurements are an essential ingredi-

ent for the identi�cation and validation of mechanical laws. Initially developed

for 2D plane measurements with Digital Image Correlation, (DIC) [1], and ex-

tended to stereo-correlation [2] and 3D analyses (Digital Volume Correlation,
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DVC [3]), they provide rich data to challenge complex models or to feed data-

driven approaches. Performed in-situ (i.e., during a mechanical test), the recent

evolution of those approaches to space-time measurements (both for 2D [4] and

3D [5]) provided an enhanced sensitivity fostering the identi�cation of strongly

non-linear behaviors. Therefore, acquiring a complete set of in-situ space and

time measurements is a grail in experimental mechanics.

However, the acquisition of a complete stack of data is generally inaccessible.

Incomplete acquisition, in a mechanical context, can be due to many reasons

and to mention just of few of them:

� Intrinsically incomplete measurement devices (e.g., mobile camera imag-

ing a large or curved surface [6], partial space-time measurements in a

Continuous Scanning Laser Vibrometer (CSLV) [7], etc.)

� Partially masked �eld of view, either unwanted (e.g., due to the exper-

imental setup [8]) or voluntary (e.g., because of the detector saturation

of a part of the sample due to specular re�ection in [9] or due to the

degradation of the imaged texture and speckles [10]).

� Fast rate phenomena that can be studied with an acquisition rate that

is too low. This problem can be circumvented if the exploited image

is processed from the fast acquisition of a collection of raw data (e.g.,

in computed-tomography, MRI, di�raction patterns in EBSD, etc.). In

tomography, while 3D measurements require the (very) long acquisition

time of volumes, the development of projection-based measurement meth-

ods [11, 12] made it possible to image fast phenomena. As they are

based on projection and not on volumes, these methods exploit, at each

time/loading step, only a partial (projected) spatial information.

� An intentionally sparse acquisition aiming at a reduction of data storage

and processing.

Although incomplete, other modalities / sensors are often coupled to full �eld

measurements as they provide complementary information (generally continu-
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ous in time and sparse in space) such as load measurements, extensometers,

impedance measurements, etc.

In mechanical tests, the measurement of the kinematics is generally based on

highly redundant (yet noisy) data [13] (e.g., refer to the 6050 (2048× 2048 pix)

images acquired in [9]). Moreover, those space-time measurements are them-

selves also redundant when dealing with model identi�cation. Hence a natural

trend to perform fast experiments and to tolerate noisy data, is to investigate

the possibility to deal with as little information as possible. Namely, having

a way to deal e�ciently with a sparse support in space and or time for the

measurement would be highly desirable.

Field recovery from measurements with missing data or data corruption, is

addressed in a very abundant and diverse literature relevant to various �elds.

Di�erent categories can be highlighted such as

1. Assumption on the low rank of the recovered �eld which leads to the

determination of few modes composed of space and time functions. Such

is the case e.g., in robust-Principal Component Analysis (PCA) [14, 15]

where a low-rank dynamic background corrupted by sparse defects may

be cleaned assuming few modes.

2. Methods based on a-priori knowledge. In model-based measurements

(called Integrated-DIC [16, 17, 5]), the displacement �eld is expressed

from a model driven by a (partially-known) behavior. In previously in-

troduced projection-based methods [12, 18], an incomplete data set is

supplemented by assumptions regarding the smooth temporal evolution.

When the knowledge is on the variable statistics, optimal interpolation

methods as Kriging, can be carried out.

3. Approaches based on regularization penalties (l1-norm and nuclear norm

being the most popular in Compressed-Sensing [19, 15], e.g., applied for

the image reconstruction of single-pixel cameras [20]).

4. Other methods, based on prior full analyses (e.g., Gappy-POD, Gappy-

PCA, (GPCA) for the recovery of images [21] and �elds [22, 23]) allow
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recovering complete �eld from learned dictionaries.

� In the �rst category (robust-PCA), the data corruption is assumed to

be sparse, whereas we are motivated by the opposite limit where reliable

measurement is sparse.

� In the second approach, regularity assumptions issued from a physical

model, or from an a priori assumption (as for Kriging) allows to swiftly

interpolate from known data to �ll missing patches. This category can be

seen as the use of an appropriate �lter. Although e�cient and physically

sound, such approaches are discarded from the present analysis to address

the very question of incompleteness, but they can be easily merged with

the proposed methodology to supplement it with a speci�c �lter.

� In the third approach, (Compressed Sensing), the sought information (af-

ter possibly an appropriate transformation ...) is assumed to have a sparse

support, and it is this sparsity that is exploited to retrieve the informa-

tion. For instance, when an image contains few phases, boundaries, being

the support of non-zero gradients of the image, are sparse, and hence a

total variation may be used to enforce a limited number of phases.

� In the fourth approach, Gappy-PCA (as PCA itself) does not necessitate

any regularity assumption, although it is easy (and bene�cial when rele-

vant) to supplement them with a speci�c �lter. This is so common, that

it is di�cult to apprehend what contributes to the success of GPCA when

both the PCA methodology and a regularizing �lter are both present. In

the present study, the choice is made to exclude all �lters, or any recourse

to continuity, to di�erentiability or even to low power of high frequencies.

Thus, even if space and time are referred to, they may be thought of as

disconnected positions in space and instant in time, that can be arbitrar-

ily reshu�ed either in space or in time. Hence, time is to be seen as a

mere discrete labeling of measurement instant, and space is equally a la-

beling of discrete position. Hence, the focus is made only on the sparsity
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of the measurement. Nevertheless, it is obviously needed that the number

of measurements is somewhat larger than the information content of the

exploited signal, the low information content (compatible with the sparse

measurement) lies in the low rank of separated mode representation of the

signal. The latter is indeed robust with respect to any permutation in

space or in time. In such a context, GPCA is the reference methodology.

In the present study, a variant algorithm is introduced that provides sim-

ilar or better results, with fewer iterations, in the limit of very sparse and

noisy data.

Di�erent measurement methods in mechanics have been developed to exploit

this low rank of separated mode representation. Such is the case for vibration

measurements [24] and also for quasi-static behaviors for the measurement [12]

and identi�cation [18] and ultra-fast dynamics with a crack propagation [25].

Inspired from the Proper Generalized Decomposition (PGD) technique [26],

PGD-DIC consists of a progressive enrichment of the space-time modes for dis-

placement corrections. As a side remark, those modal full �eld measurement

methods were initially applied for the decomposition of the di�erent direction

of the space displacements [24, 27]. As such, PGD algorithms can be seen as a

complete Gappy-POD method with the progressive modal identi�cation.

After a presentation of the treated problem in section 2, the proposed method

is described and discussed in section 3. Then, various applications are carried

out to challenge the approach considering di�erent measurement protocol and

noise. The comparison with Gappy-POD methods is �nally shown and high-

lights the e�ciency of the proposed procedure.

2. Addressed problem

2.1. Notations

A space-time phenomenon is characterized by a physical quantity (which can

be of any nature) whose space x and time t expression is denoted A(x, t) which

is discretized in space and time and represented as a matrix Aaα = A(xa, tα).

5



Conventionally, in the following Latin (resp. Greek) indices will refer to space

(resp. time). This �eld is assumed to be well represented by an expansion over

space-time modes

Aaα =

n∑
i=1

f iϕiαΦia (1)

where, conventionally, it is chosen to normalize all space Φi and time ϕi modes

to unity, ‖Φi‖a = 1 and ‖ϕi‖α = 1, and hence fi is the amplitude of mode i.

The �eld Aaα is unknown, but it is studied through di�erent measurement

devices. The measurement device acting at time tα, is de�ned as a linear op-

erator, [Mα], that extracts from the �eld Aaα, a set of measurements gathered

in a vector Baα = [Mα]abAbα. Although the problem could easily be general-

ized, measurements are assumed instantaneous. A measurement is said to be

�partial� if [Mα] is rank de�cient and cannot be inverted (the entire �eld A•α

cannot be obtained from the snapshot B•α). Additionally, in the following, the

measurements B are polluted by a random Gaussian noise, characterized by its

variance σ. Arbitrary spatial covariance matrix could be considered, using its

inverse as the optimal metric tensor. For the sake of simplicity, noise will be

considered as white (or spatially uncorrelated).

An example of such partial measurement is provided by a 3D phenomenon

captured from a 2D detector. Inasmuch as one individual measurement device is

incomplete, a full experiment consists in combining such partial measurements

in time from di�erent points of view so that the 3D consistency can be cap-

tured. For instance, using stereo-vision, one can access 3D shape measurements

making the combination of two (or several) partial measurement devices (2D

cameras) a complete system. In the similar case of radiography, the combina-

tion of a (potentially large) number of projection directions allows the entire

3D microstructure to be reconstructed provided the studied object remains still

during the scan rotation, a process known as tomography.

Another trivial example of such partial measurements is such that, at each

instant of time tα, [Mα] is simply the identity restricted to a limited set of

points Ω(tα). In this case, [Mα] = [I]Ω(tα) is a diagonal matrix (projection
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over Ω(tα)). In the following, this elementary case will be considered as a toy

problem to investigate the retrieval of A from B, where the collection of data

along time will supplement the partial measurement at each elementary instant,

and exploit the property that only few space-time modes are su�cient.

This example is chosen so as to focus on the key point of compensating for

lacking data, and not on the speci�c particularities of the measurement operator

[Mα].

In space and time, Figure 1 shows several examples of partial measurements

in space and time, for a rather low coverage. Often, measurements occur over a

compact support (�window�) which appears here as intervals. It is chosen here

to consider intervals of the same length at each instant of time, however the

position of this set of measurement may move over time in discrete steps, in a

regular fashion, and randomly. Those examples are representative of di�erent

acquisition strategies encountered in practice. The �rst case is encountered

in the Scanning Laser Vibrometry technique [28]), or for the modal analysis

of a vibrating object from radiographs acquired at few directions [29]. The

second case illustrates the projection-based measurement methods [12] in which

the projection of the sample is imaged during rotation and loading. Another

application for the same case is the Continuous Scanning Laser Vibrometry

techniques [7]. The third case is met when the window motion is erratic, as for

instance for random acquisition patterns of the single-pixel camera [20].

In the limit of a very sparse acquisition, the question of invertibility will be

discussed in the following. Eventually an additional information, coming from

additional sensors (generally continuous in time and local in space) such as load

measurements, can be included to make the problem well-posed.

2.2. Static problem

Before addressing the modal analysis, let us specify our notations and recall

how a static problem would be characterized optimally with respect to the set

of noisy measurements.
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(a) (b)

(c) (d)

Figure 1: An illustration of di�erent partial measurements in space x and time t in the simple

case of an indicator (shown in grey), for stepwise scan (a), continuous scan (b), randomly

moving window (c), and random acquisitions (d). Here, for the sake of illustration, a large

fraction of possible measurements has been chosen, η = 35%, while in the test cases chosen in

section 4, η = 1%

The following cost function is introduced

T = (1/2)
∑
α

‖[Mα]{Aα} − {Bα}‖2 (2)

where the sought �eld and measurement in space at each instant tα are gathered

into a vector {Aα}, and the norm is the one resulting from a maximum likelihood

based on the noise covariance, Cov,

‖{X}‖2 ≡ {X}> ·
[
Cov−1

]
· {X} . (3)

For the white noise considered herein, this norm reduces to the Euclidian (L2)

one.
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Minimizing the cost function with respect to {A} leads to∑
α

[Mα]> ([Mα]{Aα} − {Bα}) = 0 (4)

or ∑
α

(
[Mα]>[Mα]

)
· {Aα} =

∑
α

[Mα]>{Bα} (5)

Let us de�ne [Hα] = [Mα]>[Mα] and [H]

[H] ≡
∑
α

[Hα] (6)

It is this matrix, discussed in the introduction of section 2, that has to be

inverted, whereas [Hα] cannot be as it is rank de�cient. The sum over α al-

lows all complementary measurements to participate to the identi�cation. The

minimizer of T then reads

{Aα} = [H]−1 ·

(∑
α

[Mα]>{Bα}

)
(7)

3. Proposed algorithm

Let us �rst recall the basic principle of the GPOD algorithm [21], and a

variant of it [30].

GPOD relies on a plain POD algorithm, applied to a complete set of data.

However, because some data are lacking, fake values are used over this missing

part. To initiate the process, an average value of the known data is used to �ll

in those parts, where averages may be computed over time or space or both [21].

POD is run over the resulting data set, with a speci�ed number of modes. Then,

the same procedure is repeated after data completion with the identi�ed modes,

and keeping the actual measurements unchanged. Upon iterations, the missing

part are progressively �lled with data that are more and more consistent with

the measured ones. The procedure is stopped when a stationary solution has

been reached. This algorithm will be refered to as GPOD1. There exists variants

of this algorithm that are faster but approximate and they are not discussed

herein.
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Let us however mention a variant � hereafter referred to as GPOD2 � such

that the number of modes is not �xed for the entire procedure. On may run

the same GPOD1 procedure, searching for one single mode to start with. After

convergence, the number of sought modes is incremented up to the desired value

(or after the incremental bene�t of using an additional mode is not considered

su�cient). The resulting modes obtained with this variant is similar to the

previous (when the problem admits a unique solution) because the last iteration

loop is similar but convergence is faster [30].

Let us stress that the beauty of the GPOD algorithms is to turn an absence

of measurement into a �fake� one, but where the alleged �measured� value is

tuned to be the least inconsistent with the actual ones. This substitutes to

each Hessian [Hα], a �completed� one which restores invertibility and makes the

identi�cation from each measurement instant a well-posed problem.

3.1. Proposed algorithm

As for GPOD2 procedure, the initial step is to identify a single mode. How-

ever, in contrast to the above two algorithms, missing data are not fudged even

temporarily. When no measurement is performed, no extraneous equation is

introduced.

From a set of measurements, {Bα}, one looks for the spatial mode {Φ}, the

temporal function ϕα and amplitude γ such that the following cost function is

minimized

T ({Φ}, {ϕ}) = (1/2)
∑
α

‖γϕα[Mα]{Φ} − {Bα}‖2 (8)

under two additional normalization conditions 〈ϕ2
α〉α = 1, and 〈Φ2

a〉a = 1. Thus,

one has to solve the following two equations Eqs. (9) and (10).

{Φ} = Argmin
{Φ∗}

T ({Φ∗}, {ϕ}) (9)

ϕ(t) = Argmin
{ϕ∗}

T ({Φ}, {ϕ∗}) (10)
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On the one hand, the minimization of T with respect to {Φ∗}, leads to

γ

(∑
α

ϕ2
α[Mα]>[Mα]

)
· {Φ} =

∑
α

ϕα[Mα]>{Bα} (11)

On the other hand, the determination of the associated temporal amplitudes is

obtained by a minimization of T with respect to ϕα giving

γϕα =
{Φ}>[Mα]>{Bα}
{Φ}>[Hα]{Φ}

(12)

It is proposed to use a �xed point algorithm, where ϕα is �rst initialized to 1,

and from Eq. (11), γ{Φ} is computed. The spatial mode and its amplitude are

then obtained from their product by using the normalization condition 〈Φ2
a〉a =

1. Then from the determined spatial mode, the temporal evolution, γ{ϕ},

is computed from Eq. (12), and again, γ is determined by the normalization

condition 〈ϕ2
α〉α = 1. The staggered determination of the spatial and temporal

modes is iterated until a �xed point is reached. This concludes the determination

of the �rst (dominant) POD mode.

As for PGD methods, the measurement is performed by adding modes pro-

gressively, one at a time. Once a �rst mode is measured, a residual, expressed

only on the measured areas, is computed as

{Rα} = {Bα} − γϕα[Mα]{Φ} (13)

This residual {Rα} is substituted to the measurement data, {Bα}, in the above

�single-mode� procedure, providing the second mode, which is subtracted from

the starting data to give a second residual. The latter substitution of successive

residuals is iterated to generate as many modes as needed until the residual is

comparable to noise.

It is to be underlined that the solution of Eqs. (9) never involves �fake�

measurements. As compared to GPOD, where the latter are included to restore

invertibility at each instant of time, they also endow the algorithm with a kind of

�inertia�, that slows down convergence. Thus the proposed algorithm is expected

to show a much faster convergence. Yet, in the absence of noise, all those

algorithms should converge toward the same (exact) solution. For noisy data,
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the proposed scheme that always gives the proper weight to each measurement

is expected to be more robust.

It is to be noted that such a greedy approach for the case of complete mea-

surements is strictly equivalent to the plain POD approach where all modes are

sought simultaneously. In the following, because of our choice of considering a

toy problem for which the metric is just trivial, PCA, POD or PGD are three

di�erent names for an equivalent result. However, it is to be observed that,

when the norm used in the functional to be minimized results from an arbitrary

variational formulation, (a PGD type problem), the very same procedure can

be duplicated providing the corresponding generalization to sparse data acqui-

sition. Just to mention a simple example, when noise is spatially correlated, the

introduction of a metric based on the inverse covariance matrix, (see Eq. (3)) is

trivially taken into account in the above cost function, and it would prevent a

straightforward use of GPOD.

3.2. Uniqueness for one single mode

Let us now consider the particular case of the toy model of direct measure-

ments, [Mα] = [I]Ω(tα). Thus, [H] =
∑
α[Mα]2 =

∑
α[Mα] is also diagonal

and the ath element along the diagonal is da =
∑
α Iα(a), or in other words, the

number of times position a has been measured. Hence, the only condition for

being able to invert the Hessian [H] is that all sites should be visited at least

once. Obviously, this condition guaranties the uniqueness of the solution for

the static case (where ϕα = 1). More generally, when only one spatio-temporal

mode is present, but the time evolution is not constant, then it is needed that

all positions in space are visited at least once, but similarly along the time axis,

at all considered instants, at least one measurement has been performed.

However, assessing uniqueness of the mode determination requires a more

complete discussion. Let us consider the case of two batches of measurements,

with for instance, a �rst half of sites being measured during a �rst period of time,

after what the second half is measured over the same amount of time. The �rst

domain is labeled (X) and the second (Y ). These two domains corresponds
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to a natural partition in two sub-problems each of which being solved by a

standard POD. Considered globally, this problem is within the class of partial

measurements. Let us suppose that this problem has been solved and that a

mode has been computed

Aaα = γ(1)ϕ(1)
α Φ(1)

a (14)

We can now construct another triplet (γ(2),ϕ(2),Φ(2)) such that

ϕ(2)
α =

 ωXϕ
(1)
α when α ∈ (X)

ωY ϕ
(1)
α when α ∈ (Y )

Φ(2)
a =

 (λ/ωX)Φ(1)
a when a ∈ (X)

(λ/ωY )Φ(1)
a when a ∈ (Y )

(15)

Let us de�ne ξ2 = ‖ϕ(1)‖2(X) and η2 = ‖Φ(1)‖2(X). In order to ful�ll the nor-

malization conditions of (ϕ(2),Φ(2)), the following two conditions are to be met

ω2
Xξ

2 + ω2
Y (1− ξ2) = 1

(λ/ωX)2η2 + (λ/ωY )2(1− η2) = 1
(16)

Provided these two conditions are satis�ed, (f (2), ϕ(2),Φ(2)) is just equivalent

to (f (1), ϕ(1),Φ(1)), however two conditions to determine three degrees of free-

dom λ/ωX is lacking a constraint. Thus, the solution cannot be unique. Hence,

although all observables B may be accounted for as a single space-time mode

(one separated representation), the solution is not unique if no overlap between

the measurement domains exist. This solution can be further extended to a col-

lection of blocks with no overlap. Note however that overlap is to be considered

after an arbitrary permutation of measurement of sites or instants. To evaluate

the degeneracy of the solution in terms of modes, it su�ces to count the number

of connected components using simple graph-cut algorithms.

Furthermore, let us note that connectedness of the components is not yet

the ultimate criterion: if connectedness of a single component is only due to

a unique measurement at a particular location ã and time α̃, its value may

be seen as providing the additional equation needed to complement Eq. (16)
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enforcing ωX = ωY = λ = 1. However, this necessitates the value of the

mode at this speci�c site and time, ϕ
(1)
α̃ Φ

(1)
ã , be non-zero. This implies that

the uniqueness of the solution is not only due to the measurement set-up (the

choice of measurement positions and instants), but also to the modes which

are measured. In particular, the locations where the mode vanishes (or simply

assumes a low absolute value as compared to the surrounding) are potential

sources of �fragility� for the solution. Those situations are typically those that

are easily cured by requiring a smooth behavior for both spatial mode and/or

time function.

As an alternative to having an overlap, let us note that adding an additional

information may allow to recover a well posed problem. One natural assumption

is that stationary modes are present, e.g., because a vibrating system is sub-

jected to a random but steady excitation [31, 29]. In such a situation, possibly

a wealth of information may be accessible (exploiting a statistical distribution

that may be Gaussian), but the most robust ones rely on low order statistical

moments of the distribution per block, i.e., having an equal total �power� per

block of measurements, 〈ϕ2
α〉block = 1 (similar to the global normalization). This

implies only that the number of measurements is large per block as the decay

of �uctuations (law of large numbers) is slow.

3.3. Uniqueness in the case of multiple modes

When multiple, Nmode, space-time modes are present, one may generalize

the previously mentioned graph theoretic argument based on connected compo-

nents. However, at least Nmode common sites should be shared between blocks

so as to be considered connected.

The above discussion of uniqueness may be further extended to the analysis

of uncertainty. Thus rather than just a determination of well-posedness of the

problem, an assessment of the uncertainties may reveal ghosts of the above

undeterminations. The least stable eigenmodes may display such block-like

multiplicative features as those above analyzed. Such were indeed observed in

test cases, especially when spatial and temporal modes crossed a 0 value. This
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point emphasizes the property that stability is not only a matter of experimental

design, but also involves properties of the observed modes. This observation was

the motivation for introducing the previous discussion.

4. Test cases

The procedure is applied for the recovery of di�erent synthetic test cases.

In order to test the proposed method, we chose extreme cases of sparse

acquisition representing η = 1% of the entire (x, t) domain, where the latter

is chosen to be of size Nx = 1024 locations in space and Nt = 1024 instants

of time for measurements. Therefore the number of measurements is ηNxNt.

Moreover, an additional Gaussian white noise is added to the measured data,

with a standard deviation that represents 10% of the standard deviation of the

reference data. (The signal to noise ratio is thus 20 dB).

The reference space-time �eld was synthesized by the Fourier transform

of random amplitudes and phases. High frequencies were cut out to produce

smooth �elds. However, as earlier mentioned no regularity assumption was ex-

ploited to retrieve the modes. Thus, this regularity is more relevant to pinpoint

unsatisfactory recovery from visual inspection.

For the approach to make sense, some redundancy is necessary, and hence

the reference data should require less data than the measured ones. Hence, it

was chosen to consider only Nmode = 4 separated modes. Each mode requires

(Nx + Nt) components. Therefore, (when the measurements are homogeneous

in the space-time domain), the redundancy is

β =
Measurements

Information content
=

ηNxNt
Nmode(Nx +Nt)

= 1.28 (17)

so that no more than 28% of the data is redundant and is to be used to reduce

noise. The three cases of distribution of measurements in space and time that are

shown in Figure 1 were tested together with a completely random distribution

of measurements, but the subsampling was kept to a constant value η = 1%.

In order to evaluate the proposed algorithm a comparison is proposed with

the two reference algorithms discussed earlier, GPOD1 and GPOD2. All algorithms
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are iterative, and hence the same criterion was chosen to terminate the iterative

procedure. When the increment in relative error between two successive itera-

tion became smaller than 10−4, iterations were stopped. Hence the number of

iterations varies from one case to the other. Moreover, the maximum number

of iterations was set to a maximum value of 400 if the previous criterion was

not reached. However, because both GPOD2 and the proposed algorithm involve

many loops, their total number of iterations (summed over all loops) may exceed

400.

Case Algorithm Iterations Final Error

Step scan GPOD1 400∗ 0.024

Step scan GPOD2 1240 0.020

Step scan Present Method 198 0.019

Cont. scan GPOD1 124 0.047

Cont. scan GPOD2 116 0.049

Cont. scan Present Method 30 0.024

Rand. mov. scan GPOD1 99 0.042

Rand. mov. scan GPOD2 192 0.040

Rand. mov. scan Present Method 36 0.022

Random GPOD1 334 0.054

Random GPOD2 552 0.032

Random Present Method 37 0.024

Table 1: Comparison for di�erent test cases (Step scan, Continuous scan, Randomly moving

scan, and Random acquisition) of the three algorithms (GPOD1, GPOD1, Present Method). For

each combination of test case and algorithm, the number of iterations at convergence is given,

together with the relative error at the end of the computation

In Table 1, the results of the four di�erent cases illustrated in Fig. 1 for all

three algorithms are reported. The �nal error is computed as the norm (over

space and time) of the di�erence between the recovered �eld, and the original

reference �eld without noise. This norm is scaled to the standard deviation of

the original reference �eld. The presence of a high level of noise and of the very
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sparse acquisition η = 1% is such that the computation cannot recover exactly

the original data. The sole presence of noise would be responsible for an error

of about 4 to 5%. The exploitation of the presence of only few modes, allows

all algorithms to reduce this error to a lower level in all cases. However, all

algorithms do not reach the same level of �nal error. Both variants of Gappy-

POD provide results of comparable quality in terms of errors, but GPOD2 requires

often more iterations than GPOD1, so that the claimed bene�t of a progressive

enrichment of modes does not appear so obvious in the studied case (which is

clearly an extreme case). The proposed method shows generally a markedly

lower residual error (down to 50% smaller), and yet with a much lower number

of iterations.

Two cases are chosen for a more detailed illustration, the random acquisition

case in Figure 2 and the continuous scan in Figure 3. In both �gures, the

reference �eld (without noise) is shown on the top line together with the support

of the measurement. The �elds reconstructed from the four identi�ed modes

are displayed for the three algorithms. Finally, the evolution of the error with

iterations is shown for the three algorithms. The fact that both GPOD2 and

the proposed method consists of Nmode = 4 loops can be seen from the error

evolution. In this latter set of graph, the error that would correspond only to

the presence of noise (but no missing data, and no mode recovery treatment) is

indicated as a dotted line. It is to be noted that the range of variation of both

axes di�er from one algorithm to the next.

In Figure 2, GPOD1 shows a marked dissymmetry between time where the

mode are well captured and space where amplitudes are depressed. It is also to

be noted that convergence is quite slow, and the criterion for interrupting the

mode recovery stopped the computation well before its asymptotic result. GPOD2

performs much better for the reconstructed �eld, but required more than 200

additional iterations. The proposed algorithm has a residual error level better

than that of noise after only 2 iterations (to be compared to 450 for GPOD1, and

420 for GPOD2).

In Figure 3, relative to the �continuous scan� case, the temporal evolution is
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 2: Random acquisition case. (a) Reference �eld; (b) measurement support with ran-

dom acquisitions; (c) reconstructed �eld using GPOD1; (d) reconstructed �eld using GPOD2; (e)

reconstructed �eld using the proposed method; (f) relative error between reconstruction and

reference as a function of iteration number for GPOD1; (g) same relative error for GPOD2; (h)

same relative error for the proposed method.

well captured, but the spatial modes seem to have been erased, for both GPOD1

and GPOD2. (This dissymmetry between space and time originates from the way

missing data are �lled in with spatial averages at each instant of time.) This

is to be contrasted with the present method which gives a much more balanced

picture of the space-time �eld, and reaches an error level which is cut down

by a factor of 2 as compared to Gappy-POD results. For all three algorithms,

convergence is faster than for the previous �random� case, and the convergence

criterion is reached much earlier in terms of iterations.
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 3: Continuous scan case. (a) Reference �eld; (b) measurement support; (c) recon-

structed �eld using GPOD1; (d) reconstructed �eld using GPOD2; (e) reconstructed �eld using

the proposed method; (f) relative error between reconstruction and reference as a function of

iteration number for GPOD1; (g) same relative error for GPOD2; (h) same relative error for the

proposed method.

5. Conclusion

The present paper has introduced a new algorithm to handle Proper Orthog-

onal Decomposition (POD, or PCA) for partial measurement. This algorithm,

when tested over examples of very sparse data acquisition, and very noisy data,

was observed to outperform di�erent variants of Gappy-POD, in terms of result

quality and convergence speed.

The very formulation of the introduced algorithm makes its extension to

Proper Generalized Decomposition (PGD) straightforward. Namely, the cost

19



function that was used herein, Eq. (8), involves a simple L2 norm, but can

simply be tailored to any other problems where a variational formulation is

accessible.
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