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Abstract
1. The paradigm‐changing opportunities of biologging sensors for ecological re-

search, especially movement ecology, are vast, but the crucial questions of how 
best to match the most appropriate sensors and sensor combinations to specific 
biological questions and how to analyse complex biologging data, are mostly 
ignored.

2. Here, we fill this gap by reviewing how to optimize the use of biologging tech-
niques to answer questions in movement ecology and synthesize this into an 
Integrated Biologging Framework (IBF).

3. We highlight that multisensor approaches are a new frontier in biologging, while 
identifying current limitations and avenues for future development in sensor 
technology.

4. We focus on the importance of efficient data exploration, and more advanced 
multidimensional visualization methods, combined with appropriate archiving and 
sharing approaches, to tackle the big data issues presented by biologging. We also 
discuss the challenges and opportunities in matching the peculiarities of specific 
sensor data to the statistical models used, highlighting at the same time the large 
advances which will be required in the latter to properly analyse biologging data.
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1  | INTRODUC TION

Movement is a fundamental aspect of life, intrinsically linked to al-
most every ecological and evolutionary process, from the acquisition 
of food, through reproduction and survival, to species distributions 
and community structure. Decades of technological developments 
have created vast possibilities in terms of data collection to study the 
movement of organisms, from VHF (Kenward, 2001), ARGOS and 
GPS technology (Kays, Crofoot, Jetz, & Wikelski, 2015; Tomkiewicz, 
Fuller, Kie, & Bates, 2010; Weimerskirch, 2009), to reverse GPS 
technology (Weiser et al., 2016) and dedicated satellite systems 
for tracking animals around the globe (ICARUS, see Wikelski et al., 
2007), to sensor and acoustic receiver networks for animal tracking 
(Duda et al., 2018; Hoenner et al., 2018). In tandem, ecologists have 
driven a revolution in biologging sensor technology, motivated by 
the need to gather behavioural and ecological data that cannot be 
obtained through direct observation. This revolution has resulted 
in the development and use of a variety of sensors to observe the 
unobservable, including inter alia: accelerometers, magnetic field 
sensors, gyrometers, temperature and salinity sensors, further com-
plemented by video cameras and proximity‐loggers (Rutz & Hays, 
2009)—see Table S1. The combined use of multiple sensors can 
provide indices of internal ‘state’ and behaviour, reveal intraspecific 
interactions, reconstruct fine‐scale movements and even measure 
local environmental conditions (Rutz & Hays, 2009; Wilson et al., 
2014). However, with increasing sensor possibilities comes a new 
challenge: pinpointing the appropriate information to collect, and 
finding efficient ways to do so.

It is hardly surprising, therefore, that there is an increasing num-
ber of high‐profile reviews that showcase the paradigm‐changing 
opportunities offered by animal‐attached technology for ecologi-
cal research (Hussey et al., 2015; Kays et al., 2015; Wilmers et al., 
2015). Within these reviews, however, there exists scant treatment 
of how best to match the most appropriate sensors and sensor com-
binations to specific biological questions. As a result, ecologists 
have tended to use statistical methods post hoc to overcome the 

limitations of specific sensor data, including smoothing methods 
such as Kalman filtering and state‐space models or machine‐learning 
approaches applied to positional and accelerometer data. Similarly, 
although new analytical methods show great promise, such as the 
use of machine‐learning to identify behaviours from tri‐axial accel-
eration data (Nathan et al., 2012) or hidden Markov models (HMMs) 
to infer hidden behavioural states (Leos‐Barajas et al., 2017), no 
clear guide exists to promote best practice. Such a guide would 
allow ecologists and statisticians to strike a balance between overly 
simplistic and complex models to deal with the vagaries of specific 
sensor data, for example the limitations of accelerometer data (see 
also Patterson et al., 2017). We aim to fill this gap by considering 
how to optimize the use of biologging techniques to answer key 
questions in movement ecology. In doing so, we identify four critical 
areas—questions, sensors, data and analyses—and related opportu-
nities for multidisciplinary collaborations and synthesize these into 
an Integrated Biologging Framework (IBF) to aid the decision‐making 
process for ecologists. We then review the technologies and meth-
odologies available to ecologists to make the links between nodes 
of the framework. We first consider how best to address biological 
questions using the most appropriate sensors while identifying cur-
rent technological limitations. Second, we review the challenges and 
opportunities of linking new data types obtained from biologging 
sensors to the most adequate analytical techniques. We discuss is-
sues relating to dealing with large, complex datasets, the fundamen-
tal properties of the new data types that can be collected, and the 
challenges of archiving and sharing biologging data. Finally, we dis-
cuss the value of multidisciplinary collaborative links to optimize the 
opportunities offered by current and future biologging technology.

1.1 | The integrated biologging framework

We connect the four areas critical for optimal study design via 
three nodes in a cycle of feedback loops (Figure 1), linked by mul-
tidisciplinary collaboration. Ecologists can work their way through 
the IBF to develop their study design—typically, this will start with 

5. Taking advantage of the biologging revolution will require a large improvement in 
the theoretical and mathematical foundations of movement ecology, to include the 
rich set of high‐frequency multivariate data, which greatly expand the fundamen-
tally limited and coarse data that could be collected using location‐only technol-
ogy such as GPS. Equally important will be the establishment of multidisciplinary 
collaborations to catalyse the opportunities offered by current and future biolog-
ging technology. If this is achieved, clear potential exists for developing a vastly 
improved mechanistic understanding of animal movements and their roles in eco-
logical processes and for building realistic predictive models.

K E Y W O R D S

accelerometer, big data, data visualization, GPS, integrated biologging framework, movement 
ecology, multidisciplinary collaboration, multisensor approach
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the biological question, but the pathways will differ if, for example, 
using a question/hypothesis‐driven (blue) or data‐driven (orange) 
approach. Figures 2 and 3 provide two such pathway examples.

Furthermore, biologging has become so multifaceted and com-
plex that no one can be a ‘master of all trades’; hence, establishing 
multidisciplinary collaborations is key (as for other disciplines, Peters 
et al., 2018), and this idea is at the basis of the IBF. For example, at 
the study inception phase, dependent on the biological problem ad-
dressed, physicists and engineers can advise on sensor types, their 
limitations and power requirements, while mathematical ecologists 
and statisticians can aid in framing the study design and modelling 
requirements for specific questions (see Figure 2). Development of 
biologging tags is the result of collaborations between engineers, 
physicists and biologists, while visualization and analytical methods 
for dealing with data are aided by interactions with computer scien-
tists, geographers, statisticians and mathematicians (see Figure 3). 
Additionally, ecologists can guide researchers from the other dis-
ciplines towards the key methodological hurdles and technological 
limitations which are hindering progress and need to be addressed.

We now review the literature regarding questions, sensors, data 
and analyses and exemplify the links between the nodes of the IBF. 
We conclude by highlighting areas for future development.

2  | FROM QUESTIONS TO SENSORS

Researchers can choose between an ever‐increasing number of dif-
ferent biologging sensors (Table 1, Table S1). Following the adage 

that experimental design should be guided by the questions asked 
(e.g. Fieberg & Börger, 2012; Hebblewhite & Haydon, 2010), sensor 
choice is clearly critical. Here, we consider sensor selection within 
the general scheme of the key movement ecology questions posed 
by Nathan et al. (2008) and provide an example for the use of the IBF 
in a question‐driven approach to study design (Figure 2).

2.1 | Where is the animal going?

ARGOS, GPS and related satellite and global navigation systems, as 
well as acoustic tracking arrays and geolocators, have revolutionized 
information on animal locations and movements (Kays et al., 2015). 
Biologging sensors, particularly in combination with such location‐ 
tracking devices, can further help detect where animals move. For 
example, Hedenström et al. (2016) combined geolocator and ac-
celerometer tags to record flight behaviour of migrating swifts, and 
Shipley, Kapoor, Dreelin, and Winkler (2018) used micro barometric 
pressure (altitude) sensors (<0.5 g) to uncover the aerial movements 
of migrating birds. A key limitation of telemetry devices is that trans-
mission technology can fail, such as when canopy cover impedes 
GPS satellite fixes (Rempel, Rodgers, & Abraham, 1995). However, 
with the combined use of inertial measurement units (IMUs) and el-
evation/depth recording sensors, it is possible to reconstruct animal 
movements in 2D and 3D using a dead‐reckoning procedure, irre-
spective of transmission conditions (Bidder et al., 2015; Bramanti & 
Dall’Antonia, 1988). This uses the speed (including speed‐depend-
ent dynamic body acceleration (DBA) for terrestrial animals; Bidder, 
Qasem, & Wilson, 2012), combined with animal heading (from 

F I G U R E  1   The Integrated Biologging 
Framework (IBF) for optimal use of 
biologging in movement ecology. 
Researchers may take a question‐driven 
approach, beginning with a hypothesis and 
then selecting the appropriate sensor and 
analysis techniques. Alternatively, a data‐
driven approach can be taken, by allowing 
existing data to inform further hypotheses 
and data collection. The framework 
operates via collaboration between 
disciplines in a system of feedback loops, 
though these collaborative links are not 
exclusive to any particular node
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magnetometer data) and change in altitude/depth (pressure data) to 
calculate the successive movement vectors (oriented steps) from a 
known starting position. The process gives extraordinarily finely re-
solved relative movement (it can, for example, determine how many 
times a dog has walked around a tree in scent‐marking activity) but 
it can accumulate errors over time, especially in fluid media with cur-
rent flow. Therefore, data used in dead‐reckoning need correcting 
with frequent ground‐truthing, such as by a GPS unit (Bidder et al., 
2015). GPS‐enabled dead‐reckoning is an incredibly powerful com-
bination of sensor systems which may become paradigm‐shifting 
within animal movement studies. With this, researchers will have ac-
cess to multiple scales of movement and seamless animal movement 
descriptors and will be able to identify true turn‐points in the data 
(Potts et al., 2018; see Figure 2 and section 4.3 below). In turn, the 

improved track trajectory should allow us to connect behaviour to 
landscape ecology and population dynamics with increased confi-
dence (Morales et al., 2010).

2.2 | How is the animal moving?

At the smallest scale (locomotion), animals move according to 
their anatomy and the biomechanics that this engenders, with 
obvious differences between animals operating in fluid media (air 
or water) or on the ground (Biewener & Patek, 2018). In essence, 
locomotion is manifested by particular patterns of movement by 
the various body parts (most notably limbs) so that motion‐sen-
sitive transducers can provide critical information with respect 
to the pattern and intensity of movements and thereby derive 

F I G U R E  2   A question‐driven approach to the IBF for optimal study design using biologging. In this example, ecologists begin with their 
question of focus (top of Figure 1), in this case an investigation into the effect of internal state on movement decisions, and select the 
appropriate external and internal sensors for data collection. Here, sensors should be sensitive to different aspects of an animal's movement 
that relate to their internal state, perceived information and the movement that may result from a particular decision. Selection of the 
sensors requires strong collaboration between ecologists and engineers (right‐hand‐side symbols). Simultaneously (bottom of Figure 1), 
ecologists should work with those analysing the data (e.g. physicists, mathematicians, statisticians, computer scientists) in the process of 
designing the data collection, to ensure the correct data are gathered that can answer the question using the analytic tools available
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critical whole‐animal movement parameters such as speed and 
direction. The primary sensors used for this include accelerome-
ters, magnetometers and gyrometers (often collectively grouped 
within inertial measurement units [IMUs]; e.g. Noda, Kawabata, 
Arai, Mitamura, & Watanabe, 2014). Accelerometers and mag-
netometers can be used to infer the 3D orientation (heading and 
posture, i.e. azimuth, elevation angle and bank angle; see Table S2 
for a glossary of terms) during locomotion, whereas gyrometers 
provide direct measures of yaw, pitch and roll (see Benhamou, 
2018, for the mathematical relationships between these param-
eters). In addition, various iterations of speed‐detecting sys-
tems, such as anteriorly mounted propellers (Ropert‐Coudert 
et al., 2000; Watanabe et al., 2008), flexible paddles (Shepard, 
Wilson, Liebsch, et al., 2008) and Pitot tubes are also used (Taylor, 
Reynolds, & Thomas, 2016). Importantly, the speed at which an 

animal is moving provides information on the urgency with which 
the movement is being undertaken. When moving animals devi-
ate from minimum cost of transport (cf. Schmidt‐Nielsen, 1972), 
it indicates time‐based selection pressures that incite animals to 
move non‐optimally in energetic terms; the reasons for which may 
be critical for lifetime fitness and only become apparent post hoc 
(e.g. Shepard, Wilson, Quintana, Laich, & Forman, 2009). Sensors 
are thus required to record information from which we can quan-
tify the energetics of animal locomotion, as well as the costs 
and benefits of behaviours. Several sensors provide proxies for 
oxygen consumption (VO2), including heart rate loggers (Green, 
2011) and tri‐axial accelerometers through the computation of 
dynamic body acceleration (DBA; reviewed in Wilson, Börger, et 
al., 2012). Indeed, the continued refinement of these proxies of 
power use, one of the most fundamental currencies in the animal 

F I G U R E  3   A data‐driven approach to the IBF for optimal study design using archived biologging data. In this example, ecologists begin 
by selecting appropriate data types for the study of movement patterns in relation to environmental measures at local and global scales. 
Understanding and predicting how animals respond to global change, including climate and land‐use change, requires multiple data collected 
over a range of temporal and spatial scales. In this case, ecologists start at the central nodes of the IBF (Figure 1) to collate archived data 
and collaborate with mathematicians, statisticians and geographers (right‐hand‐side symbols) to implement the appropriate processing and 
analytic techniques to interrogate the data and identify patterns by which several questions may be approached. Following this, ecologists 
may work with other disciplines to deploy additional biologging sensors to collect data that complement the shared data
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kingdom, will be pivotal in providing critical, missing information 
within previously established movement frameworks such as op-
timal foraging (McNamara & Houston, 1986; Pyke, 1984).

Sensors that detect body movements may also provide key infor-
mation relating to biomechanical questions, such as how stroke fre-
quency relates to stroke amplitude. For example, magnets used with 
Hall sensors (sensors detecting magnet‐transducer paired magnetic 
field properties; Hall, 1879—see Table S1) can quantify the ampli-
tude, angular velocity and frequency of limb movements of marine 
mammals (Wilson & Liebsch, 2003), providing insights into energy‐
saving mechanisms (Nassar, Jackson, & Carrier, 2001). Animal‐borne 
video or audio may provide similar information, for example being 
able to relate flipper beat frequencies in green turtles (Chelonia 
mydas; Hays, Marshall, & Seminoff, 2007) and emperor penguins 
(Aptenodytes forsteri; van Dam, Ponganis, Ponganis, Levenson, & 
Marshall, 2002), to dive strategies. Hall sensors can also measure 
respiration rates and extent of inhalation, heart rates and even pat-
terns of defaecation, providing information on the optimal breathing 
strategies and rates of digestion (Wilson et al., 2003, 2004); cases 
where mounted accelerometers would be limited due to movement 
being mainly translocational. In addition, these behaviours can also 
be detected from on‐board videos. Yet few studies use these tech-
niques, perhaps because researchers find the magnetic field inten-
sity drop off with distance intractable and because, at the time the 
studies were published, it was not possible to study angular changes 
between magnet and sensor, if distances were held constant. Inertial 
measurement units (IMUs) have changed this. The future of minia-
ture IMUs holds promise for researchers in documenting minute 

changes in body movement and for quantifying motion capacity 
from limb movements.

2.3 | What is the animal doing?

Allocating behaviours to space is key to understanding animal niche 
requirements and the link between behaviour and fitness conse-
quences. Since the work by Yoda et al. (1999) using accelerometers 
to determine animal behaviour, there is a rich and varied literature 
that documents increasingly successful methodologies for determin-
ing animal behaviour from various sensor data, especially accelerom-
eters (Nathan et al., 2012; Shepard, Wilson, Quintana, et al., 2008) 
and magnetometers (Williams et al., 2017). Thus, it is now possible 
to extract a remarkable amount of information regarding behaviour, 
beyond that of limb and body part movement as detected from tri‐
axial sensors.

In particular, quantifying the type and amount of food ingested 
by animals is essential to answering some of the ‘big questions’ in 
movement ecology such as how animals manage their energy bud-
gets in the wild (cf. Krebs & Davies, 1978). For example, combining 
GPS and DBA measures derived from tri‐axial accelerometers allows 
us to better understand the energetics underlying prey capture 
behaviour of large terrestrial predators (Wilmers, Isbell, Suraci, & 
Williams, 2017), while the drift and buoyancy inferred from time‐
depth recorders can provide information on the foraging success 
of marine predators (Abrahms et al., 2018). A further refinement is 
provided by indirect parameters such as those obtained by means of 
sensors that detect stomach, oesophageal or visceral temperature, 

TA B L E  1   Summary table of the current biologging sensors available, beyond classic location sensors. The detailed application and 
description of sensors is provided in Table S1

Sensor type Examples Description Relevant questions Optimization

Location Animal‐borne radar, pressure, 
passive acoustic telemetry, 
proximity sensors

Location based on 
receiver location

Space use; interactions Use in combination with the 
behavioural sensors below; 
Create visualizations to facilitate 
interpretation of 3D space use 
and interactions

Intrinsic Accelerometer, magnetometer, 
gyroscope, (gyrometer)

Patterns in body 
posture, dynamic 
movement, body 
rotation and 
heading.

Behavioural identification; 
internal state; 3D movement 
reconstruction (dead‐reck-
oning); energy expenditure; 
biomechanics; feeding activ-
ity; space use

Use in combination with other 
intrinsic sensors to build up 
detail of behaviour and/or 3D 
path reconstruction; Increased 
sensitivity to detect micro‐
movements or stress‐related ac-
tivity; High‐resolution (temporal 
and spatial) environmental data 
may improve accuracy of path 
reconstruction (e.g. in relation 
to environmental flow, wind or 
current data)

Heart rate loggers, stomach 
temperature loggers, neuro-
logical sensors, flexible speed 
paddle, Pitot tube, speed 
paddles

Measures of activity.

Microphone, hall sensors Specific behaviour, 
e.g. limb movement 
and vocalizations

Environment Temperature Ambient Space use; energy expenditure; 
external factors; interactions

In situ remote sensing; Arrays to 
localize animals; Visualizations 
to provide context and under-
standing of interactions

Microphone, proximity sensors, 
video loggers

Record external 
environment, e.g. 
soundscape
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which can provide invaluable insights into actual prey captures 
(Weimerskirch, Gault, & Cherel, 2005; Weimerskirch, Pinaud, 
Pawlowski, & Bost, 2007; Wilson, Cooper, & Plötz, 1992). An intrigu-
ing alternative is based on attaching a Hall sensor to one mandible 
opposite a magnet attached on the other mandible (but the ethical 
implications and feasibility must be well considered). The interman-
dibular angle can be determined by measuring changes in magnetic 
field strength (Wilson, Steinfurth, Ropert‐Coudert, Kato, & Murita, 
2002). This approach, which has been employed in several marine 
and terrestrial species, can provide information about both the num-
ber of food items and the type of food ingested (Ropert‐Coudert et 
al., 2004). Indeed, such is the detail provided by these sensors that 
studies are now able to examine food acquisition within a probabilis-
tic framework and thereby make predictions about how food abun-
dance may affect populations (Wilson, Neate, et al., 2018).

Obtaining direct observations may sometimes be essential, ei-
ther because robust calibration of biologging sensors is difficult 
or because the study's aim is to document particular behaviours in 
great detail (such as prey captures and social interactions; McInnes, 
McGeorge, Ginsberg, Pichegru, & Pistorius, 2017; Pagano et al., 
2018; Watanabe & Takahashi, 2013) or to prospect for undiscov-
ered behaviours (such as unusual foraging techniques; Rutz, Bluff, 
Weir, & Kacelnik, 2007). Under these circumstances, video loggers 
are the method of choice, or still‐image loggers, if longer recording 
times are required and a lower frame rate is acceptable. Cameras 
may also offer the opportunity to assess what a wild animal sees 
in the field (Moll, Millspaugh, Beringer, Sartwell, & He, 2007) so 
that environmental information can be factored into foraging effi-
ciency (Sutton, Hoskins, & Arnould, 2015) and movement patterns 
studied with respect to visual stimuli (Tremblay, Thibault, Mullers, 
& Pistorius, 2014). Video loggers can also be combined effectively 
with other sensors such as accelerometers (Watanabe & Takahashi, 
2013) and are small enough to be fitted to a wide range of species 
(see below). By attaching such sensor combinations to the heads of 
animals, where the sensory systems are concentrated, researchers 
can quantify how much attention individuals give to aspects of their 
environment and gain insight into perception and response to stim-
uli (see Kano, Walker, Sasaki, & Biro, 2018; Wilson et al., 2015).

2.4 | Why is the animal moving?

Animals make behavioural decisions based on their internal ‘state’ 
(physiological and psychological condition) and external biotic and 
abiotic factors (Nathan et al., 2008). Identifying and quantifying 
how internal state may drive behaviour is non‐trivial and can often 
only be indirectly inferred (Getz & Saltz, 2008). Some aspects of 
animals’ internal state have been investigated using accelerometers 
which are sensitive to micro‐movements and postures indicative of 
chemical, disease and affective states (Downey et al., 2017; Wilson 
et al., 2014), including vigilance behaviour, a stress‐related response 
(Kröschel, Reineking, Werwie, Wildi, & Storch, 2017). Alongside ac-
celerometers, other key sensors that can provide insights into inter-
nal state include heart rate, internal temperature and neurological 

sensors (Rattenborg et al., 2016). For example, heart rate loggers 
were used by Bishop et al. (2015) to investigate the interplay be-
tween ecological pressures and energetic strategies in bar‐headed 
geese (Anser indicus) and by O’Mara et al. (2017) in fruit‐eating bats 
(Uroderma bilobatum). As another example, Ditmer et al. (2018) used 
heart rate loggers to investigate how American black bears (Ursus 
americanus) perceive the risks of crossing roads. Research on humans 
has demonstrated that biologgers can measure a suite of physiologi-
cal variables related to internal state (Nikita, 2014; Yang, 2014) and 
the development of similar systems for wild animals is increasing; 
examples include animal‐borne blood sample collection devices for 
stress hormones in seals (Takei et al., 2016), other hormonal sensors 
(Landry et al., 2014) and internal chemical detection nanosensors for 
freely moving animals (Lee et al., 2018).

The greatest insight into state‐driven movement is likely to be 
gained from multisensor approaches (e.g. Wilson, Littman, Halpin, 
& Read, 2017), especially combining both physiological and/or neu-
rological sensors with position‐determining systems (Figure 2). For 
example, Vyssotski et al. (2006) simultaneously measured pigeon 
(Columba livia) movement and electrical brain activity using a minia-
turized GPS combined with an electroencephalography logger, while 
Dunn et al. (2016) obtained a brain‐wide mapping of neural activity 
of zebrafish (Danio rerio) during movement. The use of neurological 
sensors to monitor brain activity in freely moving animals is a rela-
tively new advancement (e.g. Rattenborg et al., 2016; Skocek et al., 
2018). Such multisensor developments are helping to meet the chal-
lenge of linking internal state, as a proximate cause of movement, 
to ultimate evolutionary causes (Nathan et al., 2008). However, 
there are important ethical considerations to be raised, especially 
for surgically implanted sensors (e.g. the example of frigatebirds; 
Rattenborg et al., 2016).

Alongside the internal state, what is happening in the environ-
ment is the other prime driver of animal movement. Global envi-
ronmental data can be recorded through satellite remote sensing, 
and biologgers now routinely collect local environmental data, both 
biotic and abiotic (Table 1; Table S1). Thus, a major aspiration is to 
link such data to movement. Though, while ecologists can access an 
increasing amount of remotely sensed environmental data, linking 
them to location data is usually difficult, as environmental data are 
obtained at different, generally coarser, spatiotemporal scales than 
movement data (Dodge et al., 2013). Remelgado, Wegmann, and Safi 
(2019) recently developed a new pixel‐based approach, combined 
with data mining and visualization, to help ecologists efficiently deal 
with differences in the spatial, temporal and thematic resolutions 
between environmental data from remote sensing and GPS location 
data; yet the problem persists with high‐frequency biologging data.

Depending on the question asked, it may be necessary to use 
modelling to derive high‐accuracy dynamic maps of environmental 
conditions (e.g. vertical wind; see Scacco, Flack, Duriez, Wikelski, 
& Safi, 2019) or to use drones or LiDAR, to build ultra‐high reso-
lution, two‐ and three‐dimensional maps of the study area (e.g. to 
investigate movement costs due to elevation or to quantify vegeta-
tion quality for optimal foraging questions). Importantly, biologgers 
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allow the collection of high‐frequency environmental data at the 
local scale experienced by the animals, such as temperature, light 
intensity and wind or current velocity (Block, 2005; Dodge et al., 
2013; Piersma & Lindström, 2004). This may be complemented by 
implanted sensors such as core body temperature sensors (e.g. when 
studying heat stress questions), combined with sophisticated use of 
meteorological data to estimate the so‐called wet bulb globe tem-
perature index (WBGT), a key measure of heat stress (Dimiceli, Piltz, 
& Amburn, 2011).

In terms of the biotic environment, an animal's movement de-
cisions are likely to be influenced by interactions with conspecif-
ics and heterospecifics and, again, there are certain combinations 
of sensors that can record and help identify these interactions. 
There are two main approaches to remotely record the social 
contact between free‐ranging animals: indirect and direct en-
counter mapping (see Bettaney, James, St Clair, & Rutz, 2015; 
Krause et al., 2013). Indirect encounter mapping can be achieved 
either with high‐resolution tracking of subjects, or with the use 
of tags that transmit to, or that are detected by, fixed receiver 
stations at specific locations (e.g., coded VHF radio‐tags or PIT/
RFID tags). In both cases, the co‐occurrence of animals is in-
ferred at the data analysis stage. Direct encounter mapping, on 
the other hand, requires the use of proximity loggers (transceiver 
tags that both transmit and receive radio signals between animals) 
or camera tags (Hooker, Barychka, Jessopp, & Staniland, 2015), 
to create reciprocal records of social encounters (Bettaney et al., 
2015; Krause et al., 2013). Proximity loggers can be used for ad-
dressing a variety of biological questions and have the advantage 
over cameras (e.g. Takahashi et al., 2004) that they survey in all 
directions (even though precise directional and distance informa-
tion is often not collected), but their key strength lies in charting 
social associations of a large number of subjects of known identity, 
to reconstruct group, community or even population‐level social 
networks. Proximity sensors can also be used to record interspe-
cific encounters, for example between predators and their prey, 
between different disease hosts or in mixed groups of foraging or 
migrating animals. Some systems are set up as wireless sensor net-
works where animal‐mounted sensors not only communicate with 
other sensors but also with (a large number of) stationary receiver 
(base) stations (Rutz et al., 2012). This enables near real‐time data 
transmission, which is key to evaluating system performance and 
to planning and monitoring experimental manipulations (St Clair et 
al., 2015).

A particular type of interspecific interaction occurs when ani-
mals interact with human activities, which can strongly affect animal 
movements (e.g. Tucker et al., 2018). An interesting development is 
animal‐borne radar detectors, which detect signals from emitting 
radars in the surroundings and can be used in combination with a 
tracking device to log the occurrence of structures along an animal's 
movement path (Table 1; Table S1). This has facilitated the study of 
seabird‐fishing vessel interactions, quantifying attraction, atten-
dance and foraging behaviour (Weimerskirch, Filippi, Collet, Waugh, 
& Patrick, 2018).

3  | FROM SENSORS TO DATA

Data collection and analysis issues must be addressed alongside sen-
sor selection when approaching a specific ecological question. The 
first challenge concerns finding the most appropriate experimental/
sampling design to answer a given ecological question. More broadly 
(see the internal data node of the IBF), this concerns the closely re-
lated issues of tag design and data management (which includes plan-
ning for data archiving and sharing)—all of which must be defined 
prior to tag deployment. The experimental design will strongly benefit 
from interdisciplinary collaborations to find the best solution, ensur-
ing that the data‐gathering is both feasible and will lead to sufficient 
data to answer the questions using available analytic techniques.

3.1 | Experimental design

Consideration of an appropriate sampling regime prior to tag deploy-
ment, so as not to over‐ or undersample data and maximize battery 
duration (and minimize tag weight), is a crucial aspect (note that bat-
tery power is required both to interrogate the sensors, to write the 
data to memory, and possibly, send the data). To do so, researchers 
should apply the Nyquist or sampling theorem, which states that the 
sampling frequency should be at least twice the fastest frequency of 
interest, for example consider wingbeat frequency versus amplitude 
as focus of interest. This holds true in temporal and spatial domains 
(see discussion in Ropert‐Coudert & Wilson, 2004). An obvious con-
sequence of this trade‐off is the use of smart sampling, whereby the 
sensors record at a frequency able to elucidate the relevant aspect 
properly, but no more. We do note, however, that highly prescribed, 
low‐frequency sampling may miss serendipitous observations of im-
portance and may preclude the detection of new, never observed 
behaviours. Furthermore, derivation of body motion or measures of 
energy expenditure (DBA) requires smoothing of accelerometer data 
at an appropriate frequency (Shepard, Wilson, Halsey, et al., 2008), 
albeit the latter could indeed be processed on‐board without storing 
the high‐frequency data (e.g. Cox et al., 2018). For example, a high‐fre-
quency recording of raw data (>20 Hz) may be necessary to compute 
animal posture and DBA (see also Brownscombe, Lennox, Danylchuk, 
& Cooke, 2018); however, higher frequencies draw more current (dou-
bling the frequency from 20 Hz to 40 Hz might require to double or 
more the battery size/capacity, and hence weight, depending on the 
specifics of the sensors); thus, a balance between behaviour resolu-
tion, information gain and current draw is a key stage of experimental 
design. Equally important, when using IMUs featuring multiple sen-
sors might be to set different frequencies for different sensors, such 
as a higher frequency for accelerometers (40 Hz), a lower frequency 
for magnetometers (20 Hz) and an even lower frequency for tempera-
ture or pressure sensors (e.g. 4 Hz). Such settings can more than dou-
ble the time a logger can record on a given battery size (note also that 
differences between battery types in the capacity to respond to peak 
current demands from the sensors can further affect the longevity of 
loggers), but preliminary studies for different study species, and in-
teractions with engineers, might be required to find the best settings.
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Another area of current research (e.g. see Cox et al., 2018) is fo-
cussing on finding clever ways to store on‐board only subsampled 
or summary data, rather than the raw high‐frequency data, thereby 
reducing data storage requirements and, ideally, allow remote trans-
mission of the data (often the latter is precluded for field studies 
due to the high power requirement). Closely related is the choice 
of sensor resolution (bit resolution, see discussion and examples in 
Ropert‐Coudert & Wilson, 2004). The number of bits with which the 
data are stored directly determines the quality of the data obtained. 
For example, past loggers used an 8‐bit resolution, meaning the sen-
sor can obtain an absolute resolution given by the maximum resolu-
tion range divided by 256. In the case of a depth pressure transducer 
with a maximum range of 50 Bar, this means a maximum resolution 
of circa 0.2 Bar, equal to resolving dive differences of 2 m (a 16‐bit 
resolution allows instead to resolve steps of 0.008 m, see Ropert‐
Coudert & Wilson, 2004). Low resolution may preclude recording 
key information such as prey capture events. Equally important is 
the measurement range of the sensor. For example, an accelerome-
ter which records up to 8 g will miss any data of animals moving more 
dynamically (e.g. head impacts) and unless the animals are known 
to be only relatively slow moving and good preliminary data exist, 
researchers should set the range to at least 16 g for initial studies 
(for terrestrial systems; a lower range may be sufficient for aquatic 
systems as, due to friction, movement speed may change less fast), 
and record this information in the metadata. Equally important are 
trade‐offs between the quantity of data collected in terms of the 
frequency and duration of data collection in a single deployment, 
as well as trade‐offs between the amount of data collected on sin-
gle individuals against the number of different animals monitored 
across time and space (see also Hebblewhite & Haydon, 2010). 
Collaborations across disciplines are crucial to make such decisions.

3.2 | Tag design

Reducing battery consumption not only extends the life of a biolog-
ging device, but has implications for tag size and attachment that 
should also be considered for both optimal study design and animal 
welfare. Reduction of tag size is paramount, yet even with recent ad-
vances in the reduction of sensor size, it is still battery size that lim-
its that of the device. Note also that further evidence demonstrates 
that for some applications, the total mass of the tag together with 
the animal is more important than the relative tag mass (Tomotani, 
Bil, Jeugd, Pieters, & Muijres, 2019). For cameras for example, cur-
rent available loggers are small enough, at approximately 10 g, to 
be fitted to a wide range of species (Rutz et al., 2007). However, 
even state‐of‐the‐art camera loggers remain severely battery lim-
ited; hence, duty cycling is advisable for most applications, as this al-
lows targeted data collection during periods of peak activity and/or 
repeated short‐term recording over the course of several days (Rutz 
& Troscianko, 2013). An exciting recent development is the use of 
event‐triggering technology that allows cameras to be switched on 
whenever particular behavioural states or environmental conditions 
are detected (see analyses section below). To provide an example, 

while miniature VHF tags weighing 0.5g may allow researchers to 
track the movements of an animal for up to a month, a battery one or 
two orders of magnitude heavier would be required to record high‐
frequency accelerometer and magnetometer data for the same dura-
tion. On the other hand, a GPS running at 1 Hz may require between 
30 and 50 mA of current, whereas a modern IMU recording tri‐axial 
acceleration and magnetometer data at 40 Hz requires only 5–10 mA 
of current (Bidder et al. 2015). More generally, close attention is re-
quired in the consideration of size, longevity and attachment among 
different tags/sensors. Bodey et al (2018) provide a useful key for 
assessing device impacts prior to tag deployment, and a growing 
body of literature now highlights the importance of tag shape and 
attachment in terms of affecting an animal's drag in aerial and marine 
environments (e.g. Kay et al., 2019; Lear, Gleiss, & Whitney, 2018; 
Vandenabeele et al., 2014).

3.3 | Data management

A further consideration for optimal experimental design is that of 
data management and processing. The data provided by sensors 
often do not correspond directly to the information we look for, but 
to a proxy, which needs to be converted. For instance, a depth re-
corder is designed to provide a measure of pressure rather than a 
measure of depth, but underwater depth being linearly related to 
pressure, the conversion is straightforward. For other sensors, this is 
not so obvious, and raw data therefore require being pre‐processed. 
For example, acceleration data do not provide a direct estimate of 
energy expenditure or oxygen consumed while moving. First, the 
dynamic component has to be extracted from the raw acceleration 
values, then converted to DBA, which finally has to be correlated 
with energy or oxygen through controlled laboratory experiments 
(reviewed in Wilson, Holton, et al., 2019). Pre‐processing is also re-
quired for integrating data provided by different sensors, possibly 
at different rates, and often based on separate clocks (exposing 
systems to clock drift), although inertial measurement units (IMUs) 
effectively deal with temporal synchronization within any one log-
ger. Notably, data recorded at high frequency are both noisy and 
highly serially autocorrelated. Noise can be reduced by filtering, for 
example by taking a running mean, or may involve more complex 
approaches such as Fourier transformations or Kalman filtering (e.g. 
Alam & Rohac, 2015). A simple and efficient solution consists of 
subsampling the processed data to a level (or deriving averages) to 
accord with the Nyquist frequency. Pre‐processing should be per-
formed before subsampling, although there is an element of feed-
back depending on the desired endpoint, which may also need to be 
considered when selecting the sampling frequencies for the differ-
ent sensors and their data types, which also has important implica-
tions for data archiving (see next section).

3.4 | Data archiving and sharing

Biologging data also present considerable challenges for data shar-
ing and replicability. One challenge lies in the lack of standardized 
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protocols for data recording from animal‐borne sensors (Campbell, 
Urbano, Davidson, Dettki, & Cagnacci, 2016). Logging data require 
very detailed metadata on the attachment type and position on the 
animal of the loggers, as otherwise, establishing a close relation-
ship between the output from sensor data (such as tri‐axial accel-
erometer) and the heading and posture of the animal will be near 
impossible. Furthermore, whether or not to keep both the pre‐ and 
post‐processed versions of the data (particularly before or after fil-
tering and subsampling) is something to consider in terms of not only 
the current question and analyses, but also for the long‐term goals of 
archiving data in the best format available to allow long‐term use of 
those data. Thus, there is an urgent need to improve data protocols 
and database standards for biologging data. Indeed, the International 
Biologging Society is actively working towards that goal. Efficient 
data sharing and archiving across many studies and authors will be 
key to answer the big questions in movement ecology, for example 
global responses to environmental change (Figure 3), and will reduce 
the need to collect new data (see also section 5).

4  | FROM DATA TO ANALYSES

Data analysis issues must be addressed upfront alongside sensor 
selection and experimental design, to ensure the resulting data are 
sufficient for the proposed mathematical models and statistical tests 
used to infer biological information from the data. This requires 
strong interdisciplinary collaborations between empiricists and the-
oreticians from the outset of the project. The first major challenge 
for the link between data collection and analyses in the IBF is the ‘big 
data’ problem. Rapid advances in biologging technology now provide 
information‐rich, big datasets, even from single individuals; thus, 
the challenges in data analyses are similar to those of ‘big data’ and 
‘data science’ problems in ecology and other scientific disciplines 
(Hampton et al., 2013; Lewis, Vander Wal, & Fifield, 2018; Thums et 
al., 2018). There is an urgent need for the use and development of 
more sophisticated and computationally efficient data visualization 

and exploration methods, as well as mathematical models that incor-
porate multidimensional biologging data.

4.1 | Data visualization

A key part of exploratory data analysis consists in devising effi-
cient ways to visualize and display quantitative information (Tukey, 
1977), especially to aid exploration in this data‐rich era. Data visu-
alization converts complex patterns in data into a visual display, 
capitalizing on the extraordinary capacity of the human visual 
system to pick out patterns in complex landscapes and thereby 
provide insights into data relations (Ware, 2012). While ecolo-
gists often develop their own visualization tools, many methods 
come from other disciplines such as geographic information sci-
ence (Demšar et al., 2015; Li, Wu, Song, & Zhou, 2016), medicine 
and neuroscience (with complex fMRI data, for example de Ridder, 
Klein, & Kim, 2017).

Conventionally, sensor data tend to be visualized as time‐se-
ries plots (Figure 4a), with analyses based on summary statistics 
(derived from ethograms; Figure 4b) and the application of data 
transformations. While such approaches are useful for classifica-
tion of time series data (Walker et al., 2015), integration of mul-
tisensor data is poorly covered by this approach (Lee & Jeong, 
2017; Li et al., 2016; Walker, Borgo, & Jones, 2016), primarily due 
to time taking up one axis and constraining all other data to lie 
within its scaling and bounds. Other visualizations may bypass the 
time‐scaling factor by having spherical plots that present three‐di-
mensional scatterplots, histograms, clustering data by behavioural 
state (Grundy, Jones, Laramee, Wilson, & Shepard, 2009; Williams 
et al., 2017; Wilson et al., 2016; Figure 4c‐e). The value in these 
spherical plots is that they are also multilayer and present envi-
ronmental data such as pressure and temperature as well as met-
rics of energetic expenditure (Roberts, Laramee, & Jones, 2015). 
In addition, time can also be represented, if necessary, by glyph 
or line colour (Figure 4e). Thus, such visual analytics systems can 
be linked interactively to allow different aspects of the same data 

F I G U R E  4   Visualization of sensor and location data. A number of schematic plots of varying axes and information types to visualize data 
of a seabird in flight that plunge‐dives in pursuit of prey. (a) Logged sensor outputs (acceleration (g), magnetometry (µT), altitude above sea 
level (m) derived from pressure data (kPa) and the intermandibular angle sensor IMASEN output (µT)) in a time‐series plot. Peaks in dynamic 
acceleration are associated with wingbeats during take‐off (red) and in flight (yellow), as well on impact with the sea surface in plunge‐dives 
(aqua blue). During the dive, as indicated by the negative altitude above sea level (ASL; purple), the bird may pursue prey (dark purple), as 
indicated by increased variation in acceleration and heading, from the magnetometer output. A successful prey capture attempt is evident 
in the peaks in the IMASEN signal output, as the bird opens its bill to capture the prey (*). (b) The behaviours are classified and presented in 
an ethogram to show temporal variation in behaviour (this serves as a key for the schematic). Further to these time‐series plots, different 
sensor outputs can be combined, along with derived metrics, in various multi‐axes visualizations to reveal patterns in behaviour. We present 
three examples (c–e) for data visualization in multidimensional space and two for geographic space (f–g): (c) a circular plot of heading on 
an m‐sphere (magnetometry; Williams et al., 2017), where height of the bar is the magnitude of the extent of movement (DBA), the most 
active behaviours for this bird are foraging and diving, which occur at opposite headings; (d) a g‐sphere (static acceleration data) or Dubai 
plot, where a frequency histogram of static acceleration is resolved in tri‐axial space (Wilson et al., 2016) and peaks show the most common 
postures for each behaviour; (e) a g‐sphere where distance from the surface of the sphere is relative to the depth below sea level, where 
colour indicates different behaviours in the dive, so that through the dive there is a shift in posture, and a greater variation in posture 
and depth during the prey pursuit (coloured by time in greyscale, bottom right); (f) 3D movement path for the single foraging trip; (g) 2D 
flow visualization of local foraging paths, where thicker paths are more commonly used for the different behaviours (Verbeek, Buchin, & 
Speckmann, 2011)
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to be explored, with and without temporal and spatial scales. In 
terms of sensor data, this includes plots in tri‐axial space with fur-
ther dimensions related to movement and performance metrics 
(e.g. Roberts et al., 2015) and those that combine multidimensional 
trajectory visualizations on a map with environmental data (e.g. 
Buchin et al., 2015; Shamoun‐Baranes et al., 2016; Figure 4f) and 

temporal visualizations (Demšar et al., 2015) such as DynamoVis 
(Dodge, Xavier, & Wong, 2018; Xavier & Dodge, 2014) and track-
plot (Ware, Arsenault, Plumlee, & Wiley, 2006) or flow visual ana-
lytics systems (Andrienko, Andrienko, Chen, Maciejewski, & Zhao, 
2017; Graser, Schmidt, Roth, & Brändle, 2017; Figure 4g). Time is 
also commonly visualized through animation, and there are two R 
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packages that support this (albeit for traditional location‐only data, 
not logger data): moveVis (Schwalb‐Willmann, 2018) and anipaths 
(Scharf, 2018). See supplementary information for a detailed list 
of current visualizations (Table S3). Current developments indi-
cate that it may be possible to bring these multidimensional plots 
into an interactive three‐dimensional laboratory space beyond a 
digital screen, which would dramatically help exploration of data 
and even advance behavioural studies through the manipulation 
of the virtual world (e.g. Stowers et al., 2017). Equally important 
will be the development of improved ways to display results from 
machine‐learning methods (see below); again, an area for which 
multidisciplinary collaborations will be crucial.

4.2 | Behavioural classification

Behavioural classification involves identifying particular behav-
iour‐linked signals within complex datasets, such as accelerometer 
and magnetometer data. This may involve searching for behaviour‐
linked thresholds, such as an increase in pressure to indicate diving 
(Kooyman, 1964), but more commonly will involve consideration of 
multiple data streams (Viviant, Trites, Rosen, Monestiez, & Guinet, 
2010; Yoda et al., 2001), which makes the process more complex. For 
this reason, much emphasis has recently been placed on machine‐
learning algorithms (including K‐nearest neighbour [KNN], support 
vector machines [SVMs], classification and regression trees [CART], 
and artificial neural networks [ANNs]) to classify behaviours auto-
matically (Nathan et al., 2012). Supervised machine‐learning models 
are trained with segments of data that have been manually labelled 
according to behaviour (Carroll, Slip, Jonsen, & Harcourt, 2014; 
Watanabe & Takahashi, 2013). The convenience of machine‐learn-
ing systems is that they require little specialist knowledge and in-
formation about the data streams from the researcher. Against this, 
there is a tendency to put all primary data streams as well as derived 
elements (such as DBA metrics) into the process. Because the ma-
chine does not know which data streams are most relevant at the 
outset, processing times can be prohibitively long. An approach that 
attempts to deal with this uses a Boolean framework and requires 
that the researchers have enough specialist knowledge to be able to 
pick out a sequence of features in behaviours (systematic variation 
and direction in data streams over defined time periods) to be able 
to define the behaviour in a series of key elements. These are then 
defined in an algorithm and the computer searches for the exact 
conditions to define the behaviour (Wilson, Holton, et al., 2018). 
The obvious downside to this approach is the level of expertise of 
the user and familiarity with the meaning of the data streams, which 
highlights the crucial role ecologists and biologists have to play in 
making sure analyses remain biologically sound and relevant. On 
the other hand, biologging sensor data allow for the discovery of 
behaviours never seen before in animals (Wilson et al., 2014); thus, 
both exploratory and confirmatory analyses, as well as supervised 
and non‐supervised data analysis methods, will be equally important 
for ecologists (see also Leos‐Barajas et al., 2017). Behaviour clas-
sification using logger data can also inform the usage of limited, or 

previously collected, GPS and track data to identify different behav-
iours (e.g. Browning et al., 2018).

4.3 | Movement analyses in the biologging era

There is a long history of theoretical investigation into the reasons 
and rules underpinning animal movement (Nathan et al., 2008), 
including optimal foraging theory (Houston, Clark, McNamara, & 
Mangel, 1988; Pyke, 1984). However, historically, there have been 
inadequate data on the energetics and the details of movements to 
embrace optimality properly. Consequently, theoretical movement 
ecology has tended to focus on statistical descriptions of movement 
that are agnostic to the underlying life‐history needs that govern 
movement decisions. Step selection analysis, for example, exam-
ines environmental features that are correlated with movements 
from one location to the next (Avgar, Potts, Lewis, & Boyce, 2016; 
Fortin et al., 2005; Thurfjell, Ciuti, & Boyce, 2014). As another ex-
ample, there are a variety of techniques that use movement to infer 
changes in behaviour, by observing how features such as speed 
or tortuosity change over time (Hooten, Johnson, McClintock, & 
Morales, 2017). These are categorized under various names such 
as state‐space models (Jonsen et al., 2013; Morales, Haydon, Frair, 
Holsinger, & Fryxell, 2004; Patterson, Thomas, Wilcox, Ovaskainen, 
& Matthiopoulos, 2008), hidden Markov models (Langrock et al., 
2012; McClintock & Michelot, 2018), continuous time models (re-
viewed in Patterson et al., 2017) and behavioural change‐point 
analyses (Edelhoff, Signer, & Balkenhol, 2016; Gurarie, Andrews, & 
Laidre, 2009). Similarly, there has been significant interest in infer-
ring broad‐scale movement patterns, such as home range, migratory 
or dispersal patterns, from squared displacement statistics (Börger 
& Fryxell, 2012). There is also a long history of mathematical models 
for inferring space‐use patterns from general features of movement, 
such as advective and diffusive components (Moorcroft & Lewis, 
2006; Moorcroft, Lewis, & Crabtree, 1999; Potts & Lewis, 2014). All 
of these examples model movement in a descriptive fashion, where 
the biases and correlations (Benhamou, 2014; Codling, Plank, & 
Benhamou, 2008) represent hypothesized behavioural features of 
the movement path and the aspects of the movement that we either 
do not have direct knowledge of or are unable to test, as ‘random 
walks’, or ‘hidden states’. Incorporating high‐resolution informa-
tion from biologging studies can change this, as well as enable us to 
answer questions that link movement decisions to the life‐history 
needs of animals.

Step selection analysis (SSA) is one of the most widely used tech-
niques for inferring the environmental drivers behind observed move-
ment patterns. New biologging technologies enable us to build upon 
SSA in two important ways. First, the ultra‐high‐frequency locations 
given by dead‐reckoned IMU data enable us for the first time to find 
the precise points at which an animal changes direction (Potts et al., 
2018), rather than assuming (implicitly) that changes in direction occur 
at the points where locations are acquired (which is typical in SSA 
studies based on GPS data, although there are exceptions; e.g. Merkle, 
Fortin, & Morales, 2014). Second, this approach can be extended to 
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examine broader changes in the state of the animal, rather than simply 
its location, and without having to recur to statistical models trying 
to infer a ‘hidden state’. As such, we might parametrize a model con-
taining not only the locations of the animal, but also any of the other 
aforementioned features that we can measure (or infer from metrics of 
movement) from biologging technology, such as head position, heart 
rate, movement ‘mode’ (running/eating) or even interaction variables 
related to the movement of others in the environment (Box S1).

For example, by modifying step selection analysis and similar 
techniques to incorporate the energetic costs and benefits derived 
from detailed biologging data (acceleration and heart rate loggers), 
we may be able to uncover the bio‐energetic reasons behind ani-
mal movement choices, rather than simply describing landscape as-
pects that covary with animal movement. This would help us re‐visit 
old questions about the optimality of foraging decisions and give 
important behavioural insights into animal decision‐making at fine 
scales as they move through their energy landscape (Shepard et al., 
2013). Quantifying the effects of the environment on movement 
costs in this way could help also derive a proxy of energy cost based 
on environmental conditions, to use with movement data without 
biologging information (e.g. Figure 3).

An interesting development in that direction is by Hooten, 
Scharf, and Morales (2018), who present a new approach to analyse 
movement data, including explicit mechanistic links to physiological 
dynamics, to better model decision‐making and movement in het-
erogeneous environments. Notably, this approach can be extended 
to accommodate additional data such as those provided by biolog-
gers. Similarly, state‐space models and behavioural change‐point 
analysis would be enhanced greatly by careful incorporation of data 
on orientation or energy expenditure. Indeed, the behavioural states 
in these models are often ‘hidden’ (as in ‘hidden Markov model’), but 
the sort of biologging data described in this review may be able to 
shed light on these states more directly. This will be a major change 
in the field and allow markedly improved and biologically relevant 
understanding to be obtained, compared to any of the even most 
sophisticated modelling approaches currently used.

5  | FUTURE DE VELOPMENTS FOR 
OPTIMIZING THE USE OF BIOLOGGING

So far, we have reviewed the current technologies and techniques 
available in the biologging toolbox, and how we may optimize their 
use to answer the big questions in ecology through collaborations 
within the IBF. Here, we highlight potential key future develop-
ments, across all nodes of the IBF, which would markedly advance 
the fields of biologging and movement ecology.

5.1 | New sensors: from speed measurement to 
skin patches

As speed is a key parameter of movement, there is an urgent need for 
reliable speed sensors without the disadvantages (such as fouling) 

or limits of propellers, flexible paddles and Pitot tubes (cf. Shepard, 
Wilson, Liebsch, et al., 2008, e.g. Takahashi, Nakai, & Shimoyama, 
2018). Speed of movement exposes animals differentially to condi-
tions and equates to (the square root of) power. New sensors need 
not be limited to external sampling systems either. Animal skin‐as-
sociated ‘patches’ are being increasingly used in laboratory scenar-
ios to look at physiological variables such as stress hormones and 
other chemicals (Lee, Bakh, Bisker, Brown, & Strano, 2016), some-
thing that would find great resonance in wild animal studies. We see 
huge scope for cross‐fostering between these fields, but there are 
substantial challenges as many of these applications, such as those 
developed for human studies (Nikita, 2014; Yang, 2014), require 
powerful readers that operate at close range and tend to be severely 
battery limited. Finally, tags need to be able to drop off more rou-
tinely and be recovered reliably over large spatial scales, to obtain 
the large amount of recorded data. This may also save the animal the 
stress of being recaptured and having to carry the tags for longer 
than necessary, with all the tag detriment issues that this engenders.

5.2 | Improved ethical and animal welfare 
methodologies

Although sensor technology is advancing rapidly, the ethics of bi-
ologging is still a major concern both in terms of fitting the device, 
which often requires capture, and the effects of carrying a bio‐log-
ger for the study subject. Advancing methodology in capture and 
consideration of stress by the animal is something that ecologists 
can work on; be it, reducing handling times, protecting a nest from 
predators or competitors while the animal is unable to, or even ad-
vancing remote tagging methods where the animal does not need to 
be handled. An additional limitation is that most devices store data 
on‐board, necessitating recapture of animals and the recovery of 
the units. Improving the ability of these devices to remotely trans-
mit data would improve their applicability and reduce invasiveness, 
though may require additional weight in terms of electronics and 
battery. Of greater concern are tags which require surgical implanta-
tion, including heart rate and internal temperature loggers. Though, 
recent advances have led to the development of surgically implanted 
sensors even measuring neurological activity, which may further our 
understanding of the mechanisms behind behaviour, but at what 
cost for the animal?

A related key limitation to current biologging devices is expressed 
by the ‘measurement effects performance’ paradigm (Wilson, Grant, 
& Duffy, 1986) via, for example, increased movement costs for the 
animal through additional mass loading or the ‘drag’ of the device 
(Barron, Brawn, & Weatherhead, 2010; Vandenabeele et al., 2015) 
producing non‐representative data. There are also other important 
moral and ethical considerations to animal detriment (Cooke et al., 
2017; Wilson, Holton, et al., 2019), such as cumulative effects (as a 
result of re‐tagging) and long‐term effects (decreased survival and/
or lifetime reproductive success, which may not be easily evident 
from short term changes in movement and activity patterns). Thus 
the current ‘rule of thumb’ based on 3%–5% body weight (for aerial 
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and terrestrial animals respectively) is naïve (Bodey et al., 2018) and 
will need to be improved using more comprehensive information on 
tag effects based on physical principles (e.g. via computational fluid 
dynamics to account for drag; Kay et al., 2019), considering also the 
often neglected effects of tag attachment itself (Vandenabeele et 
al., 2014). In the meantime, certainly researchers will have to better 
exploit the ongoing miniaturization to reduce the relative mass of 
the devices attached to animals (Portugal & White, 2018). Equally 
important, researchers should consider if a new tagging study is nec-
essary or if the question can be answered using existing published 
data or through data sharing, which will require the development of 
markedly improved data standards for biologging data (see previous 
section; Figure 3).

5.3 | Lifetime tracking, real‐time processing and 
remote data transmission

As biologging technology continues to advance, the ability to study 
an individual or population throughout their entire life from concep-
tion to death becomes a more realistic possibility. Such large‐scale 
tagging has major ethical implications, as not only a small subset is 
affected but an entire group, community or population. Especially 
for similar large‐scale questions, researchers would benefit from 
enhanced bandwidth for transmitting data (cf. O’Donoghue & Rutz, 
2016), an element that is already being trialled within the ICARUS 
system (Wikelski et al., 2007). In tandem comes smart on‐board 
data‐processing (e.g. Cox et al., 2018) which has the potential to 
markedly increase the temporal and taxonomic range of data which 
can be collected. The combination therein of real‐time processing 
and transmission of data will not only enable scientists to dynami-
cally adapt experiments, but has applications in conservation and 
management.

5.4 | Improving the theoretical and mathematical 
foundations of movement ecology

Perhaps the most exciting aspect of biologging is that the data‐rich 
approach driven by animals will not only help us to understand why 
animals do what they do, pinpointing drivers that range from inter-
nal state responses to pan‐ocean basin atmospheric conditions, but 
thanks to an improved mechanistic understanding, we might actually 
be able to predict animal responses to future conditions. To do so 
will require a large improvement in the theoretical and mathematical 
foundations of movement ecology, to include the rich set of high‐fre-
quency multivariate data, which greatly expand the fundamentally 
limited and coarse data that could be collected using location‐only 
technology such as GPS. In particular, there is a clear synergy be-
tween local (small‐scale) information provided by sensors and large‐
scale information provided by, for example, remote sensing data. 
How to link and predict processes occurring across different scales 
is a central question in ecology (Levin, 1992) yet difficult to address, 
with the key issues being to identify the correct mesoscopic scale 
connecting microscopic processes to macroscopic patterns. This is 

the case even for ‘simple’ physical systems constituted of identi-
cal particles, whereas biological systems are instead fundamentally 
characterized by additional intra‐ and interspecific heterogeneity. 
Movement ecologists therefore have to deal with processes which 
span multiple scales of spatio‐temporal and biological complexity 
(Torney, Hopcraft, Morrison, Couzin, & Levin, 2018). Hence, de-
manding yet exciting challenges lie ahead for integrating novel bi-
ologging data with ecological questions. We may now have access 
to vastly improved information for wild animal biologists to predict 
processes.

5.5 | Improved multidisciplinary collaborations

Collaboration is key to the framework's success as a tool for optimi-
zation of biologging studies. At the same time, ecologists can feed 
new developments back to other disciplines, e.g. as inspiration for 
new theorems (Cohen, 2004; Sturmfels, 2005), or for biologically 
inspired engineering (Bionics), such as new models of navigation 
inspired by ants (Esterley, McCreery, & Nagpal, 2017) or improved 
collective decision‐making in robot swarms (Ebert, Gauci, & Nagpal, 
2018). Indeed, actions to bring together multidisciplinary groups 
of experts are gathering momentum in movement ecology; these 
include the EU COST actions from MOVE to develop improved 
methods for knowledge discovery from moving objects and big data 
(www.cost.eu/COST_Actio ns/ict/IC0903) with similar initiatives in 
the European Network for Radar Surveillance of Animal Movement 
(http://www.enram.eu/), the Special Interest Group in Movement 
Ecology of the British Ecological Society (www.briti sheco logic alsoc 
iety.org/membe rship‐commu nity/speci al‐inter est‐group s/movem 
ent‐ecolo gy/) and the International Biologging Society (www.bio‐
loggi ng.net/).

6  | CONCLUSION

We have (a) reviewed how to optimize the use of biologging tech-
niques for ecologists to be able to take full advantage of the para-
digm‐changing opportunities of biologging sensors for ecological 
research and (b) synthesized this into an Integrated Biologging 
Framework (IBF) for movement ecology research. We highlighted 
the many new and often unexplored opportunities to address bio-
logical questions using the most appropriate sensors and sensor 
combinations, especially using multisensor approaches, a new fron-
tier in biologging research. Given the technological complexities and 
rapid pace of advancement of the field, however, establishing multi-
disciplinary collaborations will be paramount for ecologists—and at 
the same time, the latter can thereby more efficiently guide future 
technological and methodological advancements to address biologi-
cal questions. Closely linked to the issue of matching ecological ques-
tions with sensors is devising a good experimental design up front. 
This involves multiple closely connected challenges, from tag design 
and sampling regime to the important related ethical and animal wel-
fare considerations, and the challenges of data sharing. Linking new 

http://www.cost.eu/COST_Actions/ict/IC0903
http://www.enram.eu/
http://www.britishecologicalsociety.org/membership-community/special-interest-groups/movement-ecology/
http://www.britishecologicalsociety.org/membership-community/special-interest-groups/movement-ecology/
http://www.britishecologicalsociety.org/membership-community/special-interest-groups/movement-ecology/
http://www.bio-logging.net/
http://www.bio-logging.net/


200  |    Journal of Animal Ecology WILLIAMS et AL.

biologging data types to the most adequate analytical techniques 
will require multidisciplinary collaborations to tackle the ‘big data’ 
problem and improve the theoretical and mathematical foundations 
of movement ecology. The tasks ahead are challenging, but a clear 
potential exists for a vastly improved mechanistic understanding of 
animal movements and their role in ecological processes, from which 
we can build unprecedented and realistic predictive models.
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