
HAL Id: hal-02337400
https://hal.science/hal-02337400

Submitted on 29 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

σ-H–H, σ-C–H, and σ-Si–H Bond Activation Catalyzed
by Metal Nanoparticles

Juan Manuel Asensio, Donia Bouzouita, Piet W N M van Leeuwen, Bruno
Chaudret

To cite this version:
Juan Manuel Asensio, Donia Bouzouita, Piet W N M van Leeuwen, Bruno Chaudret. σ-H–H, σ-
C–H, and σ-Si–H Bond Activation Catalyzed by Metal Nanoparticles. Chemical Reviews, 2019,
�10.1021/acs.chemrev.9b00368�. �hal-02337400�

https://hal.science/hal-02337400
https://hal.archives-ouvertes.fr


1 

 

σ-H-H, σ-C-H and σ-Si-H Bond Activation 
catalyzed by Metal Nanoparticles 

 

Juan M. Asensio,* Donia Bouzouita, Piet W. N. M. van Leeuwen and Bruno Chaudret.* 

 

LPCNO, Université de Toulouse, CNRS, INSA, UPS, 135 avenue de Rangueil, 31077 Toulouse, 

France. 

Juan M. Asensio: asensior@insa-toulouse.fr 

Bruno Chaudret: chaudret@insa-toulouse.fr 

Abstract 

Activation of H–H, Si–H and C–H bonds through σ-bond coordination has grown in the past 30 

years from a scientific curiosity to an important tool in the functionalization of hydrocarbons. Several 

mechanisms were discovered via which the initially σ-bonded substrate could be converted: oxidative 

addition, heterolytic cleavage, σ-bond metathesis, electrophilic attack, etc. The use of metal 

nanoparticles (NPs) in this area is a more recent development, but obviously nanoparticles offer a 

much richer basis than classical homogeneous and heterogeneous catalysts for tuning reactivity for 

such a demanding process as C–H functionalization. Here, we will review the surface chemistry of 

nanoparticles and catalytic reactions occurring in the liquid phase, catalyzed either by colloidal or 

supported metal NPs. We consider nanoparticles prepared in solution, which are stabilized and tuned 

by polymers, ligands and supports. The question we have addressed concerns the differences and 

similarities between molecular complexes and metal NPs in their reactivity towards σ-bond activation 

and functionalization. 
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1. Introduction. 

Activation of H–H, Si–H and C–H bonds through σ-bond coordination has attracted a lot of 

interest and experienced spectacular developments in organometallic chemistry for the past 30 years. 

Reactions of dihydrogen and metal complexes have a long history, from heterolytic cleavage on 

copper acetate1 to the first observation of dihydrogen oxidative addition by Vaska in 19622 and 

oxidative addition to rhodium for catalytic hydrogenation of olefins,3 but at this time, for these 

reactions no metal-H2 σ-bonds were invoked. Since the first demonstration by Kubas of the existence 



3 

 

of a stable dihydrogen complex,4 numerous examples of such species have been discovered,5-9 

including bis(dihydrogen) derivatives.10 Stable silane complexes have also been known and discussed 

either as σ-bond complexes or as complexes containing a bridging hydride since the seminal works 

of Schubert11 and Kubas.12 Although C-H activation has been widely studied by Crabtree and many 

others,13 only a limited number of σ-C-H bond complexes has been observed or isolated.14-19 These 

species are important in terms of reactivity since, for example, they have contributed to the 

understanding of important catalytic reactions such as low barrier exchange reactions in the 

coordination sphere of a complex, C–H functionalization, heterolytic cleavage of dihydrogen, and 

hydrogenation of polar substrates such as ketones. From a mere curiosity σ-C–H-bond activation has 

therefore become a major tool in organic synthesis nowadays that avoids in several instances the use 

of toxic reagents and production of salts.20  

In heterogeneous catalysis, dihydrogen activation has been known ever since Sabatier described 

the catalytic hydrogenation of unsaturated substrates using “finely divided metals” which led to his 

Nobel Prize in 1913.21 Heterogeneous catalysis has developed numerous processes involving 

activation of hydrogen or hydrocarbons, but in this review we will look at similar processes occurring 

on the surface of nanoparticles. Surfaces show a much richer coordination chemistry towards 

substrates, while nanoparticles have a much higher number of atoms exposed than the particles 

occurring in heterogenous catalysis. 

Here, we will focus on the surface chemistry of nanoparticles and catalytic reactions occurring in 

the liquid phase under mild conditions, catalyzed either by colloidal or supported NPs, which have 

emerged in the past 20 years. We consider nanoparticles prepared in solution stabilized by polymers, 

ligands or inorganic supports and the reactivity of which is analyzed by combining those techniques 

derived from molecular chemistry and those typical of material chemistry and heterogeneous 

catalysis. The question we want to address concerns the specificity, or not, of the reactivity of such 

nano-objects compared to traditional heterogeneous catalysts and the possible correspondence 

between the mode of coordination observed in molecular complexes and the interactions of substrates 

and ligands with nanoparticles.  

On the other hand, several catalysts that initially were supposed to be homogeneous, have later 

been shown to be decomposed under the reaction conditions to give metal NPs.22 However, the nature 

of the active species in many cases remains unclear, as NPs, intermediate species formed during the 

decomposition process (i.e. “naked” atoms, clusters, etc.) or leached species could be responsible for 

the catalytic activity. Here, we will discuss those cases in which the nature of the active species has 

been studied in detail or at least proposed based on experimental evidences. 

In this review, we will therefore consider the interaction of σ-bonds with the surface of metal 

nanoparticles. This will be divided into:  
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- Surface studies concerning the interactions of H-H, C-H and Si-H bonds with the surface of 

nanoparticles defined as separate objects amenable to studies in solution or after deposition on a 

support. We exclude the literature concerning surface studies in vacuo or heterogeneous catalysts 

prepared according to classical methods.  

- Transformations involving H-H, C-H and Si-H catalyzed by nanoparticles. We will exclude 

hydrogenation since many recent reviews have been dedicated to this reaction;23 we will just give 

their references. C–H functionalization by metal NPs was reviewed by Gómez and Pla in 2016,24 but 

this topic will be revisited in the present work. However, hydrosilylations by nanoparticles have not 

been recently reviewed and these reactions will be discussed in detail. 

2. H-H and D-D activation on metal NPs. 

Catalytic hydrogenation is probably the most studied reaction and includes substrates such as N2, 

CO, CO2, as well as unsaturated organic compounds. A review by Zaera described recently the 

surface chemistry of heterogeneous hydrogenation catalysts.23 Here we will consider the interaction 

of metal nanoparticles in solution with hydrogen, which are synthesized in the presence of organic 

ligands that act as stabilizers because otherwise the NPs would agglomerate to give metallic deposits. 

We will further study the modes of coordination of hydrogen on these nanoparticles and, when 

available, the dynamics of coordinated hydrogen.  

As mentioned above, formation of stable dihydrogen complexes has been known for more than 

30 years.25 These complexes contain a 3-center-2-electron bond26 as a result of the interaction 

between the σ-molecular orbital of the H2 molecule and an empty orbital of the metal center. In 

addition, back-donation from the d orbitals of the metal to the σ*-H-H molecular orbital can also 

participate in bonding (Figure 1). These complexes can exist as an equilibrium between the σ-

complex and the dihydride complex that formally involves an oxidative addition to the metal center.6 

On the other hand, metal NPs are well-known to activate H-H σ-bonds, and solid-state NMR studies 

suggest that σ-H2 species can exist at the surface of metal NPs.27 Therefore, the classical 

organometallic understanding of these chemical bonds can be used as model to understand σ-H-H 

activation with metal NPs to give surface hydrides. 

 

Figure 1. Bonding in a σ-H2 complex and oxidative addition 
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Hydrogen activation has been explored for many metal NPs, either dispersed in solution or after 

deposition on a support, of which the most widely studied have been Pd, Pt, Ru and Rh NPs. 

Characterization of the coordination mode of hydrogen molecules at the surface of the NPs can help 

to understand their behavior and reactivity. However, direct characterization of surface hydrides is a 

challenging task. Many efforts to quantify the amount of surface hydrogen have been undertaken, 

which involve hydrogen evolution after thermal desorption or other indirect methods,28-29 but direct 

detection of hydrides has been less explored. 

The main application of the σ-bond activation of H-H is the catalytic hydrogenation of organic 

molecules, although there are other promising applications such as hydrogen storage.23,30-39 Herein, 

we will focus on the characterization of hydrogen and deuterium at the surface of metal NPs and on 

their direct observation, mainly through Nuclear Magnetic Resonance. Last, we will briefly discuss 

how ligands can modulate the homolytic or heterolytic nature of the H-H cleavage, which can lead to 

different catalytic activity and selectivity. 

2.1. Ru NPs in the H-H activation. Surface hydrides characterization. 

Ru is a very well-known catalyst for the activation of H-H bonds in both homogeneous and 

heterogeneous phase,40-42 and has been widely used in hydrogenation catalysis.43-46 In addition, 

several model molecular ruthenium compounds were prepared, accommodating different modes of 

coordination of hydrogen, namely terminal, µ2-bridging, µ3-bridging, η2-dihydrogen and even 

interstitial (see Figure 2).27,47-48 Our research group has a large experience in the synthesis of Ru NPs 

after decomposition of organometallic precursors under a reductive atmosphere of hydrogen. Ru NPs 

stabilized by different ligands such as alcohols,49 N-heterocyclic carbenes,50 phosphines,51 

carboxylates52 or amines53 have been prepared by this methodology. Therefore, qualitative and 

quantitative analyses of surface hydrides is essential for understanding spectroscopic features and 

reactivity of these NPs. 
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Figure 2. Different coordination modes of H/H2 to Ru NPs. 

 

Initially it was suggested that Ru NPs prepared through decomposition of an organometallic 

precursor in the presence of H2 and stabilized by hexadecylamine ligands (HDA), contained surface 

hydrides that were released as H2 into the solution as observed by 1H NMR.53 However, direct 

characterization of hydride coordination to Ru was not possible, neither by liquid nor solid state 

NMR. In 2005, Buntkowsky, Limbach, and co-workers studied the presence of surface hydrides in 

Ru NPs by the use of NMR.54 Thus, Ru NPs initially treated with molecular H2 were, after removal 

of the gas phase under vacuum, subjected to a D2 atmosphere. Gas phase 1H NMR monitoring 

evidenced the appearance of a signal corresponding to H-D and allowed the titration of surface 

hydrides. Later, in 2008, the amount of hydrides at the surface of various hcp-Ru NPs, stabilized by 

polyvinylpyrrolidone (PVP), hexadecylamine (HDA) and bis(diphenylphosphino)decane (dppd), was 

quantified by titration with an olefin (1-octene and norbornene) taking advantage of the high 

reactivity of Ru NPs as a hydrogenation catalyst.55 Knowing the conversions and the size of the NPs, 

the number of surface hydrides per surface Ru atom could be estimated as 1.3, 1.3 and 1.1 for Ru/PVP, 

Ru/HDA and Ru/dppd respectively. Similarly, Berthoud et al. determined the number of hydrogens 

per surface Ru atom in Ru NPs of 2 nm supported on SiO2 through adsorption measurements.56 In 

this work, the authors determined that the NPs were able to adsorb approximately 2 H atoms per 

surface Ru. The higher capacity to adsorb H atoms at the surface of these NPs may be related to the 

absence of coordinating ligands and hence to a more available surface. Surface hydrides were also 

quantified on nanoparticles stabilized by ionic liquids.57-58 In this case, it was found that the size of 

the nanoparticles was determined by the size of the lipophilic domains present in the nanostructured 
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ionic liquids. This demonstrated that naked ruthenium hydride nanoparticles are lipophilic, in 

agreement with the very low polarization of the Ru-H bond.  

Direct detection of adsorbed deuterium was carried out by static solid state 2H NMR.59-60 By 

analysis of the quadrupolar coupling constants (Qcc), which are characteristic of the degree of 

anisotropy experienced by a quadrupolar nucleus, solid state NMR can help to understand all the 

possible coordination modes of deuterium that can co-exist on a metal NP. Hence, measurements on 

Ru/PVP, Ru/HDA and Ru/dppb evidenced the presence of the fluxionality of deuterium on the surface 

of the particles (see Figure 3). After freezing this mobility at 200 K, the presence of mostly bridging 

deuterides and possibly dideuterium coordination was established. Interstitial hydrogen atoms have 

not been observed and DFT calculations confirm that all hydrogen atoms are located at the surface.61 

In the case of Ru NPs stabilized by metal-organic frameworks (MOFs),62 surface-adsorbed D atoms 

were observed by solid state NMR spectroscopy, which in this case displayed high mobility even 

down to 40 K. This effect was attributed to the weak interaction between the MOF and the Ru NPs 

in comparison to stabilizing ligands such as HDA.  

 

 

Figure 3. Solid-state 45.7 MHz 2H NMR spectra of static samples of Ru/HDA particles after H–D 

exchange performed in the solid state (Coll-2) and in solution (Coll-3) at room temperature (a and 

c) or at 200 K (b and d). The experimental spectra correspond to the sum of the corresponding 

subspectra. Reprinted with permission from ref 54. Copyright 2005 John Wiley and Sons. 



8 

 

 

In 2009, Truflandier et al. performed both DFT calculations to understand the coordination mode 

of H to Ru (1000) surfaces with more than 1 H per Ru atom,63 and simulations to fit the results 

previously obtained by 2H solid state NMR by Pery et al.54 The authors proposed the existence of 

different types of surface hydrides (terminal and μ3- bridging), which were mobile in all cases. One-

fold sites (terminal or on-top coordination, labeled in green in Figure 4) are not energetically favored 

at low hydrogen coverage, where H binds preferentially at three-fold sites (μ3- bridging fcc 

coordination, labeled in blue in Figure 4). When the coverage was higher than 1 H per Ru surface 

atom, and the surface saturated in three-fold sites, the hydrides occupy the on-top sites, leading to the 

most stable systems. In other words, the on-top coordination of hydrides, which has a transition-state 

nature at low coverage values, becomes stabilized after saturation of the Ru surface, i.e. when the 

number of H atoms per surface Ru is larger than 1.  

 

 

Figure 4. Surface hydrides preferentially bind as μ3-bridging species (blue). After full coverage of 

the three-fold sites, surface hydrides adopt the less energetically favoured terminal coordination 

(green). The image shows the on-top coordination of (a) 1, (b) 2, (c) 3 or (d) 4 hydrides after 

saturation of the three-fold sites. Reprinted with permission from ref 63. Copyright 2009 John 

Wiley and Sons. 

 

A further development of DFT calculations for Ru-carbonyl clusters with different amounts of D 

permitted to effectively calculate the energy levels for the d orbital of each surface atom in its 

chemical environment.61 This model led to a better understanding of the coordination mode of D to 

the surface of Ru NPs and corroborated the 2H NMR observations. The co-existence of different 

surface adsorbed deuterides contrasts with the model proposed above for a Ru (1000) surface that 

contained only terminal and μ3- bridging D. This can be expected as the NPs surface is more diverse 

than a Ru (1000) surface. The presence of more energetic sites located at the edges and corners and 
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the exposure of different crystallographic facets makes the NPs more complex systems. However, a 

model that incorporates all different coordination modes of hydrogen is compatible with the presence 

of more than 1 H per Ru surface atom. For instance, Lara et al. reported a space-filling model of 1.8 

nm hcp-Ru NPs stabilized by an N-Heterocyclic Carbene (NHC) ligand that was able to accommodate 

1.5 hydrides per surface Ru.50 

Bumüller and co-workers have recently reported on DFT calculations of H2 adsorption onto Ru 

nanoclusters of 19 Ru atoms.64 In contrast to large Ru NPs, which present an hcp structure, Ru19
– 

possesses a closed-shell octahedral fcc structure. Interestingly, in the Ru19Dx
– nanocluster range 

containing 0 to 40 D atoms, there is a transition from the octahedral fcc to a bi-icosahedral structure 

at 20 D atoms, to maximize the adsorption energy of D. In addition, hydrogen atoms coordinate at 

two-fold sites on both cluster core motifs, in contrast to flat surfaces where a three-fold coordination 

is preferred.  

Recently, Limbach et al. described a new approach to understand the D2 activation mechanism 

by Ru NPs covered with H2 using gas phase 1H NMR.65 The authors compared two possible 

mechanistic routes: a dissociative vs. an associative exchange (see Figure 5). In the latter mechanism 

a molecule of D2 coordinates to Ru, forms a D–D–H intermediate, that releases HD.66 In this work, 

the authors observed the formation of only H-D and no H2 at the beginning of the reaction when using 

Ru/PVP and Ru/HDA NPs. This agrees with an associative exchange model, which prevails around 

room temperature and normal pressures, the conditions used for catalytic hydrogenation with Ru NPs. 

In addition, the associative exchange mechanism is coherent with the kinetic profile of the reaction. 
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Figure. 5. Mechanisms of equilibration of gaseous D2 in contact with a Ru surface covered with H2. 

Left side: Dissociative exchange model that consists in dissociative adsorption, surface diffusion 

and associative desorption, which operates at low temperatures and low pressures. Right side: 

Associative exchange model that consists in an associative adsorption, followed by hydride transfer 

and associative desorption. Reprinted with permission from ref 65. Copyright 2018 Royal Society 

of Chemistry. 

 

Rothermel et al. have extended the characterization of surface hydrides coordinated to 

monometallic and bimetal NPs.67 Three different systems were prepared in this work: Ru/dppb, 

Pt/dppb and RuPt/dppb (dppb=1,4-bis(diphenylphosphino)butane). After treatment with D2, the 

authors carried out the characterization of the products via gas-phase NMR, GC-MS and 13C and 31P 

solid-state NMR. An interesting finding of this work was that several deuterated aliphatic products 

namely deuterated butane and cyclohexane together with H-D were formed. These molecules arise 

from the decomposition of the dppb ligand through the cleavage of C-P bonds. 

Another important field is the comprehension of the σ-bond activation of H2 in the presence of 

CO molecules, which is highly relevant for the understanding of the mechanism of the Fischer-

Tropsch reaction. Thus, the competition between the coordination of H2 and CO at the surface of 

Ru/PVP and Ru/dppb was investigated by Novio et al. in 2010.68 Titration of hydrides was carried 

out after exposure to a CO atmosphere for 15 min (Ru/PVP/CO and Ru/dppb/CO), or after exposure 

to a CO atmosphere and followed by a H2 atmosphere during 6 h (Ru/PVP/CO/H2 and 

Ru/dppb/CO/H2). It was observed that after exposure to CO the amount of surface hydrides decreased 

to 0, due to the complete coverage of the NPs surface by CO molecules. Exposure to H2 of these NPs 

did not lead to the initial number of hydrides per surface Ru, 0.3 and 0.2 in Ru/PVP and Ru/dppb 

respectively, because only a part of the adsorbed CO molecules was replaced by H2 under the 

conditions applied. The competition between CO and H2 coordination to Ru NPs was further studied 

in 2016 by Cusinato et al.69 The authors performed a comparison between theoretical calculations and 

experimental results to understand the surface composition of Ru NPs of 1 nm size in the presence of 

a syngas mixture (CO:H2). In this report it was shown that under FT reaction conditions (~450 K and 

1-3 bar of syngas) the NPs were saturated with surface adsorbed CO and that no co-adsorption of H2 

took place. The onset of the FT reaction with H2 likely involved the exothermic, simultaneous CO 

dissociation and water formation. 

Finally, a few studies of supported Ru NPs have been reported, in which the nature of the support 

has shown to be important for H diffusion from the particle (the so-called hydrogen spillover). For 

example, theoretical studies of Ru NPs supported on TiO2 or tetragonal ZrO2 showed that σ-H2 

activation occurs at the Ru NP surface, whereas the nature of the support determines the energetic 
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barrier for H spillover.70 In another study, Fernandez et al. reported on the kinetics of H2 adsorption 

and the mobility in Ru/γ-Al2O3.
71 The authors concluded that larger Ru NPs (of ~10 nm) can activate 

H2 and that the adsorbed hydrides were highly mobile on the Al2O3 surface. In contrast, in the case 

of smaller Ru NPs (of ~3 nm), hydrogen adsorption led to strongly coordinated hydrides with low 

diffusivity towards the support. Comprehension of the coordination mode and the mobility of the 

hydrides allowed the authors to propose a more accurate kinetic model for the low-temperature 

ammonia synthesis. 

2.2. Other metal NPs in the H-H activation.  

Characterization of surface hydrides has been mainly performed on Ru NPs, but there are a few 

works exploring the surface coordination of dihydrogen to other metallic systems. Hydrogen 

activation catalyzed by supported metal NPs has been widely explored and it is well-known that 

hydrides can migrate from the NPs surface to the support, the so-called hydrogen spillover, or to the 

interior of the NPs.70,72-73 This topic presents interesting applications in the fields of hydrogen storage, 

catalytic hydrogenation or isotopic exchange,73 but will not be discussed herein. 

Unlike Ru, Pd shows the formation of bulk hydrides and thus Pd can be used for hydrogen 

storage. Numerous studies have been devoted to bulk Pd and Pd NPs immobilized on many supports. 

A variety of sophisticated surface analysis techniques has been applied to identify surface and sub-

surface hydrogen. To the best of our knowledge, few examples of H2 activation by soluble metal NPs 

have been reported in which the presence of surface hydrides has been directly observed, as many 

surface science spectroscopic techniques cannot be used in solution. Notably, the formation of weakly 

bonded surface hydrides in Pd NPs makes them more active than clean Pd surfaces in catalytic 

hydrogenation of alkenes at low H2 pressures.74 Pd NPs have been widely studied for hydrogen 

storage applications75 and thus several techniques for indirect detection of the formation of Pd 

hydrides have been explored. For instance, hydride formation has been determined by 

luminescence,76 or by plasmonic shifting of Au NPs in contact with Pd nanocubes.77 However, direct 

characterization of surface hydrides on Pd NPs has been less explored. As an example, one 

experimental proof of the formation of metal-hydrides in Pd NPs was provided by Zlotea et al. in 

2010. The authors used in situ X-Ray Diffraction (XRD) to characterize the adsorbed hydrogens on 

Pd NPs of ca. 2 nm encapsulated in Metal-Organic Frameworks (MOFs).78 This composite displayed 

higher hydrogen uptake than the pristine material, which was attributed to the presence of palladium 

hydrides, as demonstrated by in situ XRD. After exposure of the system to different H2 pressures up 

to 10 kPa, the authors observed the formation a palladium hydride phase in the XRD diffractogram, 

which progressively transformed into a different phase upon increasing the H2 pressure.  

2.2.1. Subsurface hydrides. 
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In the case of Pd NPs, sub-surface hydrides79-80 are particularly important in the determination of 

the reactivity of the system. For instance, Ludwig et al. have shown that, in the stereoselective syn-

hydrogenation of alkenes catalyzed by Pd NPs supported on Fe3O4, the presence of subsurface 

hydrogens was a key factor to maintain a good catalytic activity at the steady state of the catalyst (see 

Figure 6).81 The formation of subsurface hydrogens was characterized by a combination of kinetic 

analysis and nuclear reaction analysis (NRA).82 Furthermore, the authors observed that deposition of 

carbon at the lower coordination sites of the NPs, i.e. the corners and the edges, favors the diffusion 

of the surface hydrides inside the NPs enhancing the long-term catalytic performance of the system. 

The easier diffusion of subsurface hydrides promoted by interstitial carbon was predicted by Neyman 

et al. in 2010, who showed that the incorporation of carbon slightly increased the lattice parameters 

thus facilitating the transfer of hydrogen from the inner octahedral sites to the surface.83 This fact also 

explains why Pd NPs were more active in alkene hydrogenation than Pd surfaces. Thus, this work 

constitutes a good example of the need of more realistic models to explain the H2 cleavage on metal 

NPs, where the classical models based on crystal surfaces are not consistent with the experimental 

results.  

 

 

Figure 6. The presence of C atoms at the corners of the Pd NPs facilitates the diffusion of the 

hydrides and the formation of subsurface H(D) species, which enhance the catalytic performance. 

Reprinted with permission from ref 81. Copyright 2011 Elsevier. 

 

A theoretical study comparing the role of subsurface hydrides in NPs and single crystals of 

different transition metals in the catalytic hydrogenation of ethylene was reported by Aleksandrov et 

al.84 In the case of Pd and Pt, the subsurface hydrides can destabilize the surface adsorbed H, 

promoting the occupation of antibonding Pd-Had or Pt-Had states. This effect is remarkably stronger 

for NPs than for metallic surfaces, and, in the case of Pd, it can increase the rate constant of the 
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reaction by several orders of magnitude (see Figure 7). On the other hand, in the case of Ni and Rh, 

the subsurface hydrides help to stabilize the surface adsorbed H due to the more polar character of 

the Rh-H and Ni-H bonds. As a result, the calculated reaction rates were lower at higher hydrogen 

loadings. This work evidenced how the nature of the M-H bond can affect the nature of the subsurface 

hydrides and their role in the catalytic hydrogenation. 

 

 

Figure 7. The subsurface hydrogens destabilize the surface hydrides on Pd NPs, and this can 

increase the reaction rate of hydrogenation reactions by several orders of magnitude in comparison 

to Pd surfaces (left). In contrast, in the case of Ni NPs, the presence of subsurface hydrides 

stabilizes the surface hydrides, which decreases the catalytic activity of Ni NPs in hydrogenation 

reactions. Reprinted with permission from ref 84. Copyright 2014 John Wiley and Sons. 

 

Subsequently, Neyman and co-workers determined by theoretical calculations that in Pd and Pt 

nanoparticles, which contain more edges than the bulk material, the energy barrier to allow the 

formation of subsurface hydrides is smaller.85 Interestingly, it was also demonstrated that H 

absorption was exothermic for H-covered Pd NPs, whereas it was endothermic for pristine Pd NPs.86 

This led the authors to conclude that not only structural considerations, but also the presence of 

surface hydrides must be taken into account to understand H2 activation by transition metals. 

In summary, the presence of subsurface hydrides in metal NPs can affect the reactivity of Pd, Pt 

or Ni based NPs. The characterization of these species and the studies of their role in the catalytic 

reactions are therefore crucial to understand and to predict the reactivity of the NPs, especially in 

hydrogenation reactions. Thus, both surface hydrides and subsurface hydrides function not only as 
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reactants but also as ligands and as such exert “ligand effects”. It should be noted that the works that 

have been discussed in this section are based on non-functionalized NPs.  

2.2.2. Ligand effects: ligand assisted H-H cleavage. 

Organic ligands are common stabilizers of NPs in solution. These ligands influence the size, 

properties and reactivity of the NPs, but in many cases the nature of the ligand effects remains 

unknown. An interesting ligand effect has been evidenced on Au NPs stabilized by secondary 

phosphine oxides (SPOs) displaying different electronic and steric features. Thus, depending on the 

SPO´s nature, these NPs can catalyze the homolytic or the heterolytic cleavage of the H-H bond, 

hence leading to different reactivity in catalytic hydrogenation.87 In this work, the catalytic activity 

had permitted to elucidate the nature of the H-H activation process. Aryl SPO ligands favored 

heterolytic cleavage of H2 and hydrogenation of aldehydes (See Scheme 1), whereas aliphatic SPOs 

favored hydrogenation of nitro groups, a typical reactivity of Au(0) NPs. DFT calculations on 

Au55(Ph2PO)27 showed preference for heterolytic cleavage and outer-sphere hydrogen transfer to the 

C=O bond of acrolein.88 No gold hydrides could be observed for these Au NPs, but exposure to a 

mixture of H2 and D2 slowly produced HD indicating the intermediacy of chemisorbed H2. Similarly, 

the good selectivity of Ir NPs functionalized with SPO ligands towards the aldehyde hydrogenation 

in cinnamaldehyde suggests a heterolytic H-H cleavage.89 This contrasts with the results obtained for 

Ir NPs supported on SiO2, where both the alkene and the aldehyde are equally hydrogenated.90 

In summary, ligand effects can play an important role on the heterolytic or homolytic nature of 

H2 activation. Although deeper studies are still needed to better understand the reaction mechanisms, 

the reactivity and selectivity of metal NPs in catalytic hydrogenation can serve as a model to 

understand the nature of the homolytic or heterolytic H-H cleavage. This approach can pave the way 

to develop new catalytic systems based on metal NPs, in which the nature of the ligand may enable 

to modulate the H2 activation and thus to tune the reaction selectivity. 

 

Scheme 1. Aryl SPOs favor the heterolytic cleavage of the H2 molecule, which enhances the 

selectivity of Au NPs towards the hydrogenation of aldehydes (upper). Alkyl SPOs favor the 

homolytic activation of the H2 molecule, which results in low selectivity to aldehyde hydrogenation 

(lower). Reprinted after modifications with permission from ref 87. Copyright 2015 American 

Chemical Society. 
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2.2.3. σ-H activation promoted by light. 

A new approach that is gaining attention is the activation of σ-H2 by metal NPs displaying 

plasmonic properties promoted by light. It has been proposed that, under laser irradiation, the excited 

“hot-electrons” can be transferred to the σ*-H-H orbital of the molecule, which weakens the H-H 

bond decreasing the barrier for its activation. An interesting feature of this process is its reversibility, 

so the surface hydrides are desorbed when the irradiation with the laser stops. This activation and its 

mechanism have been studied by the group of Halas, Nordlander and co-workers, and has been 

supported by theoretical calculations. 91-92 The authors first studied this activation with plasmonic Au 

NPs after irradiation at different wavelengths (450-800 nm). It was observed that the support played 

an important role in this activation. When the Au NPs were supported on dielectric materials such as 

SiO2 or Al2O3, the reaction rate was enhanced by 2 orders of magnitude compared to TiO2. This was 

attributed by the authors to the semi-conductor nature of TiO2 and the transfer of hot electrons into 

TiO2. 

In a recent work, Halas, Nordlander, Carter and co-workers demonstrated that Al nano-cubes can 

activate H2 in the presence of a laser.93 Due to the plasmonic nature of the Al cubes, the authors 

observed that irradiation with laser promotes the activation of the H-H bond. A screening of 

wavelength was performed (from 350 to 1000 nm), showing that H2 activation rate was maximized 

at those wavelengths matching with the surface plasmon (461 nm) or with the interband transition 

(800 nm). The mechanism of this reaction was studied using theoretical calculations, supporting the 

above-described mechanism of the “hot-electron” transfer to the σ*-H-H orbital facilitating the σ-

bond activation. The mechanism was further experimentally supported by simultaneous activation of 

H2 and D2. First, σ-bond activation of both species under laser irradiation afforded surface-adsorbed 
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hydrides and deuterides. Then, when the laser irradiation stopped, recombination of the surface 

adsorbed species led to the formation of H-D molecules. (see Fig 8). 

 

 

Figure 8. In the presence of laser irradiation on Al nano-cubes, “hot-electrons” are transferred to 

the σ*-H-H and σ*-D-D orbitals reducing the energetic barrier for the σ-bond activation. This 

process is reversible and when the laser irradiation stops, the surface hydrides and deuterides 

recombine to generate H-D species. Reprinted with permission from ref 93. Copyright 2016 

American Chemical Society. 

In conclusion, σ-H2 activation promoted by light is an interesting topic that has been 

experimentally proved, but to the best of our knowledge, the existence of surface hydrides has only 

been proposed by theoretical calculations. Thus, further developments in surface characterization may 

enable to determine the mechanism of this σ-H2 activation, as well as the different hydride species 

that can exist at the surface of the NPs. 

3. C-H activation by metal NPs. 

Catalytic C-H activation in solution has attracted a considerable interest for the past thirty years 

in view of potential applications in the synthesis of valuable organic molecules.13,20,94-98 This is now 

a reality and the number of processes involving a C-H activation/functionalization step keep 

growing.99-101 In molecular chemistry, several mechanisms have been described: oxidative addition, 

-bond metathesis, and electrophilic displacement, depending on the nature of the metal used.102-103 

For late transition metals, prone to undergo oxidative additions but also able to coordinate to C-H 

bonds, the most studied are the heavier group 8-10 metals, namely Ru, Rh, Pd, Ir, Pt.104 The first 

demonstration of C-H bond oxidative addition goes back to Chatt on a Ru(dppe)2 complex in 1965105 

whereas Rh and Ir have allowed the first demonstrations that alkane C-H bonds could be cleaved to 

lead to alkane dehydrogenation or to a stable alkyl complex.106 As far as catalysis is concerned the 

most spectacular alkane functionalization involving C-H activation besides dehydrogenation is the 
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Murai reaction (see Scheme 2), which consists of the alkylation of aromatic ketones through a C-H 

bond activation in the ortho position that is catalyzed by ruthenium organometallic complexes.107-109  

 

Scheme 2. Murai reaction catalyzed in homogeneous phase by a Ru complex. 

 

 

However, C-H activation in homogeneous phase displays some limitations related to harsh 

reaction conditions, difficulty to isolate the reaction products or absence of possibility to recycle the 

catalyst. NPs could constitute a good alternative due to their high reactivity, adjustable size which 

can give them higher surface areas than traditional heterogeneous catalysts, and ability to be 

immobilized on a support to allow their recycling.24  

In this chapter we outline C-H activation by metal NPs in solution under mild conditions. First, 

we will discuss H/D exchange reactions, which involve both C-H and D-D σ-bond activations. Then, 

we will summarize C-H functionalization for C-C bond formation catalyzed by metal NPs. Finally, 

C-X bond formation through oxidative C-H bond activation will be considered. 

3.1. H-D exchange catalyzed by metal NPs. 

During these last decades, the application of hydrogen isotopes has significantly increased in 

several areas.110 Deuterium-labeled compounds are of high interest in life sciences, and particularly 

in pharmacology and drug discovery.111 In addition, kinetic isotopic effects can significantly enhance 

the pharmacokinetic properties of drugs or reduce their toxicology.112 On the other hand, deuterium-

labeled molecules have shown to be very useful in other applications such as nuclear magnetic 

resonance, mass spectrometry or as tracers in mechanistic studies.113-114 Therefore, the development 

of efficient H/D exchange reactions via C-H exchange having a good control over reaction selectivity 

is a topic of great interest.115 Several methods to perform H/D exchange through homogeneous 

catalysis have been developed using different metal complexes. Although in some cases H/D 

exchange can be performed at high temperatures in acid or basic medium without the need for any 

metal catalyst,116 in this review we will focus on H/D exchange catalyzed by metal NPs. 

Metal complexes in homogeneous phase have been explored as catalysts in H/D exchange. For 

instance, iridium complexes such as the Crabtree catalyst [Ir(cod)(PCy3)(py)]PF6, are well known to 

afford efficient deuterium incorporation in many substrates (benzoic acids, benzamides, …).117-118 

Another metal that has been used in H/D exchange reactions is ruthenium. Some examples are the 

Shvo catalyst, which gave good chemoselectivities towards the deuteration of amines in the  and  
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positions of the nitrogen atom,119 or the Ru pincer catalyst described by Khaskin et al. that catalyzes 

the regioselective deuteration of alcohols with D2O.120-121 Additionally, rhodium,122 palladium123 and 

platinum124 complexes have also been described in literature to catalyze H/D exchange in 

homogeneous phase. The mechanism of these reactions is known and generally involves heterolytic 

cleavage of the H-H and C-H bonds.  

On the other hand, heterogeneous catalysis has also shown high efficiencies in H/D exchange, 

with the advantage of the easy removal and recyclability of the catalyst. Amongst them, the most 

employed heterogeneous catalysts are palladium, platinum and ruthenium supported on carbon (Pd/C, 

Pt/C and Ru/C).125 As an example, Ru/C is known to catalyze the H/D exchange of amino acids and 

amino alcohols.126 However, other metals have also been studied in the H/D exchange in 

heterogeneous phase, such as nickel, cobalt, etc.115 As discussed above, in this review we focus on 

the deuteration reactions catalyzed by metallic nanoparticles in solution.  

In 2005, Ott et al reported an example of H/D exchange catalyzed by metal NPs.127 In this work, 

Ir NPs of 2.1 ± 0.6 nm were prepared in ionic liquids based on imidazolium salts, and they were able 

to catalyze the H-D exchange of 1-butyl-3-methylimidazolium in the imidazolium cation as well as 

in the alkyl chain (see Scheme 3). In addition, due to the higher deuteration degree in position 2 of 

the imidazole ring, the authors introduced the hypothesis that imidazolium salts were coordinating to 

the NPs surface as N-Heterocyclic Carbene (NHC) ligands, opening the door to NPs stabilization by 

such molecules. Since then, some examples have been reported in the literature showing the 

efficiency of nanoparticles to perform catalytic deuteration in solution. 

 

Scheme 3. Ir NPs can deuterate different aromatic and aliphatic positions of imidazolium salts. The 

higher deuteration degree of the 2-position of the imidazole ring was attributed to the coordination 

of the NHC ligand to the surface of the NPs. 

 

 

In 2008, Sullivan et al. reported the use of 3.4 nm Pd NPs immobilized on multi-walled carbon 

nanotubes (MWCNTs) for catalyzing in aqueous medium H-D exchange on aromatic C-H bonds of 

4-dimethylaminopyridine (DMAP) with a selectivity for the α position to N.128 The authors studied 

the effect of the temperature on the reaction and showed that at higher temperatures (80 °C), the 

reaction rate increased but led to a higher deuteration degree in the β position as a side reaction. Other 

substrates containing a pyridine ring were tested in the H/D exchange reaction at 50 °C (see table 1). 

The deuteration of 4-aminopyridine proceeded similarly but the reaction of 4-hydroxypyridine 
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showed an inversion in the selectivity with a higher deuteration for the β protons. This is likely due 

to a different coordination mode of the substrate to the NPs surface leading to a different selectivity, 

suggesting that coordination of the substrate determines the selectivity. One possible explanation may 

be the presence of Pd(II) species at the surface of the catalyst, which enhances its affinity for the 

coordination of O atoms. Thus, when the substrate contains an -OH group, coordination through the 

O would direct the H/D reaction towards the β position. Otherwise, the substrate preferentially 

coordinates through the aromatic N leading to deuteration in the α position. 

 

 

 

Table 1. Pd NPs supported on MWCNTs can deuterate the α and β positions of different 4-

substituted pyridines. The selectivity of the deuteration depends on the nature of the 4-substituent, 

suggesting that the coordination mode of the substrate determines the reactivity of the NPs. 

 

Our group has been interested during the past 15 years in the interaction of ruthenium 

nanoparticles with H2 (see discussion above). Hydrogen substitution by deuterium at the surface of 

Ru NPs was studied by Pery et al. in 2005 in order to determine the number of hydrides present at the 

surface.54 In this work, H/D exchange was observed both at the surface of the NPs and in the 

stabilizing hexadecylamine (HDA) ligands (see Scheme 4), evidencing a combination of C-H, H-H 

and D-D activations assisted by Ru NPs. The detection of H2 and HD was performed through gas-

phase 1H NMR as the direct detection of the particles in solid phase did not give satisfactory results. 

The incorporation of D in HDA was also demonstrated but no information on the deuterated positions 

could be obtained. These preliminary results were a proof of concept of the viability of the system 

for isotopic labelling reactions. Since then, further development in the scope and mechanistic 

comprehension of H/D exchange reactions catalyzed by Ru NPs has been performed. 

 

 

Substrate α exchange (%) β exchange (%) 

4-dimethylaminopyridine 

(DMAP) 
87 13 

4-aminopyridine 76 17 

4-hydroxypyridine 6 34 
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Scheme 4. When Ru/HDA NPs are treated with D2, D not only is present at the surface of the NPs 

but it is also incorporated in HDA, demonstrating that Ru NPs are able to activate H-H, D-D and C-

H bonds.  

 

 

In 2014, Pieters et al. reported the use of Ru nanoparticles stabilized by polyvinylpyrrolidone 

(Ru@PVP) for the selective H-D exchange of bioactive aza compounds.129 Small ruthenium 

nanoparticles of 1.1 nm were obtained through decomposition of Ru(cod)(cot) (cod = 1,5-

cyclooctadiene, cot = 1,3,5 cyclooctatriene) in the presence of the polymer. Ru@PVP NPs behave as 

“naked” nanoparticles since they are only sterically stabilized. Good regioselectivities for the 

deuteration of the α position to the N atom were observed in the isotopic labeling of molecules of 

biological interest such as pyridines, indoles and amines (see Scheme 5). The catalytic reactions were 

performed under mild conditions, 55 °C or at room temperature, using 1-2 bar of deuterium gas as 

the isotopic source and 3% Ru loading. Additionally, the labeling of eight biologically active 

compounds containing at least one nitrogen atom was performed (Figure 9). Differences in the 

regioselectivity of the reaction could be explained through the coordination mode and the accessibility 

of the different positions, the α positions to N being most prone to deuteration. For example, in a 

molecule containing an aliphatic secondary amine and a pyridine ring (Figure 9a-b), the positions α 

to the aromatic N were preferentially deuterated. Another interesting observation was the moderate 

deuteration in position C7 of the indole ring (40%, Figure 9d). 

 

Scheme 5. Ru@PVP NPs can selectively deuterate molecules of biological interest such as 

pyridines, indoles and amines under mild reaction conditions. 
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Figure 9. Scope of substrates that were deuterated using Ru@PVP NPs showing the position 

and the percentage of deuterium incorporation. 

 

In 2015, the authors expanded their work to the deuteration of molecules of biological interest 

catalyzed by Ru NPs.130 An enantiospecific H/D exchange was observed on chiral amines using the 

same Ru@PVP system, leading to high yields in the deuteration of the α positions to the N atoms of 

the molecules in mild reaction conditions (55 °C and 2 bar of deuterium gas). Retention of the 

configuration was always observed. Then, the reaction was extended to amino acids and other 

peptides (see Figure 10). A good deuteration degree was observed for hydrogens α to nitrogen in 

almost all the cases, although lower deuterium incorporation was observed in compounds containing 

three coordination sites. This effect was attributed to a tridentate coordination of the substrate to the 

nanoparticle surface, which would decrease the flexibility of the molecule hindering the deuteration 

process. The reaction mechanism was also studied in this work through DFT calculations and the 

transition state for the C-H activation step is shown in Figure 11. The first step of the reaction consists 

in the coordination of the substrate through the N atom, followed by rotation of the amine to orient 

the C-H bond towards the Ru center. Then, C-H activation occurs at the surface of the NPs in the α 

position of the substrate to form a four-membered dimetallacycle intermediate. Further H-D exchange 

at the surface atoms followed by reductive elimination and decoordination of the substrate completed 

the reaction mechanism to afford the deuterated product. 
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Figure 10. Scope of H/D exchange on chiral amines catalyzed Ru@PVP NPs showing the position 

and the percentage of deuterium incorporation. Reprinted with permission from ref 130. Copyright 

2015 John Wiley and Sons. 

 

 

Figure 11. Transition state in the C-H activation step for the Langmuir–Hinshelwood-type H/D 

exchange mechanism calculated by DFT for 1 nm Ru55Dn clusters. Activation of the C-H bond 

leads to the formation of a four-member metallacycle containing a Ru-Ru moiety. 

 

Ru NPs are also active in the deuteration of organic ligands that do not contain N atoms. Bresó-

Femenia et al. reported the deuteration of phosphorus compounds using Ru NPs stabilized by PVP in 
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mild conditions (2 bar D2, 55 ºC).131 Three different type of P ligands were tested in the H/D 

exchange: triphenylphosphine, triphenylphosphine oxide and triphenyl phosphite. Selective 

deuteration of the ortho positions of the aromatic rings was observed for triphenylphosphine with 

incorporation of 1 to 6 deuterium atoms depending on the reaction time, without any evidence for the 

reduction of the aromatic rings (see Figure 12-a). However, RuNPs@PVP were not able to deuterate 

the aliphatic groups of Ph2MeP and dppb, and only the phenyl groups were deuterated at the 2,6-

positions. Triphenylphosphine oxide also led to deuterium incorporation under the same conditions, 

but in this case reduction of the aromatic ring was observed even at low temperatures, which was 

explained by a π-coordination mode of the substrate through the phenyl ring (see Figure 12-b). 

Finally, triphenyl phosphite was not deuterated under the same conditions. In this case, the presence 

of O atoms prohibits the desired orientation of the aromatic ring to two adjacent Ru atoms, thus 

disfavouring H/D exchange (see Figure 12-c). Note that monometallic molecular Ru complexes 

readily metallate triphenyl phosphite, one of which is a catalyst for H/D exchange of phenols.132 

 

 

Figure 12. Phosphine deuteration catalyzed by Ru@PVP NPs. (a) PPh3 is selectively deuterated in 

the 2-position of the phenyl substituent. (b) OPPh3 cannot coordinate through the P atom, and π- 

coordination of the aromatic ring affords the reduction of the phenyl substituents. (c) With P(OPh)3, 

the coordination mode prohibits the deuteration of the aromatic rings.  

 

In 2016, Bathia et al. reported the use of Ru NPs supported on an activated carbon cloth 

(RuNPs/ACC) for stereoretentive H/D exchange on sites vicinal to amines and alcohols groups 

through electrocatalysis.133 This methodology of deuteration using D2O with a supply of steady state 

current without D2 gas, afforded a high percentage of deuteration on 2-aminobutane as model 

substrate. The anode is a platinum wire which plays the role of counter electrode and the reaction 

occurs on the cathode comprised of RuNPs/ACC. Then, the authors explored the deuteration of 

various substrates in this reaction. Alcohols generally showed better deuteration degree in the α 

position to the heteroatom than amines, which was proved after deuteration of amino-alcohol 
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substrates containing both functional groups. A mechanism for the reaction similar to the one given 

by Taglang et al.130 was proposed. (see Scheme 6)  

 

Scheme 6. Proposed mechanism for the electrocatalytic H/D exchange catalyzed by Ru/ACC NPs. 

 

NHC ligands have recently received a lot of attention as stabilizers of metal NPs. This family of 

ligands provides a strong coordination to the NPs surface, enhancing the stability of the NPs. In 

addition, they can allow tuning the solubility of the NPs through modification of the substituents. A 

methodology to synthesize water-soluble Ru NPs stabilized by sulfonated N-heterocyclic carbene 

ligands (SNHC) was reported by Martínez-Prieto et al. in 2017.134 The RuNPs@SNHC were studied 

in the H/D exchange of L-lysine at different pHs (Table 2). This catalytic system allowed a direct 

NMR monitoring of the H/D exchange. Variation of the pH in the medium had an important influence 

on the coordination mode of L-lysine to the NPs, affecting the rate and selectivity of the H/D 

exchange. At the pH value provided by L-lysine (10.4), two positions were mainly deuterated, the 

positions  and  (although a slight deuteration of 12.5% was also observed in position ). Decreasing 

the pH slowed down the reaction rate, so at a pH of 2.2 there was almost no deuteration of the 

substrate. This is probably since at low pH, the NH2 groups are protonated preventing amino acid 

coordination to the surface of the NPs (see Figure 13). On the other hand, higher deuterium 

incorporation was found at basic pH values. For example, at a pH of 13.2 where L-lysine is in the 

Lys– form, the two amino groups can coordinate to the NPs surface, providing almost complete 

deuteration of the positions ,  and  (99%, 98.5% and 89.5% respectively). At a pH of 13.8, 

selectivity deuteration of the positions  and  decreases, likely due to passivation of the NPs surface 

in the presence of high concentration of OD—. Figure 13 visualizes the exchange at C-. The 

coordination mode of the substrate to the NPs was also proven by chemical shift perturbation (CSP) 

in the 1H-13C HSQC NMR. 



25 

 

 

 

pH  (%)  (%)  (%)  (%)  (%) 

2.2 6 2 - - - 

6.9 95 70 - - - 

8.4 97 92 - - - 

10.4 99 98,5 12,5 - - 

11.0 99 98,5 45 - - 

13.2 99 98,5 89,5 10 - 

13.8 76 98 31,5 - - 

 

Table 2. % of deuterium incorporation in L-lysine catalyzed by Ru NPs stabilized by sulfonated 

NHCs as a function of the pH of the aqueous solution. 

 

 

Figure 13. At a pH value of 3, all the amino groups are protonated, and L-lysine does not react with 

Ru NPs. After progressively augmenting the pH values, deprotonation of the amino groups 

facilitates the coordination of the substrate enhancing the D incorporation at the different positions 

of the molecule. 

 

The reactivity of Ru NPs towards the deuteration of alkanes, which bind very weakly to the Ru 

surface, has been recently explored. To this end, Rothermel, et al. synthesized Ru NPs stabilized by 

bis(diphenylphosphino)butane (dppb) ligands.135 A surprisingly high reactivity was observed for 

cyclopentane as compared to cyclohexane and other alkanes, the initial rate of exchange being about 

20 times higher for cyclopentane (60 °C, 6 bars of D2) (See Scheme 7). As cyclohexane and 

cyclopentane have similar bond cleavage energies (400 kJ/mol and 395-403 kJ/mol respectively), the 
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origin of such a different reactivity was difficult to understand. The ligand influence was explored, 

and similar results were obtained even in the absence of dppb as stabilizing ligand. DFT calculations 

using a ligand-free Ru13H17 model cluster as catalyst indicated that the rate-limiting reaction step was 

the oxidative C-H cleavage of the bound substrates. Also, comparable binding and activation 

enthalpies were found for the two alkanes. These results seem to indicate that the NPs surface shows 

a specific recognition for the cyclopentane substrate. Although the reason is not yet understood, it 

may be caused by a subtle interplay of various intra- and intermolecular surface-substrate interactions, 

entropies included. 

 

Scheme 7. Ru NPs stabilized by dppb can efficiently deuterate cycloalkanes under mild conditions. 

Surprisingly, the initial rate of exchange was about 20 times higher for cyclopentane than for 

cyclohexane, which resulted in higher deuteration degree of the former. 

 

 

Recently, Palazzolo et al. have reported the selective deuteration and tritiation of pharmaceuticals 

and oligonucleotides catalyzed by Ru NPs.136 The reactivity of two different catalysts was compared: 

Ru NPs stabilized by PVP (Ru@PVP) and by a N-heterocyclic carbene ligand (1,3-bis(cyclohexyl)-

1,3-dihydro-2H-imidazol-2-ylidene, Ru@ICy). It was observed that Ru@ICy showed improved 

catalytic activities in some of the cases, which was attributed to their higher dispersibility in organic 

solvents than that of Ru@PVP. Both systems showed a remarkably broad scope of substrates under 

mild reaction conditions, 55 ºC and 2 bar of D2 (see Figure 14). It must be highlighted that no 

reduction of the aromatic rings was detected. In addition, 6-mer and 12-mer oligonucleotides were 

successfully deuterated by Ru NPs stabilized by water-soluble NHCs, using 1 equivalent of catalyst 

and 2 bar of D2. The isotopic labelling was accompanied by total conservation of the structure, and 

no reduction of the pyrimidine bases was observed. 
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Figure 14. Scope of substrates for the deuteration of pharmaceuticals and biomolecules catalyzed 

by Ru@PVP (in red,%) and Ru@ICy (in blue, %) 

 

To conclude, in this section we have shown that metal NPs, especially Ru NPs, are good catalysts 

for H-D exchange reactions since they are very active systems in C-H, H-H and D-D activation. Thus, 

a wide variety of organic substrates could be selectively deuterated under mild conditions. Notably, 

the possibility of functionalizing the NPs surface makes these systems very promising catalysts as 

their activity, selectivity and solubility, among other properties, can be easily tuned by modification 

of the ligands. This constitutes an advantage of NPs over the classical heterogeneous catalysts. Also, 

important efforts to understand the reaction mechanisms have been developed. Interestingly, the 

mechanisms involve the same types of species observed in molecular complexes, namely, hydrides 

or alkyl/aryl metal bonds, dihydrogen or -C-H bonds, but NPs benefit from the presence of adjacent 

ruthenium atoms, facilitating the formation of a four-center metallacycle together with H and D 

diffusion, and therefore H/D exchange.  
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3.2. C-C bond formation. 

During the past few years, systems based on metal NPs have been developed extensively in the 

field of catalytic C-H activation followed by C-C bond formation. NPs display a multiplicity and a 

variety of surface sites able to activate organic molecules but, the reaction mechanisms are not as 

precisely known as in molecular chemistry, and, in some cases, doubts remain concerning the nature 

of the active species. Thus, studying the reaction mechanism for each particular system is important 

in order to optimize the reaction conditions and to improve the recyclability of the catalysts. In some 

catalytic systems, several observations suggest that catalysis may be performed by solution-stable 

catalytically active molecular species that are leached from NPs surface, and in this case the NPs 

would act as a reservoir for these species that may be either “naked” atoms or metallic clusters (see 

Scheme 8).137 This is particularly true for Pd which is prone to oscillate between the molecular and 

the nanoparticular states in solution. At an early stage already De Vries and Reetz proposed that 

leached Pd species were responsible for the catalytic activity of Pd NPs in C-C coupling reactions.138  

In this chapter we will describe the state-of-the-art productive C-H activation leading to the 

formation of C-C bonds. Most of the literature concerns three metals, Pd, Au and Cu. It is interesting 

to note that, although Lohr et al. proposed in 2013 that in situ formed platinum nanoparticles were 

able to activate C-D bonds from the deuterated solvent,139 other metals studied in molecular 

chemistry, namely Ru, Rh, Ir, Pt are not used or not active as NP catalysts and therefore not present 

in this study,  
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Scheme 8. In some cases, C-H functionalization can take place at the surface of the NPs. 

Nevertheless, for some catalytic systems, several observations suggest that catalysis may be 

performed by solution-stable catalytically active molecular species that are leached from NPs 

surface. 

 

 

3.2.1. Pd NPs for the C-H activation/C-C bond formation. Leached active 

species vs. surface-catalysis. 

Palladium is one of the most employed catalysts in C-H activation thanks to its electronic 

characteristics and coordination possibilities.140 Pd complexes have long been used in arylation 

reactions through C-H activation, but amongst them, Pd(OAc)2 has been the most widely studied.141-

142 In addition, Pd heterogeneous catalysts have been used in C-H functionalization of aromatic 

substrates, and amongst them Pd/C has been the one most explored.143-145 Aromatic substrates such 

as indoles, pyrroles, furans or thiophenes have been used as substrates in C2 arylation reactions 

through C(sp2)-H activation catalyzed by Pd NPs. It is well-known that homogeneous C(sp2)-H 

activation of arenes followed by C-C formation is catalyzed by Pd(II) species.141,146 In this context, it 

has been observed that the use of O2 enhances the activity of homogeneous Pd complexes in the C-H 

activation of arenes.147 Thus, the use of oxygen or oxidants in the C2 arylation catalyzed by Pd NPs 

probably suggests that oxidation of superficial atoms from Pd(0) to Pd(II) may be the first step in the 

catalytic cycle. Note that surface oxygen atoms may act as acceptors of both electrons and protons 

that are generated in the process, as proposed for Au NPs (see discussion below).148 In this context 

many authors present their work as C–H activation, but it should be borne in mind that 
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mechanistically, a Pd2+ complex does an electrophilic attack on the aromatic ring after which 

deprotonation of the C(sp2)-H unit occurs, often assisted by acetate ions.149 There is also experimental 

and theoretical evidence that the latter is more important and that electrophilic attack does not have 

to be invoked.150 

In 2011, Zinovyeva et al. prepared a nanocomposite material that consisted of Pd NPs of 2.4 nm 

supported in polypyrrole (PdNPs@PPy), which was synthesized by sonication of Pd(NH3)4Cl2 in the 

presence of pyrrole in water.151 The NPs gave good activities in the C5 arylation of 2-butylfuran and 

2-butylthiophene with bromoarenes in dimethylacetamide (DMAc) at 150 ºC. When performing 

recycling experiments, the authors observed a significant growth of the NPs from 2 to 7 nm. However, 

the NPs were still well-dispersed through the support and there was no significant agglomeration. 

Thus, the authors proposed that the active species in the reaction were leached palladium species that 

were re-deposited at the end of the reaction and were responsible of the NPs growth. 

In 2013, Langer and co-workers reported the use of a ligand-free catalytic system composed of 

Pd NPs supported on polyvinylpyrrolidone (Pd/PVP) for the C-H activation of pyrroles in ionic 

liquids, and they compared its activity with the one obtained from homogeneous Pd(OPiv)2.
152 The 

PdNPs/PVP system was active only when tetrabutylammonium acetate (TBA-Ac) was used as 

solvent, whereas in other solvents there was no reaction (see Table 3). An effect of the NPs size was 

observed, leading to higher activities with the smaller NPs and higher selectivity towards the 

formation of the diarylated product. However, Pd(OPiv)2 exhibited higher activities. Since it was 

reported that PdNPs/PVP are oxidized in the presence of ammonium salts,153 the authors proposed 

that the reaction mechanism evolved by formation of Pd(II) species that leached from the NPs surface 

and that were stabilized by TBA-Ac. After the catalysis the species would be re-deposited on the NPs, 

and the TBA-Ac would prevent their aggregation into “palladium black”.  
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Entry Catalyst Ratio 3a/3b Yield 

1a Pd NPs (1.1 nm) 0.0:1.0 49 

2a Pd NPs (2.4 nm) 1.0:1.1 23 

3a Pd NPs (3.1 nm) 1.0:0.8 17 

4b Pd(OPiv)2 0.0:1.0 79 

Table 3. aReaction conditions: Pd NPs (1 mol%), 1 (1 mmol), CsOPiv (3.0 equiv.), 2 (3.0 equiv.), 

TBA-Ac (1.5 g).bReaction conditions: Pd(OPiv)2 (1 mol%), 1 (0.5 mmol), CsOPiv (3.0 equiv.), 2 

(3.0 equiv.), TBA-Ac (1.5 g). 

 

Yang et al. found a three-dimensional system interconnected network with graphene oxide (GO) 

and carbon nanotubes (CNTs) supported on Fe3O4 that was stable towards aggregation.154 Pd NPs 

were supported on GO/CNTs-Fe3O4, and used in C2 arylation of benzoxazole with iodobenzene in 

DMF at 140 ºC, and in the Glaser reaction (homocoupling of phenylacetylene) in THF at 60 ºC. 

Fairlamb and co-workers observed that in the C2 arylation of protected tryptophan with PhB(OH)2 

and PhI(OAc)2 catalyzed by Pd(OAc)2, Pd NPs of 2.5 nm were formed at the beginning of the reaction 

(see Scheme 9).155 The authors compared the activity of Pd(OAc)2 with pre-formed NPs of 1.8 nm 

stabilized by polyvinylpyrrolidone (PVP), showing that the latter NPs were also active in this 

reaction. Although no further mechanistic studies were performed, the authors proposed that the Pd 

NPs were acting as a reservoir for Pd(0) active species, as was proposed for the Heck arylation 

processes.138 Similarly, the authors also found the formation of Pd NPs in the C2 arylation of 

benzoxazoles catalyzed by Pd(OAc)2 and suggested that the NPs acted as a reservoir for the active 

species.156 The authors studied the reaction mechanism of the C2 arylation of indoles and other 

substrates (imidazole, benzoxazole or adenosine, amongst others) catalyzed by Pd(OAc)2 using ArI 

as aryl source and hydrocarbyl transfer agents such as CuI.157 It was shown that Pd NPs were 

generated in all cases but, depending on the substrate, they appeared at the beginning of the reaction 

or after few hours. However, in all the arylations that were carried out in this work, Pd NPs stabilized 

by PVP were also active in the reaction and, in some cases, they were even more active than the 

Pd(OAc)2 system, thus allowing to perform the catalysis under milder conditions. Through a three-

phase experiment, the authors concluded that the reaction would proceed through formation of Pd 

leached species, but it was not possible to determine whether the active species were Pd clusters or 

monoatomic Pd.  
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Scheme 9. In the C2 arylation of protected tryptophan with PhB(OH)2 and PhI(OAc)2 catalyzed by 

Pd(OAc)2, Pd NPs of 2.5 nm were being formed at the beginning of the reaction, which were also 

active. 

 

 

C2 arylation of indoles is commonly performed in the presence of oxygen or air (see Scheme 10). 

Cao and co-workers reported in 2011 the use of Pd NPs with a mean diameter of 2.6 nm encapsulated 

in mesoporous metal-organic frameworks (MOFs, more concretely MIL-101(Cr)158) for the C2 

arylation of indoles with haloarenes.159 The authors observed very low values of both Pd (0.4 ppm) 

and Cr (which is a component of the MOF material) leaching in the solution, which was attributed to 

the fact that encapsulation of the MOF did not allow the NPs escaping through the microporous 

windows. Hot filtration experiments also indicated that there was probably no Pd leaching, and the 

catalyst was recyclable up to 5 times without decreasing its activity. With these results, the authors 

proposed that catalysis was taking place at the surface of the NP. In the same year, the same reaction 

of C2 arylation with iodobenzene was explored by Wang et al. using 2 nm Pd NPs supported on a 

fluorous silica gel (FSG)160 which led to similar conversions. Again, the absence of leached Pd in the 

solution determined by ICP, the absence of conversion after a hot filtration test and the good 

recyclability of the catalyst, led the authors to propose that catalysis was likely to occur at the surface 

of the NPs.  
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Scheme 10. C2-arylation of indole in solution catalyzed by Pd NPs performed in organic solvents 

(above) or in water (below). It should be noted that in all cases, the reactions were carried out in the 

presence of O2 or air. 

 

 

Cao and co-workers also reported the C2 arylation of indoles catalyzed by the same Pd NPs 

encapsulated in MIL-101(Cr) system above mentioned159 using phenylboronic acids and oxygen 

instead of haloarenes.161 Thanks to their high specific surface area and porosity, the MOFs allowed 

the reusability of the Pd NPs without loss of activity. The reaction was performed using 

CH2Cl2/HOAc as solvent 0.5 mol% of Pd loading and relatively low temperatures (60 °C) in the 

presence of 1 atm of O2. Commercial Pd/C gave only 19% yield in this reaction whereas the Pd 

NPs/MOF system afforded more than 90% yield. Since the reactions with indoles containing electron-

withdrawing groups did not work when using O2 as oxidant, the reactions were carried out using KF 

and TEMPO. The authors performed a hot filtration test, which led them to propose that the reaction 
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is likely taking place at the surface of the catalyst. In addition, there were very small amounts of 

leached Pd in solution (0.9 ppm). Interestingly, the C-H activation was preferred even in the presence 

of –Br or –I groups in the indole substrate.  

Pd nanoparticles are also able to activate C-H bonds of indoles in water. Although the reactions 

generally require high catalyst loadings, they were carried out under milder conditions. In 2014, 

Malmgren et al. reported the use of Pd NPs supported on amino-functionalized mesocellular foam 

(PdNP-AmP-MCF) in the C2 arylation of indoles with diaryliodonium salts.162 Commercial Pd/C was 

not active in the reaction. An analogous Pd(II) heterogeneous catalyst (PdII-AmP-MCF) prepared in 

the same work was less active than the Pd NPs. This observation, together with the very low leaching 

determined by ICP, is in agreement with the hypothesis than Pd NPs are indeed participating as active 

species in the arylation process. However, the catalyst showed a gradual decrease in its activity 

through subsequent cycles, and that was attributed to the fact that Pd(II) species were removed from 

the NPs and dispersed through the support. 

Duan et al. also reported the use of Pd NPs supported on a mesoporous resin material for the 

catalytic arylation of indoles with diaryliodonium salts in aqueous media.163 Pd NPs with an average 

size of 1.5 nm were supported on a reusable mesoporous hybrid polymer-material modified with 

nitrogen containing groups. The polymeric material was synthesized through a surfactant-templating 

method and using octadecylmethyl[3-(trimethoxysilyl)-propyl] ammonium chloride as a linker 

between the support and the NPs (PdNPs/ODDMA-MP). The role of the support was to disperse the 

Pd NPs avoiding their agglomeration during the reaction and to facilitate the diffusion of the organic 

substrates inside the pores. The catalytic system was used in the C2 arylation of N-methylindole in 

water at 60 ºC under air. The catalyst was more active than commercially available Pd/C, but the use 

of iodonium salts may limit their application on industrial scale. The catalyst could be re-used up to 

eight times maintaining its activity. The absence of Pd leaching was proposed by the authors after 

performing a hot-filtration test and analyzing the reaction mixture by ICP-AES (Pd content in the 

solution was less than 0.05 ppm). In 2016, Cao and co-workers also used Pd NPs with an average 

size of 2.5 nm, supported on hydrophobic mesoporous MOFs (NU-1000, a Zr composed MOF with 

mesopores of 3.0 nm164) for the C-H arylation of indoles in water with iodoarenes.165 The NPs were 

synthetized through reduction of Pd(acac)2 in the presence of the activated support under a H2/N2 

flow. Perfluoroalkane (F15) chains were introduced into the pores of the MOF to immobilize the NPs 

and to provide the hydrophobic environment. These PdNPs@F15-NU-1000 were more active and 

selective towards the formation of the C2 arylated product than Pd(acac)2. A hot filtration experiment 

indicated that the reaction probably took place at the surface of the catalyst. In 2017, Somorjai, Toste 

and co-workers observed that Pd NPs stabilized by dendrimers and supported on mesoporous silica, 

could also be active catalysts for C-H activation in H2O.166 Thus, when indoline was treated with 
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diphenyliodonium tetrafluoroborate at 130 ºC in H2O in the presence of the catalyst, 2-phenylindole 

was observed as the major reaction product. The authors proposed that the reaction mechanism started 

from dehydrogenation of indoline followed by C-H activation and C-C coupling. 

Besides C2 arylation, Pd NPs have also been demonstrated to be active catalysts in the activation 

of C(sp2)-H activation of aromatic rings that do not contain heteroatoms, in the presence of a directing 

group. Korwar et al. have reported the synthesis of Pd NPs supported on multiwalled carbon 

nanotubes. XPS analyses evidenced the presence of a mixture of Pd(II) and Pd(0) atoms at the surface 

of the NPs. Thus, assuming that the active species are Pd(II) atoms, the authors named their catalyst 

Pd(II)/MWCNT. It showed high activity in the selective N-chelation-directed C-H activation/C-C 

bond formation with diaryliodonium salts.167. Its performances were comparable to those of 

homogeneous Pd(OAc)2 (see Table 4). Hot filtration experiments suggested however that the reaction 

was taking place heterogeneously, and the catalyst was recycled three times without deactivation.  

 

 

Entry Substrate Product 
Pd(II)/MWCNT 

(TOF, h-1) 

Pd(OAc)2 

(TOF, h-1) 

1 

  

90%, 3 h 

(16.48) 

88%, 3 h 

(5.74) 

2 

  

80%, 24 h 

(1.62) 

80%, 24 h 

(0.64) 

3 

  

27%, 12 h 49%, 12 h 

4 

  

32%, 24 h 75%, 24 h 

Table 4. N-chelating directed C-H functionalization/C-C bond formation of aromatic substrates 

with diphenyliodonium salts, catalyzed by oxidized Pd NPs supported on MWCNTs. 
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Pd NPs have also been proposed to catalyze C-C bond formation through C(sp3)-H activation, 

which proceeded through a radical. In 2016, Yoshida and co-workers designed different bifunctional 

metal NPs/TiO2 photocatalysts for the C(sp3)-H functionalization of ethers with benzene at the α-

position.168 The most active catalytic system in the reaction was that based on PdNPs /TiO2, and it 

was selected to perform mechanistic studies. The authors proposed that under UV light irradiation 

(λ=365 ± 20 nm), an excited electron was generated that would be localized at the Pd NP, giving its 

corresponding hole at the TiO2 support (see Scheme 11). The hole would activate the α-C-H bond of 

the ether to give an α-oxoalkyl radical. Alternatively, the Pd NPs that are electron-rich would interact 

with anti-bonding π* molecular orbital of benzene, activating it towards C-C bond formation. Based 

on a kinetic isotope effect, it was proposed that the reaction proceeded through an intermediate 

bearing an sp3-like carbon center in the aromatic ring, the formation of which would be the rate-

limiting step. Further generation of the reaction product and formation of hydrogen would restart the 

catalytic cycle. 

 

Scheme. 11. Proposed radical mechanism for the C-H functionalization of ethers with benzene 

catalyzed by PdNPs/TiO2. Irradiation with light generates a hole in the support, which assists the 

formation of an alkyl-ether radical. This specie would react with benzene, which was previously 

activated by interaction of the π-cloud with the Pd NP. The active species regenerate through 

reductive elimination and formation of H2. 

 

 

Summarizing, although Pd NPs have been widely used as catalysts in C-H functionalization, 

especially in arylation of aromatic compounds, the reaction mechanism and the nature of the active 

species have not been precisely determined. Key issue remains that the reactions may be catalyzed 
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by leached Pd species. However, several observations suggest that C2 arylation of indoles may occur 

at the surface of the PdNPs, which must be previously oxidized.  

3.2.2. Au NPs in the C-H functionalization of C(sp)-H bonds and beyond. 

There is a controversy about whether C(sp)-H activation may be considered as a C-H activation 

or as an acid-base reaction. Textbooks prefer the last mechanism; as proposed by Hartwig, the acidity 

of alkynyl C-H bond makes it possible to form M-alkynyl complexes after deprotonation of the alkyne 

with relatively weak bases.169 In addition, M-C bonds in alkynyl complexes are stronger than those 

in alkyl or aryl complexes. Thus, although C(sp)-H cleavage formally involves an activation of a C-

H bond, we prefer to consider such reactions as C-H functionalization rather than as C-H activation. 

However, it is common to find in the literature the “C-H activation” terminology for C(sp)-H 

cleavage, so they will be briefly discussed herein. 

Supported gold NPs are well-known catalysts for the C(sp)-H activation of terminal alkynes.170-

171 In many cases, it has been proposed that the reactions are catalyzed by support-stabilized Au(III) 

species, following an Au(I)/Au(III) catalytic cycle as for homogeneous processes. Such catalysts have 

been used for instance in three-component coupling reactions of alkyne, aldehyde, and amine by 

Zhang and Corma,172 or in cycloisomerization/oxidative dimerization of aryl propargyl ethers by the 

group of Stratakis.173 As an example, in 2013, Corma and co-workers observed that the reactivity of 

supported Au NPs was dependent upon presence or absence of O2.
174 Thus, under O2 atmosphere, the 

oxidative arene alkynylation of trimethoxybenzene was observed (see Scheme 12). Since it is known 

that Au NPs can dissociate molecular oxygen to generate reactive species,175 the authors proposed 

that oxygen atoms would assist C(sp)-H functionalization by trapping the protons generated in the 

reaction to give a Au+-alkynyl moiety. Then, after coordination of the arene to the Au+ species, the 

molecule is deprotonated by the OH– to give a Au(I)-aryl moiety, followed by C-C coupling between 

the aryl and alkynyl groups. The heterogeneous nature of the catalyst was demonstrated after hot 

filtration experiments, indicating that C-H functionalization might take place at the surface of the 

NPs. It was also proposed that the mechanism involved an Au(0)/Au(I) catalytic cycle instead of the 

classical Au(I)/Au(III). Later, the same group performed a theoretical and experimental study in order 

to elucidate the role of oxygen in the aerobic homocoupling of alkynes (Glaser) catalyzed by Au NPs 

supported on CeO2 (see Scheme 12).148 The dissociation of oxygen at the surface of the NP was the 

rate limiting step of the reaction. By DFT calculations, it was shown that C-H 

activation/deprotonation occurred at the surface of the NPs, and that the alkyne could adsorb on Au(0) 

atoms, as well as on cationic Auδ+ and Au+ sites. The deprotonation of the alkyne was energetically 

possible in all systems as long as O atoms were present to assist the process, but alkynes adsorbed at 

Auδ+ and Au+ sites were more reactive than those adsorbed at Au(0) sites. This work confirmed that 
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the partial oxidation of the Au NPs is the key step in the C(sp)-H activation at the surface of the NPs, 

O2 being the acceptor of both electrons and protons generated in the process. 

 

Scheme 12. C(sp)-H functionalization of alkynes with trimethoxybenzene (top) and homocoupling 

of alkynes (below) catalyzed by supported Au NPs require the presence of oxygen. It was proposed 

that the role of the oxygen is to act as acceptor of both protons generated in the C-H cleavage.  

 

 

In some other cases, Au NPs in solution have been proposed to participate in the reaction either 

by acting as reservoir for molecular active species, Au(I) complexes generally, or by catalyzing the 

C(sp)-H activation at their surface, as the ability of Au NPs to react with the C(sp)-H bond of terminal 

alkynes is well-known.176  

In addition, Au NPs have been used in alkane hydrocarboxylation by Ribeiro et al.177 A mixture 

of Au NPs and nano-rods supported on carbon xerogels catalyze the transformation of cyclohexane 

to 54% cyclohexanecarboxylic acid in the presence of CO, peroxodisulfate and water. A H2O/CH3CN 

mixture was used as solvent, and the reaction was performed under mild conditions (50 ºC) and with 

Au loadings of 0.2 mol%. By-products are cyclohexanol, cyclohexanone, and 1,2-cyclohexanediol. 

The NPs showed higher activities than HAuCl4·3H2O. In addition, the catalyst could be re-used up 

to seven times maintaining its performance. 

Propargylamines are interesting substrates, because they are intermediates in the synthesis of 

biologically active compounds and drugs.178 They are frequently prepared through a three-component 

reaction between an aldehyde, an alkyne and an amine, usually called A3 coupling (see Scheme 13). 

This reaction has been traditionally performed using strong bases to deprotonate the alkyne reagent, 

typically butyllithium or organomagnesium reagents. However, during the past 10 years, catalysis by 

metal NPs has arisen as a better strategy to avoid the use of stoichiometric reagents and the catalysts 

can be recycled in some cases. In these reactions, the mechanism involves a C(sp)-H activation. Au 

NPs have proven to be active catalysts in the A3 coupling, although more recently Cu, Fe and their 

respective oxides have attracted more attention due to their availability and lower costs (see section 
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3.2.3). Some examples of A3 coupling catalyzed by Au NPs can be found in the reports of Kidway et 

al.;179 Datta et al.;180 Layek et al.;181 Gholinejad et al.182 or Aguilar et al.183  

 

Scheme 13. A3 coupling reaction between an aldehyde, an amine and an alkyne to give a 

propargylamine. 

 

 

3.2.3. Other metal NPs in C(sp)-H activation. 

Fe and Cu NPs (and their corresponding oxides) are good candidates to perform some of the 

catalytic C(sp)-H functionalization reactions, since these metals are cheap and abundant. In addition, 

some Fe oxide NPs are ferromagnetic, which is an advantage in terms of separation and recyclability.  

The first example of an A3 coupling between benzaldehyde, morpholine and phenylacetylene 

catalyzed by Cu NPs was reported by Kidway et al. in 2007 (see Table 5).184 Different metal NPs 

were tested for this reaction, using relatively large catalyst loadings. Amongst them, Cu, Ag and Au 

were the most active. When performing the reaction with Cu NPs of ca. 18 nm mean size, the optimal 

conditions were reached using CH3CN as solvent, at 100-110°C and a catalyst loading of 15 mol%. 

The catalyst was recycled and reused up to five times obtaining good activities.  

 

 

Metal Time (h) Yield (%) 

Cu 6.5 91 

Au 4 92 

Ag 3.5 84 

Ni 10 42 
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Table 5. A3 coupling reaction between benzaldehyde, morpholine and phenylacetylene catalyzed by 

metal NPs. Reactions were carried out under N2 atmosphere. 

 

Sharghi et al. reported the synthesis of substituted benzofurans starting from 2-

hydroxybenzaldehyde (salicylaldehyde), a secondary amine and phenylacetylene, catalyzed by 

copper (I) oxide nanoparticles (formally Cu2O NPs) at 100 °C in the presence of TBAB and K2CO3 

as base and in the absence of solvent.185 In 2014, Kotadia and Soni reported the synthesis of Fe-doped 

titania (Fe/TiO2) and silica (SiO2) NPs between 10-15 nm by sol-gel processes.186 The NPs were used 

in A3-coupling reactions between an aldehyde, an amine and a terminal alkyne. Fe/TiO2 was the most 

active catalyst for the microwave-assisted reaction in absence of solvent. Bhalla and co-workers 

reported the use of superparamagnetic Fe3O4 NPs stabilized by an organic conjugated molecule 

(perylene bisimide, PBI) in the A3 coupling under mild conditions.187 The authors proposed that 

activation of the C(sp)-H bond from the alkyne takes place at the surface of the Fe3O4 NPs, although 

no further mechanistic studies were performed. In addition, the catalytic system was also active in 

the synthesis of propargylamines under aldehyde-free conditions using dimethylarylamine substrates, 

through C(sp3)-H activation of the methyl groups. 

Other catalytic systems based on metal NPs for the A3 coupling have been reported during the 

past few years. For example, Sasikala et al. reported a heterogeneous catalyst composed by La loaded 

CuO NPs;188 Gulati et al. prepared CuO NPs supported on Fe2O3 that were easily recyclable from the 

reaction medium.189 Gupta et al. have reported the synthesis of Cu6Se4.5 NPs, which were used in the 

preparation of propargylamines through a cross-dehydrogenative coupling between tertiary amines 

and terminal alkynes.190 Superparamagnetic copper ferrite (CuFe2O4) NPs have been tested in the 

synthesis of propargylamines through three-component cross-coupling reactions between anilines 

and terminal alkynes using tert-butyl hydroperoxide (TBHP) as oxidant and source of methyl radicals 

in dimethylacetamide (DMA) at high temperatures (140 °C).191 The presence of TBHP as oxidant in 

the reaction was essential for the formation of the products supporting the hypothesis of a radical 

mechanism (see Table 6). Similarly, the synthesis of propargylamines via C-H activation and 

involving three-component, amines, dichloromethane and terminal alkynes has been also catalyzed 

by indium oxide NPs by Rahman et al.192  
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Solvent Oxidant Conversion (%) 

o-xylene TBHP 48 

Diglyme TBHP 58 

DMF TBHP 88 

DMA tert-butylbenzoylperoxide 84 

DMA dicumyl peroxide 86 

DMA Hydrogen peroxide 0 

 

Table 6. Synthesis of propargylamines catalyzed by copper ferrite (CuFe2O4) NPs through three-

component cross-coupling reactions between anilines and terminal alkynes. Tert-butyl 

hydroperoxide (TBHP) is used as both oxidant and source of methyl radicals. 

 

There are a few reactions that proceed via formation of free radicals after leaching of molecular 

species from the NPs, such as arylation of benzoquinone193 or decarboxylative coupling.194-195 

However, we do not consider such reactions as C-H activation catalyzed by metal NPs, so they fall 

out of the scope of this review.  

There are also examples of C-H activation for C-C coupling that have been proposed to involve 

the formation of radicals by irradiation with light. Bhalla and co-workers showed that metal NPs 

functionalized with supramolecular ensembles of fluorescent materials exhibited good activities in 

photocatalytic C(sp2)-H alkynylation of arenes with terminal alkynes, as well as in amination of 

arenes with activated aromatic amines.196 The reactions were carried out in DMSO with K2CO3 as a 

base under air using 1.0 mol % of the ensemble catalyst irradiating with a 60 W tungsten filament 

bulb. The aggregates of perylene bisimide (PBI) played the role of a light harvesting antenna in the 

C(sp2)-H alkynylation. The Cu NPs showed higher activities than Cu2+ complexes. A catalytic system 

composed of hexaphenylbenzene and Ag@Cu2O core-shell nanoparticles with a size of ca. 10 nm 

was prepared by the same group and shown to be an efficient catalysts for the formation of imidazole 

and benzimidazoles derivatives via visible light mediated (100 W tungsten filament bulb) C-H 

activation.197 Analogously to the above described system, the composed material was excited in the 

presence of light that induced an energy transfer process which enhanced the catalytic activity of the 

CuO shell. 
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3.3. C-X Bond formation. 

In this section we will discuss the exchange of a C-H bond by a C-X bond (X= O, N, S, etc.). By 

these processes, organic molecules of important added value such as ketones, alcohols and epoxides 

can be easily prepared from readily available sources such as alkanes or arenes. Formally, these 

transformations can be considered as oxidation reactions, as the valence of the C atom increased after 

exchange of a H by a N, an O or a halide atom. Regarding the mechanism, these reactions often 

involve radical species that can be provided by the metal NPs or by using classical radical agents that 

can exchange electrons with the metal NPs. In this sub-section we will focus on the processes carried 

out under mild conditions. 

3.3.1. Oxidative C-H activation to afford C-O bonds. 

One of the most important transformations in heterogeneous catalysis that involves C-H 

activation is the oxidation of methane.24 Catalytic C-H activation of CH4 is a process that employs 

high temperatures, because of the high energies required in the homo- and heteroleptic cleavage of 

these bonds, the absence of dipole moment, or the very high value of pKa, among other reasons.198 

Metal NPs have been successfully used in the activation of methane at high temperatures.199 Dry 

reforming of methane, the simultaneous activation of CH4 and CO2 to give a syngas mixture (CO + 

H2) is one of the most studied processes, and it can be catalyzed by metal NPs such as Pt NPs or Ni 

NPs or metal-oxide such as NiO NPs at temperatures that generally surpass 500 ºC.200-203 Very 

recently, Takami et al. have proposed that this reaction can be carried out at lower temperatures using 

plasmonic Ni photocatalysts in the presence of light (300 W Xe lamp).204 There have also been other 

examples of C-H oxidative activation of alkanes at high temperatures that are heterogeneously 

catalyzed by metal NPs, such as oxidative dehydrogenation205-207 or isomerization.208 However, in 

this review we will not discuss the oxidative transformations at high temperatures and we will focus 

in processes carried out in the presence of solvents.  

Oxidative C-H addition in solution has been mainly focused on the C(sp3)-H activation, a reaction 

with a high energetic barrier that usually is performed through a radical catalytic cycle and in the 

presence of oxidants and, in some cases, radical co-catalysts such as peroxides. It is generally 

accepted that NPs promote the decomposition of peroxides to give oxygen radical species, the role of 

which is to assist the C-H activation of the substrates.209 The first evidence of the formation of surface-

oxygen radical species in the oxidation of alkanes was provided by Hutchings and co-workers. In 

2011, they prepared Au-Pd alloy NPs supported on carbon that were active in the oxidation of primary 

C-H bonds in toluene at 160 ºC.210 More recently it was proven that the same reaction could be carried 

out under milder conditions (80 ºC), in the presence of 1 equivalent of tert-butyl hydroperoxide 
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(TBHP) and using Au-Pd NPs supported on TiO2 as catalyst.211 By solid-state electron paramagnetic 

resonance (EPR) experiments, the authors proposed that surface-bound oxygen radical species which 

were formed after reaction with TBHP, played an active role in the activation of toluene. Since then, 

several oxidative C-H activations catalyzed by metallic and metal-oxide NPs have been reported. As 

above discussed, we do not consider here reactions that do not involve interaction of the C–H bond 

and the metal. Thus, in the present work, we will summarize a few examples of catalytic oxidations 

involving the use of metal NPs focusing on processes carried out under mild conditions. 

Au NPs have been widely employed in oxidative C-H activations (see Scheme 14). For instance, 

in 2010 Mendez et al. prepared Au NPs with an average size below 3 nm supported on Gd-doped 

TiO2, which were used to catalyze the methylcyclohexane mediated epoxidation of stilbene, which 

led to the autoxidation of methylcyclohexane to 1-methylcyclohexanol.212 An alkylperoxy radical 

took part in the mechanism of the reaction but the specific role of the catalyst was not confirmed. In 

2011, Liu et al. prepared small Au NPS (<2 nm) supported on hydroxyapatite (HAP), that were used 

in the oxidation of toluene at 150 ºC.213 Then, Donoeva et al. showed that Au NPs of less than 2 nm 

of size were not active for the solvent-free oxidation of cyclohexene under mild reaction conditions 

(65 ºC), but that larger Au NPs were much more active.214 The authors proposed that the role of the 

Au NPs was to promote the formation of cyclohexenyl radicals that would further react with dissolved 

oxygen. 

Sarma and co-workers synthesized a ternary nano-composite based on Au NPs supported on 

polydopamine-reduced graphene oxide (AuNPs-pDA-rGO).215 The catalyst was used in the oxidation 

of C-H bonds of benzylic hydrocarbons in CH3CN at 60 °C under O2 atmosphere, in the presence of 

N-hydroxyphtalamide (NHPI) as co-catalyst. Liu et al. reported the use of Au NPs supported on 

carbon dots (AuNPs/CQDs), for electrocatalytic cyclohexane oxidation with H2O2 in the presence of 

visible light.216 The interaction between the support and AuNPs was characterized by X-ray 

absorption with the observation of a new peak at 1.5 A° corresponding to the Au-C bonds. Reactions 

were carried out at room temperature without any solvent, producing water as the only by-product. 

The authors proposed that light absorption by the surface plasmon resonance of the AuNPs after 

irradiation with green light (λ=490-590 nm), enhanced the decomposition of H2O2, providing the HO. 

radicals active in the oxidation of the cyclohexane. The synergy between the CQDs and the Au NPs 

in the presence of visible light is a key factor for this photocatalytic reaction. The effect of the 

wavelength on the activity and selectivity of the reaction was also studied, and the authors found that 

the optimal conditions were reached when irradiating with green light. 

 

Scheme 14. Oxidative C-H functionalization of C(sp3)-H bonds catalyzed by Au NPs.  
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Other metal NPs have been used in oxidative C-H activation. Varma and co-workers synthesized 

photoactive Pd NPs supported on graphitic carbon nitride (g-C3N4), which were active in the oxidative 

esterification of alkyl aromatic alcohols in methanol.217 Sun et al. prepared diatomite-supported 

manganese oxide NPs that were used in the oxyalkylation of vinylarenes.218 Payra et al. reported the 

synthesis of poly-substituted furans catalyzed by CuO NPs of 10 nm, using TBHP oxidant agent and 

a 1:1 mixture of H2O/EtOH as solvent.219  

Some examples of oxidative C-H activations involving bimetallic NPs have been reported during 

the past years. Adams et al. reported IrBi NPs that were synthesized from bimetallic molecular cluster 

complexes.220 In a proof of concept, the authors showed that these bimetallic NPs were more active 

in the direct oxidation of 3-picolin to niacin with peroxyacetic acid, than their analogous 

monometallic NPs. Au-Pd NPs supported on MOFs (MIL-101158) have been used by Liu et al. in the 

esterification of alkyl aromatics with alcohols at 120 ºC in the presence of O2.
221 More recently, 

Varma and co-workers have tested different photoactive catalysts based on NPs supported on g-C3N4 

in the hydroxylation of benzene into phenol at room temperature under visible light (20 W domestic 

bulb), using H2O2 as oxidant (see Table 7).222 CuAg NPs were found to be the most active, and more 
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active than monometallic Cu or Ag NPs, suggesting the presence of a synergistic effect. Non-covalent 

interaction between the benzene and the graphitic surface is proposed as an element that facilitates 

the C-H cleavage. 

 

 

Entry Catalyst (supported on g-C3N4) Time Conv. (%) 

1 Fe2O3 12 h 15 

2 Pd 12 h 43 

3 Cu 12 h 39 

4 Ni 12 h 20 

5 Ag 12 h 32 

6 FePd 12 h 70 

7 PdCu 12 h 81 

8 CuNi 12 h 57 

9 CuAg 30 min 99 

 

Table 7. Hydroxylation of benzene into phenol using H2O2 as oxidant catalyzed by different mono- 

and bimetallic NPs. 

 

In summary, the use of metal NPs allows performing oxidative C-H activation reactions under 

milder conditions than traditional heterogeneous catalysis. Special interest must be paid to catalytic 

systems in which the use of co-catalysts, oxidants and/or the use of light have allowed to carry out 

the C-H activations at room temperature. This fact, combined with the recyclability allowed by some 

of the catalysts, may be of potential interest for the scaling up of the processes. Although Au NPs 

remain as the most widely studied catalytic system for these reactions, some less costly alternatives 

have appeared during the past decade. However, there are still efforts needed to explore alternatives 

to reduce the cost of the catalysts and achieve milder reaction conditions in certain catalytic processes. 

3.3.2 C-H bond activation in the formation of other bonds.  

The synthesis of organic molecules containing C-Y bonds (Y= N, S, Se, Cl, Br, I etc.) through 

C-H activation and catalyzed by metal NPs has given rise to only few examples in the literature. 

Herein, the reactions are classified as a function of the Y-atom introduced. 
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3.3.2.1 C-H bond activation for C-N formation. 

Takagi et al. reported the use of sulfur-modified gold-supported Pd NPs (SAPd) of ca. 5 nm size, 

which were used in the synthesis of substituted benzotriazoles via C-H activation and C-N bond 

formation.223 The reaction proceeded through a migration/cyclization/dealkylation pathway, in which 

the fate of the N-methyl group is not known.224 The reactions were carried out in DMF at 120 ºC in 

the presence of KOAc and using PhI(OAc)2 as oxidant (see Scheme 15a). Acharyya et al. reported 

the use of CuO NPs with a mean size of 10 nm, supported on CuCr2O4 spinel nanoparticles (30-60 

nm).225 They were used for the formation of aniline through oxyamination of benzene in the presence 

of a H2O2/NH3 mixture, using a 70% aqueous mixture of acetic acid:CH3CN as solvent and at 80 °C 

(see Scheme 15b). Priyadarshini et al. have reported the use of CuO nanoparticles for oxidative cross-

coupling of aromatic amines with 2-pyrrolidinone (see Scheme 15c).226 Whereas CuO NPs were 

active in the reaction, other systems such as ZnO, TiO2 or NiO NPs did not give significant 

conversions. TBHP was used as oxidant and the reactions were performed at 80 °C using 20 mol % 

of CuO NPs.  

 

Scheme 15. C-N bond formation through C-H functionalization catalyzed by metal NPs. (a) 

Sytnhesis of substituted benzotriazoles catalyzed by Pd NPs. (b) Synthesis of aniline catalyzed by 

CuO NPs. (c) Oxidative cross-coupling of aromatic amines with 2-pyrrolidinone catalyzed by CuO 

NPs. 
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3.3.2.2 C-H bond activation for chalcogenation and halogenation. 

In 2013, Rosario et al. reported the use of CuO NPs for the C-H activation of thiazoles.227 The 

use of a basic agent was shown to be essential for the regeneration of the catalytic active species. The 

formation of the 2-(organoselenyl)thiazoles was carried out in DMF at 140 °C using 20 mol% of 

catalyst loading. In all cases the reaction products were obtained as a mixture together with 

diarylselenides, which were removed by chromatography. The addition of radical inhibitors did not 

hamper the reaction. Thus, the authors proposed a possible mechanism for the reaction (Scheme 16) 

involving a Se-Se bond activation at the surface of the NPs through an oxidative addition, followed 

by C-H activation of the thiazole and reductive elimination.  

 

Scheme 16. C2 functionalization of thiazoles with arylselenides catalyzed by CuO NPs. The 

mechanism involved Se-Se bond activation. 

 

 

Cu NPs were employed by Mohan et al. in the synthesis of alkynyl sulfides and alkynyl selenides 

via C-H functionalization of alkynes under O2 in DMSO, using Na2CO3 as base, at 70 °C with 0.5 

mol % of catalyst loadings.228 Similar to the above suggested mechanism, the authors proposed that 

the reaction was initiated by S-S or Se-Se activation of the disulfide or diselenide reagent on the 

surface of the NPs, followed by metallation of the alkyne and reductive elimination. The role of the 

oxygen was to regenerate the disulfide or the diselenide. Fe3O4 NPs supported on charcoal, (0.5 mol% 

Fe3O4/C) were also studied by the same group in the cross coupling reactions between alkynes and 

diselenides to obtain alkynyl selenides.229  

Pd NPs have been used in halogenation reactions through C-H activation. In 2015, Korwar et al. 

expanded the application of their catalytic system composed of Pd NPs supported on multiwalled 

carbon nanotubes Pd(II)/MWCNT (see Section 3.1.1).230 The catalyst showed high activity in the 

selective N-chelation-directed C-H activation for C-O, C-Cl and C-Br bond formation (see Scheme 
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17a). The authors showed that halogenation reactions were faster with the Pd(II)/MWCNT system 

than with Pd(OAc)2. An interesting advantage of halogenation reactions is that further C-X activation 

by Pd can allow tandem processes through lower energetic pathways than direct C-H activation. Kim 

et al. prepared Pd NPs of 3.5 nm by decomposition of [Pd(acac)2] in the presence of oleylamine and 

trioctylphosphine.231 By the controlled oxidation of the NPs with PhICl2 in benzene at 120 ºC, Pd(IV) 

surface species containing oxide and chloride ligands were formed, that were characterized by 

XPS.232 Interestingly, further treatment of the oxidized NPs with H2 allowed regenerating the initial 

reduced Pd NPs, which maintained their morphology. The oxidized Pd NPs containing Pd(IV) species 

at their surface were active in C-H halogenation but, after the completion of the reaction, Pd(0) species 

were regenerated. Thus, the catalysts were used in tandem reactions that combined C-H halogenation 

by Pd(IV) species with further cross coupling performed by Pd(0), to allow C-N, C-C and C-S bond 

formation (see Scheme 17b). The heterogeneous nature of the C-H halogenation was proposed after 

a hot filtration experiment and a mercury poisoning test. 

 

Scheme. 17. Halogenation of arenes through C-H activation catalyzed by Pd NPs. (a) N-chelation-

directed C-H activation for C-O, C-Cl and C-Br bond formation catalyzed by oxidized Pd NPs 

supported on MWCNTs. (b) Tandem reactions combining C-H activation/halogenation, followed by 

further cross coupling reaction to allow C-N, C-C and C-S bond formation, catalyzed by oxidized 

Pd NPs. 
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Pascanu et al. reported the use of Pd NPs supported on MOFs (Pd@MOF) as catalysts in the 

selective halogenation of aromatic derivatives via C-H activation.233 Pd NPs with a mean size of 

around 2 nm were immobilized into two porous MOFs of different nature, [Pd@MIL-88B-NH2 (Fe-

MOF), and Pd@MIL-101-NH2 (Cr-MOF)]. Both systems were good catalysts for the halogenation 

of a wide range of aromatic substrates containing directing groups such as pyridine or amides, under 

mild reaction conditions. NCS, NBS or N-iodosuccinimide (NIS) were used as halogen sources. The 

authors proposed that the mechanism involved a rapid leaching-deposition of Pd. 

4. Si-H activation by metal NPs. 

Hydrosilanes are useful precursors for the preparation of many different silicon containing 

molecules.234-236 Transformation of hydrosilanes into value-added molecules generally involves the 

σ-activation of a Si-H bond. The higher basicity of the Si-H bonds in comparison with H-H or C-H 

bonds makes them a stronger σ-donor. Also, the higher accessibility of the σ*-orbital makes 

hydrosilanes more π-acceptor and as result Si(sp3)-H bonds are easier to activate than C(sp3)-H bonds. 

The different substituents in the Si moiety can affect the activation of the Si-H bond, and it is well-

known that electron-withdrawing groups facilitate the bond dissociation. Apart from its own interest, 

an advantage of the comprehensive study of reactions that imply activation of hydrosilanes by 

transition metals is that hydrosilanes, which undergo Si-H activation more easily than alkanes, can 

be used as a model for C-H activation reactions. 
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Catalytic activation of hydrosilanes by homogeneous organometallic complexes has been widely 

studied. Traditionally, oxidative addition of Si-H has been performed on Pt organometallic complexes 

such as the Karstedt’s catalyst [Platinum(0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane].237 However, 

during the last years some evidences have shown that metal NPs can afford Si-H activation in a 

heterogeneous process, i.e. taking place at their surface. For instance, Pelzer and co-workers prepared 

Ru NPs by decomposition of Ru(COD)(COT) under a H2 atmosphere in the presence of n-octylsilane 

as ligand.238-239 Solid state 13C NMR characterization demonstrated the formation of naked silicon 

atoms and alkylsilane ligands that were coordinated to the surface of the NPs, as a result of the 

activation of the σ-Si-H bond, followed by Si-C cleavage at the surface of the Ru NPs. In another 

work from Pelzer, Basset and co-workers,240 Pt NPs of 2 nm size were prepared by decomposition 

[Pt(dba)2] under 3 bar of H2 using n-octylsilane as ligand. After characterization of the NPs by 

Infrared Spectroscopy, Transmission Electron Microscopy-Energy Dispersive X-Ray Spectroscopy 

(TEM-EDX) and X-Ray Photoelectron Spectroscopy (XPS), the authors proposed that silicon alkyl 

species were coordinated to the surface. 

A new interest in studying the catalytic performance of metal NPs in reactions involving σ-Si-H 

activation has evolved in recent years. In this section, the role of metal NPs as active species in 

hydrosilylation and in silane oxidation, two reactions that start from the σ-activation of the Si-H bond, 

will be discussed. 

4.1. Hydrosilylation. 

Organosilicon molecules are important as polymers, sealants, adhesives, coatings, and agents for 

surface treatments, and as synthetic intermediates in organic and medicinal chemistry.241-243 The main 

route for their preparation consists of the hydrosilylation of unsaturated organic compounds, an 

organic addition reaction that in many cases is catalyzed by transition-metal complexes in the 

homogeneous phase. 234-236,244 Although the reaction can be catalyzed by several metals, Pt-based 

catalysts have been the most widely investigated due to their good activities and their regio- and 

stereospecifity.245-247 Moreover, Karstedt’s248 catalyst (an alkene-stabilized Pt(0) complex) and 

Speier’s249 catalyst (H2PtCl6) are air-stable catalysts that have been commonly used in industry due 

to their activity, selectivity and broad scope. In contrast to the widely studied homogeneous catalysts 

for hydrosilylation reactions, the development of catalysts based on metal NPs has not been deeply 

explored because of their low performance compared to homogeneous complexes, which in most 

cases is related to agglomeration of the NPs to give inactive bulk metal.250 Actually, Speier´s catalyst 

replaced Pt/C because it was orders of magnitude faster. 

Although non-noble metals such as Fe,251 Co252 and Ni253 have attracted increasing attention 

during the last years as less costly alternatives, Pt still remains the most often used catalyst.250 Given 
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the high market price of platinum, it is important to improve the performance and reduce the metal 

losses during the hydrosilylation catalytic process. Thus, a better understanding of the reaction 

mechanism has been a main goal for researchers in the field. The nature of the active species in Pt 

catalyzed hydrosilylation of multiple bonds has been a controversial subject during the past forty 

years. For instance, after extensive studies, Lewis and co-workers considered that homogeneous Pt(0) 

complexes were the active species in the hydrosilylation of C-C multiple bonds,254 and it was not 

until the last years when the debates have been reopened (see discussion below), suggesting that both 

Pt NPs formed in the activation of the Karstedt’s catalyst and homogeneous species can be responsible 

for the catalytic activity.255 The absence of heterogeneous catalysts for industrial applications, 

together with discussion about hydrosilylation mechanism, has motivated development of new 

catalytic systems based on metal NPs. This can also be useful to researchers in the nano-catalysis 

field to achieve a better understanding of Si-H activation. Furthermore, NPs present some advantages 

over metallic complexes as they can be more easily immobilised on a support allowing separation 

from the reaction medium and enhancing recyclability in the case of liquid products. Recently, new 

efforts have been done to synthesize metal NPs that are promising catalytic systems for 

hydrosilylation. In this review, we describe some examples of hydrosilylation catalyzed by NPs either 

dispersed in solution or after immobilisation on a support. 

4.1.1. Platinum NPs as catalysts for hydrosilylation of C-C multiple bonds. 

Several heterogeneous catalysts have been employed for the hydrosilylation of alkenes and/or 

alkynes: platinum on carbon (Pt/C),256-258 platinum on silica (Pt/SiO2),
259 platinum on titania 

(Pt/TiO2),
260 platinum oxide supported on magnetite261 or non-supported platinum oxide,262-264 among 

others. Pt/C as a catalyst for the hydrosilylation of alkenes and alkynes was first reported by Wagner 

in 1953,256-257 but further observations by Speier et al. demonstrated that the stereochemistry of the 

addition of silanes to different terminal alkynes using Pt/C or chloroplatinic acid was very similar,249 

suggesting that the operating mechanism in both cases might involve Pt NPs. It was not until 2002, 

when Boudjouk and co-workers evidenced the formation of Pt NPs of 2-5 nm by High-Resolution 

Electron Microscopy (HREM) when Pt/C was used in the hydrosilylation of alkynes.258 Several 

observations suggested that formation of Pt NPs was a key step in hydrosilylation catalyzed by Pt(0) 

in homogeneous phase.237 For example, the extensive work of Lewis and co-workers on this subject 

showed that Pt NPs were formed during the Karstedt’s catalyzed hydrosilylation of alkenes, which 

likely played a role in the catalytic reaction.265-267 However, after a more detailed mechanistic study, 

Lewis proposed that monoatomic Pt(0) species were the real catalytic active species, and that the 

formation of Pt NPs was a consequence of the aggregation of these unprotected species.254 Then, in 

2006, Finney and Finke reported on the nature of active species in hydrogenation reactions catalyzed 



52 

 

by Pt(II) complexes.268 In the same work, the authors discussed the controversial nature of the active 

species in hydrosilylation catalyzed by Pt(COD)Cl2, The authors concluded that the nature of the 

active species in hydrosilylation was not clear and more mechanistic studies were needed.  

The first examples of hydrosylilation catalyzed by pre-formed nanoparticles involved the 

stabilization of Pt NPs by siloxane derivatives. In 1997, Brook and co-workers designed a 

heterogeneous catalyst after reaction of Karstedt’s complex with silica particles modified with a 

hydrogen silsesquioxane layer at their surface.269 Thus, Pt NPs of around 2.0 nm were formed and 

were linked to the silica surface by siloxane groups which prevented the NPs from coalescing. The 

catalyst could be used in the hydrosilylation of alkenes and alkynes without agglomeration of the NPs 

even after removing the solvent (see Scheme 18a). In addition, the supported catalyst was recycled 

several times without losing its activity. In 2005, Chauhan et al.270 reported the hydrosilylation of a 

poly-(methylhydro)siloxane (PMHS) polymer containing Si-H moieties with alkenes with different 

steric and electronic features, catalyzed by Pt NPs of ca. 2.0 nm supported on PMHS (see Scheme 

18b). The polymer stabilized the NPs preventing their coalescence and allowing the recycling of the 

catalyst up to 6 times without loss of activity. Characterization of the hydrosilylated polymer by 13C 

and 29Si Nuclear Magnetic Resonance (NMR) confirmed the good regioselectivity of the Pt NPs 

towards the anti-Markovnikov reaction product, i.e. 1-alkylsilanes. In addition, regioselectivity of the 

Pt NPs remained unaffected when different functional groups were present in the alkenes such as 

carbonyl, ether, epoxide or hydroxyl. This is of importance since hydrosilylation of functionalized 

olefins can be frequently accompanied by side reactions such as ring opening polymerization or 

hydrosilylation of carbonyl groups. Monitoring the reaction by UV-vis analysis led the authors to 

propose that Pt(0) molecular species were not taking part in the reaction mechanism, and that Pt NPs 

were the real catalyst of the process. Recently, Chauhan et al. have reported a similar catalytic system 

involving Pt NPs supported on a cross-linked polysiloxane, and they expanded the scope of the 

catalyst towards hydrosilylation of alkynes containing different functional groups.271 Although the 

regio- and stereoselectivity was similar to those given by molecular complexes, the system represents 

an improvement compared to homogeneous catalysts in terms of catalyst recovery and recyclability. 

 

Scheme 18. (a) First example of hydrosilylation catalyzed by Pt NPs stabilized by a 

hydridosilsesquioxane layer at the surface of SiO2 (b) Pt NPs catalyzed regioselective 

hydrosilylation of PMHS.  
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In 2013, Bai et al. prepared Pt NPs of 4-5 nm stabilized by polyethylene glycol functionalized 

with 4-aminobenzoic acid (PEG-AMV) with different Pt wt% content.272 The Pt NPs were prepared 

by in situ reduction of H2PtCl6 in the presence of the polymer in EtOH. The catalysts were used in 

the hydrosilylation of terminal alkenes in the absence of solvent. The catalytic system could be 

recycled up to ten times still exhibiting good activities in the hydrosilylation of 1-octene with 

(EtO)3SiH. However, the catalyst was less efficient in the activation of more challenging silanes such 

as Et3SiH, although it should be noted that very low catalyst loadings of 0.025 mol% of Pt were used. 

In the same year, Ciriminna et al. reported a new sol-gel entrapped hybrid catalyst containing Pt(0) 

NPs of 4-6 nm, which was called “SiliaCat Pt(0),” that was employed as a heterogeneous catalyst for 

the hydrosilylation of alkenes. The catalyst was prepared by reduction of K2PtCl4 with sodium 

borohydride in the presence of an organically modified silicate (ORMOSILs) porous matrix (see 

Figure 15).273 After optimization of the reaction conditions, the catalytic system was tested in the 

hydrosilylation of different terminal alkenes at room temperature or at 65 ºC. The Pt loadings were 

of 0.5-1.0 mol%, and the selectivity varied from moderate to good depending on the substrate. The 

catalyst presented very low values of Pt leaching at the end of the reaction, which is an important 

factor for the potential industrial application of hydrosilylation catalysts (see Table 8). Higher 

leaching values were observed for acrolein diethyl acetal (entry 2 in Table 8) and were attributed to 

the presence of the chelating group displaying a higher coordinative capacity. The catalyst selectivity 

was retained after 3 reaction cycles, but a decrease of the conversion was observed after the second 

run. This effect was attributed to the pore blockage by the organic substrate, as sonication in CH2Cl2 

restored the initial activity. 

(a)

(b)

Brook et al. Inorg. Chim. Acta 1997

Chauhan, et al. J. Am. Chem. Soc. 2005
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Figure 15. Schematic representation of the Pt NPs encapsulated in the ORMOSIL of the SiliaCat 

Pt(0) catalyst. Reprinted with permission from ref 273. Copyright 2013 American Chemical 

Society. 

 

Entry Substrate 
Catalyst 

(mol%) 
T (ºC) 

Time 

(h) 

Conv. 

(%) 

Select. 

Linear 

(%) 

Pt leaching 

(mg/kg) 

1 
 

1 
22 5 88 98 - 

60 5 99 99 - 

2 
 

1 65 1 100 100 25 

0.5 65 3 100 100 9 

3 
 

0.5 0.5 3 100 100 - 

 

Table 8. Catalytic Hydrosilylation of functionalized alkenes with triethoxysilane over SiliaCat 

Pt(0) under different reaction conditions. In all cases, a 30% molar excess of silane was used and 

toluene (15 mL in entry 1 and 0.5 M in substrate in entries 2-3) was added as solvent. Pt leaching 

was determined by ICP-OES. The result for leaching is given in mg of Pt per kg of pure product. 

 

Although all the examples of alkene hydrosilylation discussed hereabove suggested an active role 

of the Pt NPs in the Si-H activation, the systems presented TON values near 1000, contrasting with 

the values obtained at industrial scale with homogeneous catalysts that are of about 105. This is 

probably related to the presence of the stabilizing support, which lowers the catalytic activity of the 

NPs hindering the surface accessibility. In a communication from Thieuleux, Meille and co-
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workers,255 monodisperse Pt NPs of 1.6-1.7 nm dispersed in solution were used in the hydrosilylation 

of alkenes. The NPs were synthesized by decomposition of Pt(dba)2 or Karstedt’s complex in 

presence of n-octylsilane or polymethylhydrosiloxane (PMHS) containing about 50 Si-H moieties 

(see Table 9) and using 4 bars of hydrogen as a reducing agent. In this work, the Pt NPs were as 

efficient as Karstedt’s complex in the hydrosilylation of 1-octene with PMHS. Thus, very high TON 

and regioselectivity to the terminal product similar to Karstedt’s catalyst were obtained as well as 

comparable proportions of 1-octene isomerization to 2-octene, a common side-reaction (see Table 9). 

This result clearly shows that NPs stabilized in solution may achieve activities comparable to 

Karstedt’s complex and are not a simple consequence of the deactivation of the catalyst. Furthermore, 

if NPs are not stabilized by ligands, they tend to agglomerate with an observed concomitant drop in 

their catalytic activity. Kinetic studies performed by the authors also demonstrated that, although at 

short reaction times NPs are less efficient than Karstedt’s complex, the activity reaches very similar 

values when the reaction progresses. This work is not in contradiction with the observations made by 

Lewis et al., who performed in situ experiments at very low TONs, when the active species deriving 

from the Karstedt’s complex are homogeneous Pt(0) species, i.e. when NP formation has not yet 

started.  

 

 

Catalyst Pt precursor Stabilizer 
Mean diameter 

-(nm) 

SiH conv. 

(TON) 

7 ppm Pt 

1-octene 

isomerization 

Karstedt - - - 96% (1.0×105) 12% 

Pt(dba)2 - - - 98% (1.1×105) 12% 

PtNPs1 Pt(dba)2 n-octylsilane 1.6 98% (1.1×105) 11% 

PtNPs2 Karstedt PMHS 1.7 97% (1.0×105) 11% 

PtNPs3 Karstedt n-octylsilane 1.7 99% (1.1×105) 11% 

 

Table 9. Compared activities between the PtNPs, Karstedt’s complex and Pt(dba)2. The SiH 

conversions were measured 30 minutes after the end of the PMHS addition. 

 

The renaissance of the use of Pt NPs for the hydrosilylation of multiple C-C bonds is beginning 

to promote the development of new heterogeneous catalysts based on metal NPs. Bandare and 

Buchmeiser prepared Pt NPs of ca. 7 nm supported on a polymeric monolith and used it for the 
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hydrosilylation of olefins in continuous flow with low Pt leaching values.274 Solomonz et al.275 

immobilized Pt NPs inside and outside of carbon nanoreactors, which were active in the 

hydrosilylation of acetylene and promoted the formation of aromatic products over aliphatic ones as 

a result of π-π interactions. More recently, Thieuleux, Meille and co-workers have prepared a 

heterogeneous catalyst composed of Pt NPs trapped in the walls of porous mesostructured silica.276 

This catalyst reaches TON values comparable to those obtained by the homogeneous complexes 

(100,000) and no leaching was observed thanks to the physical trapping, which is of potential interest 

for industrial applications. 

In summary, Pt NPs as active species for hydrosilylation reactions has been a topic of controversy 

during the past forty years, but several examples suggest that they play a role in the reaction in contrast 

to the opinion prevailing in the 90’s. Moreover, the use of easily recyclable Pt NPs in hydrosilylation 

of C-C multiple bonds is a promising topic in heterogeneous catalysis. These Pt NPs are good 

candidates as substitutes for the homogeneous processes that take place at industrial scale with 

molecular complexes and which imply loss of the active platinum. This can lead to lower the costs of 

the preparation of the organosilicon products and enhance their purity due to the absence of Pt in the 

products. However, it is still not clear if the Si-H activation takes place at the surface of the NP or if 

Pt leached atoms are the real active species, so more focused mechanistic studies are still needed. 

4.1.2. Other metallic nanoparticles as catalysts for hydrosilylation of 

functional groups. 

4.1.2.1 Au. 

Although homogeneous Au(I) complexes are similar in terms of electronic properties to Pt(0) 

complexes, they are not active in hydrosilylation of C-C multiple bonds and their use was restricted 

to the hydrosilylation of aldehydes.277 Nevertheless, Au NPs have been successfully employed as 

active catalysts in the hydrosilylation of alkynes and other reactions that implied Si-H activation.170-

171 Supported Au NPs that were prepared from solvated Au atoms for the hydrosilylation of alkynes 

were first reported by Caporusso et al., but restricted to hydrosilylation of terminal alkynes.278-279 In 

2007, Corma and co-workers280 showed that Au NPs of ca. 4 nm supported on CeO2 could catalyze 

the hydrosilylation of aldehydes, ketones, imines, alkenes and alkynes. In addition, the Au/CeO2 

catalytic system was free of gold leaching allowing its reusability. However, by comparison with the 

activity of homogeneous Au(I) and Au(III) complexes also prepared in this work, the authors 

proposed that the active species in these reactions are likely Au(III) atoms stabilized on the surface 

of the support, and in this case the NPs would act as a reservoir for the active species.  
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To the best of our knowledge, there are only 2 examples in the literature in which Si-H activation 

is possibly taking place at the surface of metallic Au. In 2008, Shore and Organ281 prepared Au films 

on the surface of borosilicate capillaries by a two-step decomposition reaction of AuCl3. These Au 

films where active catalysts in the hydrosilylation of terminal alkynes with triaryl- and trialkylsilanes 

in microwave-assisted continuous flow, showing good robustness. This fact can be used as an 

indication of the absence of metal leaching to give active species stabilized in solution. In addition, 

the authors also performed ICP-MS analysis and observed that the reaction products were free of Au. 

In 2013, Ishikawa et al. reported the preparation of a nanoporous gold catalyst, by selective removal 

of Al or Ag starting from the alloys Au20Al80 or Au30Ag70 respectively.282 The non-supported catalyst 

was used in the hydrosilylation of terminal alkynes with trialkylsilanes, and it was easily recoverable 

by decantation at the end of the reaction. The authors performed ICP measurements and a hot filtration 

test to prove the absence of Au leaching from the NPs, supporting the hypothesis that Si-H activation 

is taking place at the surface of the solid catalyst. 

Summarizing, although Au complexes are restricted to aldehyde hydrosilylation, Au NPs can be 

used in the hydrosilylation reactions of diverse substrates. However, Si-H activation by metallic Au 

has not been widely explored and it is still limited to hydrosilylation of terminal alkynes, and the 

homolytic or heterolytic nature of this activation is not known. It has been observed that secondary 

phosphine oxides (SPO) ligands may assist the heterolytic activation of H2 by AuNPs, and the 

formation of a Au(I)-enriched surface enhances the selectivity for aldehyde hydrogenation.87 Thus, 

the fact that no examples of alkene hydrosilylation with Au NPs have been reported so far and that 

selectivity for aldehydes is preferred in some cases,280 suggests that the Si-H activation may well be 

of heterolytic nature. Several examples of supported Au NPs for the hydrosilylation of alkynes and 

allenes and disilylation of alkynes through Si-H and Si-Si bonds activation have been reported to date 

by the group of Stratakis,283-285 likely involving a Au(I)-Au(III) catalytic cycle by leached species, so 

they fall out of the scope of this review.  

4.1.2.2. Pd. 

Pd NPs in Si-H activation were first used in the hydrosilylation of alkenes by Tamura and 

Fujihara. In this work, Pd NPs of 2.0 nm size stabilized by chiral binaphthyl (BINAP) ligands were 

synthesized.286 They were used in the asymmetric catalytic hydrosilylation of styrene under mild 

conditions, leading to high enantioselectivity values. Interestingly, whereas the Pd-BINAP NPs can 

catalyze this reaction, the analogous homogeneous complexes were totally inactive with diphosphine 

ligands.287 This result may be linked to the difference in the coordination modes of the ligand between 

the molecular complex and the nanoparticles. 

Pd complexes have been known as active catalysts in 1,4-hydrosilylation of enals.288-289 Thus, Pd 

NPs were used in 1,4-hydrosilylation of enals and enones by Benohoud et al. in 2011.290 The NPs 
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were generated in situ by reduction of PdCl2 by the silane in the presence of PCy3, and they were 

confirmed as the active species because their removal from the reaction medium by centrifugation 

stopped the reaction although some Pd complex still remained in the solution. In addition, a similar 

stereoselectivity was observed when the reaction was carried out with pre-formed Pd NPs stabilized 

by PVP. The process was stereoselective for the formation of the (Z)- or (E)-enolsilane when starting 

from the α- or β-substituted enals respectively (see Scheme 19a-b). A large variety of substrates were 

tested in the reaction, and the stereoselectivity was retained even though the sizes and morphologies 

of the in situ generated Pd NPs were not reproducible. To explain the stereoselectivity, the authors 

proposed that the role of the Pd NPs is to facilitate the hydropalladation in the s-trans conformation 

of the enal, a process that would be difficult with a mononuclear Pd complex due to geometric 

constraints, but that can be easily achieved with Pd NPs because different Pd atoms can be involved 

in hydrido attack and formation of the Pd-O bond. Competition experiments with Et3SiD and Ph3SiH 

were carried out, showing that the product presented similar deuteration degrees. The authors 

suggested that reversible Si-H activation by the Pd NP occurs prior to the hydrosilylation reaction. 

However, the fact that no hydrogenation of the alkene function was observed is somehow in 

contradiction with the formation of surface hydrides in the Pd NPs. It should also be noted that, in 

contrast to Pd NPs, selective formation of the Z-enolsilane was observed in the hydrosilylation of β-

substituted enones catalyzed by molecular complexes, because in this case the mechanism likely 

involves the formation of a metallacyclopalladate (see Scheme 19c).289  

 

Scheme 19. (a) Rationalisation of the observed stereoselectivity for α-substituted enals when 

starting from hydrosilylated Pd NPs, (b) rationalisation of the observed stereoselectivity for β-

substituted enals under the same conditions and (c) proposed mechanism for the homogenously 

catalyzed 1,4-hydrosilylation of β -substituted enones. 
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Yamada and co-workers prepared in 2014 a hybrid material made of Pd NPs and a Si-nanowire-

array by reduction of K2PdCl4 in the presence of the support.291 The authors observed that the catalyst 

was selective toward the cis isomer in the 1,4-hydrosilylation of α-substituted enals. This nanohybrid 

material was also used to carry out different reactions such as C-C coupling or chemoselective 

hydrogenation of C-C multiple bonds, suggesting that the operating mechanism involved Pd leached 

species as proposed by Reetz and de Vries.138  

Pd NPs have also been used in the hydrosilylation of alkynes. In 2014, Planellas et al. reported 

the synthesis of Pd NPs of around 3.5 nm stabilized by a tris-imidazolium salt that were active in the 

hydrosilylation of internal alkynes, substrates that are less reactive than terminal acetylenes.292 

Moreover, phenylacetylene was unreactive towards the addition of Et3SiH under the same reaction 

conditions, and it even acted as a poison for other substrates. The authors proposed that this behaviour 

may be attributed to the formation of σ-alkynyl unreactive species. The controlled addition of water 

to the reaction promoted the oxidation of the silane to the silanol, which probably is also catalyzed 

by the NPs (see section 4.2). In the same year, Bal Reddy et al. reported the use of Pd NPs of ca. 2.5 

nm supported on a polystyrene resin matrix in the hydrosilylation of alkynes under air under mild 

reaction conditions.293 The particles were recyclable up to ten times with very low metal leaching, 

and the slight loss of activity was attributed to the coalescence of the NPs. Interestingly, in this case 

the NPs were active in the hydrosilylation of phenylacetylene with Et3SiH. After comparing the 

reaction conditions, we have found two remarkable differences between these two works: in the first 
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one, the authors performed the reaction in pure silane without addition of any extra additives, and in 

the second one, the reaction was carried out in THF in the presence of 1 equiv. of NaI, necessary to 

activate the reaction (see Scheme 20a). Although the role of NaI in the mechanism was not discussed, 

the differences in the reactivity of Pd NPs for the same reaction is an indication that controlling the 

surface properties could enable to tune the catalytic activity. Recently, Duan et al. have shed some 

light on this subject.294 The authors prepared Pd NPs of ca. 12 nm supported on an N-O-dual doped 

porous carbon (Pd@N,O-Carbon) that was obtained from renewable biomass. The authors observed 

that addition of I– anions to the reaction medium was the key step to activate the hydrosilylation of 

terminal alkynes. Thus, the Pd NPs were functionalized with I– by treatment of the catalyst with 

tetrabutylammonium iodide (TBAI). Interestingly, these NPs exhibited a similar activity as pure Pd 

NPs after addition of an excess of TBAI. After these observations, the authors proposed that the role 

of iodide in the reaction is to increase the negative charge of the Pd atoms, as is well established for 

homogeneous Pd catalysts,295 facilitating the oxidative addition of the hydrosilane (see Scheme 20b). 

Another possibility is that the role of the iodide was to prevent the C-H activation of the alkyne to 

give unreactive σ-alkynyl species as proposed by Planellas et al. Again, addition of water promoted 

the oxidation of silane to silanol and, as a result, the NPs were active in the semi-reduction of the 

alkyne due to the concomitant formation of surface hydrides (see section 4.2).  

 

Scheme 20. (a) Iodide effect in the hydrosilylation of terminal alkynes catalyzed by Pd NPs and (b) 

mechanism proposed by Duan et al. in which the role of the I- is to increase the electron density of 

the Pd NP and facilitate the reaction. 
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4.1.2.3. Rh. 

Molecular complexes of rhodium have been mainly used in hydrosilylation of alkynes296 and 

ketones.297 There are only 2 examples in the literature of Rh NPs in hydrosilylation of alkynes. In 

2012, Solomonsz et al. prepared Rh and RhPt NPs embedded in a nano-reactor consisting of hollow 

graphitized carbon nanofibers (GNF), which were employed in the hydrosilylation of terminal 

alkynes.298 The authors explored the role of the support in the selectivity of the reaction. Depending 

on the presence of aromatic substituents on the alkyne or the silane reagents, π-π interactions with the 

support modify the preferred reaction route affecting the selectivity of the reaction. When only the 

alkyne was aromatic, an increase in the dehydrogenative silylation products was observed, which was 

proposed to be related to the high local concentration of the aromatic substrate (phenylacetylene) 

within the GNF cavity. When both alkyne and silane carried aromatic functions, the strong stacking 

interactions were sufficient to overcome local concentration effects enhancing the formation of the 

thermodynamically less stable terminal (Z) regioisomer. In 2015, Pleixats and co-workers 

synthesized Rh NPs stabilized by a nitrogen-rich PEG-matrix by reduction of RhCl3 with NaBH4 in 

water.299 After varying the ligand to metal precursor ratio from 1:1 to 0.02:1, Rh NPs ranging from 

1.6 to 32.3 nm were obtained. The NPs were tested in the hydrosilylation of internal alkynes and only 

the larger nano-objects of > 20 nm proved to be active catalysts in the reaction; due to the low surface 

coverage by stabilizing ligands the substrates can readily approach the catalyst surface. The catalyst 

precipitated after addition of diethyl ether allowing its recycling at the end of the reaction. This NPs 

system was water-resistant, and hydrosilylation could be carried out even in the presence of traces of 
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water without forming silanols, in contrast to what occurred with the Pd NPs prepared by the same 

group.292 The Rh NPs were active in hydrogenation of alkynes with H2, showing that indeed no 

hydrogen was formed from silanes and water on Rh NPs. 

4.1.2.4. Ni. 

Ni is a less-costly alternative metal for hydrosilylation reactions. Although hydrosilylation of 

alkenes catalyzed by Ni complexes is known,253,300-301 there has been only one report in which Ni 

catalyzed the addition of less-reactive tri-substituted silanes,302 which are more interesting from the 

application point of view. Here we present the use of Ni NPs in hydrosilylation. Recently, Buslov et 

al. investigated the addition of trimethoxysilane to 1-decene catalyzed by Ni(OtBu)2·KCl and 

observed the formation of a dark-brown solution that contained Ni NPs with an average size of 3.5 

nm, which was proposed to be the actual catalytic active species.303 These NPs were active in the 

hydrosilylation of terminal alkenes with (MeO)3SiH under mild conditions. The scope of silanes 

activated by the Ni NPs was analysed in the hydrosilylation of 1-decene (see Table 10), and the NPs 

were shown to be more active than pincer-type NiII complexes prepared by the same group in the 

activation of triphenylsilane253 (entry 8, Table 10). However, the Ni NPs were not able to activate 

less reactive silanes such as Et3SiH. Additionally, the Ni NPs were active catalysts in the 

isomerization-hydrosilylation tandem process, allowing the synthesis of single terminal alkyl silanes 

from mixtures of alkene isomers (see Scheme 21). This is an interesting reaction as it converts internal 

alkenes to terminal silanes that can be converted to terminal alcohols. It is an alternative, if costly, to 

the present industrial tandem route involving hydroformylation. 
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Entry Silane Yield 

1 (MeO)3SiH 88 

2 (EtO)3SiH 91 

3 Me2(MeO)SiH 84 

4 Me(EtO)2SiH 81 

5 PMDSa 35 

6 MD’Mb 14 

7 Et3SiH 6 

8 Ph3SiH 43 

9 Ph2SiH2 82c 

 

Table 10. Ni NPs catalyzed hydrosilylation of 1-decene with various silanes. a 1,1,3,3,3-

pentamethyldisiloxane. b 1,1,1,3,5,5,5-heptamethyltrisiloxane. c 12% of didecyldiphenylsilane was 

formed. 

 

Scheme 21. Synthesis of a terminal alkyl silane from a mixture of alkene isomers catalyzed by Ni 

NPs. 

 

 

More recently, Galeandro-Diamant et al. have shown that pre-formed Ni silicide (Ni3Si2) NPs in 

solution or Ni(0) NPs supported on SiO2 can be used as catalysts in the hydrosilylation of alkenes.304 

The selected model reaction was the hydrosilylation of triethoxyvinylsilane with triethoxysilane in a 

toluene solution at 120 ºC using 0.2 mol% of Ni loading. The authors observed vinylsilane 

conversions of 60% after 600 hours when using Ni(0)/SiO2 as catalyst, and of ca. 90% when using 

the Ni3Si2 colloidal solution. In addition, they obtained several by-products resulting from 

hydrogenation, dehydrogenative silylation, dimerization, etc. Although conversion and selectivity 

were rather low, also this work demonstrates that Ni NPs can actually be used as catalysts for 

hydrosilylation reactions. 
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Another example of Ni NPs catalysing the hydrosilylation reaction was reported by García and 

co-workers,305 who applied their well-stablished methodology to support metal NPs on graphene 

supports (Ni/G). Ni NPs of around 4.0 nm were obtained by reduction of NiCl2 in ethylene glycol in 

the presence of the support. The Ni/G system was an active catalyst in the hydrosilylation of aliphatic 

and aromatic aldehydes with TON values of about 105, whilst Cu/G NPs prepared by a similar 

methodology306 were much less active. The Ni/G system became inactive during the reaction, but 

neither metallic leaching nor growth in NPs size was observed. The deactivation of the catalyst was 

therefore attributed to the loss of the 2D morphology of the graphene that was observed in the TEM 

images. 

In conclusion, we have seen metal NPs not based on Pt can also catalyze hydrosilylation 

reactions. Ni NPs are active catalysts in this process, being a cheap alternative that will probably be 

further developed in the next years. In addition, with these examples in mind it is reasonable to think 

that hydrosilylation catalyzed by metallic complexes based on Pd, Rh or even Pt, which are more 

electronegative and thus more prone to reduction under the reaction conditions, may involve, at least 

in some cases, the formation of NPs that may be the actual catalytic active species. All the examples 

we have discussed herein are in agreement with the hypothesis that hydrosilylation reactions can 

indeed be catalyzed by metallic nanoparticles. However, there are several uncertainties about the 

reaction mechanism and the nature of the active species. It should be noted that in many cases the 

addition of salts is a pre-requisite to trigger the reaction. Thus, it is logical to think that leached species 

would be at least one of the active species in the catalytic cycles.  

4.1.3. Bimetallic NPs as new catalytic systems for hydrosilylation reactions. 

During the last years, a few examples of hydrosilylation catalyzed by bimetallic systems have 

been reported. Synergistic effect resulting from the combination of metals is expected as an 

interesting advantage of the bimetallic systems over traditional monometallic catalysts. The presence 

of two metallic centres with different electron densities seems to facilitate Si-H activation. This would 

be in agreement with a heterolytic splitting of the Si-H bond, similar to the mechanism described by 

Crabtree (see discussion below).307  

For example, we have already shown that Solomonz et al. prepared RhPt NPs embedded in a 

nano-reactor, which were employed in the hydrosilylation of terminal alkynes.298 RhPd NPs 

embedded in an ionic gel were prepared by Thiot et al. in 2007. They were used in a one-pot 

hydrosilylation/Hiyama coupling reaction of phenylacetylene in the presence of HSiMe(OEt)2 and 

PhI.308 In the reported bimetallic system, it was proposed that Rh catalyzed the hydrosilylation and 

that Pd catalyzed the C-C coupling. Both metals acted without interferance and moreover there was 

no formation of the undesired Sonogashira side product normally observed in the reaction catalyzed 
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by the combination of the organometallic precursors. The stereocontrol of the reaction for the 

formation of the trans-alkene with (>99%) was attributed to a beneficial Pd-catalyzed isomerization 

from the mixture of stereoisomeric (E) and (Z)-vinylsilane intermediates into the more stable (E)-

vinylsilane. 

An interesting catalytic system that has been used in hydrosilylation reactions is the PdAu alloy, 

a good example of the synergistic effect between two different metals at the surface of a nano-catalyst. 

In 2014, Chen et al. prepared PdAu nanoporous catalysts (solid materials containing pores within 

nanometric scale) by selective removal of Al from the Au20Pd10Al70 ternary alloy.309 After a screening 

of catalysts displaying different compositions, the AuPd alloy showed a remarkable synergistic effect 

for the 1,4-hydrosilylation of conjugated cyclic enones with triethylsilane (see Table 11). While Au 

nanopore catalysts gave mixtures with the product of the hydrosilylation of the ketone group 

(compound 3a) and Pd nanopore catalysts were active in dehydrogenation of the alkene to give the 

aromatic compound (compound 4a), AuPd nanopores were in general more selective to 1,4-

hydrosilylation. AuPd NPs deposited on TiO2 were less active in this reaction. Based on the 

observations made in this work and the good dispersion of Au and Pd atoms at the surface of the 

catalyst as determined by dispersive X-Ray spectroscopy (EDS) and X-Ray photoelectron 

spectroscopy (XPS), the authors proposed a synergistic mechanism in which Si-H activation would 

afford a Pd-H bond and a Au-Si bond (see Scheme 22a). The affinity of the Si for the carbonyl oxygen 

would direct selective addition of the hydride to the β-position.  

 

 

Entry Catalyst (precursor alloy) 2a (%) 3a (%) 4a (%) 

1 AuPdNPore-1 (Au20Pd10Al70) 92 0 4 

2 AuNPore-1 + PdNPore-1 70 20 6 

3 Au20Pd10Al70 alloy 0 0 0 

4 None 0 0 0 

5 AuPdNPore-2 (Au25Pd5Al70) 87 0 5 

6 AuPdNPore-3 (Au10Pd20Al70) 46 0 13 

7 AuPdNPs on TiO2 47 0 4 

 

Table 11. Screening of various nanoporous metal catalysts in the 1,4-hydrosilylation of conjugated 

cyclic enones. 
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Scheme 22. (a) Proposed mechanism for the selective 1,4-hydrosilylation of conjugated cyclic 

enones by PdAu bimetallic alloys and (b) rationalization of the possible mechanism for the 1,4-

hydrosilylation of conjugated enones by PdAu bimetallic alloys in order to explain the 

stereoselectivity of the process that differs from the one observed with Pd NPs. 

 

 

 

More recently, Miura et al. have studied the activity of different PdAu alloy NPs of ca. 3 nm 

supported on a variety of supports in the 1,4-hydrosilylation of α,β-unsaturated ketones and 

hydrosilylation of internal alkynes.310 The AuPd NPs were obtained by reduction of PdCl2 and 

HAuCl4 in the desired ratio with NaBH4 in the presence of PVP. Then, they were supported on Nb2O5, 

found to be the optimal support for the reaction. NPs with different Pd/Au ratios were prepared in 

order to learn how the composition affects the hydrosilylation reaction. Interestingly, while supported 

Au or Pd NPs were totally unreactive in the 1,4-hydrosilylation of enones, PdAu NPs show good 

performances under mild reaction conditions. Moreover, when varying the Pd/Au ratio by decreasing 

the amount of Pd atoms in the alloy, the activity of the catalyst increased (see Table 12). The authors 
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correlated the good activity of the catalyst with the presence of Pd single-sites at the surface of the 

catalyst. A rational for this synergistic effect has been proposed by Chen et al. (see Scheme 22b). 

When a Pd atom is surrounded by Au atoms, the electron density in Pd is decreased, increasing its 

reactivity towards activation of the Si-H bond and formation of the Pd-H bond. A remarkable 

observation is that, with AuPd alloy, the cis-enolsilane was selectively obtained in the 1,4- 

hydrosilylation of different β-conjugated enones, in contrast to the results of Benohoud et al. with Pd 

NPs discussed earlier,290 in which the trans-enolsilane was the main reaction product (Scheme 19b). 

This may be explained by the absence of Pd-Pd moieties at the surface of the NP in the PdAu alloy. 

In addition, the heterolytic cleavage of the Si-H bond by the Pd-Au bimetallic surface seems a more 

accurate mechanistic pathway than the one proposed by Benohoud et al., since it is in agreement with 

the observations made in homogeneous phase where the reaction starts by formation of a η2-HSiR3 

complex, followed by an outer sphere nucleophilic attack and heterolytic splitting.307 

 

 

Entry Catalyst Temp. (ºC) Time Yield 3a (%) – Z/E ratio 

1 Pd/SiO2 75 20 min 0 - 

2 Au/SiO2 75 20 min 5 99:1 

3 Pd3Au1/SiO2 75 20 min 0 - 

4 Pd1Au1/SiO2 75 20 min 3 89:11 

6 Pd1Au3/SiO2 75 20 min 59 94:6 

7 Pd1Au3/SiO2 rt 3 h 4 93:7 

8 Pd1Au3/Al2O3 rt 3 h 1 - 

9 Pd1Au3/CeO2 rt 3 h 6 96:6 

10 Pd1Au3/ZrO2 rt 3 h 13 93:7 

11 Pd1Au3/TiO2 rt 3 h 24 93:7 

12 Pd1Au3/Nb2O5 rt 3 h 45 92:8 

13 Pd1Au5/Nb2O5 rt 1 h 85 93:7 

14 Au/Nb2O5 rt 3 h 1 - 

15 Pd/Nb2O5 rt 3 h 0 - 

 

Table 12. Optimization of the reaction conditions in the hydrosilylation of a β-unsaturated ketone 

catalyzed by supported PdAu NPs. 
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Another catalytic system that has been used in the hydrosilylation of alkynes is that of PdCu NPs 

supported on SiO2. In recent work from Cai and co-workers,311 the authors explored the activity of 

catalytic systems based on PdNi, PdFe, PdCo and PdCu bimetallic NPs in the hydrosilylation of 

alkynes with Et3SiH (see Table 13). Similar to that observed with PdAu NPs, diluting the amount of 

Pd atoms in the alloy increased the catalytic activity of the NPs in the reaction. Pd1Cu2/SiO2 was the 

most selective catalyst for the formation of the trans-alkene, allowing the reaction to be performed in 

air, mild conditions (room temperature) and with lower Pd charges (0.4 mol%) than pure Pd NPs (ca. 

60 ºC and ca. 2 mol% of Pd). However, the addition of NaI to activate the NPs was still necessary 

(see discussion above). The catalytic system was easily recoverable by simple filtration and was 

recycled up to 5 times maintaining its activity. The heterogeneous nature of the PdCu/SiO2 catalyst 

was deduced from a hot filtration experiment that stopped the reaction, which was restarted after 

addition of the filtered catalyst. It is interesting to note that alloying Pd NPs with an earth-abundant 

metal such as Cu, not only increases the performance of the catalyst but also lowers the cost of the 

catalyst, which can also be of interest for applications. 

 

 

Entry Catalyst T (ºC) Ratio (1 vs 2) Yield (%) 3/4 

1a Pd 40 1:5 24 77/23 

2b Ni 40 1:5 <5 90/10 

4 Pd1Ni2 20 1:2 98 87/13 

7 Pd1Fe2 20 1:2 98 87/13 

8 Pd1Co2 20 1:2 99 88/12 

9c Pd1Cu2 20 1:2 98 98/2 

10c,d Cu 20 1:2 - - 

11c Pd+Cu 20 1:2 31 86/14 

 

Table 13. Optimization of the bimetallic catalytic system supported on SiO2 for the hydrosilylation 

of phenylacetylene with triethylsilane. a 0.4 mol% of Pd NPs was used as catalyst. b 1.6 mol% of Ni 

NPs was used as catalyst. c Reaction was performed under air. d 1.6 mol% of Cu NPs was used as 

catalyst. 
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4.2. Silane oxidation. 

Silanols are compounds containing Si-OH groups, and they are useful molecules for the synthesis 

of silicon-based polymers as well as in organic synthesis.243,312-313 For instance, they have been used 

as nucleophilic agents in C-C cross-coupling reactions,314 organo-catalysts for activation of carbonyl 

compounds315 or guiding groups for C-H activation.316 Silanols can be obtained by several methods, 

one of them being the oxidation of silanes through Si-H activation.317 Alternatively, activation of Si-

H bonds forming silanols and further alcoholysis or aminolysis can lead to the formation of silyl 

ethers or silazane derivatives, which are also interesting in organic synthesis.  

4.2.1. Silanol formation catalyzed by metal NPs. 

Metal NPs can catalyze the oxidation of silanes to silanols at their surface in a highly exothermic 

reaction. The reaction is usually carried out with water, which acts as nucleophilic agent attacking 

the Si atom coordinated at the surface of the NP. As mentioned above, in the hydrosilylation of 

internal alkynes catalyzed by Pd NPs, the presence of water led to the formation of the corresponding 

silanol with the concomitant formation of surface-adsorbed hydride. Under these conditions, selective 

hydrogenation of alkynes into alkenes was observed instead of alkyne hydrosilylation.292,294 

Moreover, the catalytic oxidation of silanes to form the silanols is often accelerated by air.318 The 

generally accepted mechanism for the oxidation of silanes by water catalyzed by metal NPs is shown 

in Scheme 23. In a first step, there is an activation of the Si-H bond to give surface adsorbed hydride 

and silyl moieties. Then, there is a nucleophilic attack of the oxygen atom of water to the Si atom, to 

give the silanol product and surface adsorbed hydride. Finally, a reductive elimination of the hydride 

at the surface of the NPs restarts the catalytic cycle. When the reaction is carried out in the presence 

of molecular oxygen, it could be imagined that it forms water with the surface hydrogens, but yet 

formation of hydrogen is observed. In fact, by computational and kinetic studies, Kamachi et al. have 

proposed that in the case of clean and oxygen covered Pd(111) surface, the role of oxygen atoms is 

to promote the desorption of H2 without formation of OH– and H2O.319 Kamachi et al. proposed that 

in the case of Pd(111) surface, a backside attack of a molecule of water with inversion of configuration 

at the silyl group is most favored in energy (see also Scheme 23). This attack explains the inversion 

of configuration at the Si center, as retention of the configuration would be expected if the mechanism 

evolved by reductive elimination between surface-adsorbed silyl and hydroxide groups. It should be 

indicated that the mechanism accepted for silane oxidation contrasts with the one proposed by 

Crabtree for silane alcoholysis catalyzed by Ir(III) and Pd(II) complexes in homogeneous phase. Here 

the reaction starts by formation of a η2-HSiR3 complex, followed by an outer sphere nucleophilic 

attack of ROH and heterolytic splitting.307  
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Scheme 23. Generally accepted mechanism for the oxidation of silanes to silanols with water 

catalyzed by metal NPs. The reaction can be carried out in absence (left) or the presence (right) of 

molecular oxygen, which participates in the reaction regenerating the catalytically active species. 

 

 

In 2012, Park and co-workers reported the use of different catalytic systems in the oxidation of 

tri-substituted silanes with water. The most active one consisted of Pd NPs of 2-3 nm supported on a 

fibrous aluminium oxyhydroxide matrix (boehmite) [PdNPs/AlO(OH)].320 The NPs were prepared 

by a sol-gel process starting from Pd(PPh3)4, and they were active in the oxidation of a wide range of 

silanes with good selectivity towards the formation of the silanol. Under anaerobic dry conditions the 

reaction did not occur, but it was notably improved in the presence of both water and oxygen (see 

Table 14).  
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Entry Oxidant t (min) 2 (%) 3 (%) 

1 air 40 70 30 

2 O2 10 32 68 

3 Ar 180 3 <1 

4 air + H2O (1 equiv.) 10 79 21 

5 air + H2O (3 equiv.) 10 98 2 

6 Ar + H2O (3 equiv.) 20 97 3 

Table 14. Catalytic oxidation of dimethylphenylsilane with water catalyzed by PdNPs/AlO(OH). 

 

Gold is also a well-known catalyst for the oxidation of silanes to silanols in water (see Scheme 

24). The first example of Au NPs as catalysts for this reaction was provided by Kaneda’s group in 

2009.321 In this work, Au NPs of 3.0 nm supported on hydroxyapatite (AuNPs/HAP) were synthesized 

by reduction of HAuCl4 with KBH4. The NPs were active in the oxidation of triethylsilane with water 

under air at 80 ºC with relatively high catalyst loadings (ca. 1 mol%), and they showed to be more 

selective towards the formation of the desired silanol than Au2O3 and HAuCl4. The scope of 

AuNPs/HAP in the oxidation of silanes was explored and concerned a wide range of silanes with 

different electronic and steric properties. In 2015, the same group studied the role of O2 in this reaction 

catalyzed by AuNPs/HAP, and determined that the oxygen acted not as a stoichiometric reagent but 

as an activator of the NPs.322 Hence, the reaction stopped upon removing air and introducing Ar into 

the reaction but the activity was recovered when air was introduced again. In 2010, Yamamoto, Asao 

and co-workers used the above described nanoporous gold catalyst (see section 2.1.2) in the oxidation 

of silanes in water.323 The catalyst was prepared by selective removal of Ag form a Au30Ag70 alloy. 

This catalyst operated at room temperature with a catalyst loading of 1 mol% and it was easily 

recycled from the reaction medium. It was also active in the oxidation of several trialkylsilanes. Duan 

and co-workers prepared Au NPs of around 2.5 nm that were dispersed in a poly(ionic liquid) and 

were anchored onto the porous walls of organosilica SBA-15.324 The recyclable catalyst was active 

in the oxidation of silanes in neat water with a catalyst loading of 0.4 mol% at 40 ºC under air.  

Other supports have helped to enhance the activity of Au NPs in the reaction. For instance, Au 

NPs supported on carbon nanotubes (CNTs) are more active than supported Au/HAP NPs and 

nanoporous gold. Doris and co-workers reported the first nanotube-based hybrid system for this 

reaction in 2011 (Au/CNT),325 using Au NPs of 3 nm. The catalyst was easily reusable and operated 

at room temperature with low catalyst loadings (0.01 mol%). Oxidation of alkyl and aryl silanes was 
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carried out in air with high yields and very good selectivity towards the formation of the silanol. The 

nanohybrid material was more active in the reaction (TOF 7.2·104 h–1) than Au NPs of 3 nm dispersed 

in solution under the same reaction conditions, showing that the support plays a role in the reaction, 

probably stabilizing the Au oxidized species by charge-transfer processes.326 Later on, in 2014, Liu 

et al. supported Au NPs of 1-1.5 nm on oxidized carbon nanotubes (o-CNTs), which displayed 

comparable activities.327 The catalyst was stable and recoverable several times without observation 

of metal leaching or loss of activity. 

More recently, da Silva et al. have prepared 3 nm Au NPs/PVP supported on MnO2 nanowires 

that could operate at room temperature with very low catalyst loadings (0.001-0.0002 mol% of Au), 

allowing good values of TOF (5.9·105 h-1).328 However, the scope of the catalyst towards the 

activation of trialkylsilanes was not deeply explored in this work. The particles were obtained by 

classical reduction of HAuCl4 with NaBH4, and they conserved their morphology and catalytic 

activity after 10 reaction cycles. The authors attributed the enhancement of the activity of this system 

compared to other supported NPs to cooperative effects between the support and the Au NPs, which 

would lead to high concentration of reactive Au+ species at the surface. 

Pt NPs have been also applied in this reaction, but to the best of our knowledge there is only one 

example reported by Chauhan et al (see Scheme 24).329 The NPs were prepared by decomposition of 

PtMe2(COD) with poly(methylhydro)siloxane (PMHS), as described in section 4.1. Interestingly, the 

Pt NPs were selective towards the oxidation of silanes containing alkenes or alkynes moieties when 

2 equivalents of water were present in the reaction, and no hydrosilylation at all was observed. Ag 

NPs display lower performances in the oxidation of silanes. Ag NPs obtained by reduction of AgNO3 

with NaBH4 supported on HAP have been used in the oxidation of phenylsilanes by Kaneda’s group, 

although high catalyst loadings were used (3 mol%) to complete the reaction at room temperature in 

15 min (see Scheme 24).330 Ag nanoporous catalysts have also been used in the reaction, but were 

found less efficient than Ag/HAP and higher catalyst loadings were required (10 mol%).331 
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Scheme 24. Silanol formation through catalytic oxidation of organosilanes by supported Au, Pt or 

Ag NPs. 

 

 

In conclusion, metal NPs have emerged as good catalysts for silane oxidation to give silanols 

because of their good activities, selectivities and recyclability from the reaction medium after 

deposition on a support. In addition, the reaction is enhanced in the presence of air facilitating the 

operability of the process, which in our opinion makes metal NPs very interesting for scaled-up 

industrial processes. 

4.2.2. Other catalytic reactions involving oxidation of silanes. 

Silyl ethers can be obtained by reaction of chlorosilanes or disilazanes with alcohols in the 

presence of a base. However, these reagents are corrosive and air-sensitive, and stoichiometric 

amounts of salts are obtained as by-products in the reaction. Thus, an alternative to its preparation is 

the catalytic dehydrogenative etherification of silanes with alcohols, analogous to the formation of 

silanols, in which the only by-product is molecular hydrogen (see Scheme 25). Several homogeneous 

catalysts have been used in this reaction based on different metals such as Au,332 Rh,333 Pt,334 or Zn.335 
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Since then, supported metal NPs have also been used as efficient catalyst for this reaction, whose 

main advantage is that in most of the cases they can be easily recycled from the reaction medium. 

Some selected examples are the work of Kaneda’s and Garcia’s groups. Kaneda and co-workers 

studied this reaction catalyzed by different metal NPs supported on HAP.336 Among all the systems 

studied Au/HAP was the most active catalyst using low loadings (0.005 mol%, Scheme 25a). García 

and co-workers showed that Cu NPs of 10-25 nm supported on graphene materials are efficient 

catalysts for the dehydrogenative coupling of silanes and alcohols (Scheme 25b).306 Similarly, the 

dehydrogenative coupling of hydrosylanes with primary or secondary amines can allow the synthesis 

of silyl amines (see Scheme 25c). García and co-workers performed this catalytic process using Pd 

NPs supported on graphene (PdNPs/G), whilst analogous Cu and Ni NPs supported on G were 

inactive.337 

 

Scheme 25. Catalytic conditions for the dehydrogenative etherification of silanes with alcohols 

catalyzed by (a) Au/HAP and (b) Cu/G. (c) Catalytic conditions for the dehydrogenative amination 

of silanes with amines catalyzed by Pd/G. 

 

 

Another interesting reaction that implies Si-H activation and that can be catalyzed by metal NPs 

is the deoxygenation reaction. Kaneda’s group tested the AuNPs/HAP system in the deoxygenation 

of amides, sulfoxides and pyridine N-oxides (see Scheme 26).338 The NPs were selective towards the 

reduction of such groups, while other organic groups such as alkenes or esters were unreactive. The 

AuNPs were more active than the previous systems based on homogeneous or heterogenized Fe, Ru, 

Os or Zn complexes, and they were easily recyclable without any loss in efficiency. By IR 
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spectroscopy, the authors confirmed the interaction between the Au NPs and the Si-H bond, while 

the C=O stretching band of the amide substrates was unaffected after treatment of the catalyst with 

this molecule. This indicates that the reaction starts probably with Si-H activation, like in the silanol 

formation. In 2014, Taori and Buchmeiser studied the reaction mechanism of the deoxygenation of 

DMF to give trimethylamine catalyzed by Pt NPs.339 The authors confirmed that the reaction starts 

by Si-H activation of two silane molecules, and that it evolves by a concerted double-reduction of 

DMF by two hydride groups coordinated at the surface. This “dual effect” that was already proposed 

for homogeneous catalysts was governed by steric factors in the Pt NPs studied in this work.  

 

Scheme 26. General conditions for the catalytic deoxygenation of (a) amides, (b) sulfoxides and (c) 

pyridine N-oxides catalyzed by AuNPs/HAP. 

 

 

5. Conclusions. 

This literature survey shows that activation and coordination processes of -bonds occur 

similarly on molecular complexes and on nanoparticles. H2 can coordinate and dissociate on 

nanoparticles in a way very similar to what is observed on molecular species. C-H bonds can be 

activated through mechanisms that resemble those found in molecular chemistry. The difference lies 

in the richness brought by the number of active surface atoms which allow inter alia the fast diffusion 

of hydrides on nanoparticles, the easy reduction of aromatic rings and, thanks to the formation of a 

4-membered ring, the enantiospecific H/D exchange in amino-acids. Productive C-H 

functionalization is still less advanced than in molecular chemistry although tremendous progresses 
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have been achieved for the past few years. Concerning silanes, the detection of coordinated Si-H 

bonds is not documented although upon interacting with nanoparticles, silanes give rise to Si species 

linked to the surface in various coordination modes. It has now been established that hydrosilylation 

can be catalyzed by nanoparticles after years of controversies, although, so far, no specific reactivity 

is clearly observed with nanoparticles. However, one advantage of nanoparticles is the possibility to 

produce bimetallic species in which synergies can be observed or which are able to isolate active 

atoms like Pd in PdAu nanoparticles. To conclude, most of the literature reported in this review is 

recent and there is no doubt that the field of -bond activation using nanoparticles will continue to 

develop at an increasing rate. Whereas σ-H2 is well understood for some systems such as Ru NPs, 

future directions in this field will probably be focused on characterization of more complex systems 

(i.e. Pd NPs containing subsurface hydrides), understanding of ligand effects, or physical activation 

of the reaction (i.e. irradiation with light). C-H functionalization faces bigger challenges, as in many 

cases the active species remain unknown. Thus, we believe that this target must be addressed before 

advances can be made in the rational design of catalytic systems based on metal NPs. Finally, the 

recent development on hydrosilylation catalyzed by metallic NPs will likely play an important role 

in the heterogenization of this reaction, as this reaction continues to be performed in homogeneous 

phase at industrial scale. 
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