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a b s t r a c t 

A novel hydrochar-based core–shell material with improved affinity towards CO 2 was synthesized through 

encapsulation within ZnO shell, followed by chemical grafting to an organic moiety bearing terminal

diethanolamino groups and further dispersion of Cu 0 nanoparticles. Characterization through nitrogen 

adsorption–desorption isotherms with BET and BJH models, SEM, TEM, zeta potential measurements, FTIR

spectroscopy, DSC and XPS analyses revealed a strong influence of the modification procedure on the per- 

formance of each material in CO 2 adsorption. The resulting metal-inorganic-organic-core–shell (MIOCS) 

displayed compacted structure with a wide pore size distribution that imposes intraparticle diffusion as

a kinetic-controlling step. Cu-MIOCS showed an appreciable CO 2 retention capacity of 5.42 mmol/g com- 

pared to many adsorbents reported so far. This affinity towards CO 2 was explained in terms of physical 

and non-stoichiometric CO 2 condensation. This finding is of great importance, because it demonstrates 

that judicious modifications of vegetal-deriving wastes such as woods and other biomasses give rise to

added-value materials as low cost and efficient gas adsorbents with high affinity towards CO 2 . 
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. Introduction

Global warming and climate changes turn out to arise from

igh concentrations of greenhouse gases (GHG), among which car-

on dioxide (CO 2 ) is the most directly related to human activities

1,2] . The persistent use of fossil fuels as the main energy source in

esigning new technologies clearly demonstrates the lack of a clear

trategy for a sustainable development. This makes that GHG and

O 2 emissions from anthropic activities still remain a major envi-

onmental issue [3,4] . Clear evidence in this regard is provided by

umerous procedures targeting direct CO 2 capture from flue emis-

ions [5,6,7] , even if, in most cases, adsorbents regeneration often
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properties and kinetic studies, Journal of the Taiwan Institute of Chemi
equires more CO 2 -equivalent energy than captured. Amine-based

dsorbents display sufficient basicity for retain CO 2 via the forma-

ion of carbamates [8,9] , but severe thermal regeneration. In the

ong run, this way of acting is doomed to failure, unless strategies

egarding CO 2 as a product, for instance, for further uses in chem-

stry and in agricultural greenhouses are developed. Such strategies

ill certainly face a major issue, that of the too low CO 2 concen-

rations in flue emissions, which impose previous concentration of

he captured gas. 

A judicious approach in this direction resides in designing

ew waste-free and non-polluting technologies for CO 2 concentra-

ion through a truly reversible gas capture at ambient conditions.

eaker CO 2 –adsorbent interactions are an essential requirement in

his regard, and can be achieved using materials bearing ampho-

eric to slightly basic chemical functions such as hydroxyl groups.

he latter are known to promote only CO 2 adsorption via weakly

onded carbonate-like association [10 –17] . 

OH-enriched materials containing soya-deriving polyglycerols 

ere already found to show high affinity towards CO , and gave
2 

–shell material as efficient matrices for CO 2 adsorption: Synthesis, 

cal Engineers (2018), https://doi.org/10.1016/j.jtice.2018.08.020 
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Scheme 1. Schematic illustration of HC@ZnO core–shell particles.
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similar performances as polyol dendrimers [11,12,13,14,15,16,17] .

Their affinity improvement was explained in terms of mere in-

corporation of a vegetal source of OH groups. Unlike complex

structure materials such as zeolites, metal-organic frameworks

(MOFs) and others tested in CO 2 adsorption [18,19,20] , low cost

natural materials such as vegetal wastes display low surface acidity

and do not require sophisticated modification procedures [21,22] .

The structure of any vegetal material should bear terminal hy-

droxyl groups but does not necessarily exhibit interesting affinity

towards CO 2 due to structure constraints such as porosity and/or

optimum amphoteric to slightly character. 

Vegetal waste modification often turns out to an essential re-

quirement for affinity improvement. Their conversion into hy-

drochar (HC), followed by suitable modifications could be a

judicious route for obtaining highly added-value materials with

improved affinity towards CO 2 . HCs are also low cost porous mate-

rials that display high porosity and specific surface area along with

appreciable thermal and chemical stability [23,24] . They may be

obtained through pyrolysis, carbonization or hydrothermal conver-

sion of diverse vegetal wastes [25,26] . Their activation in optimal

conditions is known to improve the surface properties [27] and

affinity towards CO 2 [28] . 

So far, the behavior of vegetal wastes as host matrices for metal,

metal oxides and CO 2 condensation along with the interactions in-

volved still remains barely tackled. This became the main objective

of the present paper. Metal oxides, and more particularly zinc ox-

ide (ZnO) are also assumed to exhibit interesting surface properties

as adsorbent [29,30] and electronic material [31] . ZnO combination

with a diethanolamine-modified cocoa shell-deriving hydrochar al-

ready showed interesting surface properties [32–35] . It turned out

to act as host matrice for copper-zero dispersion and as effec-

tive adsorbent for CO 2 at room temperature like other materials

with attenuated basicity [15] . The specific surface area was not an

essential requirement, inasmuch as compacted matrices paradox-

ically displayed higher affinity towards CO 2 than much more ex-

panded and more porous materials [14,36,37] . Hence, a new strat-

egy was rather focused on the preparation of compacted matri-

ces that promote metal stabilization and attenuate CO 2 retention

strength. Strong metal: matrice interaction is expected to attenu-

ate the Lewis basicity of the N atom of the organic moiety [35] ,

and, subsequently, CO 2 capture will mainly occur via purely phys-

ical gas condensation, that favors with easy release upon forced

convection or under lower pressure. The material interactions with

both metal particles and CO 2 were deeply examined herein as spe-

cific objectives of this work. 

Due to their low thermal and chemical stability, vegetal-

deriving materials cannot be directly used in CO 2 capture from

flue emissions. Previous cooling and water treatments of flue emis-

sions with energy recovery with advanced elimination of SO x , NO x 

and volatile organic compounds (VOC) turns out to be essential

requirements for a possible sustainable technology. That is why

reversible capture of CO 2 appears as an original alternative for a
 t  

Please cite this article as: J. Vieillard et al., Metal-inorganic-organic core

properties and kinetic studies, Journal of the Taiwan Institute of Chem
on-thermal gas release for regeneration and further CO 2 utiliza-

ion. This new concept still remains a difficult challenge, but can

e addressed using metal-inorganic-organic core–shell materials

MIOCS) displaying weak basicity. In this regard, our approach re-

ides in correlating Cu 

0 -matrice and CO 2 -matrice interactions with

oth the surface properties and structural and textural features of

he synthesized material. Full characterization of MIOCS by means

f diverse techniques allowed achieving deep analysis of the ad-

orbent affinity towards CO 2 in terms of magnitude and adsorption

inetics. The results will open promising prospects for manufactur-

ng adsorbing materials and membranes that ‘’respire CO 2 ‘’ under

mbient conditions. 

. Experimental

.1. Chemicals 

Zinc acetate dihydrate (Zn(CH 3 COO) 2 ,2H 2 O; 99%); 3-

hloropropyltrimethoxysilane (C 6 H 15 ClO 3 Si; 97%); sodium boro-

ydride (NaBH 4 ; 99%); diethanolamine (NH(CH 2 –CH 2 –OH) 2 ;

8%); copper(II) sulfate anhydrous (CuSO 4 ; 99.9%); triethylamine

C 6 H 15 N; 99.9%) and absolute ethanol (CH 3 CH 2 OH; 99.9%) were

urchased from Sigma-Aldrich and used as received. For all the

xperiments, ultra-pure water was used (Millipore). 

.2. Materials synthesis 

Hydrochar (HC) was produced via hydrothermal conversion of

ocoa shell powder (1 g), originating from Cameroon, previously

ispersed in deionized water (10 mL), at 240 °C for 24 h in a sealed

eflon lined autoclave (30 mL). The mixture was cooled down to

oom temperature (RT), and HC was obtained in the form of a

hite suspension. HC was filtered, repeatedly washed with deion-

zed water and then with ethanol, and finally dried at 80 °C
vernight. 

HC was then encapsulated into a shell of ZnO in a mixture of

queous solutions of zinc acetate dihydrate (0.2 M) and sodium

ydroxide as precursors, under continuous and vigorous stirring

t 60 °C in a 3:1 (V:V) ethanol-water mixture for 15 min. The

H value was previously adjusted at 9.5. HC was added in a

roportion of 0.01 wt% and the mixture was heated at 60 °C
or 4 h. The resulting grey precipitate of HC@ZnO was filtrated,

ashed with water/ethanol to remove the unreacted sodium

cetate and then dried overnight at 100 °C ( Scheme 1 ). Further, 3-

hloropropyltrimethoxysilane (ClPTES) was grafted on HC@ZnO us-

ng ethanol/water 3:1 as a solvent at 80 °C during 5 h ( Scheme 2 ).

he resulting HC@ZnO 

–ClPTES sample was washed, filtrated, dried

vernight at 80 °C and then prone to chlorine substitution by

iethanolamine (DEA) at 50 °C under inert atmosphere for 24 h

 Scheme 3 ). 

The final HC@ZnO–Si–(CH 2 ) 3 –N(CH 2 –CH 2 –OH) 2 material ob-

ained denoted as HC@ZnO–Si–N(OH) was washed, filtrated and
2 

–shell material as efficient matrices for CO 2 adsorption: Synthesis, 

ical Engineers (2018), https://doi.org/10.1016/j.jtice.2018.08.020 
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Scheme 2. Schematic illustration of the ClPTES grafting onto the surface of HC@ZnO.
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hen dried at 80 °C. Copper nanoparticles (CuNPs) were incorpo-

ated in HC@ZnO–Si–N(OH) 2 using 0.3 wt% anhydrous copper(II)

ulfate (CuSO 4 ) as a precursor in 40 mL toluene in the presence of

.03 wt% sodium borohydride (NaBH 4 ) as the metal reducing agent

fter 6 h of stirring at RT. The final HC@ZnO–Si–N(OH) 2 –Cu ma-

erial ( Scheme 4 ), denoted as metal-inorganic-organic-core–shell

Cu-MIOCS) was dried overnight at 80 °C and then stored in sealed

nclosure containing dried and O 2 -free nitrogen. 

.3. Material characterization 

HC, HC@ZnO and Cu-MIOCS were characterized through Fourier

ransform IR spectroscopy (FTIR) using a Tensor 27 (Bruker) spec-

rometer with a ZnSe ATR crystal equipment. For each spectrum,

0 scans were accumulated with a resolution of 4 cm 

−1 . All sam-

les were drilled before IR analysis and background spectra were

ecorded on air. Analysis through Scanning Electronic Microscopy

SEM) of samples previously metallized by gold layer (at 18 mA

uring 360 s with a Biorad E5200 device) was performed by means

f a ZEISS EVO 15 electron microscope. The surface morphology

as investigated with secondary electrons, while the atomic com-

osition was assessed by an attached Energy Dispersive X-ray Flu-

rescence (ED-XRF) device. The TEM (transmission electron mi-

roscopy) observations were achieved using a FEI TECNAI 20FST

nstrument on samples ultrasonically dispersed in ethanol and de-

osited on amorphous holey carbon membranes and then dried. 

The specific surface area and porosity were assessed by nitro-

en adsorption–desorption isotherms at 77 K, using a Micromerit-

cs Tristar 30 0 0 device. Typically, equivalent BET (Brunauer–

mmett–Teller) surface areas were determined in the relative

ressure range P/P0 from 0.01 to 0.04 and equivalent BJH (Barrett–

oyner–Halenda) pore volume were measured at P/P0 > 0.985. The

amples were previously degassed at 150 °C for at least 7 h using

 Micromeritics Vac Prep 061 degasser. Measurements through dif-

erential scanning calorimetry (DSC) were carried out using (DSC-

2 Setaram) at a 2 °C/min heating rate from room temperature to

00 °C. XPS analysis was performed using a Shimadzu ESCA-3400

nd Al K alpha X-ray source (1486.6 eV), while deconvolution of the

PS patterns was achieved using a nonlinear least-square curve-
Please cite this article as: J. Vieillard et al., Metal-inorganic-organic core

properties and kinetic studies, Journal of the Taiwan Institute of Chemi
tting program (XPS-PEAK software 4.1). The zeta potential of each

 mg of sample previously dispersed in 10 mL of deionized water

nd ultrasonicated for 15 min was measured with the phase anal-

sis light scattering (PALS) mode using a Malvern zeta sizer nanoZS

etup. 

.4. CO 2 adsorption tests and kinetics 

This was achieved using an appropriate device containing

ry air-free nitrogen according to a specific procedure fully de-

cribed elsewhere [35] . Triplicate CO 2 adsorption tests were car-

ied out within a 20 mL sealed enclosure at 292 K and normal

ressure. Concisely, 3 mL of pure carbon dioxide previously dried

as injected by a syringe in sealed capillary U-shaped manome-

er (0.25 mm internal diameter) containing dry air-free nitrogen

nd 0.01 g of dry material samples with a 2.43–5.14 μm particle

ize. The non-adsorbed CO 2 excess was further purged until the

ormal pressure is attained in the internal U-shaped manome-

er. The adsorbed CO 2 amount was periodically measured in time

0.2 min, 0.4 min, 0.6 min, 0.8 min, 1 min etc.) by measuring that of

he residual non adsorbed gas. When necessary, complete regener-

tion for a total CO 2 release from the adsorbents was achieved by

light heating up to 80 °C or by forced convection under strong air

tream (15–30 mL/min) until no CO 2 was detected by bubbling into

 0.1 N aqueous NaOH solution. The adsorbent affinity towards CO 2 

as examined in terms of contact time and adsorption kinetics us-

ng pseudo 1st and 2nd order models [30,38,39] . 

. Results and discussion

.1. Surface morphology and textural properties 

Same-scale SEM images ( Fig. 1 ) (20 nm) revealed morphology

hange from fibrous HC ( a ) to granular HC@ZnO ( b ), suggesting

trong HC: ZnO interaction. Much more pronounced changes were

oticed after ClPTES ( c ) and diethanolamine grafting ( d ), result-

ng in aggregates of much smaller particles with particle size not

xceeding few micrometers, presumably due to self-condensation

f triethoxysilane groups and hydrophobic interaction between

rafted chloro-propyl groups. 
–shell material as efficient matrices for CO 2 adsorption: Synthesis, 

cal Engineers (2018), https://doi.org/10.1016/j.jtice.2018.08.020 
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Scheme 3. Schematic illustration of the diethanolamine substitution of chloride on grafted ClPTES.
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Further SEM images after Cu 

0 incorporation ( e ) and close-up ( f )

showed larger aggregates of particles with much smoother exter-

nal surface, most likely due intra and intergranular entrapment of

Cu 

0 particles. Here, strong Cu 

0 :N(OH) 2 Lewis-acid-base (LAB) in-

teraction must induce a structure compaction that should reduce

porosity, but should promote non-stoichiometric and purely physi-

cal condensation of CO 2 on metal sites surrounded by N atoms and

hydroxyl groups. 

Deeper insights through TEM images ( Fig. 2 ) showed a clear

membrane of ZnO shell surrounding aggregates of 0.05–0.1 μm

dark stains of HC ( a ), whose aggregation generates interparticle

void spaces ( a ). The latter appears to dramatically decrease upon

ZnO-coating ( b ). After ClPTES grafting and further functionalization
Please cite this article as: J. Vieillard et al., Metal-inorganic-organic core

properties and kinetic studies, Journal of the Taiwan Institute of Chem
y diethanolamine ( c ), close-up on the clear membrane ( d ) and ED-

RF analysis revealed non uniformly sized 2–20 nm Cu 

0 nanopar-

icles (CuNPs). 

The nitrogen adsorption–desorption isotherms recorded were

ound to be of type IV with an H3-type hysteresis loop for meso-

orous materials ( Fig. 3 ). Measurements using the BET and BJH

odels ( Table 1 ) revealed a structure expansion after ZnO incor-

oration as supported by the increase of the specific surface area

SSA) from 20 m 

2 /g for HC to 25 m 

2 /g for HC@ZnO. 

The consecutive SSA decrease down to 21 m 

2 /g upon ClPTES

rafting agrees with our previous statement regarding a possi-

le self-condensation of triethoxysilane groups and a structure

ompaction as a result hydrophobic interaction between grafted
–shell material as efficient matrices for CO 2 adsorption: Synthesis, 

ical Engineers (2018), https://doi.org/10.1016/j.jtice.2018.08.020 

https://doi.org/10.1016/j.jtice.2018.08.020
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Scheme 4. Illustration of CuNPs insertion (a) and close-up on HC@ZnO–Si–N(OH) 2 –Cu (b).

Table 1

Textural properties of the prepared samples.

Sample Isotherm Hysteresis Specific surface

area (m 

2 /g)

Total pore

volume (cc/g)

BJH pore

volume (cc/g)

HC – – 20 – –

HC@ZnO Type II H3 25 0.17 0.17

HC@ZnO –ClPTES Type II H3 21 0.13 0.13

HC@ZnO–Si–N(OH) 2 Type II H3 29 0.20 0.20

Cu-MIOCS Type II H3 20 0.12 0.12
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hloro-propyl groups. This is also supported by a porosity decay

eflected by a pore volume decrease from 0.17 to 0.13 cc/g. Further

unctionalization with diethanolamine appears to suppress such an

nteraction, since a marked SSA improvement up to 29 m 

2 /g was

oticed. This must be due the appearance of H-bridges between

erminal hydroxyls belonging to both the grafted organic moieties

nd residual free terminal Cu–OH groups. This is supposed to give

ise to additional porosity, as supported by the significant increase

n total pore volume from 0.12 to 0.20 cc/g. 

Cu 

0 particle insertion induced marked decay of the specific sur-

ace area and average pore volume down to 20 m 

2 /g and 0.12 nm,

espectively, thereby confirming our previously stated structure
Please cite this article as: J. Vieillard et al., Metal-inorganic-organic core

properties and kinetic studies, Journal of the Taiwan Institute of Chemi
ompaction. This phenomenon is a special feature of the occur-

ence of –N:Metal and -O:Metal Lewis-Acid-Base (LAB) interac-

ions, as already reported elsewhere [14,36,40–43] . 

.2. Evidence of metal stabilization 

The most significant changes were noticed through FTIR anal-

sis in the 750–1700 cm 

−1 and 30 0 0–350 0 cm 

−1 regions. These

hanges were mainly reflected by the rise of an intense absorption

and at ca. 1065 cm 

−1 and smaller one around 800 cm 

−1 ( Figs. 4 ,

1 and S2) attributed to Si–O–Si and Si–O–C stretching vibrations,
–shell material as efficient matrices for CO 2 adsorption: Synthesis, 

cal Engineers (2018), https://doi.org/10.1016/j.jtice.2018.08.020 

https://doi.org/10.1016/j.jtice.2018.08.020
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Fig. 1. SEM images of HC (a), HC@ZnO (b), HC@ZnO –ClPTES (c), HC@ZnO–Si–N(OH) 2 (d) and Cu-MIOCS (e and f).
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5  
providing clear evidence of ClPTES grafting but accompanied by

an unavoidable self-condensation of the triethethoxysilane groups

[35,44,45] . The appearance of the 3440–3700 and 1674 cm 

−1 bands

assigned to the N 

–H stretching vibration and NH 2 bending vibra-

tion, respectively was attributed to amine grafting [46,47] . The

marked depletion of the 3400 cm 

−1 after APTES grafting indicates

the occurrence of HC 

–O–Si-propyl bridges. 

The total disappearance of the 2919 cm 

−1 band related to the

asymmetric stretching vibration of CH 2 and C 

–H aliphatic groups

after Cu 

0 incorporation must be due to the occurrence of strong

Cu: OH– and Cu:N– interactions that induce a compaction of the

organic entanglement around CuNPs, in agreement with our pre-

vious statements [35,36] . Incorporation of CuNPs also induced a

marked shift of the 1065 cm 

−1 band towards lower wavenumber
Please cite this article as: J. Vieillard et al., Metal-inorganic-organic core

properties and kinetic studies, Journal of the Taiwan Institute of Chem
 Fig. 4 ), suggesting a N 

–C bond weakening by the appearance of

trong Cu 

0 :N-propyl interaction. Terminal OH groups should also

ontribute to this compaction of the organic entanglement via Cu 

0 :

H- Lewis-acid-base interactions with a possible synergy between

he N and O atoms in CuNP stabilization, as supported by the slight

ntensity decrease of the 330 0–360 0 cm 

−1 bands [36,37] . 

Deeper insights through XPS analysis showed a shift of the

-1s signal from 529.98 eV to 530.53 peak after ClPTES grafting

 Table 2 ). This can be explained in terms of a bond strengthen-

ng on the oxygen atom, most likely due to the genesis of Zn–O–

i and/or C 

–O–Si bridges. The O-1s binding energy values were in

ood agreement with those reported for ZnO [48] . Diethanolamine

rafting induced a slight decrease of this binding energy from

30.53 eV to 530.42 eV, most likely due to the presence of high
–shell material as efficient matrices for CO 2 adsorption: Synthesis, 

ical Engineers (2018), https://doi.org/10.1016/j.jtice.2018.08.020 
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Fig. 2. TEM images of HC (a), HC@ZnO (b), Cu-MIOCS (c) and close-up on clear areas (d).
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Fig. 3. Nitrogen adsorption–desorption of HC@ZnO (a), HC@ZnO –ClPTES (b), HC@ZnO–Si–N(OH) 2 (c) and Cu-MIOCS (d).
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electron density due to next-neighboring N atoms. The involve-

ment of the N and O atoms in CuNP stabilization was well sup-

ported by noticeable shifts of the binding energy of N-1s electrons

from 399.71 to 400.33 eV and of O-1s electron from 530.42 eV to

530.91 eV, respectively, in agreement with previous data. [36] Cu

incorporation was also supported by an additional Cu-2p signal at

935.70 eV (Table S1), with agrees with the literature [49] . 

HC encapsulation by ZnO was confirmed by the appearance

of the Zn-2p 3/2 and Zn-2p 1/2 doublet at 1021.25 and 1044.34 eV,

respectively [50] . The shift of both values up to 1022.24 and

1045.34 eV after ClPTES grafting accounts for a binding strengthen-

ing of the corresponding electrons, due to the formation of –Zn–O–

Si–R bridges. These shifts indicate preponderant grafting of ClPTES

on ZnO on HC [51] . The slight consecutive decrease of these values

down to 1022.10 and 1045.30 eV must be due to the grafting of an
Please cite this article as: J. Vieillard et al., Metal-inorganic-organic core

properties and kinetic studies, Journal of the Taiwan Institute of Chem
lectronegative atom (N). This was supported by the shift of the

-1s electron binding energy from 400.7 to 399.5 eV.

The C-1s XPS signal of HC@ZnO slightly shifted from 285.01 to

84.94, presumably as a result of an increase in electron density

n ZnO by ClPTES grafting, which seems to act as ‘’electron pump’’

ue to the electronegativity of the chlorine atom. Chlorine sub-

titution by diethanolamine grafting appears to revive the binding

nergy of the C-1s electrons, due to the higher electron density on

he N atom. The fact that the binding energy of the C-1s electrons

emained constant at 285.02 eV after Cu 

0 incorporation indicates

nequivocally that the organic chain grafted does not contribute to

etal stabilization. 

Metal stabilization was confirmed through additional Zeta po-

ential measurements ( Fig. 5 ), which revealed noticeable increases

n the Zeta potential (ZP) and surface charge density (SPC) upon
–shell material as efficient matrices for CO 2 adsorption: Synthesis, 

ical Engineers (2018), https://doi.org/10.1016/j.jtice.2018.08.020 
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Table 2

Binding energies of the core level spectra for the different samples.

Adsorbent Binding energy (eV)

C-1s O-1s N-1s Zn-2p 1/2 Zn-2p 3/2 Cu-2p

HC@ZnO 285.01 529.98 – 1044.34 1021.25 –

HC@ZnO–ClPTES 284.94 530.53 400.07 1045.34 1022.24 –

HC@ZnO–Si–N(OH) 2 285.02 530.42 399.71 1045.30 1022.10 –

Cu-MIOCS 285.02 530.91 400.33 1046.35 1023.19 934.70

Fig. 4. FTIR spectra of HC@ZnO–Si–N(OH) 2 (a) and Cu-MIOCS (b).
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nO incorporation. This must be due to the polarity of Zn–O bonds

nd terminal Zn–O–H groups [52] . Their consumption upon sily-

ation by ClPTES induced a significant decrease of both the Zeta
Fig. 5. Zeta potential (circle) and surface charge density (cross) for HC (a), HC@

Please cite this article as: J. Vieillard et al., Metal-inorganic-organic core

properties and kinetic studies, Journal of the Taiwan Institute of Chemi
otential and surface charge density. Further functionalization by

iethanolamine induced a slight SPC decrease but a marked ZP de-

letion. 

Pronounced ZP depletion was registered after Cu 

0 insertion,

ost likely due to the appearance of metal-matrice LAB interac-

ions that favor the stability of the colloid suspension [53,54] . The

act that the zeta potential was reversed from positive to low neg-

tive value after Cu 

0 incorporation must arise from an increase in

lectron density around CuNPs as a result of strong Cu 

0 : OH- and

u 

0 –N- interactions. 

.3. Thermal behavior 

DSC measurements ( Fig. 6 ) showed thermal stability for HC up

o 130–140 °C ( a ). Two exothermal processes were noticed around

50 °C and 450 °C due to the decomposition of cellulose and lignin,

hich are the main components of cocoa shell [ 55 ]. ZnO incorpo-

ation induced a stability improvement up to ca. 300 °C ( b ), as sup-

orted by the flattened bump around 350 °C. This can be explained

y the formation of a more thermally stable inorganic ZnO shell. 

HC@ZnO–Si–N(OH) 2 ( c ) displayed slightly lower thermal stabil-

ty of up to 250 °C ( c ) due to the degradability of the grafted or-

anic moiety. The latter appears to be enhanced by Cu 

0 incorpo-

ation ( d ), presumably due to the appearance of copper-catalyzed

ecomposition processes. 
ZnO (b), HC@ZnO –ClPTES (c), HC@ZnO–Si–N(OH) 2 (d), and Cu-MIOCS (e).
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Table 3

Kinetics parameters for the intraparticle diffusion model.

Sample k ID 
a g/(mmol min 1/2 ) C I 

a mmol/g c R 2 Standard deviation for k ID
g/(mmol min 1/2 )

HC 0.43472 0.01087 0.934 0.05060

HC@ZnO 1.13768 −0.00982 0.951 0.07745

HC@ZnO–ClPTES 1.34847 −0.01047 0.977 0.06499

HC@ZnO–Si–N(OH) 2 1.23477 −0.06636 0.980 0.05337

HC@ZnO–Si–N(OH) 2 –Cu 1.82982 0.26887 0.954 0.12614

a k ID is the constant for the intraparticle diffusion model. 
b C I is assessed as the Y -axis intercept. 
c R 2 is the correlation coefficient.

Fig. 6. DSC patterns of HC (a), HC@ZnO (b), HC@ZnO–Si–N(OH) 2 (c) and Cu-MIOCS

(d).
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3.4. Affinity towards CO 2 and adsorption kinetics 

CO 2 adsorption tests under normal pressure and ambient tem-

perature showed an increase in time of the amount of adsorbed

CO 2 ( Fig. 7 ). The latter reached a maximum and constant level af-

ter ca. 2 min for HC ( a ) and approximately 9–10 min for its modi-

fied counterparts ( b–d ). 

It is worth mentioning that each material presents a reversible

adsorption upon slight heating up 40 °C or under forced convec-

tion upon strong air stream of 15 mL/min with a maximum capac-

ity for the first experiment. It results that, under these tests con-

ditions, CO 2 adsorption must involve only weak interaction with

the solid surface. This maximum level accounts for the real value

of the CO 2 retention capacity (CRC) under these specific condi-

tions. The highest CO 2 uptake was registered for Cu-MIOCS under

normal pressure (5.423 mmol/g). This value is considerably higher

than those registered under similar conditions for numerous other

materials such as mesoporous silica [56] , clays [12] , zeolites [57] ,

metal oxides [58] , and others [56,59,60] . This improvement of the

affinity towards CO 2 suggests simultaneous contributions of all in-

corporated species through specific interactions with a possible

synergy that remains to be elucidated [61–65] . The slow evolution

in time of the CO 2 uptake for the modified samples suggests the

occurrence of diffusion hindrance. The two bump-shaped evolution

curves suggest the occurrence of successive kinetic-determining

steps, namely inter and intraparticle diffusion processes that dif-

fer from a sample to another according to the particle morphology

and textural features [66] . 
Please cite this article as: J. Vieillard et al., Metal-inorganic-organic cor

sis, properties and kinetic studies, Journal of the Taiwan Institute of Ch
Attempts to apply the pseudo 1st and 2nd order models

30,67] showed that CO 2 capture on HC obeys a pseudo-first or-

er kinetics ( Fig. 7 ). Here, physical adsorption through interactions

etween the oxygen atoms of carbon dioxide and terminal OH

roups of HC seems to prevail in agreement with previous data

68–71] Nonetheless, neither models can apply to the other HC

erivatives, the pseudo 1st order appearing as the most closest

o the experimental curves. The most plausible explanation is that

O 2 adsorption on HC derivatives involves predominant kinetics-

ontrolling diffusion processes and weak contributions of addi-

ional interaction involving both the amino and hydroxyl groups of

he incorporated organic moiety [72] even in the presence of Cu 

0 

anoparticles [16] . 

Deeper insights in CO 2 adsorption kinetics were achieved by ap-

lying the intraparticle diffusion (ID) model ( Eq. (1 )) that corre-

ates the kinetics constant (k ID ) to the intraparticle diffusion con-

tant (CI) [30] : 

 t = k ID . t 
1 / 2 + C I (1)

As expected, plotting Q t (instant CO 2 amount adsorbed) as a

unction of t 1/2 resulted in sufficiently linear correlations for al-

ost all the synthesized samples, excluding HC ( Fig. 8 ), thereby

onfirming the occurrence of intraparticle diffusion on HC deriva-

ives. 

The wide dispersion of the of the measured data gave estimated

alues of the correlation factor ( R 2 ) ranging from 0.93 to 0.98 ac-

ording to the sample texture, the closest to unity being those

btained for HC@ZnO–Si–N(OH) 2 ( Table 3 ). In this adsorbent, the

ntraparticle diffusion appears to prevail more than in Cu-MIOCS,

here other processes such as physical adsorption and multilayer

O 2 condensation should also take place at a more or lesser ex-

ent. The occurrence of different slopes accounts for that of dif-

erent intraparticle diffusion constants within a same particle of a

ame adsorbent, in agreement with our previous statements and

ther works [73] . 

As expected, the values of k ID were found to vary in a reverse

roportionality with the textural properties. Indeed, k ID in-

reased from 1.13768 g/(mmol min 

1/2 ) (HC@ZnO) to 1.34847 g/

mmol min 

1/2 ) (HC@ZnO 

–ClPTES) and from 1.23477 g/

mmol min 

1/2 ) (HC@ZnO–Si–N(OH) 2 ) to 1.82982 g/(mmol min 

1/2 )

Cu-MIOCS), when the total pore volume decreases from 0.17 to

.13 cc/g and from 0.20 to 0.12 cc/g, respectively ( Table 1 ). In the

eantime the specific surface area decreases from 25 to 21 and

rom 29 to 20 m 

2 /g, respectively. This provides additional evidence

f the enhancement of the diffusion contribution to the overall

O 2 retention process with the structure compaction. The mere

act that CO 2 desorbs only upon heating or forced convection

learly demonstrates the occurrence of effective physical CO 2 re-

ention. The latter should probably occur in the form of multilayer

ondensation, more or less pronounced according to the pore size

nd surface affinity towards CO 2 . Investigations are still in progress

n this direction. 
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Fig. 7. Evolution in time of CO 2 uptake on hydrochar and modified derivatives as compared to adsorption kinetical models. (a) HC; (b) HC@ZnO; (c) HC@ZnO –ClPTES; (d)

HC@ZnO–Si–N(OH) 2 and (e) Cu-MIOCS. These experiments were conducted by contacting, at room temperature and normal pressure, 10 mg of adsorbent previously dried

overnight at room temperature with 3 mL of pure dry CO 2 .
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Fig. 8. Intraparticle diffusion model for CO 2 adsorption at ambient temperature and pressure of HC (a), HC@ZnO (b), HC@ZnO –ClPTES (c), HC@ZnO–Si–N(OH) 2 (d) and

Cu-MIOCS (e).
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. Conclusion

The present study provides the proof-of-concept that vegetal-

eriving composites can display high affinity towards CO 2 at ambi-

nt temperature after judicious modification. Hydrochar encapsu-

ation into HC@ZnO, functionalization with diethanolamino groups

nd copper incorporation produced an effective adsorbent for CO 2 ,

ffording an appreciable CO 2 uptake of 5.423 mmol/g. The lat-

er was found to adsorb reversibly at ambient conditions, be-

ng easily released upon weak heating or forced convection. This

as explained in terms of an attenuation of the Lewis basicity

f the N atoms involved in Cu 

0 stabilization and structure com-

action. The appearance of –N:Metal and -O:Metal Lewis-Acid-Base

LAB) interactions are responsible of a structure compaction that

romotes preponderantly physical interactions of CO 2 around en-

rapped CuNPs surrounded by O and N atoms belonging to the in-

orporated organic moiety. The easy CO 2 release only upon heating

r forced convection must originate from effective physical adsorp-

ion of CO 2 in the form of multilayer condensation. This finding

pens new prospects for the manufacture of highly added-value

egetal-deriving matrices for a reversible CO 2 capture. Significant

ffinity improvement towards CO 2 can be envisaged through judi-

iously tailored material texture and surface interaction. Investiga-

ions are still in progress in this direction. 
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