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ABSTRACT
Bayesian graphical models are an efficient tool for modelling complex data and derive self-
consistent expressions of the posterior distribution of model parameters. We apply Bayesian
graphs to perform statistical analyses of Type Ia supernova (SN Ia) luminosity distance mea-
surements from the joint light-curve analysis (JLA) data set. In contrast to the χ2 approach
used in previous studies, the Bayesian inference allows us to fully account for the standard-
candle parameter dependence of the data covariance matrix. Comparing with χ2 analysis re-
sults, we find a systematic offset of the marginal model parameter bounds. We demonstrate
that the bias is statistically significant in the case of the SN Ia standardization parameters with
a maximal 6σ shift of the SN light-curve colour correction. In addition, we find that the evi-
dence for a host galaxy correction is now only 2.4σ. Systematic offsets on the cosmological
parameters remain small, but may increase by combining constraints from complementary
cosmological probes. The bias of the χ2 analysis is due to neglecting the parameter-dependent
log-determinant of the data covariance, which gives more statistical weight to larger values
of the standardization parameters. We find a similar effect on compressed distance modulus
data. To this end, we implement a fully consistent compression method of the JLA data set that
uses a Gaussian approximation of the posterior distribution for fast generation of compressed
data. Overall, the results of our analysis emphasize the need for a fully consistent Bayesian
statistical approach in the analysis of future large SN Ia data sets.

Key words: methods: data analysis – methods: statistical – supernovae: general – cosmolog-
ical parameters – distance scale.

1 INTRODUCTION

Over the past decade, observational programmes dedicated to Type
Ia supernovae (SN Ia) have significantly enlarged the original data
set that lead to the pioneering discovery of the cosmic acceleration
(Riess et al. 1998; Perlmutter et al. 1999). To date these systematic
searches have detected about a thousand SN Ia across a large red-
shift range (see Astier et al. 2006; Riess et al. 2007; Wood-Vasey
et al. 2007; Frieman et al. 2008; Hicken et al. 2009; Contreras et al.
2010; Tonry et al. 2012; Suzuki et al. 2012; Campbell et al. 2013).
Thanks to this new generation of SN surveys, it has been possible to
achieve unprecedented high statistical precision on luminosity dis-
tance measurements. In fact, there is a widespread consensus that
current cosmological constraints from SN Ia are limited by system-
atic uncertainties (see Conley et al. 2011; Scolnic et al. 2014). Po-
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tential sources of bias arise from variations of SN magnitudes that
correlate with host galaxy properties (see Kelly et al. 2010; Sulli-
van et al. 2010; Maguire et al. 2012) as well as model assumptions
in the light-curve fitting methods that are used to standardize the
SN sample.

Recently, in an effort to bring SN Ia observations from dif-
ferent data sets on a common ground, Betoule et al. (2014, here-
after B14) have performed a joint light-curve analysis (JLA) of data
from the Supernova Legacy Surveys (SNLS), the Sloan Digital Sky
Survey-II supernova survey (SDSS-II) and a variety of programmes
that targeted low- and high-redshift SNe. The full data set has been
made publicly available, including light-curve fitting parameters
with their covariance matrices and a compressed set of distance
modulus data, thus providing all elements necessary to perform sta-
tistically robust cosmological data analyses.

SN Ia magnitudes are standardized using an empirical rela-
tion between the maximum absolute magnitude peak and the time
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width (Phillips 1993; Hamuy et al. 1996; Phillips et al. 1999) of the
light curve and the SN colour (Tripp 1998). These parameters are
first extracted for each SN by fitting the observed light curves, then
they are used in the standard-candle relation to estimate the distance
moduli from which cosmological parameter constraints are finally
inferred. This is the operational mode of the SALT2 light-curve fit-
ting model (Mosher et al. 2014) originally introduced in Guy et al.
(2007) and used to derive the measurements of B14. A critical as-
pect of this process concerns the propagation of uncertainties in the
standardization parameters that parametrize light-curve features in
the standard-candle relation. In the context of Bayesian statistics
this problem is addressed unambiguously by assigning priors to
the standardization parameters. More in general, Bayesian meth-
ods can handle all the complexity of large SN data sets while pro-
viding a self-consistent probabilistic modelling of the data. As an
example, in χ2 analyses the residual SN intrinsic magnitude scatter
is usually fitted together with the cosmological parameters under
the (unphysical) requirement that the χ2 per degree of freedom of
the best-fitting model is ∼ 1. This is not needed in the Bayesian
framework where it is possible to derive the full posterior proba-
bility distribution of the intrinsic scatter. March et al. (2011, 2014)
have shown this to be the case using a Bayesian hierarchical (or
graphical/network) model of the SN data. Recently, Shariff et al.
(2016) have also applied a similar formalism to the analysis of
the JLA data set to simultaneously infer constraints on cosmolog-
ical and standardization parameters. Bayesian graphs, also known
as Bayesian networks, have a twofold advantage over χ2 statisti-
cal methods (see for a review Jensen & Nielsen 2007). On the one
hand, it provides a better understanding of the data through a graph-
ical representation of the causal and probabilistic connections of all
problem’s variables. On the other hand, the graphical model allows
one to directly derive the factorized form of joint probability distri-
butions for the parameter of interests, thus providing a (numerical)
solution even when the problem is extremely complex.

Here, we use Bayesian graphical models for the JLA data set
to perform a self-consistent cosmological parameter inferences that
account for the light-curve fitting parameter dependence of the data
covariance. This is an important point that has been overlooked in
previous SN studies. We will show that such a dependence not only
impacts the cosmological parameter constraints, but also the esti-
mation of the standard-candle parameters. Neglecting such a de-
pendence is even more problematic in the case of compressed SN
data sets. Due to the statistical nature of the compression method,
the effect of the parameter-dependent covariance can lead to biased
results. Once the compression is done, there is no simple method to
amend the inconsistency using compressed data alone.

The paper is organized as follows. In Section 2, we introduce
the basic concepts of SN cosmology and describe the JLA data.
In Section 3, we introduce Bayesian graphical models and discuss
their application of the JLA data set, while in Section 4 we will
present the result of the cosmological parameter inference. In Sec-
tion 5, we describe the statistical compression method applied to
the JLA distance modulus data and discuss the result of various
tests in Section 6. Finally, Section 7 presents our conclusion.

2 COSMOLOGY WITH SN IA DATA

In this section, we will briefly review the main concepts of SN
cosmology and introduce the JLA data set. We will do so from
our Bayesian point of view which refers to the fact that (1) all pa-
rameters are considered random variables to which we assign prior

probability distributions based on available information or the lack
thereof; (2) data are described by random variables with only one
realization deduced from the observations, thus formally described
in probabilistic expression as conditioned variables.

Let us begin with the definition of distance modulus and con-
sider an astrophysical source with absolute magnitude Mabs and ap-
parent magnitude m. The luminosity distance dL to the source can
be obtained from the distance modulus:

µ ≡ 5 log10

(
dL

10 pc

)
= m − Mabs. (1)

In the case of SN Ia, the observed magnitude (as measured at the
peak luminosity of the light curve) varies from one object to an-
other. Nevertheless, using correlations with other measurable fea-
tures in the SN light curve, it is possible to deduce a standard value
that has been shown to have a very small scatter over a large SN
sample.

The possibility of this standardization was first pointed out
by Phillips (1993) who showed that the SN peak luminosity cor-
relates with the rate of brightness decline (or stretch) of the light-
curve. Subsequently, Tripp (1998) showed an additional correlation
with the SN colour. Further correlations have been found with the
host galaxy properties, such as the star formation rate and metallic-
ity (Gallagher et al. 2005; Rigault et al. 2015), stellar mass (Kelly
et al. 2010) and galaxy morphology (Hicken et al. 2009). SN sam-
ples such as the JLA data set include such corrections as we shall
describe next.

2.1 Description of the JLA data set

The JLA data set presented in B14 consists of 740 SN Ia measure-
ments of the peak apparent B-band magnitude m?

B in the AB mag-
nitude system, the ‘stretch’ or shape parameter of the light curve
X1 and the colour parameter C. These data can be represented in a
concise form by introducing the joint data vector

v = m?
B ⊕ X1 ⊕ C =

m?
B

X1

C

 . (2)

This is a (3 × 740 = 2220)-dimensional random vector, and its
‘realized’ value is given by the JLA data reduction process. The
vector v here contains all the elements of the data vector denoted
by η in B14, but transformed by a permutation so that the block
structure in equation (2) is maintained. The data also provide the
covariance matrix Cv, a 2200 × 2200 symmetric positive-definite
matrix that can be represented as a 3 × 3 block matrix

Cv =


Cmm CmX CmC

. . . CXX CXC

. . .
. . . CCC

 , (3)

where each block is a 740 × 740 square matrix. The matrix Cv cor-
responds to the matrix Cη in equation 11 of B14 but with two slight
differences. First, the matrix Cη is also permuted in the columns
and rows so that it conforms to the block structure in equation (3).
Secondly, the three additional diagonal components in equation 13
of B14, i.e. the peculiar velocity, weak lensing and other intrinsic
dispersions, are added to the block Cmm without altering the com-
putation of the covariance of the distance modulus vector µ. It is
worth stressing that the covariance Cv provided by B14 already in-
cludes an estimate of the intrinsic SN magnitude dispersion inferred
from a cosmological parameter independent restricted likelihood

MNRAS 000, 1–15 (2016)
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Figure 1. Visualization of the JLA data set coloured by the four component
source surveys (Low z, SDSS, SNLS and HST). Displayed are the apparent
peak magnitude m?

B (top-left panel), the light-curve stretch X1 (top-right
panel) and the colour C (bottom-right panel). The bottom-right panel shows
the SN redshift empirical distribution (left axis, filled histograms) and the
cumulative distribution (right axis, unfilled histograms).

analysis described in their section 5.5. Because of this, we do not
consider an additional σint dispersion parameter term as done for
instance in the analysis of Lago et al. (2012).

These data are provided with a set of metadata containing non-
random information such as the SN redshift (for which errors are
negligible), the stellar mass of the host galaxy Mstellar (in units of
solar mass M�) and a tag specifying the sample of origin of each
SN. The panels in Fig. 1 summarize the redshift distribution of the
JLA observables.

Following the convention of B14, the SN sample is standard-
ized using the corrected apparent magnitude relation:

md = m?
B + αX1 + βC, (4)

which includes the stretch and colour corrections. Notice that such
a correction is made on the apparent magnitude (see also Sullivan
et al. 2010) and not the absolute one as in the original paper by
Tripp (1998). Nevertheless, this is merely a matter of convention
that has no effect on the data analysis. In addition, the parameter
β in equation (4) differs from the common usage (e.g. B14) by a
minus sign with no effect on the final results.

It is convenient to rewrite the linear combination equation (4)
in terms of a linear operator J(α,β) represented by an n × 3n rectan-
gular block matrix of three n × n blocks:

J(α,β) =
(
I αI βI

)
=


1 α β

. . .
. . .

. . .

1 α β

 ,
(5)

where I is the n × n identity matrix and n is the number of data
points (740). Thus, equation (4) can be written as

md = J(α,β)v. (6)

The rest of the standardization accounts for galaxy host-
dependent corrections. In B14, the authors adopted a one-step cor-
rection to the absolute magnitude of each SN as given by (seealso

Suzuki et al. 2012)

Md(∆M) =

M1
B if Mstellar < 1010 M�,

M1
B + ∆M otherwise,

(7)

where M1
B and ∆M are global random variables fitted with the cos-

mological parameters. Notice that the SN absolute magnitude M1
B

acts as a free offset in the distance modulus. However, due to the
degeneracy with the Hubble constant entering in the luminosity dis-
tance, as seen in equation (10), M1

B is usually unconstrained unless
additional external information is included in the analysis (a point
to which we will come back at the end of Section 2.2). Alterna-
tively, one can fix M1

B to an arbitrary value and compensate the loss
of randomness by introducing another suitable random variable in
the analysis. This is the solution that we adopt here and set its value
M1

B = −19.05 as quoted in B14, appendix E.
Notice that the standardization parameters α, β, and ∆M are

again random variables. In general, their joint distribution is as-
sumed to be the same for all individual SNe in the sample. Being
random variables, in the Bayesian approach they can be assigned a
prior probability based on prior information (or the lack thereof),
and their posterior probability can be obtained by the inference pro-
cess. Therefore, in this paper, we will not attempt to fix them at any
particular values.

To summarize, the distance modulus data vector reads as

µd = md − Md = J(α,β)v − Md(∆M). (8)

This can be seen as the result of a parameter-dependent affine trans-
formation of the JLA-reduced data vector v = m?

B⊕X1⊕C. Assum-
ing v to be Gaussian-distributed, for given standardization param-
eter vector values ϕ = (α, β,∆M), µd is also Gaussian-distributed
with covariance

Cd = J(α,β)CvJ
ᵀ
(α,β) (9)

conditional on ϕ. For completeness, we remark that even if v is not a
Gaussian-distributed variable, the covariance of µd is still given by
equation (9), although in this case higher moments than the second
order are required to fully characterize the distribution.

2.2 Cosmological model of the luminosity distance

In a Friedman–Lemaître–Robertson–Walker (FLRW) background
the luminosity distance dL at redshift z reads as (see e.g. Hogg
1999)

dL(z) =
c

H0
(1 + z) Sk

[∫ z

0

d z′

E(z′)

]
, (10)

where H0 is the Hubble constant, c is the speed of light and the
function Sk depends on the curvature parameter Ωk,

Sk (·) =


1√
Ωk

sinh
[√

Ωk (·)
]

Ωk > 0,

· i.e. identity Ωk = 0,
1√
−Ωk

sin
[√−Ωk (·)

]
Ωk < 0.

(11)

The function E(z) is the dimensionless expansion rate given by

E(z) =
[
ΩM(1 + z)3 + Ωk(1 + z)2 + ΩDE fDE(z)

] 1
2 , (12)

where ΩM and ΩDE are the matter and dark energy density, respec-
tively (with Ωk = 1−ΩM−ΩDE), and fDE(z) is a function characteriz-
ing the dark energy density evolution. For a dark energy component
with redshift-dependent equation of state w(z) this reads as

fDE(z) = exp
{

3
∫ z

0

[
1 + w(z′)

]
d ln (1 + z′)

}
. (13)

MNRAS 000, 1–15 (2016)
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Here, it is worth noticing that the exact numerical value of the
cosmological distance at a given redshift and for a given set of cos-
mological parameters depends on the choice of physical units. In
contrast, the distance modulus µd given by equation (8) depends
on the absolute magnitude M1

B previously discussed. Hence, equa-
tions (1) and (8) differ by an unknown magnitude-calibration con-
stant M:

M ≡ µd − µ. (14)

In the Bayesian approach, this is treated as a global random variable
to be fitted against the data. In such a case, M accounts for any
deviation of the predicted value of the distance modulus from the
observed one (due to the specific choice of the value of M1

B).
As already mentioned, any constant offset in the standard-

candle relation is degenerate with the value of H0 entering the lu-
minosity distance; thus, H0 and M can be re-absorbed into a single
parameter

M′ = M − 5 log10 h, (15)

where h = H0/(100 km s−1 Mpc−1) is the dimensionless Hubble
constant. However, from our Bayesian perspective, M and H0 are
indeed different, since they may have different prior probabilities.
In particular, the prior distribution for H0 can be inferred from ob-
servations (e.g. Efstathiou 2014; Planck Collaboration 2015), usu-
ally a fairly localized Gaussian distribution. On the other hand, hav-
ing no prior information on M, we assigned a uniform prior. We
refer the readers to Section 4 for a detailed discussion of the de-
generacy of M and H0 and the joint constraints from the SN data
analysis.

3 GRAPHICAL MODELS

Here, we introduce Bayesian graphical models (or networks) and
describe their application to SN Ia data. The literature on graphi-
cal representations of Bayesian statistical models is quite vast; we
refer the interested reader to review papers by Jordan (2004) and
D’Agostini (2005) for a first introduction and to Kjærulff & Mad-
sen (2013) for an extended treatment of the subject.

3.1 Statistical inference and graphical representations

We illustrate the use of Bayesian graphs with a simple toy model.
Let us consider a distance modulus data vector µ with covariance
matrix C and a theoretical model specified by the parameter vector
Θ predicting the distance modulus through a deterministic function
of the model parameters, i.e. µt = ft(Θ), such as the FLRW cosmic
expansion model of equation (10). We want to infer the posterior
probability density function (PDF) of the model parameters given
the observations, P(Θ |µ,C). Using the definition of marginal prob-
ability this reads as:

P(Θ |µ,C) =

∫
P(Θ,µt |µ,C) dµt, (16)

where the integrand is given by the definition of conditional proba-
bility density

P(Θ,µt |µ,C) =
P(Θ,µt,µ,C)

P(µ,C)
. (17)

The term in the numerator is the joint probability distribution which
can be expressed as a factorization of conditional probabilities us-
ing the chain rule:

P(Θ,µt,µ,C) = P(µ |µt,C)P(C)P(µt |Θ)P(Θ). (18)

Θ

µ

µt C

Figure 2. Graphical model representing deterministic and probabilistic re-
lations between model parameters (Θ), model predictions (µt) and variables
with evidence (µ,C), in this case deduced from observational data.

The dependence relations between all the variables of the
problem as expressed in the above equation can be represented in
the graphical model shown in Fig. 2. This is a directed acyclic graph
(DAG) in which each variable is represented by a node, while its
relation to other variables is marked by edges connecting the corre-
sponding nodes. Deterministic relations are represented by dashed
edges, while solid edges indicate probabilistic relations.

In Fig. 2 we can already identify different kinds of nodes. First,
the grey nodes represent the random variables on which we have ev-
idence. The evidence may come in the form of observational data or
other considerations specified probabilistically. Henceforward we
will denote these nodes as ‘evident’ ones, which is more general
than the term ‘observed’, thus avoiding confusion with purely ob-
served data. Secondly, a node may be marked by a double-circled
boundary if it is deterministic, i.e. its conditional distribution is a
Dirac δ distribution. In this paper, our notations for the nodes fol-
low that of Shachter (1998).

Notice that both the nodes for C and Θ have no parents, i.e.
there are no edges from other nodes leading to them. In this sense,
both may be said to be ‘unconditioned’. However, they take dif-
ferent roles in the statistical reasoning. The theoretical model pa-
rameter Θ is directly specified by its prior probability P(Θ); on the
other hand, C is an evident variable. In fact, though it may not be
a direct observable, it can be derived by a data-processing pipeline
that propagates the statistical distributions from a variety of ob-
servables. We can thus imagine another graphical model in which
edges that flow from the observables ultimately arrive at C. How-
ever, once this upstream analysis is performed and C is given its
evident value, its use in a subsequent analysis severs the links to
the original observables in the ‘upstream’ of the pipeline (Kjærulff
& Madsen 2013, chapter 2.5.1). Thus, while C has evidence, the pa-
rameter Θ has none which justify our convention in denoting their
respective nodes. The data variable µ occupies the root node of the
graph. If there are more data sets available, these will appear as
multiple root nodes at the bottom of the graph.

Starting from the graphical model in Fig. 2, one can easily
construct the factorized joint probability distribution by traversing
the graph, which is equivalent to the chain rule. Each non-observed
starting node contributes with a prior PDF [e.g. Θ → P(Θ)], while
non-starting nodes contributes with conditional probabilities that
are conditional to the variables associated with the connected nodes
[e.g. µ → P(µ |µt,C)]. The grey, ‘observed’ nodes provide evi-

MNRAS 000, 1–15 (2016)
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dence, usually in the form of the available realization provided by
the data set, which constrains the randomness of the parameters.

Before evaluating the posterior distribution P(Θ |µt,C), we
first need to specify the form of the various terms in equation (18).
In the case of Gaussian-distributed data, we have

P(µ |µt,C) =
exp

[
− 1

2 (µ − µt)ᵀ C−1 (µ − µt)
]

√
(2π)n det C

, (19)

where n is the dimension of the vector random variable or the num-
ber of data points. Since there is no uncertainty in the theoretical
model prediction of distance modulus, the conditional probability
is a δ distribution

P(µt |Θ) = δ[µt − ft(Θ)]. (20)

Substituting these expressions in equation (18) and computing the
integral in equation (16), we obtain the familiar expression of the
posterior distribution

P(Θ |µ,C) =
1

Z(µ,C)
L(Θ;µ,C)P(Θ), (21)

where Z(µ,C) ≡ P(µ,C)/P(C) = P(µ |C) is a normalization con-
stant, usually dubbed as the ‘Bayesian evidence’ or ‘marginal like-
lihood’ that is relevant for model selection (see e.g. Jaffe 1996; Bas-
sett, Corasaniti & Kunz 2004; Mukherjee et al. 2006; Trotta 2007)
and

L(Θ;µ,C) =
exp

{
− 1

2

[
µ − µt(Θ)

]ᵀ C−1 [
µ − µt(Θ)

]}
√

(2π)n det C
(22)

is the so-called Gaussian likelihood function. Taking the logarithm
of equation (21) we obtain

ln P(Θ |µ,C) = − ln Z − n
2

ln(2π) − 1
2

ln det C

− 1
2
χ2(Θ) + ln P(Θ),

(23)

where

χ2 =
[
µ − µt(Θ)

]ᵀ C−1 [
µ − µt(Θ)

]
, (24)

is the object of the χ2 analysis. The value of evidence variables in
equation (21), in this case C and µ, can then be fixed at their real-
ized values as given by the data set, and in this regard equation (21)
becomes a function of Θ that can be readily evaluated or sampled.
For brevity, in this paper we will not make notational distinction of
conditioning variables and their realized values in the equations.

We would like to point out that the graphical model shown in
Fig. 2 can be extended without altering the final posterior calcula-
tion by adding a deterministic node for the variable ∆µ = µ − µt

and an evident node µ0, with the ‘realized value’ 0, as represented
in Fig. 3. The evidence on this node where the edges converge is
not given by observational data, but its specification is indispens-
able for the purpose of ensuring that we are fitting the model µt to
the data (Kjærulff & Madsen 2013, chapter 2.5.3). Then, the poste-
rior distribution can be constructed similarly to the earlier example
as

P(Θ |µ0,µ,C) =
P(Θ)

Z(µ0, µ,C)

" [
P(µ0 |∆µ,C)P(∆µ |µ,µt)

× P(µt |Θ) dµt d ∆µ
]
,

(25)

where P(µ0 |∆µ,C) is given by a Gaussian distribution with mean
∆µ and covariance C and P(∆µ |µ,µt) = δ[∆µ − (µ − µt)]. It
is straightforward to see that performing the integration in equa-
tion (25) yields the same result as equation (21), which assures us

∆µ

µ0
��0

µt

C

µ

Θ

Figure 3. Graphical model as in Fig. 2 with the addition of a deterministic
node ∆µ = µ − µt and an evident node µ0 whose value is to be fixed at 0.

v

µ0
��0

µt Cdµd

∆µ

Θ Cv

Figure 4. Graphical model of cosmological analysis using the JLA data set.

that the transformation does not alter the results of statistical infer-
ence.

The extended graphical model may appear trivial. However,
the addition of the extra nodes is indeed the key to handle the fact
that the distance modulus data from SN Ia depend on additional
standardization parameters. In particular, both µ and C now occupy
similar positions with no parents, and our discussion about such
data-derived evident variables, exemplified by C in the context of
Fig. 2, now applies symmetrically to both.

3.2 Graphical model of inference with JLA data

In Section 2.1 we have shown that the data vector µd and the co-
variance matrix Cd are the result of an affine transformation over
the light-curve fitting parameters data vector v and its covariance
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Cv. The effect of this affine transformation is to mix observed data
and model parameters. In order to disentangle them at the level of
the calculation of the posterior distribution, it is convenient, as in
the case of the toy model shown in Fig. 3, to introduce the deter-
ministic variable ∆µ = µ − µt and the evident one µ0 = 0. The
Bayesian graphical model for the JLA data sets is shown in Fig. 4
where the parameter vector Θ now includes the cosmological and
the standard-candle relation parameters respectively. From Fig. 4 it
is straightforward to derive the form of the joint probability distri-
bution and compute posterior distribution of the model parameters
given the data:

ln P(Θ |µ0, v,Cv) = − ln Z − n
2

ln(2π) − 1
2

ln det Cd(Θ)

− 1
2
χ2(Θ) + ln P(Θ),

(26)

where

χ2(Θ) =
[
µd(Θ) − µt(Θ)

]ᵀ C−1
d (Θ)

[
µd(Θ) − µt(Θ)

]
(27)

with µd(Θ) given by equation (8) and Cd from equation (9) as con-
sequences of the affine transformation which standardizes the SN
Ia distance moduli.

The above expressions show an evident fallacy of the χ2 analy-
sis, namely neglecting the contribution of the parameter-dependent
covariance. This term cannot be dismissed as an implied constant
even if one argues for the use of χ2 statistics as motivated by the
non-Bayesian theory of least squares which yields the minimum
variance unbiased estimator. In fact, this theory requires that the
covariance (or dispersion) matrix has to be known up to a con-
stant multiplier (Rao 1945). However, if the covariance is param-
eter dependent, then in order to apply the classical least-squares
approach, the covariance must be approximated quadratically so
that the parameter-dependent contribution can be absorbed into a
quadratic form with constant dispersion matrix. Hence, such de-
pendence does need to be properly propagated in the final parame-
ter inference. As we will show next, neglecting this term can lead
to biased results since maximizing the posterior is not equivalent to
minimizing the χ2.

4 JLA COSMOLOGICAL PARAMETER CONSTRAINTS

We perform a cosmological parameter inference using the JLA
data set and compare results based on the computation of the pos-
terior distribution equation (26) versus the customary χ2-analysis
specified by equation (27). We will refer to the former as the
Bayesian approach and the latter as ‘χ2’. As the target model
we consider a flat dark energy wCDM model with parameters
Θ = [ΩM,w, h,M, α, β,∆M], where w is a constant dark energy
equation of state parameter. We assume a Gaussian prior on h with
mean 0.688 and standard deviation 0.033 consistent with the recent
analysis on the distances to nearby SN Ia by the Nearby Super-
nova Factory project (Rigault et al. 2015). Following the discus-
sion in Planck Collaboration (2015, section 5.4), we use the NFS
value obtained from an independent megamaser distance calibra-
tion to NGC 4258 (Humphreys et al. 2013). This result is consis-
tent (within 0.5σ) with the value of the Hubble constant obtained
from the Hubble Space Telescope (HST) Cepheid and nearby SN
Ia data (Riess et al. 2011) as re-analysed by Efstathiou (2014) also
calibrated on NGC 4258 alone. This prior differs from that used in
the main analysis of B14 that assumed a hard prior h = 0.7 (while

0.0 0.1 0.2 0.3 0.4 0.5
ΩM

−0.6

−0.8

−1.0

−1.2

−1.4

w

Figure 5. Marginal 0.683 and 0.95 two-dimensional credibility regions in
the ΩM–w plane for a flat wCDM model derived from the analysis of the full
posterior distribution (black solid lines) and the χ2 analysis (blue dashed
lines).

letting M1
B to freely vary).1 For the other parameters we assume uni-

form priors in the following intervals: ΩM ∈ [0, 1], w ∈ [−2.5, 1],
M ∈ [−5, 5], α ∈ [−1, 1], β ∈ [−10, 10] and ∆M ∈ [−0.5, 0.5].

We evaluate the posterior distribution using the Markov chain
Monte Carlo (MCMC) method as implemented in by the pymc2 li-
brary (Patil, Huard & Fonnesbeck 2010). The χ2 analysis based on
equation (27) is performed by inserting a potential function propor-
tional to

√
det Cd in the joint probability distribution, which com-

pensates the term (ln det Cd)/2 in equation (26) so that the ‘stan-
dard’ χ2 analysis is emulated. We run four chains with 5×105 sam-
ples each, and check their convergence using the Gelman–Rubin
test (Gelman & Rubin 1992; Brooks & Gelman 1998). The esti-
mated Monte Carlo standard error on the parameter mean is of the
order of 10−2 of statistical standard deviation, negligibly affecting
the results.

In Fig. 5 we plot the marginalized PDF contours in the ΩM–
w plane obtained from the Bayesian and χ2 analyses, respectively.
We can see that the effect of neglecting the covariance term results
in a systematic offset of the probability contours. The marginalized
mean and standard deviation from the MCMC samples give w =

−0.82 ± 0.22 for the posterior PDF analysis and w = −0.88 ± 0.24
for the χ2 approach, while we find ΩM = 0.22 ± 0.11 in both cases.
These results are consistent to within 1σwith the findings of Shariff
et al. (2016).

Although the bias effect on w appears to be small (about
0.25σ) this can be deceptive. As is well known, the parameters
(w,ΩM) display significant degeneracy when using SN Ia data
alone. The cosmological constraints noticeably tighten when com-
bined with other cosmological probes as shown for instance in B14.

1 As discussed at the end of Section 2.2, fixing h while letting M1
B to vary is

not the same as treating both parameters as random variables with different
priors. However, the cosmological parameter inference is insensitive to the
choice of a specific value of h whether in the form of a hard prior or as a
mean of a Gaussian prior when the SN Ia data are used alone.
2 https://pymc-devs.github.io/pymc/
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Figure 6. Marginal 0.683 and 0.95 credibility levels for pairs of standard-
ization parameter derived from the Bayesian (black solid lines) and χ2 (blue
dashed lines) analysis.

Table 1. Marginalized mean and standard deviation of SN Ia standardiza-
tion parameters inferred from the full posterior analysis and from the χ2

approach for the wCDM model, along with the number of σ bias.

This work χ2 analysis Bias amplitude

α 0.127 ± 0.006 0.141 ± 0.007 2σ
β −2.62 ± 0.07 −3.10 ± 0.08 6σ

∆M −0.053 ± 0.022 −0.071 ± 0.023 0.8σ

Hence, the bias effect shown here may be enhanced by the addi-
tion of complementary constraints as also found by Shariff et al.
(2016). The comparison of the marginal distributions of (w,ΩM) is
not all there is to the full inference. Unsurprisingly, we find a more
significant bias effect on (α, β) and ∆M on which ln det Cd directly
depends.

In Fig. 6 we plot the posterior contours for different combina-
tions of standardization parameter pairs, while in Table 1 we quote
the marginal mean and standard deviation of α, β and ∆M respec-
tively. We may notice that the values derived in the χ2 case are
consistent with those quoted in B14. We can see that the χ2 anal-
ysis significantly shifts the standardization parameters away from
the ideal standard candle case (i.e. α = β = ∆M = 0) compared to
the Bayesian approach. In particular, we have systematic offsets of
2σ for the stretch parameter, 6σ for the colour correction parame-
ter and about 1σ for the host galaxy correction. This indicates that
the data require less adjustment of the light-curve shape, SN colour
and host stellar mass, which is a direct consequence of the fact that
neglecting the covariance term in the χ2 analysis is equivalent to a
distortion of the parameter priors. In fact, it amounts to the replace-
ment ln P(Θ)→ ln P(Θ)+ 1

2 ln det Cd(Θ) up to a normalization, thus
leading to a level of distortion of the uniform prior on α and β as
shown in Fig. 7. We can now see why the χ2 analysis gives larger
values of the standardization parameter. It effectively uses a prior

−1.0 −0.5 0.0 0.5 1.0
α
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0
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β
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Figure 7. Level contours of [ln det Cd(α, β)]/2 for the JLA data set. This
can be interpreted as the log-distortion of the priors on α and β.

that artificially underestimates the region where (α, β) is close to
zero, while it overestimates the range where it is large.

In the light of these results, we are tempted to conclude that
the Bayesian approach adds more weight to our belief that SN Ia
are standard candles, at least more than what we are led to believe
if we use the customary χ2 analysis.

To test whether the observed level of bias is cosmological
model dependent we have performed similar analyses for ΛCDM
models with or without non-zero curvature. The marginal mean and
variance of the parameters are quoted in Table 2. We can see that
the bias remains of the same amplitude for the different cosmolog-
ical model assumptions.

Independently of the underlying cosmological model, we find
no information gain on h, whose posterior remains indistinguish-
able from the assumed Gaussian prior. On the other hand, we find
M = −0.03±0.11 for wCDM and in the case of the non-flat ΛCDM
cosmology, while M = −0.04 ± 0.11 for the flat ΛCDM case. As
expected, the joint posterior in the M–h plane shows a strong de-
generacy along the direction M′ = M−5 log10 h as shown in Fig. 8.
From the marginalized posterior, we find σ(M) ≈ 0.1. This reflects
the posterior dispersion of M1

B that should have been there if we
had chosen to let it vary freely (see Sections 2.1 and 2.2). If we had
neglected M altogether in our model specifications, by degeneracy
this could have led to a spurious constraint on h.

5 DATA COMPRESSION

5.1 The issue of scalability

We now turn to the problem of compressing the JLA data set. The
need for compressed data may respond to specific needs of cosmo-
logical analysis. For instance, tests of the distance-duality relation
requires luminosity distance estimates at redshift locations where
angular-diameter distance measurements are also available. How-
ever, the main application of data compression is to address the
problem of scalability. With the increasing size of SN data sets, the
evaluation of expressions such as equation (26) will be computa-
tionally more challenging. In particular, evaluation of forms such
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Table 2. Marginal mean and standard deviation of model parameters for ΛCDM models as inferred from the Bayesian method of this work and from χ2

analysis.

ΛCDM ΛCDM (χ2) Flat ΛCDM Flat ΛCDM (χ2)

α 0.126 ± 0.006 0.141 ± 0.006 0.126 ± 0.006 0.141 ± 0.007
β −2.62 ± 0.07 −3.10 ± 0.08 −2.62 ± 0.07 −3.10 ± 0.08

∆M −0.053 ± 0.022 −0.071 ± 0.023 −0.053 ± 0.022 −0.070 ± 0.023
ΩM 0.22 ± 0.10 0.20 ± 0.10 0.33 ± 0.03 0.30 ± 0.03
ΩDE 0.50 ± 0.15 0.55 ± 0.15 N/A N/A

−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3
M

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

h

Figure 8. Marginal contours in the M–h plane from the full posterior anal-
ysis for the flat wCDM model. The solid horizontal line indicates the value
h = 0.7 used in B14, while the dashed curve shows the degeneracy direction
M − 5 log10 h = const.

as y = C−1
d x by solving the linear system of equations Cd y = x

will be inefficient when Cd is parameter dependent. This is caused
by the computational complexity scaling as O(n3), or cubic of the
data size (see e.g. Golub & van Loan 2013, chapter 4.2.5). With
changing parameter, for instance during MCMC evaluation, this cu-
bic operation has to be performed whenever the parameters change
value.

The scalability issue of computing a parameter-dependent co-
variance matrix has been gaining more attention recently, espe-
cially in the context of statistical data analyses dedicated to mea-
surements of the clustering of matter in the universe. As an ex-
ample, White & Padmanabhan (2015) have developed an interpo-
lation method for efficiently evaluating the likelihood of the two-
point correlation function of the matter density field. A different
approach to handle large data sets with covariances relies instead
on approximating the object of interest with a reduced set of func-
tional bases. This method has seen widespread use in the context of
cosmic microwave background data analysis (see Tegmark 1997;
Tegmark, Taylor & Heavens 1997) and has been applied in B14 to
the JLA data set.

Here, we aim to perform a thorough analysis of the distance
modulus data compression procedure in the context of the Bayesian
framework we have discussed in the previous sections. This will
enable us to assess the impact of model assumptions and more im-

portantly the effects of the parameter-dependent covariance on the
data compression itself.

5.2 Formalism of linear compression

The goal of the compression is to provide the user with a reduced
data set of distance modulus estimates µdc together with their co-
variance matrix Cdc and the post-compression standardization pa-
rameters ϕdc (correlated with µdc).

In B14, the linear compression of the JLA data set is per-
formed by first taking the logarithm of the redshift z. This
is because the log-transformation of the redshift makes the
cosmological-dependent part of the signal better linearized (as can
be seen in Fig. 1). Then, the distance modulus data are fitted against
a parametric model that is represented by ‘broken line segments’
with control points at fixed log-redshift locations {x1 < x2 < · · · <
xm} (in this section and the next, the symbol x will be used for log-
redshift). The values of the model parameters at the control points
define the fitting parameters of the compression procedure. Their
(posterior) mean and covariance give the final compressed data set.

The parametric fitting model can be cast in the form of a linear
combination of unit sawtooth basis functions bi defined over an
interval S with m control points:

bi(x) =


x−xi−1
xi−xi−1

x ∈ [xi−1, xi) ∩ S ,

1 − x−xi
xi+1−xi

x ∈ [xi, xi+1) ∩ S ,

0 otherwise.

(28)

For a data set of size n, we can define the n × m matrix B with
elements Bi j = b j(xi). In the matrix B the jth column gives the
image of all data locations under the jth basis function, while the
ith row contains the mapping of all basis at the same location xi. If
the data locations are sorted, then B is a banded matrix. Using this
definition, the reconstructed data vector can be written as a linear
combination of the basis functions as given by the linear transfor-
mation

µr = Bξ (29)

where the vector ξ contains the compression coefficients. The goal
of the statistical compression analysis is to fit this unknown vector
µr against the uncompressed data set to determine the coefficients
ξ.

It is worth noticing that the specific choice of B is more or
less arbitrary. The form of the basis functions may be dictated by
the needs of the problem at hand. For instance, if the data to be
compressed have structures in the scale space, a set of wavelet bases
would be a well-motivated choice (see e.g. Pando et al. 1998). On
the other hand, if the goal is to extract low-variance, discriminating
information from noisy data at the cost of bias, then the suitable
bases may be found through principal component analysis methods
(see Huterer & Starkman 2003; Huterer & Cooray 2005).
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Figure 9. Graphical model for the linear compression of JLA data set.

We adopt the sawtooth bases used in B14 which are especially
suitable when the signal to be extracted is expected to be fairly con-
tinuous over the support interval S (as in the case of the distance
modulus). The sawtooth bandwidth is set by the user. A constant
value of the bandwidth corresponds to evenly spaced control points.
On the other hand it is possible to even out statistical noise by ad-
justing the sawtooth window such as to cover the same number of
data points, a choice that prevents sawtooth windows to cover in-
sufficient data, which may result in over-fitting.

5.3 Approximate solution and optimal compression

A graphical model for the linear data compression problem of SN
data is shown in Fig. 9. The corresponding posterior distribution of
the compression coefficients ξ and the standardization parameters
ϕ given the uncompressed data set reads as:

ln P(ϕ, ξ |µ0, v,Cv) = − ln Z − n
2

ln(2π) − 1
2

ln det Cd(ϕ)

− 1
2
χ2(ϕ, ξ) + ln P(ξ) + ln P(ϕ),

(30)

where

χ2(ϕ, ξ) =
[
µd(ϕ) − Bξ

]ᵀ C−1
d (ϕ)

[
µd(ϕ) − Bξ

]
. (31)

For uniform priors the posterior is globally maximized at an op-
timal point (ϕ?, ξ?) which maximizes the ln P function given by
equation (30).

The sampling of the posterior can be performed through stan-
dard MCMC sampling as that used in Section 4. However, the use
of a Gaussian approximation of equation (30) can greatly simplify
the task. Let us denote Φ = ϕ ⊕ ξ, then expanding equation (30)
about the vector Φ? up to second order about Φ?, we have

ln P(Φ) ≈ ln P(Φ?) − 1
2

D?
· (∆Φ) − 1

4
(∆Φ)ᵀ H? (∆Φ) , (32)

where ∆Φ = Φ −Φ? and

D? =
∂ (−2 ln P)
∂Φ

∣∣∣∣∣
Φ?
, H? =

∂2 (−2 ln P)
∂Φ2

∣∣∣∣∣∣
Φ?

(33)

are the Jacobian and Hessian of −2 ln P respectively. Expressions
for the Jacobian and Hessian are straightforward, yet they involve
cumbersome algebra and we do not report them for conciseness.

The Jacobians of the terms proportional to µd and µr in equa-
tion (30) are both constant, while the derivative of ln det Cd is given
by Jacobi’s formula

∂ ln det C
∂Φ

= tr
[
C−1 ∂C

∂Φ

]
. (34)

To evaluate the Hessian and high-order derivatives, we can itera-
tively apply the formula for the derivative of inverse matrix

∂C−1

∂Φ
= −C−1 ∂C

∂Φ
C−1 (35)

and equation (34) after evaluating ∂Cd/∂Φ by equation (9). We use
these analytical expressions to numerically determine Φ? which
maximizes equation (32). This allows us to find the maximum of
the approximated posterior in a stable and efficient manner, while
avoiding the pitfalls due to unstable approximation of the Hessian
matrix (see e.g. Dovì, Paladino & Reverberi 1991).

To perform the maximization, we use the trust-region Newton-
conjugate-gradient (trust-ncg) algorithm implementation (No-
cedal & Wright 2006, chapter 7.1) from the python library
scipy.optimize.3 Using analytical expressions for D and H, it finds
the optimal point Φ? in a few seconds on a typical desktop com-
puter and evaluates the approximated posterior by computing equa-
tion (32) at Φ?. This is a Gaussian PDF with mean Φ? and covari-
ance CΦ = 2H−1(Φ?) from which the marginal distribution for both
the compression coefficients ξ and the post-compression standard-
ization parameters ϕdc is obtained. Then, the code uses the optimal
compression coefficients and the covariance to generate series of
distance modulus data µdc at any given output log-redshift locations
x̃i = log10 z̃i (specified by the user) by computing the Gaussian
random vector µdc = B̃ξ with mean 〈µdc〉 = B̃ξ? and covariance
Cdc = B̃CξB̃

ᵀ, where the elements of the ‘data-generation matrix’
B̃ are B̃i j = b j(x̃i).4

There is considerable freedom in the choice of the output red-
shift locations z̃i or their logarithm x̃i. Nevertheless, one should
avoid putting more than two output x̃i’s between each pair of ad-
jacent control points that have been specified at the beginning of
the compression procedure (see Section 5.2). In that case, these
compressed output data will not be affine independent, thus provid-
ing little additional information. Similarly, given a chosen set of m
basis functions, there is no purpose in generating more than m com-
pressed data points, because the additional points will be inevitably
affine dependent on the others (a consequence of the pigeon-hole
principle). A special choice of the redshift locations is given by set-
ting them to the control points. In such a case, the data-generation
matrix B̃ (or B̃′ for the inclusion of post-compression standardiza-
tion parameters) is the identity matrix I, and no actual computation
for data generation needs to be done.

The JLA data compression code we have developed for this
analysis is publicly available.5 In Appendix A, we present the result
of this compression at the same redshift locations as those of B14.

3 https://scipy.org/
4 Information on the post-compression standardization parameter vector
ϕdc can be included in a concise form by extending the matrix B̃ into a
block-diagonal form B̃′ =

(
I 0
0 B̃

)
where I is the 3 × 3 identity matrix asso-

ciated with ϕ. Thus, after compression the joint distribution P(ϕdc,µdc) is
given by a Gaussian with mean B̃′Φ? and covariance B̃′CΦB̃′ᵀ.
5 https://gitlab.com/congma/libsncompress
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Figure 10. Difference of mean compressed distance moduli with respect to
the compressed data set of B14, obtained from the Gaussian approximation
of the posterior (black circles), MC computation of the posterior (black tri-
angles), quadratic approximation of the χ2 (blue squares) and MC sampling
of the χ2 (blue crosses). For visual purposes, we only display one every two
data points staggered around the redshift locations by 0.015 dex to reduce
crowding in the figure. The error bars show the size of the marginalized
deviations corresponding to each control point from the respective data set.

6 ASSESSMENT OF COMPRESSED DATA

6.1 Comparison with B14 compression

Here, we present the results of the JLA data compression analy-
sis. Our goal is to evaluate the impact of the parameter-dependent
covariance on the resulting data set and compare it with the com-
pressed sample from B14. Following the prescription adopted in
B14, we set 31 log-equidistant control points in the redshift range
z ∈ [0.01, 1.30] for the sawtooth basis defined in equation (28). Us-
ing the compression procedure described in the previous section,
we infer the compression coefficients and the post-compression
standardization parameters using the Gaussian approximation of
the posterior distribution to equation (30). We test the accuracy of
this approximation by MC sampling the full posterior distribution.
We will refer to the former as ‘Approx.’ and the latter as ‘MC’. To
compare to the results of B14 we perform an analogous estimation
in which we neglect the ln det Cd term in equation (30), cases which
we will refer to as ‘Approx.-χ2’ and ‘MC-χ2’ respectively.

In Fig. 10 we plot the deviations of the mean of the generated
distance moduli with respect to the compressed data from table F.1
of B14 obtained from the Gaussian approximation of the posterior,
the MC computation of the posterior, the quadratic approximation
of the χ2, and the MC sampling of the χ2. The error bars are the
marginalized standard deviations at each control point. They are
displayed only for a qualitative visual comparison, since the figure
does not reflect the full covariance of the compressed data which
we will discuss later.

We can see that the results from the use of the Gaussian ap-
proximation are indistinguishable from those obtained using the
MC sampling even in the case where the ln det Cd term is neglected.
This also guarantees that our optimization algorithm for the de-
termination of the parameter vector Φ? has converged to a global
maximum (minimum for the χ2 analysis) instead of a local one.

Let us now compare the differences of the generated distance
moduli to those from B14. The latter are consistent with the com-
pression obtained from the χ2 analysis for which differences are

below 0.1 mag and well within 1σ errors especially at z > 0.1
where differences vanish. However, we can also notice that the B14
compressed data set shows deviations as large as 1σ with respect
to the result of the Bayesian analysis.

As for the standardization parameters, in Table 3 we quote
their marginal mean and standard deviation, post-compression, ob-
tained using different methods. Again, we can see that the estimates
from the Gaussian approximation are consistent with the MC re-
sults and in agreement with the values inferred from the full data
set shown in Tables 1 and 2.

In order to quantify differences between the estimated covari-
ance matrices we consider two diagnostics. The first is the ratio of
matrix determinant scaled by the number of parameters m,

r =

(
det C2

det C1

) 1
2m

, (36)

which quantifies by which factor the Gaussian uncertainties scale
up from N1 to N2, per dimension. The second is the Kullback–
Leibler (KL) divergence (Kullback & Leibler 1951) from random
variable P to Q, defined as

DKL(P ‖Q) =

∫
ln

(
d P
d Q

)
d P. (37)

As we are interested in differences between covariances, we com-
pute the KL divergence by shifting the mean of one of the distri-
butions to coincide with the other. In this case, for our compressed
SN Ia data with Gaussian approximation, it is a function of the co-
variance matrices:

DKL(N1 ‖N2) =
1
2

[
ln

(
det C2

det C1

)
+ tr

(
C−1

2 C1

)
− m

]
. (38)

The r diagnostic in equation (36) is only a measure of the total
‘size’ of the uncertainty, while the (centred) KL divergence is a
much more sensitive diagnostic, because equation (38) is zero if
and only if the two distributions are identical (up to a translation).
It is also sensitive to the difference in the ‘shape’ or pattern of cor-
relation.

To visualize the differences between pairs of covariances, we
introduce an algebraic method described in Appendix B. This is
based on the idea that two covariance matrices C1 and C2 can be
linked by the matrix W12, displayed as a bitmap image. If C1 ≈ C2,
then the matrix W12 is close to the identity. If they differ by a sim-
ple scaling, then W12 is diagonal with diagonal elements differing
from unity. On the other hand, if differences occur on off-diagonal
elements these will stand out as off-diagonal features on the image
of W12. In Fig. 11, we display W12 between pairs of matrices for the
different cases. In each panel, we also quote the ratio r and the cen-
tred KL divergence value DKL. Comparison between some of the
pairs is not shown since it would only provide redundant informa-
tion. We use a colour palette suitable for the bimodal distribution
of all pixel values.

First, comparing C1 obtained from the Gaussian approxima-
tion of the posterior (‘Approx.’) to C2 from MC sampling of the
full posterior distribution (‘MC’), we can see they are nearly iden-
tical with differences in the off-diagonal elements simply due to
MC noise, an artefact of numerical computation. This is also con-
firmed quantitatively by the vanishing DKL ≈ 0.03 and a negligible
difference of r from unity by 0.3 per cent.

Similarly, we find the covariance C1 of the compressed data
from B14 to be identical to C2 from the Approx.-χ2 computation.
This is not surprising, since the data compression performed in B14
neglects the ln det Cd term. Indeed, neglecting this term leads to
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Table 3. Marginal mean and standard deviation of standardization parameters after compression for the various cases.

Approx. Approx.-χ2 MC MC-χ2

α 0.125 ± 0.006 0.140 ± 0.007 0.126 ± 0.007 0.141 ± 0.006
β −2.58 ± 0.07 −3.08 ± 0.08 −2.60 ± 0.08 −3.11 ± 0.07

∆M −0.052 ± 0.022 −0.070 ± 0.023 −0.053 ± 0.023 −0.071 ± 0.022

significant, systematic differences between the covariance inferred
from the χ2 analysis and that obtained from the posterior computa-
tion. The r value indicates that the χ2 method overstates the overall
uncertainty by 6 per cent. The non-vanishing value of DKL ≈ 0.15,
five times the noise-induced value, cannot be dismissed as a small
random error. This is visually corroborated by the presence of block
structures in the W12 comparison matrix, a feature distinguished
from mere numerical artefacts.

6.2 Standard-candle properties and cosmological constraints

Here, we use the set of compressed data to perform a consistency
analysis of the SN Ia light-curve parameters across different red-
shift intervals. Recently, Li et al. (2016) have performed an anal-
ysis of the redshift evolution of the standardization parameters by
dividing the JLA data set in redshift subsamples and found that the
higher redshift data favour a lower value of colour correction pa-
rameter β than the subsample at lower redshift. We show how the
use of compressed data generated from χ2 analysis may lead to un-
expected results when performing such tests.

We divide the JLA data set into two overlapping redshift re-
gions: S 1 containing 166 data points in the redshift range 0.01 6
z < 0.114 and S 2 containing 599 data points in the range 0.082 6
z < 1.3. S 1 is dominated by low-z sources from various obser-
vational programmes, while S 2 is dominated by SDSS and SNLS
sources. The overlapping region covers the redshift range 0.082 6
z < 0.114 and contains 25 points. We apply the compression to both
subsamples with control points at the same locations as described
in the previous sections which is consistent with the data binning
of B14. In the overlapping region we find the distance moduli to be
consistent within 1σ. This is an important consistency check that
validates our compression procedure.

In Fig. 12 we plot the contours of the marginalized Gaussian-
approximate PDF for the post-compression standardization param-
eters inferred from the Bayesian analysis with Gaussian approxi-
mation of the posterior and the χ2 approach, in S 1, S 2, and for the
full data set respectively. We may notice that the constraints ob-
tained using the full compressed data set are dominated by data in
the region S 2. This is not surprising since this redshift interval has
the greatest number of data points. The ellipses from S 1 and S 2 in-
tervals lie within 1σ. In contrast, we can see that the results inferred
from the χ2 computation favour values of the parameter β that are
systematically larger (in absolute value) than those inferred from
the posterior analysis. Again, such a systematic bias is the result of
neglecting the ln det Cd term.

As final test of the data compression analysis, we perform a
cosmological parameter inference using the compressed JLA data
in the case of the wCDM model discussed in Section 4. In Fig. 13,
we plot the contours in the ΩM–w plane obtained using the uncom-
pressed full JLA data set, the compressed data from the Gaussian
approximation of the posterior (including the post-compression
standardization parameters) and the compressed data with stan-
dardization parameters pre-marginalized before entering the cos-

mological fitting. The displayed contours are nearly indistinguish-
able from one another. Similarly, we find identical marginal mean
and standard deviation of the model parameters: w = −0.82 ± 0.22
and ΩM = 0.22±0.11. These results are in excellent agreement with
those discussed in Section 4. Furthermore, for (w,ΩM), we estimate
the KL divergence of their two-dimensional distributions, from the
one obtained using compressed data, to the other obtained with the
full JLA data, using the k-nearest neighbour estimator of Pérez-
Cruz (2008). The resulting DKL = 0.004 indicates that the cos-
mological information is preserved by the data compression model
described in Section 5. To put this minuscule value into context, the
systematic shift from the χ2 result to the Bayesian posterior to that
we see in Section 4 and Fig. 5 corresponds to DKL = 0.51.

We make publicly available example programs that implement
the graphical models and the MCMC analyses of the full JLA data
set and the compressed one at https://gitlab.com/congma/
sn-bayesian-model-example/.

7 CONCLUSION

We have performed a detailed Bayesian statistical analysis of the
JLA data set using Bayesian graphical models to derive the full
posterior distribution of fitting model parameters. We have done so
with the specific intent of evaluating the impact of correctly prop-
agating SN standard-candle parameter errors through the data co-
variance matrix in contrast to the χ2 analysis.

Comparing results from the full posterior distribution with
those inferred from the χ2 approach we find a statistically signifi-
cant shift of the SN standard-candle corrections towards lower (ab-
solute value). This is because the χ2 fit does not fully propagate
the parameter dependence of the covariance which contribute with
a ln det Cd term in the parameter posterior. We have shown that
neglecting this term is equivalent to assuming non-uniform priors
on the parameter α and β which parametrize the effect of the SN
light-curve stretch and colour in the standard-candle relation. Due
to this improper prior, the χ2 analysis gives more statistical weight
to the region of the parameter space away from α = β = 0. In
particular, we find a 2σ shift in the best-fitting value of α, a 6σ
change in the best-fitting value of β and lower host galaxy correc-
tion ∆M of roughly 1σ. Sullivan et al. (2010) found a non-vanishing
∆M at 3.7σ. B14 measured a non-zero value at 5σ (excluding the
systematics of the host mass correction itself) or 3σ (including all
systematics), while our estimate is at 2.4σ. Recently, Campbell,
Fraser & Gilmore (2016) also reported a 2.5σ difference based on
the same host mass classification in the SDSS-II SN Ia. We find
the amplitude of the systematic offset between the full Bayesian
analysis and the χ2 results to be independent of the underlying cos-
mological model assumption.

The impact of the χ2 analysis bias is less significant on the
cosmological parameter inference. To this purpose we have de-
rived marginal bounds on the parameters of a flat wCDM. The
constraints on (ΩM,w) from the two statistical approaches differ
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Figure 11. Pairwise comparisons of covariance matrices for compressed distance moduli obtained from various computations. In each panel, the comparison
matrix W12 is displayed as a bitmap image. The scaled ratio of the determinants and the centred KL divergence values are quoted in the lower-left and
upper-right side of each panel respectively.

to within ∼ 1σ. However, the effect can be more significant if the
bounds are combined with other constraints that break the cosmo-
logical degeneracies of the distance modulus.

This statistical bias problem also affects the generation of
compressed distance modulus data. We have used the linear com-
pression model presented in B14 and determined the compression
coefficients performing a full posterior analysis of the compres-
sion parameters and post-compression standardization parameters
as opposite to the χ2 approach. Indeed, the comparison between the
compressed data sets obtained using the full posterior analysis and
the χ2 approach shows differences of the marginal mean value of
the post-standardization parameters, the mean of the compressed
distance moduli, and their covariance.

In related works dedicated to SN Ia cosmology with Bayesian
methods (March et al. 2011, 2014; Rubin et al. 2015; Shariff et al.
2016), cosmological models are analysed globally with the SN Ia
observables. Although we acknowledge that these analyses are bet-
ter equipped with representing the full dependence relations of all
the random variables involved, we also note the considerable cost
and complexity of such analyses. In this work, we instead take the
already reduced SALT2 filter data output of JLA as statistical evi-

dence (and we expect that future data may be utilized in a similar
manner). This allows us to present a simple, modular approach of
using the reduced data for a wide family of cosmological models.
The simplicity is further improved by the data compression proce-
dure. This step is present in B14 but lacking formal details. In this
work, we formalize the compression as a discrete linear model and
subject it to the same Bayesian analysis showing that inconsistency
exists in the B14 compression results.

Our main contribution to the Bayesian data compression prob-
lem of the JLA data set is the development of an efficient method
that uses a Gaussian approximation of the posterior which we have
checked against MC sampling. We have implemented this method
as publicly available code that allows the user to fast generate com-
pressed distance modulus data set (including their correlated stan-
dardization parameters) at given input redshift locations.

The cosmological parameter inference from the compressed
data set gives results that are nearly identical to those obtained us-
ing the entire uncompressed JLA data set, and this shows that cos-
mological information is left unaltered by the statistical compres-
sion method. However, we acknowledge that further investigation
should be needed for understanding the extent of its limitations, and
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Figure 12. Marginal 0.683 and 0.95 contours of the post-compression stan-
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lines) and the full data set (filled contours), respectively.
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Figure 13. Marginal contours in the ΩM–w plane from the analysis of the
full uncompressed JLA data set (black solid lines), the compressed set ob-
tained from the Gaussian approximation of the posterior (blue dashed lines)
and with standardization parameters pre-marginalized after the compression
procedure (brown dotted lines).

for its greater optimization and generalization towards future data
sets.

Overall, the analysis presented here stresses the necessity of
using self-consistent Bayesian statistical approaches to perform un-
biased model parameter inference of SN Ia to generated unbiased
sets of compressed data.

ACKNOWLEDGEMENTS

The research leading to these results has received funding from
the European Research Council under the European Union’s Sev-
enth Framework Programme (FP/2007–2013)/ERC Grant Agree-
ment no. 279954. CM acknowledges the support from the joint
research training programme of the Chinese Academy of Sci-
ences and the CNRS. Data visualizations are prepared with the
matplotlib6 library (Hunter 2007), and DAG diagrams are drawn
using the dot2tex7 tool created by K. M. Fauske and contributors.
The authors are grateful for the critical, anonymous reviews that
improved this paper.

REFERENCES

Astier P., et al., 2006, A&A, 447, 31
Bassett B. A., Corasaniti P.-S., Kunz M., 2004, ApJ, 617, L1
Betoule M., et al., 2014, A&A, 568, A22
Brooks S. P., Gelman A., 1998, J. Comput. Graph. Stat., 7, 434
Campbell H., et al., 2013, ApJ, 763, 88
Campbell H., Fraser M., Gilmore G., 2016, MNRAS, 457, 3470
Conley A., et al., 2011, ApJS, 192, 1
Contreras C., et al., 2010, AJ, 139, 519
D’Agostini G., 2005, preprint, (arXiv:physics/0511182)
Dovì V. G., Paladino O., Reverberi A. P., 1991, Appl. Math. Lett., 4, 87
Efstathiou G., 2014, MNRAS, 440, 1138
Frieman J. A., et al., 2008, AJ, 135, 338
Gallagher J. S., Garnavich P. M., Berlind P., Challis P., Jha S., Kirshner

R. P., 2005, ApJ, 634, 210
Gelman A., Rubin D. B., 1992, Stat. Sci., 7, 457
Golub G. H., van Loan C. F., 2013, Matrix Computations, 4th edn. Johns

Hopkins Univ. Press, Baltimore
Guy J., et al., 2007, A&A, 466, 11
Hamilton A. J. S., Tegmark M., 2000, MNRAS, 312, 285
Hamuy M., Phillips M. M., Suntzeff N. B., Schommer R. A., Maza J., Aviles

R., 1996, AJ, 112, 2391
Hicken M., et al., 2009, ApJ, 700, 331
Hogg D. W., 1999, preprint, (arXiv:astro-ph/9905116)
Humphreys E. M. L., Reid M. J., Moran J. M., Greenhill L. J., Argon A. L.,

2013, ApJ, 775, 13
Hunter J. D., 2007, Comput. Sci. Eng., 9, 90
Huterer D., Cooray A., 2005, Phys. Rev. D, 71, 023506
Huterer D., Starkman G., 2003, Phys. Rev. Lett., 90, 031301
Jaffe A., 1996, ApJ, 471, 24
Jensen F. V., Nielsen T. D., 2007, Bayesian Networks and Decision Graphs,

2nd edn. Springer, New York, doi:10.1007/978-0-387-68282-2
Jordan M. I., 2004, Stat. Sci., 19, 140
Kelly P. L., Hicken M., Burke D. L., Mandel K. S., Kirshner R. P., 2010,

ApJ, 715, 743
Kjærulff U. B., Madsen A. L., 2013, Bayesian Networks and Influence Dia-

grams: A Guide to Construction and Analysis, 2nd edn. Springer, New
York, doi:10.1007/978-1-4614-5104-4

Kullback S., Leibler R. A., 1951, Ann. Math. Stat., 22, 79
Lago B. L., Calvão M. O., Jorás S. E., Reis R. R. R., Waga I., Giostri R.,

2012, A&A, 541, A110
Li M., Li N., Wang S., Zhou L., 2016, MNRAS, 460, 2586
Maguire K., et al., 2012, MNRAS, 426, 2359
March M. C., Trotta R., Berkes P., Starkman G. D., Vaudrevange P. M.,

2011, MNRAS, 418, 2308
March M. C., Karpenka N. V., Feroz F., Hobson M. P., 2014, MNRAS, 437,

3298
Mosher J., et al., 2014, ApJ, 793, 16

6 http://matplotlib.org/
7 https://dot2tex.readthedocs.org/

MNRAS 000, 1–15 (2016)

http://dx.doi.org/10.1051/0004-6361:20054185
http://adsabs.harvard.edu/abs/2006A%26A...447...31A
http://dx.doi.org/10.1086/427023
http://adsabs.harvard.edu/abs/2004ApJ...617L...1B
http://dx.doi.org/10.1051/0004-6361/201423413
http://adsabs.harvard.edu/abs/2014A%26A...568A..22B
http://dx.doi.org/10.1080/10618600.1998.10474787
http://dx.doi.org/10.1088/0004-637X/763/2/88
http://adsabs.harvard.edu/abs/2013ApJ...763...88C
http://dx.doi.org/10.1093/mnras/stw115
http://adsabs.harvard.edu/abs/2016MNRAS.457.3470C
http://dx.doi.org/10.1088/0067-0049/192/1/1
http://adsabs.harvard.edu/abs/2011ApJS..192....1C
http://dx.doi.org/10.1088/0004-6256/139/2/519
http://adsabs.harvard.edu/abs/2010AJ....139..519C
http://adsabs.harvard.edu/abs/2005physics..11182D
http://arxiv.org/abs/physics/0511182
http://dx.doi.org/10.1016/0893-9659(91)90129-J
http://dx.doi.org/10.1093/mnras/stu278
http://adsabs.harvard.edu/abs/2014MNRAS.440.1138E
http://dx.doi.org/10.1088/0004-6256/135/1/338
http://adsabs.harvard.edu/abs/2008AJ....135..338F
http://dx.doi.org/10.1086/491664
http://adsabs.harvard.edu/abs/2005ApJ...634..210G
http://dx.doi.org/10.1214/ss/1177011136
http://dx.doi.org/10.1051/0004-6361:20066930
http://adsabs.harvard.edu/abs/2007A%26A...466...11G
http://dx.doi.org/10.1046/j.1365-8711.2000.03074.x
http://adsabs.harvard.edu/abs/2000MNRAS.312..285H
http://dx.doi.org/10.1086/118190
http://adsabs.harvard.edu/abs/1996AJ....112.2391H
http://dx.doi.org/10.1088/0004-637X/700/1/331
http://adsabs.harvard.edu/abs/2009ApJ...700..331H
http://adsabs.harvard.edu/abs/1999astro.ph..5116H
http://arxiv.org/abs/astro-ph/9905116
http://dx.doi.org/10.1088/0004-637X/775/1/13
http://adsabs.harvard.edu/abs/2013ApJ...775...13H
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1103/PhysRevD.71.023506
http://adsabs.harvard.edu/abs/2005PhRvD..71b3506H
http://dx.doi.org/10.1103/PhysRevLett.90.031301
http://adsabs.harvard.edu/abs/2003PhRvL..90c1301H
http://dx.doi.org/10.1086/177950
http://adsabs.harvard.edu/abs/1996ApJ...471...24J
http://dx.doi.org/10.1007/978-0-387-68282-2
http://dx.doi.org/10.1214/088342304000000026
http://dx.doi.org/10.1088/0004-637X/715/2/743
http://adsabs.harvard.edu/abs/2010ApJ...715..743K
http://dx.doi.org/10.1007/978-1-4614-5104-4
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1051/0004-6361/201118599
http://adsabs.harvard.edu/abs/2012A%26A...541A.110L
http://dx.doi.org/10.1093/mnras/stw1063
http://adsabs.harvard.edu/abs/2016MNRAS.460.2586L
http://dx.doi.org/10.1111/j.1365-2966.2012.21909.x
http://adsabs.harvard.edu/abs/2012MNRAS.426.2359M
http://dx.doi.org/10.1111/j.1365-2966.2011.19584.x
http://adsabs.harvard.edu/abs/2011MNRAS.418.2308M
http://dx.doi.org/10.1093/mnras/stt2114
http://adsabs.harvard.edu/abs/2014MNRAS.437.3298M
http://adsabs.harvard.edu/abs/2014MNRAS.437.3298M
http://dx.doi.org/10.1088/0004-637X/793/1/16
http://adsabs.harvard.edu/abs/2014ApJ...793...16M
http://matplotlib.org/
https://dot2tex.readthedocs.org/


14 C. Ma, P.-S. Corasaniti & B. A. Bassett

Mukherjee P., Parkinson D., Corasaniti P.-S., Liddle A. R., Kunz M., 2006,
MNRAS, 369, 1725

Nocedal J., Wright S. J., 2006, Numerical Optimization, 2nd edn. Springer-
Verlag, New York, doi:10.1007/978-0-387-40065-5

Pando J., Lipa P., Greiner M., Fang L.-Z., 1998, ApJ, 496, 9
Patil A., Huard D., Fonnesbeck C., 2010, J. Stat. Softw., 35, 1
Pérez-Cruz F., 2008, in Proc. 2008 IEEE International Symposium on

Information Theory. Curran Associates, Red Hook, NY, p. 1666,
doi:10.1109/ISIT.2008.4595271

Perlmutter S., et al., 1999, ApJ, 517, 565
Phillips M. M., 1993, ApJ, 413, L105
Phillips M. M., Lira P., Suntzeff N. B., Schommer R. A., Hamuy M., Maza

J., 1999, AJ, 118, 1766
Planck Collaboration 2015, preprint, (arXiv:1502.01589)
Rao C. R., 1945, Sankhyā, 7, 9
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APPENDIX A: COMPRESSED SN IA DATA TABLES

We present the compressed JLA µdc data set in Table A1 and the co-
variance matrix in Table A2 obtained using our method. They are
available at the same 31 redshift locations as those of B14, table
F.1. However, we can also incorporate the post-compression stan-
dardization parameters (α, β,∆M) in our data set. The mean values
of those standardization parameters are already shown as the first
column of Table 3, which can be concatenated with the µdc vector
listed in Table A1 to form the full compressed data set. The stan-
dardization parameters are correlated with µdc, a fact reflected in
Table A2. It is possible to pre-marginalize over the standardization
parameters before using the compressed data, simply by dropping
the corresponding rows and columns from the tables.

APPENDIX B: COMPARING COVARIANCE MATRICES

Here, we present a method to visually compare covariance matri-
ces of the same size. Indeed, an element-wise comparison can be
done directly. However it is possible to design a positive-definite
operator that allows for a intuitive visual comparison.

First let us consider a Gaussian distribution centred around
zero with covariance matrix C, N(0,C). Let C1 and C2 be covari-
ances for two such distributions. They are related by a linear trans-
formation W12 : x ∼ N(0,C1) → W12 x ∼ N(0,C2), whose matrix
representation is the solution to the matrix equation

C2 = W12C1Wᵀ12. (B1)

Intuitively, each row of W12 can be seen as a window func-
tion (dual vector) being applied on (forming inner product with)
random vectors drawn from the distributionN(0,C1). The kth win-
dow function maps any of the random vectors to the kth component
coordinate of the transformed vectors that follow the target distri-
butionN(0,C2). If the target distribution is identical to the original
one, these windows can simply be taken as projections on to coordi-
nate bases, i.e. (1, 0, . . . , 0), (0, 1, . . . , 0), . . . (0, 0, . . . 1). Otherwise,
the windows will in general ‘leak’ into other modes unless it is a
simple scaling in one of the dimensions.

However, the matrix W12 is not unique. For example, let the
covariance matrices have factorized form S1Sᵀ1 = C1 and S2Sᵀ2 =

C2, where S1,2 are of the same dimensions as C1,2. Such factors
exist, for example, by the existence of Cholesky factorization or
diagonalizability of positive-definite symmetric matrices. They are
invertible, for if they are not, we have det C1,2 = (det S1,2)2 = 0. It
follows that any matrix in the form of S2PS−1

1 , where P is a matrix
such that PPᵀ = I (i.e. orthogonal), can be a choice for W12. In the
following discussion we aim to find the one that is positive-definite
and symmetric.

Following Tegmark (1997), Hamilton & Tegmark (2000), and
Huterer & Cooray (2005) we can define the matrix square root as

C
1
2 = QᵀD

1
2 Q (B2)

for any positive-definite matrix C having eigendecomposition

C = QᵀDQ (B3)

where Q is the orthogonal matrix of (row) eigenvectors, D is the
diagonal matrix with positive eigenvalues, and D

1
2 is the element-

wise, positive square root of the matrix diagonal. It is worth not-
ing that the eigenvalue decomposition of equation (B3) is unique
only up to permutations, but all such permutations map to the same
square root equation (B2). Indeed it is the unique positive-definite
symmetric square root of C. The square root defined this way shares
eigenvectors with C and all matrices Ct = QᵀDtQ, where t , 0 and
Dt is the element-wise exponential function on the diagonal. All of
them are symmetric and positive-definite.

This definition of matrix square root C
1
2 is related to the eigen-

value problem

Cx = λx = λIx (B4)

whose solution is equation (B3) and the eigenvalues λ are the roots
of the characteristic polynomial

p(λ) = det (C − λI) . (B5)

C
1
2 is the matrix of the mapping W01 that takes N(0, I) to N(0,C),

which is a special case of our problem. Hence, we would like to
find an operator W12 that inherits the properties of this special case.

Motivated by this observation, we can heuristically extend it
to the case of a generalized mapping W12 by considering the gen-
eralized eigenvalue problem that extends equation (B4),

C2 x = λ′C−1
1 x, (B6)

with the corresponding generalized characteristic polynomial equa-
tion

p(λ) = det
(
C2 − λ′C−1

1

)
= 0, (B7)

which has the same roots as

p̃(λ) = det
(
C

1
2
1 C2C

1
2
1 − λ′I

)
= 0. (B8)

The matrix C
1
2
1 C2C

1
2
1 , a product of three positive-definite matrices,
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Table A1. Compressed JLA SN Ia distance modulus data vector µdc. The mean values of post-compression standardization parameters are already listed as
the first column of Table 3. The full table is available online. (Note for arXiv preprint: available as ancillary file.)

z µdc

0.010 33.006
0.012 33.833
0.014 33.862
0.016 34.119
0.019 34.587

. . . . . .
1.300 44.826

Table A2. Joint covariance matrix of compressed JLA distance moduli and standardization parameters. For the purpose of presentation only, values in this
table have been multiplied by 106, and only the upper triangle of the symmetric matrix is shown. The full table (without scaling by 106) is available online.
(Note for arXiv preprint: available as ancillary file.)

α β ∆M µdc,1 µdc,2 . . . µdc,31

α 35 19 −30 11 −28 . . . 25
β 4533 15 541 −577 . . . 132

∆M 479 −160 −117 . . . −189
µdc,1 20375 −10398 . . . 183
µdc,2 27129 . . . 214

. . . . . . . . .
µdc,31 16300

is manifestly symmetric, hence positive-definite (Wigner 1963, the-
orem 2). Thus the problem is reduced to the already solved eigen-
value problem of a positive-definite symmetric matrix. It follows
that there is the eigendecomposition

C
1
2
1 C2C

1
2
1 = Q′ᵀD′Q′, (B9)

where D′ has diagonal elements (generalized eigenvalues) solving
equation (B7). Again, we use equation (B2) and denote the ‘square
root’ of equation (B9) as

S′ = Q′ᵀD′
1
2 Q′. (B10)

Then it follows from equation (B9) that

C2 = C
− 1

2
1 S′S′C

− 1
2

1 =

(
C
− 1

2
1 S′C

− 1
2

1

)
C1

(
C
− 1

2
1 S′C

− 1
2

1

)
= W12C1Wᵀ12,

(B11)

where the manifestly symmetric mapping

W12 = Wᵀ12 = C
− 1

2
1

(
C

1
2
1 C2C

1
2
1

) 1
2

C
− 1

2
1 (B12)

is the matrix we set out to find for equation (B1).
By the aforementioned theorem of Wigner (1963), W12 itself

is positive-definite. Notice that in the expression equation (B12)
the matrix exponent 1/2 cannot simply be distributed to the indi-

vidual factors of the matrix product C
1
2
1 C2C

1
2
1 . Instead, it must be

understood by solving the generalized eigenvalue problem of equa-
tion (B6).

Just like the square root defined in equation (B2) tends to con-
serve the window function bandwidth (Tegmark 1997), the exten-
sion W12 as defined in equation (B12) also creates narrow windows.
In other words, it is not likely to generate a combination of wide
windows in order to account for a small difference. This is a de-
sirable feature for the matrices we want to compare, because we
expect small differences, some of which are simply numerical arte-
facts of the computation.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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