
HAL Id: hal-02337286
https://hal.science/hal-02337286

Submitted on 29 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Infinets: The parallel syntax for non-wellfounded
proof-theory

Abhishek De, Alexis Saurin

To cite this version:
Abhishek De, Alexis Saurin. Infinets: The parallel syntax for non-wellfounded proof-theory.
TABLEAUX 2019 - 28th International Conference on Automated Reasoning with Analytic Tableaux
and Related Methods, Sep 2019, London, United Kingdom. �hal-02337286�

https://hal.science/hal-02337286
https://hal.archives-ouvertes.fr

Infinets: The parallel syntax
for non-wellfounded proof-theory

Abhishek De1 and Alexis Saurin2 ?

1 IRIF, Université de Paris, F-75013 Paris, France
2 IRIF, CNRS, Université de Paris, F-75013 Paris, France

{ade,saurin}@irif.fr

Abstract. Logics based on the µ-calculus are used to model induc-
tive and coinductive reasoning and to verify reactive systems. A well-
structured proof-theory is needed in order to apply such logics to the
study of programming languages with (co)inductive data types and au-
tomated (co)inductive theorem proving. While traditional proof system
suffers some defects, non-wellfounded (or infinitary) and circular proofs
have been recognized as a valuable alternative, and significant progress
have been made in this direction in recent years. Such proofs are non-
wellfounded sequent derivations together with a global validity condition
expressed in terms of progressing threads.
The present paper investigates a discrepancy found in such proof sys-
tems, between the sequential nature of sequent proofs and the parallel
structure of threads: various proof attempts may have the exact thread-
ing structure while differing in the order of inference rules applications.
The paper introduces infinets, that are proof-nets for non-wellfounded
proofs in the setting of multiplicative linear logic with least and greatest
fixed-points (µMLL∞) and study their correctness and sequentialization.

Keywords: circular proofs · non-wellfounded proofs · fixed points · mu-
calculus · linear logic · proof-nets · induction and coinduction

1 Introduction

Inductive and coinductive reasoning is pervasive in computer science to specify
and reason about infinite data as well as reactive properties. Developing ap-
propriate proof systems amenable to automated reasoning over (co)inductive
statements is therefore important for designing programs as well as for ana-
lyzing computational systems. Various logical settings have been introduced to
reason about such inductive and coinductive statements, both at the level of
the logical languages modelling (co)induction (such as Martin Löf’s inductive
predicates or fixed-point logics, also known as µ-calculi) and at the level of the
proof-theoretical framework considered (finite proofs with explicit (co)induction

? This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Sk lodowska-Curie grant agreement No
754362. Partially funded by ANR Project RAPIDO, ANR-14-CE25-0007.

2 Abhishek De and Alexis Saurin

rules à la Park [26] or infinite, non-wellfounded proofs with fixed-point unfold-
ings) [7–9, 4, 1, 2]. Moreover, such proof systems have been considered over clas-
sical logic [7, 9], intuitionistic logic [10], linear-time or branching-time temporal
logic [23, 22, 28, 29, 14, 16, 17] or linear logic [27, 18, 4, 3, 16].

Logics based on the µ-calculus have been particularly successful in modelling
inductive and coinductive reasoning and for the verification of reactive systems.
While the model-theory of the µ-calculus has been well-studied, its proof-theory
still deserves further investigations. Indeed, while explicit induction rules are
simple to formulate (For instance, Fig. 1 shows the introduction rule à la Park
for a coinductive property) the treatment of (co)inductive reasoning brings some
highly complex proof objects.

` S,∆ ` S⊥, F [S/X]
(ν′)

` νX.F,∆

Fig. 1: Coinduction rule

At least two fundamental technical shortcom-
ings prevent the application of traditional µ-calculus-
based proof-systems for the study of programming
languages with (co)inductive data types and auto-
mated (co)inductive theorem proving and call for al-
ternative proposals of proof systems supporting (co)induction. Firstly, the fixed
point introduction rules break the subformula property which is highly problem-
atic for automated proof construction: at each coinduction rule, one shall guess
an invariant (in the same way as one has to guess an appropriate induction hy-
pothesis in usual mathematical reasoning). Secondly, (νinv) actually hides a cut
rule that cannot be eliminated, which is problematic for extending the Curry-
Howard correspondence to fixed-point logics.

...

` µX.X
(µ)

` µX.X

...

` νX.X, Γ
(ν)

` νX.X, Γ
(cut)

` Γ

Fig. 2: An unsound proof

Non-wellfounded proof systems have been
proposed as an alternative [7–9] to explicit
(co)induction. By having the coinduction rule with
simple fixed-point unfoldings and allowing for non-
wellfounded branches, those proof systems address
the problem of the subformula property for the cut-
free systems: the set of subformula is then known as Fischer-Ladner subformulas,
incorporating fixed-points unfolding but preserving finiteness of the subformula
space. Moreover, the cut-elimination dynamics for inductive-coinductive rules
becomes much simpler. A particularly interesting subclass of non-wellfounded
proofs, is that of circular, or cyclic proofs, that have infinite but regular deriva-
tions trees: they have attracted a lot of attention for retaining the simplicity of
the inferences of non-wellfounded proof systems but finitely representable mak-
ing it possible to have an algorithmic treatment of such proof objects. However,
in those proof systems when considering all possible infinite, non-wellfounded
derivations (a.k.a. pre-proofs), it is straightforward to derive any sequent Γ (see
fig. 2). Such pre-proofs are therefore unsound: one needs to impose a validity
criterion to sieve the logically valid proofs from the unsound ones. This condition
will actually reflect the inductive and coinductive nature of our two fixed-point
connectives: a standard approach [7–9, 27, 3] is to consider a pre-proof to be valid
if every infinite branch is supported by an infinitely progressing thread. As a re-

Infinets: The parallel syntax for non-wellfounded proof-theory 3

sult, the logical correctness of circular proofs becomes non-local, much in the
spirit of correctness criteria for proof-nets [19, 13].

However the structure of non-wellfounded proofs has to be further investi-
gated: the present work stems from the observation of a discrepancy between
the sequential nature of sequent proofs and the parallel structure of threads. An
immediate consequence is that various proof attempts may have the exact same
threading structure but differ in the order of inference rule applications; more-
over, cut-elimination is known to fail with more expressive thread conditions.
This paper proposes a theory of proof-nets for µMLL∞ non-wellfounded proofs.

Organization of the paper. In Section 2, we recall the necessary background
from [3] on linear logic with least and greatest fixed points and its non-wellfounded
proofs, we only present the unit-free multiplicative setting which is the frame-
work in which we will define our proof-nets. In Section 3 we adapt Curien’s
proof-nets [11] to a very simple extension of MLL, µMLL∗, in which fixed-points
inferences are unfoldings and only wellfounded proofs are allowed; this allows
us to set the first definitions of proof-nets and extend correctness criterion, se-
quentialization and cut-elimination to this setting but most importantly it sets
the proof-net formalism that will be used for the extension to non-wellfounded
derivations. Infinets are introduced in Section 4 as an extension of the µMLL∗

proof-nets of the previous section. A correctness criterion is defined in Section 5
which is shown to be sound (every proof-nets obtained from a sequent (pre-)proof
is correct). The completeness of the criterion (i.e. sequentialization theorem) is
addressed in Section 6. We quotient proofs differing in the order of rule appli-
cation in Section 7 and give a partial cut elimination result in Section 8. We
conclude in Section 9 and comment on related works and future directions.

Notation. For any sequence S, let Inf(S) be the terms of S that appears infinitely
often in S. Given a finite alphabet Σ, Σ∗ and Σω are the set of finite and infinite
words over Σ resp. Let Σ∞ = Σ∗ ∪Σω. We denote the empty word by ε. Given
two words u, u′ (finite or infinite) we denote by u∩u′ the greatest common prefix
of u and u′ and u v u′ if u is a prefix of u′. Given a language, L ⊆ Σ∞, L ⊆ Σ∞
is the set of all prefixes of the words in L.

2 Background

We denote the multiplicative additive fragment of linear logic by MALL and the
multiplicative fragment by MLL. The non-wellfounded extension of MALL with
least and greatest fixed points operators, µMALL∞, was introduced in [3, 16].
Proof-nets for additives and units are quite cumbersome [20, 6], so, in the current
presentation, we will only consider the unit-free multiplicative fragment which
we denote by µMLL∞.

Definition 1. Given an infinite set of atoms A = {A,B, . . . }, and an infinite
set of propositional variables, V = {X,Y, . . . }, s.t. A ∩ V = ∅, µMLL pre-
formulas are given by the following grammar:

φ, ψ ::= A | A⊥ | X | φ` ψ | φ⊗ψ | σX.φ

4 Abhishek De and Alexis Saurin

where A ∈ A and X ∈ V, and σ ∈ {µ, ν}; σ binds the variable X in φ. When a
pre-formula is closed (i.e. no free variables), we simply call it a formula.

Note that negation is not a part of the syntax, so that we do not need any
positivity condition on the fixed-point expressions. We define negation, (•)⊥, as
a meta-operation on the pre-formulas and will use it only on formulas.

Definition 2. Negation of a pre-formula φ, φ⊥, is the involution satisfying:

(φ⊗ ψ)
⊥

= ψ⊥ ` φ⊥, X⊥ = X, (µX.φ)
⊥

= νX.φ⊥.

Example 1. As a running example, we will consider the formulas φ = A`A⊥ ∈
MLL and ψ = νX.X⊗ φ ∈ µMLL∞. Observe that φ⊥ = A⊥⊗A as usual in MLL
and by def. 2, ψ⊥ = µX.X ` φ⊥.

The reader may find it surprising to define X⊥ = X, but it is harmless since
our proof system only deals with formulas. Note that (F [G/X])

⊥
= F⊥[G⊥/X].

Definition 3. An (infinite) address is a finite(resp. infinite) word in {l, r, i}∞.
Negation extends over addresses as the morphism satisfying l⊥ = r, r⊥ = l, and
i⊥ = i. We say that α′ is a sub-address of α if α′ v α. We say that α and β
are disjoint if α ∩ β is not equal to α or β.

Definition 4. A formula occurrence (denoted by F,G, ...) is given by a for-
mula, φ, and a finite address, α, and written φα. Let addr(φα) = α. We say that
occurrences are disjoint when their addresses are. Operations on formulas are ex-
tended to occurrences as follows: φα

⊥ = φ⊥α⊥ , for any ? ∈ {`,⊗}, F?G = (φ?ψ)α
if F = φαl and G = ψαr, and for σ ∈ {µ, ν}, σX.F = (σX.φ)α if F = φαi. Sub-
stitution of occurrences forgets addresses i.e. (φα)[ψβ/X] = (φ[ψ/X])α. Finally,
we use d•e to denote the address erasure operation on occurrences.

Fixed-points logics come with a notion of subformulas (and suboccurrences)
slightly different from usual:

Definition 5. The Fischer-Ladner closure of a formula occurrence F , FL(F),
is the least set of formula occurrences s.t. F ∈ FL(F), G1 ? G2 ∈ FL(F) =⇒
G1, G2 ∈ FL(F) for ? ∈ {`,⊗}, and σX.G ∈ FL(F) =⇒ G[σX.G/X] ∈ FL(F)
for σ ∈ {µ, ν}. We say that G is a FL-suboccurrence of F (denoted G ≤ F) if
G ∈ FL(F) and G is an immediate FL-suboccurrence of F (denoted GlF)
if G ≤ F and for every H s.t. G ≤ H ≤ F either H = G or H = F . The
FL-subformulas of F are elements of {φ | φ = dG ∈ FL(F)e}.

Clearly, we could have defined Fischer-Ladner closure on the level of formulas.
By abuse of notation, we will sometimes use FL(•),≤,l on formulas.

Remark 1. Observe that for any F , the number of FL-subformulas of F is finite.

The usual notion of subformula (say in MLL) is obtained by traversing the
syntax tree of a formula. In the same way, the notion of FL-subformula can be
obtained by traversing the graph of the formula (resp. occurrence).

Infinets: The parallel syntax for non-wellfounded proof-theory 5

dF e = dGe⊥
(ax)

` F,G
` F,∆1 ` F⊥,∆2

(cut)
` ∆1,∆2

` F,G,∆
(`)

` F `G,∆
` F,∆1 ` G,∆2

(⊗)
` F⊗G,∆1,∆2

` G[µX.G/X],∆
(µ)

` µX.G,∆
` G[νX.G/X],∆

(ν)
` νX.G,∆

Fig. 3: Inference rules for µMLL∞

Definition 6. The FL-graph of a formula φ, denoted G(φ), is the graph ob-
tained from FL(φ) by identifying the nodes of bound variable occurrences with
their binders (i.e. φ→ ψ if φl ψ).

Example 2. The graphs of the formulas φ and ψ of example 1 are the following:

G(φ) = `

A A⊥

G(ψ) = νX.

⊗ G(φ)

Observe that the graph of a MLL formula is acyclic corresponding to the usual
syntax tree but the graph of a µMLL∞ formula could potentially contain a cycle.

As usual with classical linear logic Γ, φ ` ∆ is provable iff the sequent Γ `
φ⊥, ∆ is provable. Hence, it is enough to consider the one-sided proof system. A
one-sided µMLL∞ sequent is an expression ` ∆ where ∆ is a finite set of pairwise
disjoint formula occurrences.

Definition 7. A pre-proof of µMLL∞ is a possibly infinite tree generated from
the inference rules given in fig. 3. Given a pre-proof, π, addr(π) ⊆ {l, r, i}∞ is
a set of addresses s.t. an address α ∈ addr(π) iff there is an occurrence, F , in
an axiom in π with addr(F) = α and an infinite address α ∈ addr(π) iff all the
strict prefixes of α are addresses of occurrences appearing in π.

Definition 8. A thread of a formula occurrence, F , is a sequence, t = {Fi}i∈I ,
where I ∈ ω + 1, F0 = F , and for every i ∈ I s.t. i + 1 ∈ I either Fi is
suboccurrence of Fi+1 or Fi = Fi+1. We denote by dte the sequence {dFie}i∈I
where t = {Fi}i∈I . A thread, t, is said to be valid if min(Inf(dte)) is a ν-formula
where minimum is taken in the ≤ ordering.

Remark 2. Observe that for any infinite thread t of a formula occurrence F ,
Inf(dte) is non-empty since F has finitely many FL-subformulas.

Definition 9. A µMLL∞ proof is a pre-proof in which every infinite branch
contains a valid thread. A circular pre-proof is a regular µMLL∞ pre-proof i.e.
one which has a finite number of distinct subtrees.

Example 3. The following non-wellfounded pre-proof of the sequent ` ψα (α is
an arbitrary address) is circular and is a proof because the only infinite thread
{ψα(il)n}∞n=0 is valid.

6 Abhishek De and Alexis Saurin

?

` ψαil

(ax)
` Aαirl, A⊥αirr (`)
` A`A⊥αir (⊗)

` ψ ⊗ (A`A⊥)αi
(ν)

? ` ψα
3 A first taste of proof-nets in logics with fixed points

Proof-nets are a geometrical method of representing proofs, introduced by Girard
that eliminates two forms of bureaucracy which differentiate sequent proofs:
irrelevant syntactical features and the order of rules. As a stepping stone, we first
consider proof nets in µMLL∗ which is the proof system with the same inference
rules as µMLL∞ (fig. 3) but with finite proofs. µMLL∗ is strictly weaker than
µMLL∞.

Proof-nets are usually defined as vertex labelled, edge labelled directed multi-
graphs. In this presentation a proof structure is “almost” a forest (i.e. a collection
of trees) with the leaves joined by axioms or cuts. We use a different presentation
due to Curien [11] to separate the forest of syntax trees and the space of axiom
links for reasons that will become clearer later.

Definition 10. A syntax tree of a formula occurrence, F , is the (possibly
infinite) unfolding tree of G(F). The syntax tree induces a prefix closed language,
LF ⊂ {l, r, i}∞ s.t. there is a natural bijection between the finite (resp. infinite)
words in LF and the finite (resp. infinite) paths of the tree. A partial syntax
tree, FU , is a subtree of the syntax tree of the formula occurrence, F , such that
the set of words, U ⊆ LF represents a “frontier” of the syntax tree of F i.e.
any u, u′ ∈ U are pairwise disjoint and for every uav ∈ U , there is a v′ s.t.
ua⊥v′ ∈ U . For a finite u ∈ U , we denote by (F, u) the unique suboccurrence of
F with the address addr(F).u.

Example 4. The syntax tree of ψ is the unfolding of G(ψ) and induces the lan-

guage i(li)∗r(l + r) + (il)ω. Further, given an arbitrary address α, ψ
{ili,irl,irr}
α

is a partial syntax tree whereas ψ
{ilil,irl,irr}
α is not. If u = ililir then (ψα, u) =

A`A⊥αililir.

Definition 11. A proof structure is given by [Θ′]{BUii }i∈I [Θ], where

– I is a finite index set;
– for every i ∈ I, Bi is a formula occurrence, BUii is a partial syntax tree with
Ui ⊂ {l, r, i}∗;

– Θ′ is a (possibly empty) collection of disjoint subsets of {Bi}i∈I of the form
{C,C⊥};

– Θ is a partition of
⋃
i∈I{αiui | addr(Bi) = αi, ui ∈ Ui} s.t. the partitions are

of the form {αiui, αjuj} with d(Bi, ui)e = d(Bj , uj)e⊥.

Each class of Θ represents an axiom, each of class of Θ′ represents a cut, and
{Bi}i∈I \

⋃
θ∈Θ′ θ are the conclusions of the proof structure.

Infinets: The parallel syntax for non-wellfounded proof-theory 7

π1

` Γ, F

π2

` ∆,F⊥

(cut)
` Γ,∆

π1

` Γ, F
π2

` ∆,G
(⊗)

` Γ,∆, F⊗G

π0

` Γ, F,G
(`)

` Γ, F `G

π0

` Γ, F [µX.F/X]
(µ)

` Γ, µX.F
(a) (b) (c) (d)

Fig. 4

Definition 12. Let π be a µMLL∗ proof. Desequentialization of π, denoted
Deseq(π), is defined by induction on the structure of the proof:

– The base case is a proof with only an ax rule, say
(ax)

F,G⊥ . Then

Deseq(π) = [∅]{F {ε}, (G⊥){ε}}[{{addr(F), addr(G⊥)}}]

– If Deseq(π1) = [Θ′1]Γ1 ∪ {FU}[Θ1] and Deseq(π2) = [Θ′2]Γ1 ∪ {F⊥
U ′}[Θ2],

then Deseq(π) = [Θ′1 ∪Θ′2 ∪ {F, F⊥}]Γ1 ∪ Γ2[Θ1 ∪Θ2] where π is fig. 4(a).
– If Deseq(π1) = [Θ′1]Γ1 ∪ {FU}[Θ1] with addr(F) = αl and Deseq(π2) =

[Θ′2]Γ1 ∪ {GU
′}[Θ2] with addr(G) = αr, then Deseq(π) = [Θ′1 ∪Θ′2]Γ1 ∪ Γ2 ∪

{F⊗Gl·U+r·U ′}[Θ1 ∪Θ2] with addr(F⊗G) = α where π is fig. 4(b).
– If Deseq(π0) = [Θ′0]Γ0 ∪ {FU , GU

′}[Θ0] with addr(F) = αl, addr(G) = αr
then Deseq(π) = [Θ0]Γ0 ∪ {F `Gl·U+r·U ′}[Θ0] with addr(F `G) = α where
π is fig. 4(c).

– If Deseq(π0) = [Θ′0]Γ0 ∪ {F [F/X]U}[Θ0] with addr(F [F/X]) = αi then
Deseq(π) = [Θ0]Γ0∪{µX.F i·U}[Θ0] with addr(µX.F) = α where π is fig. 4(d).

– The case for ν follows exactly as µ.

Example 5. Consider the following proof π of the sequent ` νX.X ` µX.X.

(ax)
` νX.Xαl, µY.Yβi

(µ)
` νX.Xαl, µY.Yβ

(ax)
` νY.Yβ⊥i, µX.Xαr

(ν)
` νY.Yβ⊥ , µX.Xαr

(cut)
` νX.Xαl, µX.Xαr

(`)
` νX.X ` µX.Xα

We choose α, β s.t. they are disjoint. We have that Deseq(π) = [Θ′]Γ [Θ] s.t.

Θ′ =
{
{µY.Yβ , νY.Yβ⊥}

}
Θ =

{
{αl, βi}, {αr, β⊥i}

}
Γ =

{
νX.X ` µX.X{l,r}α , µY.Y

{i}
β , νY.Y

{i}
β⊥

}
Definition 13 (Graph of proof structure). Let S = [Θ′]{BUii }i∈I [Θ] be a
proof structure. The graph of S denoted Gr(S) is the graph formed by:

– taking the transpose (i.e. reversal of every edge) of the partial syntax tree
{BUii }i∈I ;

– for each {Bi, Bj} ∈ Θ′, adding a node labelled cut with two incoming edges
from (Bi, ε) and (Bj , ε);

8 Abhishek De and Alexis Saurin

µY.Y νY.Y

νX.X µX.X

ax ax

µY.Y

µ

νY.Y

ν

cut

νX.X ` µX.X

O

(a)

νX.X µX.X

ax

νX.X ` µX.X

O

(b)

Fig. 5: Graph of µMLL∞ proof structures

– for each {αiui, αjuj} ∈ Θ, adding a node labelled ax with two outgoing edges
to (Bi, ui) and (Bj , uj) where addr(Bi) and addr(Bj) is αi and αj resp.

Example 6. The graph of the proof structure in example 5 is Fig. 5a.

Gr(S) are exactly the proof structures that we obtain from directly lifting
the formalism of MLL proof nets à la Girard to µMLL∗.

As usual in the theory of proof nets, we need a correctness criterion on
the µMLL∗ proof structures to exactly characterize the class of proof nets. The
following correctness criterion lifts to µMLL∗ a criterion first investigated by
Danos and Regnier [13]. We present it in a slightly different syntax using the
notion of orthogonal partitions [12, 13].

Definition 14. Let P1 and P2 be partitions of a set S. The graph induced by P1

and P2 is defined as the undirected bipartite multigraph (P1, P2, E) s.t. for every
p ∈ P1 and p′ ∈ P2, (p, p′) ∈ E if p ∩ p′ 6= ∅. Finally, P1 and P2 are said to be
orthogonal to each other if the graph induced by them is acyclic and connected.

Definition 15. Given a proof structure, S = [Θ′]{BUii }i∈I [Θ], define a set of
switchings of S, sw = {swi}i∈I s.t. for every i ∈ I, swi : Pi → {l, r} is a
function over Pi, the ` nodes of BUii . The switching graph Ssw associated
with sw is formed by:

– taking the partial syntax tree {BUii }i∈I as an undirected graph;
– for each {Bi, Bj} ∈ Θ′, adding a node labelled cut with two edges to (Bi, ε)

and (Bj , ε);
– for each node (Bi, u) ∈ Pi, removing the edge between (Bi, u) and (Bi, u ·
sw((Bi, u))).

Let ΘswS be the partition over
⋃
i∈I{αiui | addr(Bi) = αi, ui ∈ Ui} induced by

the connected component of Ssw.

Definition 16. A proof structure, S, is said to be OR-correct if for any
switching sw, ΘswS and Θ is orthogonal. The graph induced by ΘswS and Θ is
called a correction graph of S.

Infinets: The parallel syntax for non-wellfounded proof-theory 9

Proposition 1. Let π be a µMLL∗ proof. Then Deseq(π) is an OR-correct proof
structure. Conversely, given an OR-correct µMLL∗ proof structure, it can be
sequentialized into a µMLL∗ sequent proof.

Definition 17. µMLL∗ cut-reduction rules is obtained by adding the follow-
ing rule to the usual cut-reduction rules for MLL proof nets:

F [µX.F/X] F⊥[νX.F⊥/X]

F [µX.F/X] F⊥[νX.F⊥/X]µX.F

µ

νX.F⊥ −→
ν

cut cut

Proposition 2. Cut elimination on µMLL∗ proof-nets preserves correctness and
is strongly normalizing and confluent.

The proofs of propositions 1, 2 are straightforward extensions from MLL.

Example 7. The proof structure in example 5 after cut-elimination produces the
proof structure in Fig. 5b.

Remark 3. Now the question is how this translates to non-wellfounded proofs.
Consider the proof in example 3. Firstly observe that there is no finite proof of
this sequent i.e. it is not provable in µMLL∗. Now, if we naively translate it into
a proof structure using the same recipe as def. 12 (except allowing for infinite
partial syntax trees), we have

[∅]
{
ψ{i(li)

∗r(l+r)+(il)ω}
α

}
[{αi(li)nrl, i(li)nrr}n≥0].

Observe that (il)ω is not in any partition. In fact, it represents a thread in an
infinite branch and must be accounted for. Hence the partition should account
for the threads invariant by an infinite branch in a proof (in particular, in the
example above there should be a singleton partition, {(il)ω}). This is also the
reason we will not use the graphical presentation for non-wellfounded proof-
nets since we would potentially need to join two infinite paths by a node which
is unclear graph-theoretically. However we will sometimes draw the “graph” of
non-wellfounded proof-nets for ease of presentation by using ellipsis points (for
example Fig. 6b represents the proof-net we discussed above).

4 Infinets

We will now lift our formalism for defining proof nets for µMLL∗ to µMLL∞.

Definition 18. A non-wellfounded proof structure(NWFPS) is given by
[Θ′]{BUii }i∈I [Θ], where

– I is a possibly infinite index set;
– for every i ∈ I, Bi is a formula occurrence, BUii is a partial syntax tree;

10 Abhishek De and Alexis Saurin

A⊥ A

A A⊥ A⊥ A

. . .
. . .

. . . A A⊥ A⊥ A

ax

ax ax

ax axp2

O

p1

O O⊗

⊗ ⊗⊗

t2

⊗
t1

⊗O

ν

O

ν

O

ν

(a)

A A⊥

...

A A⊥

A A⊥

ax

ax

ax

O

⊗

ν O

⊗

ν

O

⊗

φα

ν

(b)

Fig. 6: Graph of µMLL∞ NWFPS

– Θ′ is a (possibly empty) collection of disjoint subsets of {Bi}i∈I of the form
{C,C⊥};

– Θ is a partition of
⋃
i∈I{αiui | addr(Bi) = αi, ui ∈ Ui} s.t. the partitions are

one of the following forms:

• {αiui, αjuj} s.t. ui, uj are finite and d(Bi, ui)e = d(Bj , uj)e⊥.

• It contains an elements of the form αiui s.t. u is an infinite address;

– {Bi}i∈I \
⋃
θ∈Θ′ θ is necessarily finite.

Intuitively, each class of Θ represents either an axiom or an infinite branch
in a sequentialization. In fact, the infinite addresses in a partition correspond
exactly to the infinite threads in a proof. Hence it is also straightforward to
define a valid NWFPS.

Definition 19. Let π be a pre-proof of the µMLL∞ sequent ` Γ . Desequential-
ization of π, denoted Deseq(π), is the NWFPS, [Θ′]Γ ′[Θ], s.t. Θ′ are the cut
formulas in π, BUii ∈ Γ ′ where Bi ∈ Γ , Ui = addr(Bi)

−1addr(π), to any finite
maximal branch of π, associate a partition in Θ containing the addresses of the
occurrences that are the conclusion of the corresponding axiom rule in π and to
any infinite branch β of π, associate a partition in Θ such that a finite address
is in the partition if it is belongs to infinitely many sequents of β and an infinite
address is in the partition if all its strict prefixes belong to β. A NWFPS that is
the desequentialization of a µMLL∞ (pre-)proof is called an (valid) infinet.

Example 8. As expected from the discussion in remark 3, desequentialization of
the proof in example 3 is

[∅]
{
ψ{i(li)

∗r(l+r)+(il)ω}
α

}
[{αi(li)nrl, i(li)nrr}n≥0, {(il)ω}].

Infinets: The parallel syntax for non-wellfounded proof-theory 11

Remark 4. The reader might think that there is discrepancy in the way dese-
quentialization of wellfounded and non-wellfounded proofs are defined in defs. 12, 19 resp.
Note that def. 12 can be reformulated à la def. 19 but not vice versa. However,
we choose to inductively define wellfounded desequentialization since it is closer
to the standard definition in proof-net theory.

5 Correctness criteria

The OR-correctness of a NWFPS is defined as in def. 15 and def. 16 (up to the
fact that the switching can be an infinite set of switching functions). However
this straightforward translation is not enough to ensure soundness.

Example 9. Consider the following sequent proof with infinitely many cuts.

(ax)
µX.X, νZ.Z

? ` µZ.Z, νY.Y
(ν)

` µZ.Z, νY.Y
(cut)

? ` µX.X, νY.Y

Observe that this structure is not OR-correct: ...

µX.X νZ.Z µZ.Z νZ′.Z′ µZ′.Z′···

ax ax

cut cut νY.Y

ν

νY.Y

ν

Consequently, we restrict ourselves to NWFPS with at most finitely many
cuts. The proof structures discussed in the rest of the paper have finitely many
cuts unless otherwise mentioned.

Example 10. Consider the graph of proof structure of the sequent ` νX.X `
(A⊥⊗(A⊗ (A⊥ ` A))) in fig. 6a. Note that for the sake of readability, edge
labels have been concealed. This proof structure is OR-correct but it is not
sequentializable. Consider the ⊗ node labelled t1. In any sequentialization it
should be above p1, which should be above t2, which in turn should be above
p2 and so on. This is absurd since even in a non-wellfounded proof every rule is
executed at a finite depth.

Hence we impose a “lock-free” condition (borrowing the terminology from
concurrent programming) on NWFPS.

Definition 20. Let [Θ′]{BUii }i∈I [Θ] be a NWFPS. For any ui ∈ Ui, uj ∈ Uj, we
say that (ui, uj) is a coherent pair if there exists θ ∈ Θ s.t. {αiui, αjuj} ⊆ θ,
where addr(Bi) = αi and addr(Bj) = αj.

Definition 21. A switching path is an undirected path in a partial syntax
tree s.t. it does not go consecutively through the two premises of a ` formula. A
strong switching path is a switching path whose first edge is not the premise
of a ` node. We denote by src(•), tgt(•) the source and target of a switching
path resp. Two switching paths γ, γ′ are said to be compatible if γ′ is strong
and tgt(γ) = src(γ′).

12 Abhishek De and Alexis Saurin

Proposition 3. If γ, γ′ are compatible switching paths, then their concatenation
γ · γ′ is a switching path. Furthermore, if γ is strong, then γ · γ′ is also strong.

The underlying undirected path of any path in a partial syntax tree is a
switching path. We call such paths straight switching paths. In particular,
the path from any vertex, v, to the root is a straight switching path. We denote
it by δ(v). By abuse of notation, we will also sometimes write δ((Bi, u)) where u
is infinite to mean the infinite path from the root of BUii following u, although
technically (Bi, u) is not a node per se. Observe that any straight switching path

in a partial syntax tree, FU , can be represented by a pair of words (u, u′) ∈ U2

s.t. u < u′. Intuitively, it means that the path is from (F, u) to (F, u′).

Definition 22. A switching sequence is a sequence σ = {γi}ni=1 s.t. γis are
disjoint switching paths and for every i ∈ {1, 2, . . . , n − 1}, either γi, γi+1 are
compatible or they are straight and the word pairs corresponding to them, (ui, u

′
i)

and (ui+1, u
′
i+1), are s.t. (u′i, u

′
i+1) is a coherent pair. Two vertices, v and v′, are

said to be connected by the switching sequence, σ, if src(γ1) = v and tgt(γn) = v′.
We say the switching sequence is cyclic if src(γ1) = tgt(γn).

Proposition 4. Let γ be a switching path in B
Uj
j ∈ Γ . Then there exists a

switching sw s.t. γ is also a path in the switching graph, Ssw.

Proposition 5. If S is a NWFPS containing a cyclic switching sequence, then
there is switching of S, s.t. the corresponding correction graph is contains a cycle.

Definition 23. Let S = [Θ′]{BUii }[Θ] be a proof structure. Let T = {(Bi, ui) |
ui ∈ Ui; (Bi, ui) is a ⊗ formula} and let P = {(Bi, ui) | ui ∈ Ui; (Bi, ui) is a `
formula}. The dependency graph of S, D(S), is the directed graph (V,E)

s.t. V = T] P , for every v ∈ V and p ∈ P , (p, v) ∈ E if the premises of p
are connected by a switching sequence containing v, and, for every v, v′ ∈ V ,
(v, v′) ∈ E if v′ ∈ FL(v).

Proposition 6 (Bagnol et al. [5]). If S is OR-correct then D(S) is acyclic.

From prop. 6, we can impose an order on the nodes of an OR-correct proof
structure, S, namely, n1 <D(S) n2 if n1 → n2 in D(S).

Definition 24. A NWFPS, S, is said to be deeply lock-free if <D(S) has no
infinite descending chains.

Example 11. Consider the proof structure, S = [∅]{νX.X ` XL
α , A⊗B

{l,r}
β }[Θ]

where, L = (i(l + r))ω , Θ = {{α(il)ω, βl}, α · (L \ (il)ω) ∪ {βr}} .
Observe that S is OR-correct and deeply lock-free. But S cannot be sequen-

tialized into a sequent proof, because a potential sequentialization has a ⊗ rule
at a finite depth, then either there are no subsoccurences of νX.X `Xα in the
left premise in which case A cannot reside with only the left-branch in Θ, or,
there are some subsoccurences of νX.X `Xα in the left premise in which case
A cannot reside with any infinite branch in Θ.

Infinets: The parallel syntax for non-wellfounded proof-theory 13

Definition 25. A NWFPS, S = [Θ′]{BUii }i∈I [Θ], is said to be widely lock-
free if there is a function f : N → N s.t. for every (Bi, u) ∈ P and (Bj , v) ∈ T
if ((Bi, u), (Bj , v)) ∈ E, f(|v|) ≥ |u| where D(S) = (T] P,E). We call such a
function a wait function of S. A proof structure is simply called lock-free if
it is both deeply and widely lock-free.

Remark 5. The wait function of a NWFPS need not be unique (if one exists).

Proposition 7. An infinet is an OR-correct lock-free NWFPS.

6 Sequentialization

A A⊥ −→ A A⊥

cut

A⊗A⊥
⊗

Fig. 7: Translating cuts to
tensors

In this section we show that any NWFPS satis-
fying the correctness criterion introduced in sec-
tion 5 is indeed sequentializable. Since we deal
with finitely many cuts, without loss of generality,
we can assume that we have cut-free proof struc-
tures due to the standard trick shown in Fig. 7.

So, in this section, we will write NWFPS with-
out the left component. We try to adapt the standard proof for MLL but the
straightforward adaptation is not fair since we may never explore one branch by
forever prioritizing the sequentialization of another infinite branch. We restore
fairness by a time-stamping algorithm.

Definition 26. Let S = Γ [Θ] be an OR-correct NWFPS. The root, Bi, of a tree
in Γ is said to be splitting if:

– Γ = {Bεi , Bεj},
– Bi is a `, µ or ν formula, or,
– Bi is a ⊗ formula and there exists Θ1, Θ2 s.t. Θ = Θ1]Θ2 and S1 = Γ1[Θ1],
S2 = Γ2[Θ2] are OR-correct NWFPS where Γ1 = Γ \ {BUii } ∪ {(Bi, l)Ul},
Γ2 = Γ \ {BUii } ∪ {(Bi, r)Ur} and Ui = lUl + rUr.

Proposition 8. Let S = Γ [Θ] be an OR-correct NWFPS and Bi be a splitting
⊗ formula in S. If S is lock-free then so is S1 and S2 as defined in def. 26.

Dated sequentialization process. We time-stamp each node of Γ to indicate the
time when it will be sequentialized. Formally, we have (S, τ) where τ is a function
s.t. τ : {(Bi, u)|u ∈ Ui}i∈I → N ∪ {∞} where Γ = {BUii }i∈I and ∞ > n for all
n ∈ N. Define the minimal finite image, min, as

min(τ) := min{n ∈ N | ∃i ∈ I, u ∈ Ui s.t. τ((Bi, u)) = n}.

We will describe the sequentialization process. Suppose we are given S(= Γ [Θ], τ).
We maintain the following invariant:

S is cut-free, OR-correct and lock-free;
τ((Bi, u)) 6=∞ iff (Bi, u) is splitting in S. (?)

Assume that Γ contains a splitting root, Bj , st. τ(Bj) = min(τ).

14 Abhishek De and Alexis Saurin

– If Γ = {Bεi , Bεj} then we stop successfully with the proof reduced to an ax.
– If Bj is a `, (co)recursively apply the sequentialization process to S0(=

Γ0[Θ], τ0) where Γ0 = Γ \{BUjj }∪{(Bj , l)Ul , (Bj , r)Ur}, Uj = lUl+ rUr, and

τ0((Bi, u)) =

{
t if (Bi, u) is splitting in S0;

τ((Bi, u)) otherwise.

where for each splitting (Bi, u), t is arbitrarily chosen to be any natural
number greater than τ(Bj). We apply a ` rule on the obtained proof.

– If Bj is a µ(resp. ν) formula, (co)recursively apply the sequentialization

process to (S0 = Γ0[Θ], τ0) where Γ0 = Γ \ {BUjj } ∪ {(Bj , i)Ui}, Uj = iUi,
and τ0 is defined as above. We apply a µ (resp. ν) rule on the obtained proof.

– If Bj is a ⊗ formula we (co)recursively apply the sequentialization process
to (S1, τ1) and (S2, τ2) where S1,S2 are as defined in def. 26 and τ1, τ2 are
defined as above. We apply a ⊗ rule on the two obtained proofs.

Observe that the invariant (?) is maintained in this (co)recursive process. To
start the sequentialization, we initialize τ by assigning arbitrary natural numbers
to splitting nodes and ∞ to the other nodes.

Proposition 9. Let T be a non-splitting conclusion in an OR-correct NWFPS.
Then there exists a ` formula, P , s.t. there exists disjoint switching sequences,
σ, σ′, from T to P which both start with a premise of T and end with a premise
of P . We call (P, σ, σ′) the witness for T .

Lemma 1. Let S be a cut-free OR-correct NWFPS. S contains a splitting root.

Lemma 2. The sequentialization assigns a finite natural number to every for-
mula i.e. τ((Bi, u)) 6=∞ after some iterations of the process described above.

Lemma. 1 crucially uses OR-correctness and lemma. 2 crucially uses lock-
freeness. Lemma. 1 ensures productivity of the aforementioned sequentialization
process while lemma. 2 ensures that every inference in a NWFPS is ultimately
executed. From that, we conclude the following theorem.

Theorem 1. Let S = [Θ′]Γ [Θ] be an OR-correct lock-free NWFPS s.t. Θ′ = ∅.
Then S is an infinet.

Remark 6. Observe that the choice of the time-stamping function at each step
of our sequentialization is non-deterministic. By considering appropriate time-
stamping functions we can generate all sequentializations. The detailed study is
beyond the scope of the present paper.

7 Canonicity

We started investigating proof nets for non-wellfounded proofs since we expected
that the proof net formalism would quotient sequent proofs that are equivalent
up to a permutation of inferences. At this point, we carry out that sanity check.

Consider the following proofs π1 and π′1.

Infinets: The parallel syntax for non-wellfounded proof-theory 15

π2

` Γ, F [µX.F/X], A
(µ)

` Γ, µX.F,A
π3

` B,∆
(⊗)

π1 ` Γ, µX.F,A⊗B,∆

π2

` Γ, F [µX.F/X], A

π3

` B,∆
(⊗)

` Γ, F [µX.F/X], A⊗B,∆
(µ)

π′1 ` Γ, µX.F,A⊗B,∆

We say that π ;(µ,⊗L) π
′ if π is a proof with π1 as a subproof at a finite depth

and π′ is π where π′1 has been replaced by π′1. Observe that we can define ;� for

every � ∈ P × P where P = {µ, ν,`,⊗?, cut? | ? ∈ {L,R}}. Let ∼�=
⋃
�∈S

;�.

Observe that the usual notion of equivalence by permutation, viz. ∼= (∼�)∗

does not characterize equivalence by infinets. Consider the following two proofs,
π1 and π2, s.t. π1 6∼ π2 which have the same infinet,

[∅]{µX.X{i
ω}

α , νX.X
{iω}
β }[{{αiω, βiω}}].

π1 ` µX.X, νX.X
(µ)

` µX.X, νX.X
(ν)

π1 ` µX.X, νX.X

π2 ` µX.X, νX.X
(ν)

` µX.X, νX.X
(µ)

π2 ` µX.X, νX.X

Suppose we allow infinite permutations. We say that π(∼�)ωπ′ if there exists
a proof π′′ (not necessarily different from π, π′) and two sequence of proofs,
{πi}∞i=0 and {π′i}∞i=0, s.t. π0 = π, π′0 = π′, for every i, πi ∼� πi+1 and π′i ∼� π′i+1,
and d(πi, π

′′)→ 0, d(π′i, π
′′)→ 0 as i→∞. Consider the following proofs.

π

` A

...
(ν)

` B, νY.Y
(⊗)

` A⊗B, νY.Y (∼�)ω

...
(ν)

` A⊗B, νY.Y (∼�)ω

π′

` A

...
(ν)

` B, νY.Y
(⊗)

` A⊗B, νY.Y

Note that equating these proofs is absurd since π and π′ can have different com-
putation behaviour (for example, A = (X⊥`X⊥)` (X⊗X) and π corresponds
to true while π’ corresponds to false). To exactly capture equivalence by infinets
we need to refine this equivalence. To do that we introduce the notion of an active
occurrence. We say that for a permutation step ;(ri,r′i)

, the formula occurrence
Fi introduced by the rule r′i is the active occurrence in that step.

Given two node-labelled trees T1 and T2, we define d(T1, T2) = 1
2δ

where δ is
the minimal depth of the nodes at which they differ. We say that π(∼�)ωfairπ

′ if
there exists a sequence of proofs {πi}∞i=0 s.t. π0 = π, for every i, πi ;(ri,r′i)

πi+1,
the sequence of addresses of the active occurrences occurring infinitely often is
empty, i.e. Inf({addr(Fi)}∞i=0) = ∅, and d(πi, π

′) → 0 as i → ∞. Let ∼∞= (∼�

)∗ ∪ (∼�)ωfair.

Proposition 10. π1 ∼∞ π2 iff Deseq(π1) = Deseq(π2).

8 Cut Elimination

In this section we provide cut elimination results albeit with two crucial re-
strictions: firstly, we consider only finitely many cuts as in the rest of the pa-
per and secondly, we consider proofs with no axioms and no atoms. An infinet

16 Abhishek De and Alexis Saurin

S = [Θ′]Γ [Θ] is said to be η∞-expanded if it does not contain any axioms or
atoms i.e. every θ ∈ Θ contains only infinite addresses. Any infinet can be made
η∞-expanded in a way akin to η-expansion of axioms in MLL. There are two
issues to be resolved to obtain the result: first, to specify the notion of a normal
form and second, formulate how to reach that.

Proposition 11. Let S = [Θ′]Γ [Θ] be an η∞-expanded infinet. Let {C,C⊥} ∈
Θ and BUii , B

Uj
j ∈ Γ s.t. Bi = C = Bj

⊥. Then, Ui = Uj
⊥ i.e. u ∈ Ui iff

u⊥ ∈ Uj.

Proof (Sketch). Since Bi = Bj
⊥, their syntax trees are orthogonal. Since S is

η∞-expanded, Ui(resp. Uj) is actually the full syntax tree. Hence Ui = Uj
⊥.

Definition 27. Let S0 = [Θ′0]Γ0[Θ0] be a η∞-expanded infinet. Let {C,C⊥} ∈
Θ′0 and BUii , B

Uj
j ∈ Γ s.t. Bi = C = Bj

⊥. A big-step {C,C⊥} elimination
on S0 produces non-wellfounded proof-structure S1 = [Θ′1]Γ1[Θ1] where,

– Θ′1 = Θ′0 \ {{C,C⊥}}
– Γ1 = Γ0 \ {BUii , B

Uj
j }

– If θ ∈ Θ0 s.t. θ ∩ Ui = ∅ and θ ∩ Uj = ∅, then θ ∈ Θ1. If u ∈ θ ∩ Ui then
θ ∪ θ′ \ {u, u⊥} ∈ Θ1 where θ′ ∈ Θ0 and u⊥ ∈ θ′ ∩ Uj.

Remark 7. Def. 27 is well-defined because of prop. 11.

Proposition 12. A big-step operation on a valid infinet produces a valid infinet.

Given S = [Θ′]Γ [Θ], an η∞-expanded infinet, we can extend the definition
of a big-step {C,C⊥} elimination on S, for any {C,C⊥} ∈ Θ′, to a big-step
C elimination on S, for C ⊆ Θ′. We call the big-step Θ′ elimination on S the
normal form of S and denote it by JSK.

The idea now is to show that local cut-elimination indeed produces in the
limit the normal form defined above. For this we need to define a metric, d, over
infinets with the same normal form so that we can formalize the limit of infinite
reduction sequences. See [15] for details.

Lemma 3. The set of all valid infinets with the same normal form together with
the distance, d, forms a metric space.

We can now define the limit of an infinite sequence of valid infinets with the
same normal form in the standard way: we say that {Si}∞i=0 converges to S if
d (Si,S)→ 0 as i→∞.

Definition 28. A sequence of infinets, {Si}∞i=0, is called a reduction sequence
if for every i > 0, Si → Si+1 by the cut reduction rules in def. 17. A reduction
sequence is said to be fair if for every i, for every cut {C,C⊥} in Si, there is

a j > i such that C ′ is a suboccurrence of C where {C ′, C ′⊥} is the cut being
reduced in the step Sj → Sj+1.

Infinets: The parallel syntax for non-wellfounded proof-theory 17

Theorem 2. Let {Si}∞i=0 be a fair reduction sequence s.t. S0 is valid. Then, it
converges to JS0K.

Corollary 1. If two reduction sequences starting from a valid η∞-expanded in-
finet, S, converges to S1 and S2, then all fair reduction sequences starting from
S1 and S2 resp. converge to JSK.

9 Conclusion

In this paper, we introduced infinitary proof-nets for µMLL∞. We defined a cor-
rectness criterion and showed its soundness and completeness in characterizing
those proof structures which come from non-wellfounded sequent (pre)proofs.
We also gave a partial cut elimination result. For the non-wellfounded correct-
ness criterion, we extended the Danos-Regnier criterion from the finitary case.
Other more efficient criteria (like the parsing criterion [21]) are impossible to
adapt since any reasonable operation over non-wellfounded structures should
necessarily be of a bottom-up nature (unlike the parsing criterion).

Related and future works. The closest works we know of are Montelatici’s po-
larized proof nets with cycles [25] and Mellies’ work on higher-order parity au-
tomata [24] which considers a λY-calculus and an infinitary λ-calculus endowed
with parity conditions, therefore quotienting some of the non-determinism of
sequent-calculus albeit in the case of intuitionistic logic. Our work is a first step
in developing a general theory of non-wellfounded and circular proof-nets:

– We plan to strengthen the correctness criterion to capture proofs with in-
finitely many cuts and possibly extend our formalism to µMALL∞.

– We plan to carry an investigation of the notion of circularity in infinets:
while one can capture circular proofs as finitely representable infinets, there
are non-wellfounded proofs which are not circular but which have finitely
representable desequentialization. The simplest example is the proof of `
νX.X `X which contain sequents of unbounded size and are therefore not
circular. Not only is the study circular infinets interesting from a program-
ming perspective but also it would make it possible to do a complexity
analyses of our methods of checking correctness, sequentialization and cut-
elimination.

Acknowledgement. We are indebted to anonymous reviewers for providing in-
sightful comments which has immensely enhanced the presentation of the paper.

References

1. David Baelde. On the proof theory of regular fixed points. In Martin Giese and
Arild Waaler, editors, Automated Reasoning with Analytic Tableaux and Related
Methods, 18th International Conference, TABLEAUX 2009, Oslo, Norway, July
6-10, 2009. Proceedings, volume 5607 of Lecture Notes in Computer Science, pages
93–107. Springer, 2009.

18 Abhishek De and Alexis Saurin

2. David Baelde. Least and greatest fixed points in linear logic. ACM Transactions
on Computational Logic (TOCL), 13(1):2, 2012.

3. David Baelde, Amina Doumane, and Alexis Saurin. Infinitary proof theory: the
multiplicative additive case. In 25th EACSL Annual Conference on Computer Sci-
ence Logic, CSL 2016, August 29 - September 1, 2016, Marseille, France, volume 62
of LIPIcs, pages 42:1–42:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2016.

4. David Baelde and Dale Miller. Least and greatest fixed points in linear logic. In
Nachum Dershowitz and Andrei Voronkov, editors, Logic for Programming, Artifi-
cial Intelligence, and Reasoning, 14th International Conference, LPAR 2007, Yere-
van, Armenia, October 15-19, 2007, Proceedings, volume 4790 of Lecture Notes in
Computer Science, pages 92–106. Springer, 2007.

5. Marc Bagnol, Amina Doumane, and Alexis Saurin. On the dependencies of logical
rules. In Andrew M. Pitts, editor, Foundations of Software Science and Compu-
tation Structures - 18th International Conference, FoSSaCS 2015, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS
2015, London, UK, April 11-18, 2015. Proceedings, volume 9034 of Lecture Notes
in Computer Science, pages 436–450. Springer, 2015.

6. R.F. Blute, J.R.B. Cockett, R.A.G. Seely, and T.H. Trimble. Natural deduction
and coherence for weakly distributive categories. Journal of Pure and Applied
Algebra, 113(3):229 – 296, 1996.

7. James Brotherston. Sequent Calculus Proof Systems for Inductive Definitions. PhD
thesis, University of Edinburgh, November 2006.

8. James Brotherston and Alex Simpson. Complete sequent calculi for induction
and infinite descent. In 22nd IEEE Symposium on Logic in Computer Science
(LICS 2007), 10-12 July 2007, Wroclaw, Poland, Proceedings, pages 51–62. IEEE
Computer Society, 2007.

9. James Brotherston and Alex Simpson. Sequent calculi for induction and infinite
descent. J. Log. Comput., 21(6):1177–1216, 2011.

10. Pierre Clairambault. Least and greatest fixpoints in game semantics. In FOSSACS,
volume 5504 of Lecture Notes in Computer Science, pages 16–31. Springer, 2009.

11. Pierre-Louis Curien. Introduction to linear logic and ludics, part ii, 2006.
12. Vincent Danos. Une application de la logique linéaire à l’étude des processus de

normalisation (principalement du λ-calcul). Thèse de doctorat, Université Denis
Diderot, Paris 7, 1990.

13. Vincent Danos and Laurent Regnier. The structure of multiplicatives. Archive for
Mathematical Logic, 28:181–203, 1989.

14. Christian Dax, Martin Hofmann, and Martin Lange. A proof system for the lin-
ear time µ-calculus. In S. Arun-Kumar and Naveen Garg, editors, FSTTCS 2006:
Foundations of Software Technology and Theoretical Computer Science, 26th Inter-
national Conference, Kolkata, India, December 13-15, 2006, Proceedings, volume
4337 of Lecture Notes in Computer Science, pages 273–284. Springer, 2006.

15. Abhishek De and Alexis Saurin. Infinets: The parallel syntax for non-wellfounded
proof-theory. working paper or preprint, June 2019.

16. Amina Doumane. On the infinitary proof theory of logics with fixed points. (Théorie
de la démonstration infinitaire pour les logiques à points fixes). PhD thesis, Paris
Diderot University, France, 2017.

17. Amina Doumane, David Baelde, Lucca Hirschi, and Alexis Saurin. Towards Com-
pleteness via Proof Search in the Linear Time mu-Calculus. Accepted for publica-
tion at LICS, January 2016.

Infinets: The parallel syntax for non-wellfounded proof-theory 19

18. Jérôme Fortier and Luigi Santocanale. Cuts for circular proofs: semantics and cut-
elimination. In Simona Ronchi Della Rocca, editor, Computer Science Logic 2013
(CSL 2013), CSL 2013, September 2-5, 2013, Torino, Italy, volume 23 of LIPIcs,
pages 248–262. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013.

19. Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987.
20. Jean-Yves Girard. Proof-nets: the parallel syntax for proof theory. 1995.
21. Stefano Guerrini. A linear algorithm for mll proof net correctness and sequential-

ization. Theor. Comput. Sci., 412(20):1958–1978, April 2011.
22. Roope Kaivola. A simple decision method for the linear time mu-calculus. In Jörg

Desel, editor, Structures in Concurrency Theory, Workshops in Computing, pages
190–204. Springer London, 1995.

23. Dexter Kozen. Results on the propositional mu-calculus. Theoretical Computer
Science, 27:333–354, 1983.

24. Paul-André Melliès. Higher-order parity automata. In 32nd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June
20-23, 2017, pages 1–12. IEEE Computer Society, 2017.

25. Raphaël Montelatici. Polarized proof nets with cycles and fixpoints semantics. In
Martin Hofmann, editor, Typed Lambda Calculi and Applications, 6th International
Conference, TLCA 2003, Valencia, Spain, June 10-12, 2003, Proceedings., volume
2701 of Lecture Notes in Computer Science, pages 256–270. Springer, 2003.

26. David Park. Fixpoint induction and proofs of program properties. Machine intel-
ligence, 5(59-78):5–3, 1969.

27. Luigi Santocanale. A calculus of circular proofs and its categorical semantics. In
Mogens Nielsen and Uffe Engberg, editors, Foundations of Software Science and
Computation Structures, volume 2303 of Lecture Notes in Computer Science, pages
357–371. Springer, 2002.

28. Igor Walukiewicz. On completeness of the mu-calculus. In LICS, pages 136–146.
IEEE Computer Society, 1993.

29. Igor Walukiewicz. Completeness of Kozen’s axiomatisation of the propositional
mu-calculus. In Proceedings, 10th Annual IEEE Symposium on Logic in Com-
puter Science, San Diego, California, USA, June 26-29, 1995, pages 14–24. IEEE
Computer Society, 1995.

