Abhishek De

Alexis Saurin
email: saurin@irif.fr

Infinets: The parallel syntax for non-wellfounded proof-theory

Keywords: circular proofs, non-wellfounded proofs, fixed points, mucalculus, linear logic, proof-nets, induction and coinduction

published or not. The documents may come

Introduction

Inductive and coinductive reasoning is pervasive in computer science to specify and reason about infinite data as well as reactive properties. Developing appropriate proof systems amenable to automated reasoning over (co)inductive statements is therefore important for designing programs as well as for analyzing computational systems. Various logical settings have been introduced to reason about such inductive and coinductive statements, both at the level of the logical languages modelling (co)induction (such as Martin Löf's inductive predicates or fixed-point logics, also known as µ-calculi) and at the level of the proof-theoretical framework considered (finite proofs with explicit (co)induction rules à la Park [START_REF] Park | Fixpoint induction and proofs of program properties[END_REF] or infinite, non-wellfounded proofs with fixed-point unfoldings) [7-9, 4, 1, 2]. Moreover, such proof systems have been considered over classical logic [START_REF] Brotherston | Sequent Calculus Proof Systems for Inductive Definitions[END_REF][START_REF] Brotherston | Sequent calculi for induction and infinite descent[END_REF], intuitionistic logic [START_REF] Clairambault | Least and greatest fixpoints in game semantics[END_REF], linear-time or branching-time temporal logic [START_REF] Kozen | Results on the propositional mu-calculus[END_REF][START_REF] Kaivola | A simple decision method for the linear time mu-calculus[END_REF][START_REF] Walukiewicz | On completeness of the mu-calculus[END_REF][START_REF] Walukiewicz | Completeness of Kozen's axiomatisation of the propositional mu-calculus[END_REF][START_REF] Dax | A proof system for the linear time µ-calculus[END_REF][START_REF] Doumane | On the infinitary proof theory of logics with fixed points[END_REF][START_REF] Doumane | Towards Completeness via Proof Search in the Linear Time mu-Calculus[END_REF] or linear logic [START_REF] Santocanale | A calculus of circular proofs and its categorical semantics[END_REF][START_REF] Fortier | Cuts for circular proofs: semantics and cutelimination[END_REF][START_REF] Baelde | Least and greatest fixed points in linear logic[END_REF][START_REF] Baelde | Infinitary proof theory: the multiplicative additive case[END_REF][START_REF] Doumane | On the infinitary proof theory of logics with fixed points[END_REF].

Logics based on the µ-calculus have been particularly successful in modelling inductive and coinductive reasoning and for the verification of reactive systems. While the model-theory of the µ-calculus has been well-studied, its proof-theory still deserves further investigations. Indeed, while explicit induction rules are simple to formulate (For instance, Fig. 1 shows the introduction rule à la Park for a coinductive property) the treatment of (co)inductive reasoning brings some highly complex proof objects.

S, ∆

S ⊥ , F [S/X] (ν) νX.F, ∆ Fig. 1: Coinduction rule At least two fundamental technical shortcomings prevent the application of traditional µ-calculusbased proof-systems for the study of programming languages with (co)inductive data types and automated (co)inductive theorem proving and call for alternative proposals of proof systems supporting (co)induction. Firstly, the fixed point introduction rules break the subformula property which is highly problematic for automated proof construction: at each coinduction rule, one shall guess an invariant (in the same way as one has to guess an appropriate induction hypothesis in usual mathematical reasoning). Secondly, (ν inv) actually hides a cut rule that cannot be eliminated, which is problematic for extending the Curry-Howard correspondence to fixed-point logics.

. . .

µX.X

(µ) µX.X . . .

νX.X, Γ

(ν) νX.X, Γ (cut) Γ Fig. 2: An unsound proof Non-wellfounded proof systems have been proposed as an alternative [START_REF] Brotherston | Sequent Calculus Proof Systems for Inductive Definitions[END_REF][START_REF] Brotherston | Complete sequent calculi for induction and infinite descent[END_REF][START_REF] Brotherston | Sequent calculi for induction and infinite descent[END_REF] to explicit (co)induction. By having the coinduction rule with simple fixed-point unfoldings and allowing for nonwellfounded branches, those proof systems address the problem of the subformula property for the cutfree systems: the set of subformula is then known as Fischer-Ladner subformulas, incorporating fixed-points unfolding but preserving finiteness of the subformula space. Moreover, the cut-elimination dynamics for inductive-coinductive rules becomes much simpler. A particularly interesting subclass of non-wellfounded proofs, is that of circular, or cyclic proofs, that have infinite but regular derivations trees: they have attracted a lot of attention for retaining the simplicity of the inferences of non-wellfounded proof systems but finitely representable making it possible to have an algorithmic treatment of such proof objects. However, in those proof systems when considering all possible infinite, non-wellfounded derivations (a.k.a. pre-proofs), it is straightforward to derive any sequent Γ (see fig. 2). Such pre-proofs are therefore unsound: one needs to impose a validity criterion to sieve the logically valid proofs from the unsound ones. This condition will actually reflect the inductive and coinductive nature of our two fixed-point connectives: a standard approach [7-9, 27, 3] is to consider a pre-proof to be valid if every infinite branch is supported by an infinitely progressing thread. As a re-sult, the logical correctness of circular proofs becomes non-local, much in the spirit of correctness criteria for proof-nets [START_REF] Girard | Linear logic[END_REF][START_REF] Danos | The structure of multiplicatives[END_REF].

However the structure of non-wellfounded proofs has to be further investigated: the present work stems from the observation of a discrepancy between the sequential nature of sequent proofs and the parallel structure of threads. An immediate consequence is that various proof attempts may have the exact same threading structure but differ in the order of inference rule applications; moreover, cut-elimination is known to fail with more expressive thread conditions. This paper proposes a theory of proof-nets for µMLL ∞ non-wellfounded proofs.

Organization of the paper. In Section 2, we recall the necessary background from [START_REF] Baelde | Infinitary proof theory: the multiplicative additive case[END_REF] on linear logic with least and greatest fixed points and its non-wellfounded proofs, we only present the unit-free multiplicative setting which is the framework in which we will define our proof-nets. In Section 3 we adapt Curien's proof-nets [START_REF] Curien | Introduction to linear logic and ludics[END_REF] to a very simple extension of MLL, µMLL * , in which fixed-points inferences are unfoldings and only wellfounded proofs are allowed; this allows us to set the first definitions of proof-nets and extend correctness criterion, sequentialization and cut-elimination to this setting but most importantly it sets the proof-net formalism that will be used for the extension to non-wellfounded derivations. Infinets are introduced in Section 4 as an extension of the µMLL * proof-nets of the previous section. A correctness criterion is defined in Section 5 which is shown to be sound (every proof-nets obtained from a sequent (pre-)proof is correct). The completeness of the criterion (i.e. sequentialization theorem) is addressed in Section 6. We quotient proofs differing in the order of rule application in Section 7 and give a partial cut elimination result in Section 8. We conclude in Section 9 and comment on related works and future directions.

Notation. For any sequence S, let Inf(S) be the terms of S that appears infinitely often in S. Given a finite alphabet Σ, Σ * and Σ ω are the set of finite and infinite words over Σ resp. Let Σ ∞ = Σ * ∪ Σ ω . We denote the empty word by . Given two words u, u (finite or infinite) we denote by u∩u the greatest common prefix of u and u and u u if u is a prefix of u . Given a language, L ⊆ Σ ∞ , L ⊆ Σ ∞ is the set of all prefixes of the words in L.

Background

We denote the multiplicative additive fragment of linear logic by MALL and the multiplicative fragment by MLL. The non-wellfounded extension of MALL with least and greatest fixed points operators, µMALL ∞ , was introduced in [START_REF] Baelde | Infinitary proof theory: the multiplicative additive case[END_REF][START_REF] Doumane | On the infinitary proof theory of logics with fixed points[END_REF]. Proof-nets for additives and units are quite cumbersome [START_REF] Girard | Proof-nets: the parallel syntax for proof theory[END_REF][START_REF] Blute | Natural deduction and coherence for weakly distributive categories[END_REF], so, in the current presentation, we will only consider the unit-free multiplicative fragment which we denote by µMLL ∞ . Definition 1. Given an infinite set of atoms A = {A, B, . . . }, and an infinite set of propositional variables, V = {X, Y, . . . }, s.t. A ∩ V = ∅, µMLL preformulas are given by the following grammar:

φ, ψ ::= A | A ⊥ | X | φ `ψ | φ⊗ψ | σX.φ
where A ∈ A and X ∈ V, and σ ∈ {µ, ν}; σ binds the variable X in φ. When a pre-formula is closed (i.e. no free variables), we simply call it a formula. Note that negation is not a part of the syntax, so that we do not need any positivity condition on the fixed-point expressions. We define negation, (•)

⊥ , as a meta-operation on the pre-formulas and will use it only on formulas. Definition 2. Negation of a pre-formula φ, φ ⊥ , is the involution satisfying:

(φ ⊗ ψ) ⊥ = ψ ⊥ `φ⊥ , X ⊥ = X, (µX.φ) ⊥ = νX.φ ⊥ .
Example 1. As a running example, we will consider the formulas φ = A `A⊥ ∈ MLL and ψ = νX.X⊗ φ ∈ µMLL ∞ . Observe that φ ⊥ = A ⊥ ⊗A as usual in MLL and by def. 2, ψ ⊥ = µX.X `φ⊥ .

The reader may find it surprising to define X ⊥ = X, but it is harmless since our proof system only deals with formulas. Note that (F [G/X])

⊥ = F ⊥ [G ⊥ /X].
Definition 3. An (infinite) address is a finite(resp. infinite) word in {l, r, i} ∞ . Negation extends over addresses as the morphism satisfying l ⊥ = r, r ⊥ = l, and i ⊥ = i. We say that α is a sub-address of α if α α. We say that α and β are disjoint if α ∩ β is not equal to α or β. Definition 4. A formula occurrence (denoted by F, G, ...) is given by a formula, φ, and a finite address, α, and written φ α . Let addr(φ α) = α. We say that occurrences are disjoint when their addresses are. Operations on formulas are extended to occurrences as follows: φ α ⊥ = φ ⊥ α ⊥ , for any ∈ {`, ⊗}, F G = (φ ψ) α if F = φ αl and G = ψ αr , and for σ ∈ {µ, ν}, σX.F = (σX.φ) α if F = φ αi . Substitution of occurrences forgets addresses i.e. (φ α)[ψ β /X] = (φ[ψ/X]) α . Finally, we use • to denote the address erasure operation on occurrences.

Fixed-points logics come with a notion of subformulas (and suboccurrences) slightly different from usual: Definition 5. The Fischer-Ladner closure of a formula occurrence F , FL(F), is the least set of formula occurrences s.t.

F ∈ FL(F), G 1 G 2 ∈ FL(F) =⇒ G 1 , G 2 ∈ FL(F) for ∈ {`, ⊗}, and σX.G ∈ FL(F) =⇒ G[σX.G/X] ∈ FL(F) for σ ∈ {µ, ν}. We say that G is a FL-suboccurrence of F (denoted G ≤ F) if G ∈ FL(F) and G is an immediate FL-suboccurrence of F (denoted G F) if G ≤ F and for every H s.t. G ≤ H ≤ F either H = G or H = F . The FL-subformulas of F are elements of {φ | φ = G ∈ FL(F) }.
Clearly, we could have defined Fischer-Ladner closure on the level of formulas. By abuse of notation, we will sometimes use FL(•), ≤, on formulas.

Remark 1. Observe that for any F , the number of FL-subformulas of F is finite.

The usual notion of subformula (say in MLL) is obtained by traversing the syntax tree of a formula. In the same way, the notion of FL-subformula can be obtained by traversing the graph of the formula (resp. occurrence).

F = G ⊥ (ax) F, G F, ∆1 F ⊥ , ∆2 (cut) ∆1, ∆2 F, G, ∆ (`) F `G, ∆ F, ∆1 G, ∆2 (⊗) F ⊗G, ∆1, ∆2 G[µX.G/X], ∆ (µ) µX.G, ∆ G[νX.G/X], ∆ (ν) νX.G, ∆
Fig. 3: Inference rules for µMLL ∞ Definition 6. The FL-graph of a formula φ, denoted G(φ), is the graph obtained from FL(φ) by identifying the nodes of bound variable occurrences with their binders (i.e. φ → ψ if φ ψ).

Example 2. The graphs of the formulas φ and ψ of example 1 are the following:

G(φ) = À A ⊥ G(ψ) = νX. ⊗ G(φ)
Observe that the graph of a MLL formula is acyclic corresponding to the usual syntax tree but the graph of a µMLL ∞ formula could potentially contain a cycle.

As usual with classical linear logic Γ, φ ∆ is provable iff the sequent Γ φ ⊥ , ∆ is provable. Hence, it is enough to consider the one-sided proof system. A one-sided µMLL ∞ sequent is an expression ∆ where ∆ is a finite set of pairwise disjoint formula occurrences. Definition 7. A pre-proof of µMLL ∞ is a possibly infinite tree generated from the inference rules given in fig. 3. Given a pre-proof, π, addr(π) ⊆ {l, r, i} ∞ is a set of addresses s.t. an address α ∈ addr(π) iff there is an occurrence, F , in an axiom in π with addr(F) = α and an infinite address α ∈ addr(π) iff all the strict prefixes of α are addresses of occurrences appearing in π. Definition 8. A thread of a formula occurrence, F , is a sequence, t = {F i } i∈I , where I ∈ ω + 1, F 0 = F , and for every i

∈ I s.t. i + 1 ∈ I either F i is suboccurrence of F i+1 or F i = F i+1 . We denote by t the sequence { F i } i∈I where t = {F i } i∈I . A thread, t, is said to be valid if min(Inf(t)) is a ν-formula
where minimum is taken in the ≤ ordering. Remark 2. Observe that for any infinite thread t of a formula occurrence F , Inf(t) is non-empty since F has finitely many FL-subformulas. Definition 9. A µMLL ∞ proof is a pre-proof in which every infinite branch contains a valid thread. A circular pre-proof is a regular µMLL ∞ pre-proof i.e. one which has a finite number of distinct subtrees. Example 3. The following non-wellfounded pre-proof of the sequent ψ α (α is an arbitrary address) is circular and is a proof because the only infinite thread {ψ α(il) n } ∞ n=0 is valid.

ψ αil (ax) A αirl , A ⊥ αirr (`) A `A⊥ αir (⊗) ψ ⊗ (A `A⊥) αi (ν) ψ α
3 A first taste of proof-nets in logics with fixed points

Proof-nets are a geometrical method of representing proofs, introduced by Girard that eliminates two forms of bureaucracy which differentiate sequent proofs: irrelevant syntactical features and the order of rules. As a stepping stone, we first consider proof nets in µMLL * which is the proof system with the same inference rules as µMLL ∞ (fig. 3) but with finite proofs. µMLL * is strictly weaker than µMLL ∞ . Proof-nets are usually defined as vertex labelled, edge labelled directed multigraphs. In this presentation a proof structure is "almost" a forest (i.e. a collection of trees) with the leaves joined by axioms or cuts. We use a different presentation due to Curien [START_REF] Curien | Introduction to linear logic and ludics[END_REF] to separate the forest of syntax trees and the space of axiom links for reasons that will become clearer later. Definition 10. A syntax tree of a formula occurrence, F , is the (possibly infinite) unfolding tree of G(F). The syntax tree induces a prefix closed language, L F ⊂ {l, r, i} ∞ s.t. there is a natural bijection between the finite (resp. infinite) words in L F and the finite (resp. infinite) paths of the tree. A partial syntax tree, F U , is a subtree of the syntax tree of the formula occurrence, F , such that the set of words, U ⊆ L F represents a "frontier" of the syntax tree of F i.e. any u, u ∈ U are pairwise disjoint and for every uav ∈ U , there is a v s.t. ua ⊥ v ∈ U . For a finite u ∈ U , we denote by (F, u) the unique suboccurrence of F with the address addr(F).u.

Example 4. The syntax tree of ψ is the unfolding of G(ψ) and induces the language i(li) * r(l + r) + (il) ω . Further, given an arbitrary address α, ψ {ili,irl,irr} α is a partial syntax tree whereas

ψ {ilil,irl,irr} α is not. If u = ililir then (ψ α , u) = A `A⊥ αililir . Definition 11. A proof structure is given by [Θ]{B Ui i } i∈I [Θ]
, where -I is a finite index set; for every i ∈ I, B i is a formula occurrence, B Ui i is a partial syntax tree with

U i ⊂ {l, r, i} * ; -Θ is a (possibly empty) collection of disjoint subsets of {B i } i∈I of the form {C, C ⊥ }; -Θ is a partition of i∈I {α i u i | addr(B i) = α i , u i ∈ U i } s.t. the partitions are of the form {α i u i , α j u j } with (B i , u i) = (B j , u j) ⊥ .
Each class of Θ represents an axiom, each of class of Θ represents a cut, and

{B i } i∈I \ θ∈Θ θ are the conclusions of the proof structure. π1 Γ, F π2 ∆, F ⊥ (cut) Γ, ∆ π1 Γ, F π2 ∆, G (⊗) Γ, ∆, F ⊗G π0 Γ, F, G (`) Γ, F `G π0 Γ, F [µX.F/X] (µ) Γ, µX.F (a) (b) (c) (d)
Fig. 4 Definition 12. Let π be a µMLL * proof. Desequentialization of π, denoted Deseq(π), is defined by induction on the structure of the proof:

-The base case is a proof with only an ax rule, say

(ax) F, G ⊥
. Then

Deseq(π) = [∅]{F { } , (G ⊥) { } }[{{addr(F), addr(G ⊥)}}] -If Deseq(π 1) = [Θ 1]Γ 1 ∪ {F U }[Θ 1] and Deseq(π 2) = [Θ 2]Γ 1 ∪ {F ⊥ U }[Θ 2], then Deseq(π) = [Θ 1 ∪ Θ 2 ∪ {F, F ⊥ }]Γ 1 ∪ Γ 2 [Θ 1 ∪ Θ 2]
where π is fig. 4(a).

-If Deseq(π 1) = [Θ 1]Γ 1 ∪ {F U }[Θ 1] with addr(F) = αl and Deseq(π 2) = [Θ 2]Γ 1 ∪ {G U }[Θ 2] with addr(G) = αr, then Deseq(π) = [Θ 1 ∪ Θ 2]Γ 1 ∪ Γ 2 ∪ {F ⊗G l•U +r•U }[Θ 1 ∪ Θ 2] with addr(F ⊗G) = α where π is fig. 4(b). -If Deseq(π 0) = [Θ 0]Γ 0 ∪ {F U , G U }[Θ 0] with addr(F) = αl, addr(G) = αr then Deseq(π) = [Θ 0]Γ 0 ∪ {F `Gl•U+r•U }[Θ 0] with addr(F `G) = α where π is fig. 4(c). -If Deseq(π 0) = [Θ 0]Γ 0 ∪ {F [F/X] U }[Θ 0] with addr(F [F/X]) = αi then Deseq(π) = [Θ 0]Γ 0 ∪{µX.F i•U }[Θ 0]
with addr(µX.F) = α where π is fig. 4(d).

-The case for ν follows exactly as µ.

Example 5. Consider the following proof π of the sequent νX.X `µX.X.

(ax) νX.X αl , µY.Y βi (µ) νX.X αl , µY.Y β (ax) νY.Y β ⊥ i , µX.X αr (ν) νY.Y β ⊥ , µX.X αr (cut) νX.X αl , µX.X αr (`) νX.X `µX.X α
We choose α, β s.t. they are disjoint. We have that Deseq

(π) = [Θ]Γ [Θ] s.t. Θ = {µY.Y β , νY.Y β ⊥ } Θ = {αl, βi}, {αr, β ⊥ i} Γ = νX.X `µX.X {l,r} α , µY.Y {i} β , νY.Y {i} β ⊥ Definition 13 (Graph of proof structure). Let S = [Θ]{B Ui i } i∈I [Θ]
be a proof structure. The graph of S denoted Gr(S) is the graph formed by: taking the transpose (i.e. reversal of every edge) of the partial syntax tree {B Ui i } i∈I ; for each {B i , B j } ∈ Θ , adding a node labelled cut with two incoming edges from (B i ,) and (B j ,); for each {α i u i , α j u j } ∈ Θ, adding a node labelled ax with two outgoing edges to (B i , u i) and (B j , u j) where addr(B i) and addr(B j) is α i and α j resp.

Example 6. The graph of the proof structure in example 5 is Fig. 5a.

Gr(S) are exactly the proof structures that we obtain from directly lifting the formalism of MLL proof nets à la Girard to µMLL * .

As usual in the theory of proof nets, we need a correctness criterion on the µMLL * proof structures to exactly characterize the class of proof nets. The following correctness criterion lifts to µMLL * a criterion first investigated by Danos and Regnier [START_REF] Danos | The structure of multiplicatives[END_REF]. We present it in a slightly different syntax using the notion of orthogonal partitions [START_REF] Danos | Une application de la logique linéaire à l'étude des processus de normalisation (principalement du λ-calcul)[END_REF][START_REF] Danos | The structure of multiplicatives[END_REF]. Definition 14. Let P 1 and P 2 be partitions of a set S. The graph induced by P 1 and P 2 is defined as the undirected bipartite multigraph (P 1 , P 2 , E) s.t. for every p ∈ P 1 and p ∈ P 2 , (p, p) ∈ E if p ∩ p = ∅. Finally, P 1 and P 2 are said to be orthogonal to each other if the graph induced by them is acyclic and connected.

Definition 15. Given a proof structure, S = [Θ]{B Ui i } i∈I [Θ]
, define a set of switchings of S, sw = {sw i } i∈I s.t. for every i ∈ I, sw i : P i → {l, r} is a function over P i , the `nodes of B Ui i . The switching graph S sw associated with sw is formed by: taking the partial syntax tree {B Ui i } i∈I as an undirected graph; for each {B i , B j } ∈ Θ , adding a node labelled cut with two edges to (B i ,)

and (B j ,); for each node (B i , u) ∈ P i , removing the edge between (B i , u) and

(B i , u • sw((B i , u))).
Let Θ sw S be the partition over i∈I {α i u i | addr(B i) = α i , u i ∈ U i } induced by the connected component of S sw . Definition 16. A proof structure, S, is said to be OR-correct if for any switching sw, Θ sw S and Θ is orthogonal. The graph induced by Θ sw S and Θ is called a correction graph of S. Proposition 1. Let π be a µMLL * proof. Then Deseq(π) is an OR-correct proof structure. Conversely, given an OR-correct µMLL * proof structure, it can be sequentialized into a µMLL * sequent proof. Definition 17. µMLL * cut-reduction rules is obtained by adding the following rule to the usual cut-reduction rules for MLL proof nets:

F [µX.F/X] F ⊥ [νX.F ⊥ /X] F [µX.F/X] F ⊥ [νX.F ⊥ /X] µX.F µ νX.F ⊥ -→ ν cut cut
Proposition 2. Cut elimination on µMLL * proof-nets preserves correctness and is strongly normalizing and confluent.

The proofs of propositions 1, 2 are straightforward extensions from MLL.

Example 7. The proof structure in example 5 after cut-elimination produces the proof structure in Fig. 5b.

Remark 3. Now the question is how this translates to non-wellfounded proofs. Consider the proof in example 3. Firstly observe that there is no finite proof of this sequent i.e. it is not provable in µMLL * . Now, if we naively translate it into a proof structure using the same recipe as def. 12 (except allowing for infinite partial syntax trees), we have

[∅] ψ {i(li) * r(l+r)+(il) ω } α [{αi(li) n rl, i(li) n rr} n≥0].
Observe that (il) ω is not in any partition. In fact, it represents a thread in an infinite branch and must be accounted for. Hence the partition should account for the threads invariant by an infinite branch in a proof (in particular, in the example above there should be a singleton partition, {(il) ω }). This is also the reason we will not use the graphical presentation for non-wellfounded proofnets since we would potentially need to join two infinite paths by a node which is unclear graph-theoretically. However we will sometimes draw the "graph" of non-wellfounded proof-nets for ease of presentation by using ellipsis points (for example Fig. 6b represents the proof-net we discussed above).

Infinets

We will now lift our formalism for defining proof nets for µMLL * to µMLL ∞ . Definition 18. A non-wellfounded proof structure(NWFPS) is given by

[Θ]{B Ui i } i∈I [Θ]
, where -I is a possibly infinite index set; for every i ∈ I, B i is a formula occurrence, B Ui i is a partial syntax tree;

A ⊥ A A A ⊥ A ⊥ A A A ⊥ A ⊥ A ax ax ax ax ax p2 p1 ⊗ ⊗ ⊗ ⊗ t2 ⊗ t1 ⊗ ν ν ν (a) A A ⊥ . . . A A ⊥ A A ⊥ ax ax ax ⊗ ν ⊗ ν ⊗ φα ν (b) Fig. 6: Graph of µMLL ∞ NWFPS -Θ is a (possibly empty) collection of disjoint subsets of {B i } i∈I of the form {C, C ⊥ }; -Θ is a partition of i∈I {α i u i | addr(B i) = α i , u i ∈ U i } s.t.

the partitions are

one of the following forms:

• {α i u i , α j u j } s.t. u i , u j are finite and (B i , u i) = (B j , u j) ⊥ .
• It contains an elements of the form α i u i s.t. u is an infinite address; -{B i } i∈I \ θ∈Θ θ is necessarily finite.

Intuitively, each class of Θ represents either an axiom or an infinite branch in a sequentialization. In fact, the infinite addresses in a partition correspond exactly to the infinite threads in a proof. Hence it is also straightforward to define a valid NWFPS. Definition 19. Let π be a pre-proof of the µMLL ∞ sequent Γ . Desequentialization of π, denoted Deseq(π), is the NWFPS, [Θ]Γ [Θ], s.t. Θ are the cut formulas in π, B Ui i ∈ Γ where B i ∈ Γ , U i = addr(B i) -1 addr(π), to any finite maximal branch of π, associate a partition in Θ containing the addresses of the occurrences that are the conclusion of the corresponding axiom rule in π and to any infinite branch β of π, associate a partition in Θ such that a finite address is in the partition if it is belongs to infinitely many sequents of β and an infinite address is in the partition if all its strict prefixes belong to β. A NWFPS that is the desequentialization of a µMLL ∞ (pre-)proof is called an (valid) infinet.

Example 8. As expected from the discussion in remark 3, desequentialization of the proof in example 3 is

[∅] ψ {i(li) * r(l+r)+(il) ω } α [{αi(li) n rl, i(li) n rr} n≥0 , {(il) ω }].
Remark 4. The reader might think that there is discrepancy in the way desequentialization of wellfounded and non-wellfounded proofs are defined in defs. 12, 19 resp. Note that def. 12 can be reformulated à la def. 19 but not vice versa. However, we choose to inductively define wellfounded desequentialization since it is closer to the standard definition in proof-net theory.

Correctness criteria

The OR-correctness of a NWFPS is defined as in def. 15 and def. 16 (up to the fact that the switching can be an infinite set of switching functions). However this straightforward translation is not enough to ensure soundness. Consequently, we restrict ourselves to NWFPS with at most finitely many cuts. The proof structures discussed in the rest of the paper have finitely many cuts unless otherwise mentioned.

Example 10. Consider the graph of proof structure of the sequent νX.X (A ⊥ ⊗(A⊗ (A ⊥ `A))) in fig. 6a. Note that for the sake of readability, edge labels have been concealed. This proof structure is OR-correct but it is not sequentializable. Consider the ⊗ node labelled t 1 . In any sequentialization it should be above p 1 , which should be above t 2 , which in turn should be above p 2 and so on. This is absurd since even in a non-wellfounded proof every rule is executed at a finite depth.

Hence we impose a "lock-free" condition (borrowing the terminology from concurrent programming) on NWFPS.

Definition 20. Let [Θ]{B Ui i } i∈I [Θ] be a NWFPS. For any u i ∈ U i , u j ∈ U j , we say that (u i , u j) is a coherent pair if there exists θ ∈ Θ s.t. {α i u i , α j u j } ⊆ θ,
where addr(B i) = α i and addr(B j) = α j . Definition 21. A switching path is an undirected path in a partial syntax tree s.t. it does not go consecutively through the two premises of a `formula. A strong switching path is a switching path whose first edge is not the premise of a `node. We denote by src(•), tgt(•) the source and target of a switching path resp. Two switching paths γ, γ are said to be compatible if γ is strong and tgt(γ) = src(γ). Proposition 3. If γ, γ are compatible switching paths, then their concatenation γ • γ is a switching path. Furthermore, if γ is strong, then γ • γ is also strong.

The underlying undirected path of any path in a partial syntax tree is a switching path. We call such paths straight switching paths. In particular, the path from any vertex, v, to the root is a straight switching path. We denote it by δ(v). By abuse of notation, we will also sometimes write δ((B i , u)) where u is infinite to mean the infinite path from the root of B Ui i following u, although technically (B i , u) is not a node per se. Observe that any straight switching path in a partial syntax tree, F U , can be represented by a pair of words (u, u) ∈ U 2 s.t. u < u . Intuitively, it means that the path is from (F, u) to (F, u). Definition 22. A switching sequence is a sequence σ = {γ i } n i=1 s.t. γ i s are disjoint switching paths and for every i ∈ {1, 2, . . . , n -1}, either γ i , γ i+1 are compatible or they are straight and the word pairs corresponding to them, (u i , u i) and (u i+1 , u i+1), are s.t. (u i , u i+1) is a coherent pair. Two vertices, v and v , are said to be connected by the switching sequence, σ, if src(γ 1) = v and tgt(γ n) = v . We say the switching sequence is cyclic if src(γ 1) = tgt(γ n). Proposition 4. Let γ be a switching path in B Uj j ∈ Γ . Then there exists a switching sw s.t. γ is also a path in the switching graph, S sw . Proposition 5. If S is a NWFPS containing a cyclic switching sequence, then there is switching of S, s.t. the corresponding correction graph is contains a cycle.

Definition 23. Let S = [Θ]{B Ui i }[Θ] be a proof structure. Let T = {(B i , u i) | u i ∈ U i ; (B i , u i) is a ⊗ formula} and let P = {(B i , u i) | u i ∈ U i ; (B i , u i) is a
formula}. The dependency graph of S, D(S), is the directed graph (V, E) s.t. V = T P , for every v ∈ V and p ∈ P , (p, v) ∈ E if the premises of p are connected by a switching sequence containing v, and, for every

v, v ∈ V , (v, v) ∈ E if v ∈ FL(v).
Proposition 6 (Bagnol et al. [START_REF] Bagnol | On the dependencies of logical rules[END_REF]). If S is OR-correct then D(S) is acyclic.

From prop. 6, we can impose an order on the nodes of an OR-correct proof structure, S, namely, n 1 < D(S) n 2 if n 1 → n 2 in D(S).

(i(l + r)) ω , Θ = {{α(il) ω , βl}, α • (L \ (il) ω) ∪ {βr}} .
Observe that S is OR-correct and deeply lock-free. But S cannot be sequentialized into a sequent proof, because a potential sequentialization has a ⊗ rule at a finite depth, then either there are no subsoccurences of νX.X `Xα in the left premise in which case A cannot reside with only the left-branch in Θ, or, there are some subsoccurences of νX.X `Xα in the left premise in which case A cannot reside with any infinite branch in Θ.

-If Γ = {B i , B j } then we stop successfully with the proof reduced to an ax.

-If B j is a `, (co)recursively apply the sequentialization process to S 0 (= Γ 0 [Θ], τ 0) where Γ 0 = Γ \ {B Uj j } ∪ {(B j , l) U l , (B j , r) Ur }, U j = lU l + rU r , and

τ 0 ((B i , u)) = t if (B i , u) is splitting in S 0 ; τ ((B i , u)) otherwise.
where for each splitting (B i , u), t is arbitrarily chosen to be any natural number greater than τ (B j). We apply a `rule on the obtained proof.

-If B j is a µ(resp. ν) formula, (co)recursively apply the sequentialization process to (S 0 = Γ 0 [Θ], τ 0) where Γ 0 = Γ \ {B Uj j } ∪ {(B j , i) Ui }, U j = iU i , and τ 0 is defined as above. We apply a µ (resp. ν) rule on the obtained proof.

-If B j is a ⊗ formula we (co)recursively apply the sequentialization process to (S 1 , τ 1) and (S 2 , τ 2) where S 1 , S 2 are as defined in def. 26 and τ 1 , τ 2 are defined as above. We apply a ⊗ rule on the two obtained proofs.

Observe that the invariant () is maintained in this (co)recursive process. To start the sequentialization, we initialize τ by assigning arbitrary natural numbers to splitting nodes and ∞ to the other nodes. Proposition 9. Let T be a non-splitting conclusion in an OR-correct NWFPS. Then there exists a `formula, P , s.t. there exists disjoint switching sequences, σ, σ , from T to P which both start with a premise of T and end with a premise of P . We call (P, σ, σ) the witness for T . Lemma 1. Let S be a cut-free OR-correct NWFPS. S contains a splitting root.

Lemma 2. The sequentialization assigns a finite natural number to every formula i.e. τ ((B i , u)) = ∞ after some iterations of the process described above.

Lemma. 1 crucially uses OR-correctness and lemma. 2 crucially uses lockfreeness. Lemma. 1 ensures productivity of the aforementioned sequentialization process while lemma. 2 ensures that every inference in a NWFPS is ultimately executed. From that, we conclude the following theorem.

Theorem 1. Let S = [Θ]Γ [Θ] be an OR-correct lock-free NWFPS s.t. Θ = ∅. Then S is an infinet. Remark 6. Observe that the choice of the time-stamping function at each step of our sequentialization is non-deterministic. By considering appropriate timestamping functions we can generate all sequentializations. The detailed study is beyond the scope of the present paper.

Canonicity

We started investigating proof nets for non-wellfounded proofs since we expected that the proof net formalism would quotient sequent proofs that are equivalent up to a permutation of inferences. At this point, we carry out that sanity check.

Consider the following proofs π 1 and π 1 .

π 2 Γ, F [µX.F/X], A (µ) Γ, µX.F, A π 3 B, ∆ (⊗) π 1 Γ, µX.F, A ⊗ B, ∆ π 2 Γ, F [µX.F/X], A π 3 B, ∆ (⊗) Γ, F [µX.F/X], A ⊗ B, ∆ (µ) π 1 Γ, µX.F, A ⊗ B, ∆
We say that π ; (µ,⊗ L) π if π is a proof with π 1 as a subproof at a finite depth and π is π where π 1 has been replaced by π 1 . Observe that we can define ; for every ∈ P × P where P = {µ, ν, `, ⊗ , cut | ∈ {L, R}}. Let ∼ = ∈S ; .

Observe that the usual notion of equivalence by permutation, viz. ∼= (∼) * does not characterize equivalence by infinets. Consider the following two proofs, π 1 and π 2 , s.t. π 1 ∼ π 2 which have the same infinet,

[∅]{µX.X {i ω } α , νX.X {i ω } β }[{{αi ω , βi ω }}]. π 1 µX.X, νX.X (µ) µX.X, νX.X (ν) π 1 µX.X, νX.X π 2 µX.X, νX.X (ν) µX.X, νX.X (µ) π 2 µX.X, νX.X
Suppose we allow infinite permutations. We say that π(∼) ω π if there exists a proof π (not necessarily different from π, π) and two sequence of proofs, {π i } ∞ i=0 and {π i } ∞ i=0 , s.t. π 0 = π, π 0 = π , for every i, π i ∼ π i+1 and π i ∼ π i+1 , and d(π i , π) → 0, d(π i , π) → 0 as i → ∞. Consider the following proofs. Note that equating these proofs is absurd since π and π can have different computation behaviour (for example, A = (X ⊥ `X⊥) `(X ⊗ X) and π corresponds to true while π' corresponds to false). To exactly capture equivalence by infinets we need to refine this equivalence. To do that we introduce the notion of an active occurrence. We say that for a permutation step ; (ri,r i) , the formula occurrence F i introduced by the rule r i is the active occurrence in that step.

Given two node-labelled trees T 1 and T 2 , we define d(T 1 , T 2) = 1 2 δ where δ is the minimal depth of the nodes at which they differ. We say that π(∼) ω fair π if there exists a sequence of proofs {π i } ∞ i=0 s.t. π 0 = π, for every i, π i ; (ri,r i) π i+1 , the sequence of addresses of the active occurrences occurring infinitely often is empty, i.e. Inf({addr(F i)} ∞ i=0) = ∅, and d(π i , π) → 0 as i → ∞. Let ∼ ∞ = (∼) * ∪ (∼) ω fair . Proposition 10. π 1 ∼ ∞ π 2 iff Deseq(π 1) = Deseq(π 2).

Cut Elimination

In this section we provide cut elimination results albeit with two crucial restrictions: firstly, we consider only finitely many cuts as in the rest of the paper and secondly, we consider proofs with no axioms and no atoms. An infinet Theorem 2. Let {S i } ∞ i=0 be a fair reduction sequence s.t. S 0 is valid. Then, it converges to S 0 . Corollary 1. If two reduction sequences starting from a valid η ∞ -expanded infinet, S, converges to S 1 and S 2 , then all fair reduction sequences starting from S 1 and S 2 resp. converge to S .

Conclusion

In this paper, we introduced infinitary proof-nets for µMLL ∞ . We defined a correctness criterion and showed its soundness and completeness in characterizing those proof structures which come from non-wellfounded sequent (pre)proofs. We also gave a partial cut elimination result. For the non-wellfounded correctness criterion, we extended the Danos-Regnier criterion from the finitary case. Other more efficient criteria (like the parsing criterion [START_REF] Guerrini | A linear algorithm for mll proof net correctness and sequentialization[END_REF]) are impossible to adapt since any reasonable operation over non-wellfounded structures should necessarily be of a bottom-up nature (unlike the parsing criterion).

Related and future works. The closest works we know of are Montelatici's polarized proof nets with cycles [START_REF] Montelatici | Polarized proof nets with cycles and fixpoints semantics[END_REF] and Mellies' work on higher-order parity automata [START_REF] Melliès | Higher-order parity automata[END_REF] which considers a λY-calculus and an infinitary λ-calculus endowed with parity conditions, therefore quotienting some of the non-determinism of sequent-calculus albeit in the case of intuitionistic logic. Our work is a first step in developing a general theory of non-wellfounded and circular proof-nets:

-We plan to strengthen the correctness criterion to capture proofs with infinitely many cuts and possibly extend our formalism to µMALL ∞ . -We plan to carry an investigation of the notion of circularity in infinets:

while one can capture circular proofs as finitely representable infinets, there are non-wellfounded proofs which are not circular but which have finitely representable desequentialization. The simplest example is the proof of νX.X `X which contain sequents of unbounded size and are therefore not circular. Not only is the study circular infinets interesting from a programming perspective but also it would make it possible to do a complexity analyses of our methods of checking correctness, sequentialization and cutelimination.

Fig. 5 :

 5 Fig. 5: Graph of µMLL ∞ proof structures

Definition 24 .

 24 A NWFPS, S, is said to be deeply lock-free if < D(S) has no infinite descending chains. Example 11. Consider the proof structure, S = [∅]{νX.X `XL α , A⊗B {l,r} β }[Θ] where, L =

 Example 9. Consider the following sequent proof with infinitely many cuts.

		µX.X, νZ.Z	(ax) µX.X, νY.Y µZ.Z, νY.Y µZ.Z, νY.Y	(ν) (cut)
	Observe that this structure is not OR-correct: ax ax		ν	. . .
	µX.X	νZ.Z	µZ.Z	νZ .Z	µZ .Z •••
		cut		cut		νY.Y
						ν
						νY.Y

Acknowledgement. We are indebted to anonymous reviewers for providing insightful comments which has immensely enhanced the presentation of the paper.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie grant agreement No 754362. Partially funded by ANR Project RAPIDO, ANR-14-CE25-0007.

Definition 25. A NWFPS, S = [Θ]{B

, is said to be widely lockfree if there is a function f : N → N s.t. for every (B i , u) ∈ P and (B j , v) ∈ T if ((B i , u), (B j , v)) ∈ E, f (|v|) ≥ |u| where D(S) = (T P, E). We call such a function a wait function of S. A proof structure is simply called lock-free if it is both deeply and widely lock-free.

Remark 5. The wait function of a NWFPS need not be unique (if one exists). Proposition 7. An infinet is an OR-correct lock-free NWFPS.

Sequentialization

Fig. 7: Translating cuts to tensors

In this section we show that any NWFPS satisfying the correctness criterion introduced in section 5 is indeed sequentializable. Since we deal with finitely many cuts, without loss of generality, we can assume that we have cut-free proof structures due to the standard trick shown in Fig. 7. So, in this section, we will write NWFPS without the left component. We try to adapt the standard proof for MLL but the straightforward adaptation is not fair since we may never explore one branch by forever prioritizing the sequentialization of another infinite branch. We restore fairness by a time-stamping algorithm.

Definition 26. Let S = Γ [Θ] be an OR-correct NWFPS. The root, B i , of a tree in Γ is said to be splitting if:

be an OR-correct NWFPS and B i be a splitting ⊗ formula in S. If S is lock-free then so is S 1 and S 2 as defined in def. 26. Dated sequentialization process. We time-stamp each node of Γ to indicate the time when it will be sequentialized. Formally, we have (S, τ) where τ is a function

We will describe the sequentialization process. Suppose we are given S(= Γ [Θ], τ). We maintain the following invariant:

S is cut-free, OR-correct and lock-free;

()

Assume that Γ contains a splitting root, B j , st. τ (B j) = min(τ).

S = [Θ]Γ

[Θ] is said to be η ∞ -expanded if it does not contain any axioms or atoms i.e. every θ ∈ Θ contains only infinite addresses. Any infinet can be made η ∞ -expanded in a way akin to η-expansion of axioms in MLL. There are two issues to be resolved to obtain the result: first, to specify the notion of a normal form and second, formulate how to reach that.

Proof (Sketch). Since B i = B j ⊥ , their syntax trees are orthogonal. Since S is η ∞ -expanded, U i (resp. U j) is actually the full syntax tree. Hence

Remark 7. Def. 27 is well-defined because of prop. 11.

Proposition 12. A big-step operation on a valid infinet produces a valid infinet.

, an η ∞ -expanded infinet, we can extend the definition of a big-step {C, C ⊥ } elimination on S, for any {C, C ⊥ } ∈ Θ , to a big-step C elimination on S, for C ⊆ Θ . We call the big-step Θ elimination on S the normal form of S and denote it by S .

The idea now is to show that local cut-elimination indeed produces in the limit the normal form defined above. For this we need to define a metric, d, over infinets with the same normal form so that we can formalize the limit of infinite reduction sequences. See [START_REF] De | Infinets: The parallel syntax for non-wellfounded proof-theory[END_REF] for details. Lemma 3. The set of all valid infinets with the same normal form together with the distance, d, forms a metric space.

We can now define the limit of an infinite sequence of valid infinets with the same normal form in the standard way: we say that {S i } ∞ i=0 converges to S if d (S i , S) → 0 as i → ∞. Definition 28. A sequence of infinets, {S i } ∞ i=0 , is called a reduction sequence if for every i > 0, S i → S i+1 by the cut reduction rules in def. 17. A reduction sequence is said to be fair if for every i, for every cut {C, C ⊥ } in S i , there is a j > i such that C is a suboccurrence of C where {C , C

⊥ } is the cut being reduced in the step S j → S j+1 .