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Abstract 

Soil organisms, including earthworms, are a key component of terrestrial ecosystems. However, little is 

known about their diversity, distribution, and the threats affecting them. Here, we compiled a global 

dataset of sampled earthworm communities from 6928 sites in 57 countries to predict patterns in 

earthworm diversity, abundance, and biomass. We identified that local species richness and abundance 265 

typically peaked at higher latitudes, patterns opposite to those observed in aboveground organisms. 

However, diversity across the entirety of the tropics may be higher than elsewhere, due to high species 

dissimilarity across locations. Climate variables were more important in shaping earthworm communities 

than soil properties or habitat cover. These findings suggest that climate change may have serious 

implications for earthworm communities and therefore the functions they provide.  270 

 

One sentence summary: Precipitation and temperature drive global earthworm diversity, 

abundance, and biomass, but latitudinal patterns differ from many aboveground taxa. 

Main Text 

Soils harbour high biodiversity, and are responsible for a wide range of ecosystem functions and services 275 

upon which terrestrial life depends (1). Despite calls for large-scale biogeographic studies of soil 

organisms (2), global biodiversity patterns remain relatively unknown, with most efforts focused on soil 

microbes (3–5). Consequently, the drivers of soil biodiversity, particularly soil fauna, remain unknown at 

the global scale.  

mailto:helen.phillips@idiv.de


 280 

Furthermore, our ecological understanding of global biodiversity patterns (e.g., latitudinal diversity 

gradients (5)) is largely based on the distribution of aboveground taxa. Yet, many soil organisms have 

shown global diversity patterns that differ from aboveground organisms (3, 7–9), although the patterns 

often depend on the size of the soil organism (10).  

 285 

Here, we analyse global patterns in earthworm diversity, total abundance, and total biomass (hereafter 

‘community metrics’). Earthworms are considered ecosystem engineers (11) in many habitats, and also 

provide a variety of vital ecosystem functions and services (12). The provisioning of ecosystem functions 

by earthworms likely depends on the abundance, biomass, and ecological group of the earthworm species 

(13, 14). Consequently, understanding global patterns in community metrics for earthworms is critical for 290 

predicting how changes in their communities may alter ecosystem functioning. 

 

Small-scale field studies have shown that soil properties such as pH and soil carbon influence earthworm 

diversity (11, 15, 16). For example, lower pH values constrain the diversity of earthworms by reducing 

calcium availability (17), and soil carbon provides resources that sustain earthworm diversity and 295 

population sizes (11). Alongside many interacting soil properties (15), a variety of other drivers can shape 

earthworm diversity, such as climate and habitat cover (11, 18, 19). However, to date, no framework has 

integrated a comprehensive set of environmental drivers of earthworm communities to identify the most 

important ones at a global scale.  

 300 

Previous reviews suggested earthworms may have high diversity across the tropics due to high endemism 

(10). However, this high regional diversity may not be captured by local-scale metrics. Alternatively, in 

the temperate region, local diversity may be higher (20) but include fewer endemic species (10). We 

anticipate that earthworm community metrics (particularly diversity) will not follow global patterns seen 

aboveground, and instead, as seen across Europe (15), increase with latitude. This finding would be 305 



consistent with previous studies at regional scales, which showed that the species richness of earthworms 

increases with latitude (19). Because of the relationship between earthworm communities, habitat cover, 

and soil properties on local scales, we expect soil properties (e.g., pH and soil organic carbon) to be key 

environmental drivers of earthworm communities. 
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Here, we present global maps predicting local (i.e., site-level; a location of one or more samples, which 

adequately captured the earthworm community): diversity (the number of species), abundance, and 

biomass. We collated 180 datasets from the literature and unpublished field studies (164 and 16, 

respectively) to create a dataset spanning 57 countries (all continents except Antarctica) and 6928 sites 

(Fig. 1A). We explore spatial patterns of earthworm communities, and determine the environmental 315 

drivers that shape earthworm biodiversity. We then used the relationships between earthworm community 

metrics and environmental drivers (Table S1) to predict local earthworm communities across the globe. 

 

Three generalised linear mixed effects models were constructed, one for each of the three community 

metrics; species richness (calculated within a site), abundance per m2, and biomass per m2. Each model 320 

contained 12 environmental variables as main effects (Table S2), which were grouped into six themes; 

‘soil’, ‘precipitation’, ‘temperature’, ‘water retention’, ‘habitat cover’, and ‘elevation’ (habitat cover and 

some soil variables were measured in the field, the remaining variables were extracted from global data 

layers using the geographic coordinates of the sites (12)). Within each theme, each model contained 

interactions between the variables. Following model simplification, all models retained most of the 325 

original variables, but some interactions were removed (Table S3). 

 

Consistent with previous results (20), predictions based on global environmental data layers resulted in 

estimates of local earthworm diversity between 1 and 4 species per site across most of the terrestrial 

surface (Fig. 1B) (mean: 2.42 species; SD: 2.19). Most of the boreal/subarctic regions were predicted to 330 

have low values of species richness, which is in line with aboveground biodiversity patterns (21, 22). 



However, low local diversity also occurred in subtropical and tropical areas, such as Brazil, India and 

Indonesia, in contrast with commonly observed aboveground patterns, such as the latitudinal gradient in 

plant diversity (22). This pattern could be due to different relationships with climate variables. For 

example, while plant diversity increases with potential evapotranspiration (PET) (22), earthworm 335 

diversity tended to decrease with increasing PET (Table S3). In addition, soil properties, which are 

typically not included in models of aboveground diversity, can play a role in determining earthworm 

communities (11, 15, 23).  For instance, litter availability and soil nutrient content are important 

regulators of earthworm diversity, with oligotrophic forest soils having more epigeic species, and 

eutrophic soils more endogeics (23). Furthermore, tropical regions with higher decomposition rates have 340 

fewer soil organic resources and lower local earthworm diversity (Fig. 1B & Table S3), dominated by 

endogeic species, that have specific digestion systems allowing them to feed on low quality soil organic 

matter (11, 14, 20). 

 

High local species richness was found at mid-latitudes, such as the southern tip of South America, the 345 

southern regions of Australia and New Zealand, Europe (particularly north of the Black Sea) and 

northeastern USA. While this pattern contrasts with latitudinal diversity patterns found in many 

aboveground organisms (6, 24), it is consistent with patterns found in some belowground organisms 

(ectomycorrhizal fungi (3, 22), bacteria (23)), but not all (arbuscular mycorrhizal fungi (9), oribatid mites 

(29)). Such mismatches between above- and belowground biodiversity have been predicted (1, 7) but not 350 

shown across the globe for soil fauna at the local scale.  

 

The patterns seen here could in part be a result of glaciation in the last ice age, as well as human 

activities. Temperate regions (mid- to high latitudes) that were previously glaciated were likely re-

colonised by earthworm species with high dispersal capabilities and large geographic ranges (19) and 355 

through human-mediated dispersal (‘anthropochorous’ earthworms (16)). Thus, temperate communities 

could have high local diversity, as seen here, but those species would be widely distributed resulting in 



lower regional diversity relative to local diversity. In the tropics, which did not experience glaciation, the 

opposite may be true. Specific locations may have individual species that are highly endemic, but these 

species are not widely distributed (Table S4). This high local endemism would result in low local 360 

diversity (as found here) and high regional diversity (as suggested by (10)) relative to that low local 

diversity. When the number of unique species within latitudinal zones that had equal number of sites was 

calculated (i.e., a regional richness that accounted for sampling effort), there appeared to be a regional 

latitudinal diversity gradient (Fig. 2). Even with a sampling bias (Table S4), regional richness in the 

tropics was greater than the temperate regions, despite low local diversity. These results should be 365 

interpreted with caution though given the latitude span of the tropical zones, highlighting the need for 

additional sampling within this region. However, the underlying data suggests endemism of earthworms 

and beta diversity within the tropics (28) may be considerably higher than within the well-sampled 

temperate region (Table S4). Therefore, it is likely that the tropics harbour more species overall. 

 370 

The predicted total abundance of the local community of earthworms typically ranged between 5 and 150 

individuals per m2 across the globe, in line with other estimates (29) (Fig. 1C; mean: 77.89 individuals per 

m2; SD: 98.94). There was a slight tendency for areas of higher total abundance to be in temperate areas, 

such as Europe (particularly the UK, France and Italy), New Zealand, and part of the Pampas and 

surrounding region (South America), rather than the tropics. Lower total abundance occurred in many of 375 

the tropical and sub-tropical regions, such as Brazil, central Africa, and parts of India. Given the positive 

relationship between total abundance and ecosystem function (30), in regions with lower earthworm 

abundance functions may be reduced or carried out by other soil taxa (1). 

 

The predicted total biomass of the local earthworm community (adults and juveniles) across the globe 380 

showed extreme values (>2 kg) in 0.3% of pixels, but biomass typically ranged (97% of pixels) between 1 

g and 150 g per m2 (Fig. 1D; median: 6.69; mean: 2772.8; SD: 1312782; see (14) for additional 

discussion of extreme values). The areas of high total biomass were concentrated in the Eurasian Steppe 



and some regions of North America. The majority of the globe showed low total biomass. In northern 

North America, where there are no native earthworms (13), high density and, in some regions, higher 385 

biomass of earthworms likely reflects the earthworm invasion of these regions. The small invasive 

European earthworm species encounter an enormous unused resource pool, which leads to high 

population sizes (31). Based on previous suggestions (29), we expected that earthworms would decrease 

in body size towards the poles, showing low biomass relative to the total abundance in temperate/boreal 

regions. In contrast, in tropical regions (e.g., Brazil and Indonesia) that are dominated by giant 390 

earthworms that normally occur at low densities and low species richness (32), we expected high biomass 

but low abundance. However, these patterns were not found. This could be due to the relatively small 

number of sample points for the biomass model (n = 3296) compared to the diversity (n = 5416) and total 

abundance model (n = 6358), reducing the predictive ability of the model (Fig. S1C), most notably in 

large regions of Asia, and areas of Africa, particularly the boundaries of the Sahara Desert and the 395 

southern regions (which coincides with where samples are lacking). Additionally, the difficulty in 

consistently capturing such large earthworms in every sample may increase data variability, reducing the 

ability of the model to predict.  

 

Overall, the three community metric models performed well in cross-validation (Fig. S3 & 4) with 400 

relatively high R2 values (Table 1 A and C; see (14) for further details and caveats discussion). But, given 

the nature of such analyses, models and maps should only be used to explore broad patterns in earthworm 

communities and not at the fine scale, especially in relation to conservation practices (33).  

 

For all three community metric models, climatic variables were the most important drivers (‘precipitation’ 405 

theme being the most important for both species richness and total biomass models, and ‘temperature’ for 

the total abundance model; Fig. 3). The importance of climatic variables in shaping diversity and 

distribution patterns at large scales is consistent with many aboveground taxa (e.g., plants (20), reptiles, 

amphibians, and mammals (32)) and belowground taxa (bacteria and fungi (3), nematodes (22, 23)). This 



suggests that climate-related methods and data, which are typically used by macroecologists to estimate 410 

aboveground biodiversity, may also be suitable for estimating earthworm communities. However, the 

strong link between climatic variables and earthworm community metrics is cause for concern, as climate 

will continue to change due to anthropogenic activities over the coming decades (34). Our findings further 

highlight that changes in temperature and precipitation are likely to influence earthworm diversity (35) 

and their distributions (15), with implications for the functions that they provide (12). Shifts in 415 

distributions may be particularly problematic in the case of invasive earthworms, such as in areas of 

North America, where they can considerably change the ecosystem (13). However, a change in climate 

will most likely affect abundance and biomass of the earthworm communities before diversity, as shifts in 

the latter depend upon dispersal capabilities, which are relatively low in earthworms.  

 420 

We expected that soil properties would be the most important driver of earthworm communities, but this 

was not the case (Fig. 3), likely due to scale of the study. Firstly, the importance of drivers could change 

at different spatial scales. Climate is driving patterns at global scales but within climatic regions (or at the 

local scale) other variables may become more important (36). Thus, one or more soil properties may be 

the most important drivers of earthworm communities within each of the primary studies, rather than 425 

across them all. Secondly, for soil properties, the mismatch in scale between community metrics and soil 

properties taken from global layers (for sites where sampled soil properties were missing (14)) could also 

reduce the apparent importance of the theme. Habitat cover did influence the earthworm community (Fig. 

S5 A and B), especially the composition of the three ecological groups (epigeic, endogeics, and anecics, 

Fig. S6; (14)). Across larger scales, climate influences both habitat cover and soil properties, all of which 430 

affect earthworm communities. Being able to account for this indirect effect with appropriate methods 

and data may alter the perceived importance of soil properties and habitat cover (e.g., with pathway 

analysis (36) and standardised data). However, our habitat cover variable did not directly consider local 

management (such as land use or intensity). 

 435 



By compiling a global dataset of earthworm communities, we show, the global distribution of earthworm 

diversity, abundance, and biomass, and identify key environmental drivers responsible for these patterns. 

Our findings suggest that climate change might have substantial effects on earthworm communities and 

the functioning of ecosystems; any climate change-induced alteration in earthworm communities is likely 

to have cascading effects on other species in these ecosystems (13, 29). Despite earthworm communities 440 

being controlled by similar environmental drivers as aboveground communities (22, 37), these 

relationships result in different patterns of diversity. We highlight the need to integrate belowground 

organisms into biodiversity research, despite differences in the scale of sampling, if we are to fully 

understand large-scale patterns of biodiversity and their underlying drivers (7, 8, 38), especially if 

processes underlying macroecological patterns differ between aboveground and belowground diversity 445 

(38). The inclusion of soil taxa may alter the distribution of biodiversity hotspots and conservation 

priorities. For example, protected areas (7) may not be protecting earthworms (7), despite their 

importance as ecosystem function providers (12) and soil ecosystem engineers for other organisms (11). 

By modelling both realms, aboveground/belowground comparisons are possible, potentially allowing a 

clearer view of the biodiversity distribution of whole ecosystems.  450 
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Captions 

Fig. 1: Global distribution of earthworm diversity. (A) Black dots represent the centre of a ‘study’ used in at least one of the 

three models (species richness, total abundance, and total biomass). The size of the dot corresponds to the number of sites within 

the study. Opaqueness is for visualisation purposes only. (B-D): The globally predicted values of (B) species richness (within 

site), (C) total abundance (individuals per m2), and (D) total biomass (grams per m2). Yellow indicates high diversity dark purples 760 

low diversity. Grey areas are habitat cover categories which lacked samples. 

 

Fig. 2: The number of unique species within each latitudinal zone, when the number of sites within each zone was 

comparable. The width of the bar shows the latitude range of the sites/zones. 

 765 

Fig. 3: The importance of the six variable themes from the three biodiversity models. Rows show the results of each model 

(top: species richness, middle: abundance, bottom: biomass). Columns represent the theme of variables that was present in the 

simplified biodiversity model. The most important variable group has the largest circle. Within each row, the circle size of the 

other variable themes scale depending on the relative change in importance. The circle size should only be compared within a 

row.  770 

 

Table 1: Model validation results. Highlighted cells show the ‘best’ value when comparing between the main models (a mixture 

of sampled soil properties and SoilGrids data) and models containing only SoilGrids data. The mean square error (MSE) 

following 10-fold cross-validation of (A) the main models and (B) models containing only SoilGrids data. MSE was calculated 



for all predicted data (‘Total’), and for tertiles (‘Low’, ‘Mid’, ‘High’) of the observed data. In addition, the R2 of (C) the main 775 

models and (D) SoilGrids-only models.  

 

 Total Low Mid High 

A) MSE – Main Models 

Species Richness 1.376 0.917 0.812 3.561 

Abundance 17977.42 1720.75 2521.25 48751.51 

Biomass 3220.29 264.56 441.25 8783.77 

      B) MSE – SoilGrids Models 

Species Richness 1.385 0.887 0.793 3.716 

Abundance 18775.81 1735.11 2516.13 51156.76 

Biomass 3068.00 199.91 461.88 8380.81 

  Marginal Conditional 

C) R2 – Main Models.  

a)       c) R2 – Main Models Species Richness 0.132 0.748  

Abundance 0.176 0.626 

Biomass 0.201 0.612 

        D) R2 – SoilGrids Models 

Species Richness 0.142 0.745 

Abundance 0.234 0.643 

Biomass 0.242 0.650 
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Materials and Methods 

Literature Search 

Web of Science was searched on 18th December 2016, using the following search term: 

((Earthworm* OR Oligochaeta OR Megadril* OR Haplotaxida OR Annelid* OR Lumbric* OR 

Clitellat* OR Acanthodrili* OR Ailoscoleci* OR Almid* OR Benhamiin* OR riodrilid* OR 

Diplocard* OR Enchytraeid* OR Eudrilid* OR Exxid* OR Glossoscolecid* OR Haplotaxid* OR 

Hormogastrid* OR Kynotid* OR Lutodrilid* OR Megascolecid* OR Microchaetid* OR 

Moniligastrid* OR Ocnerodrilid* OR Octochaet* OR Sparganophilid* OR Tumakid* ) AND 

(Diversity OR “Species richness” OR “OTU” OR Abundance OR individual* OR Density OR 

“tax* richness” OR “Number” OR Richness OR Biomass)) 

This search returned 7783 papers. All titles and abstracts of papers post-2000 were screened 

(6140 papers), and were excluded if they did not reference data suitable for the analysis 

(suitability discussed below). Since it was anticipated that raw data would need to be requested, 

papers published before 2000 were not screened, as it was unlikely that available author contact 

details were up-to-date. We note however that earlier publications may be useful for future 

research, e.g., focusing on long-term monitoring and temporal analyses. After this initial 

screening, PDFs of all remaining papers (n = 986) were manually screened to determine whether 

data were suitable. 

In order to be suitable for the analysis, papers had to present (or make reference to) the 

following information and data: 

1. Sampled earthworm communities using standard earthworm extraction methodologies, 

which would adequately capture quantitative information of the earthworm community, 

such as hand-sorting of a sufficient soil volume (e.g., 39) or chemical expulsion from a 

quadrat (e.g., 40) at two or more sites. At a minimum, total fresh biomass and/or total 

abundance of the earthworms at each site had to be measured. Ideally, there was data on 

identification of all individuals to species level, with the abundance/biomass data of 

each species; 

2. Available geographic coordinates for all sampled sites, or maps that could be 

georeferenced; 

3. Measurements of at least one soil property at each site (see below); 

4. Information on the habitat cover and/or land use; 

5. Differences in land use/habitat cover or soil properties (see below for information on the 

land use/habitat cover and soil properties) across the sites. 

 

Where possible, all suitable data were taken from the 477 papers that were identified as 

containing suitable data. Data were extracted from figures where necessary (using IMAGEJ 

(39)). If data were not provided in the text or the supplementary materials, authors were 

contacted to obtain the raw data from each site. As some datasets remain unpublished, or are yet 

to be published, individual earthworm researchers were also contacted to enquire as to whether 

they had suitable data. Including unpublished data helps to reduce publication bias (42). 

 

Data collation 

The data taken or requested from one publication or an unpublished field campaign was 

considered a ‘dataset’. If a dataset contained data sampled using different methodologies, we 

split it into different ‘studies’ based on the methodology, as measured diversity of earthworms is 

highly dependent on the methods used (43). For datasets where sites were repeatedly sampled 
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over time, both within years and across years, we used only the first and the last sampling 

campaign and these were split into two studies. The modelling approach used (linear mixed-

effects models, with random effects accounting for different studies) dealt with non-

independence of such datasets (44). 

Site level information 

Sites were described as a location of one or more samples, which, when taken together, 

adequately captured the earthworm community. Sampling methodology, and therefore the 

number of samples per site, were determined by the original data collectors. But sampling effort 

was constant within a study. For each dataset, we collated the following information into a 

standardised data template: geographic coordinates for each of the sampled sites, start and end 

dates of sampling (month and year), and the sampling method used. For each dataset, we 

requested at least one soil property (pH, cation exchange capacity (CEC) or base saturation, 

organic carbon, soil organic matter, C/N ratio, soil texture, soil type, soil moisture) for each site, 

but only pH, CEC, organic carbon and soil texture (silt and clay) variables were used for this 

analysis. Most sites contained pH values (63.7%), 14% of sites contained organic carbon, 40% of 

sites contained silt and clay, but only 7.3% contained CEC. Any missing soil properties were 

filled with SoilGrids data, described below. If soil properties were given for different soil depths, 

then we calculated a weighted average (maximum soil depth = 1 m, but typically collected down 

to 30 cm). Using information within the published articles, and additional information provided 

by the data collectors, the habitat cover at each site was classified into categories based on the 

ESA CCI-LC 300m map (http://maps.elie.ucl.ac.be/CCI/viewer/index.php; Table S1). 

Recorded community metrics 

For each dataset, the following site-level community metrics were calculated where 

possible: total (adults and juveniles) abundance of earthworms at the site, total (adults and 

juveniles) fresh biomass of earthworms at the site, and number of species at the site. Using the 

area sampled at the site, both abundance and biomass were transformed to individuals per m2 and 

grams per m2, respectively, if they were not already given in that unit, to standardize the data into 

commonly used units. Species richness of each site was calculated from available species lists, if 

not already provided. Two issues arose when calculating species richness of earthworms. Firstly, 

many specimens were not identified to species level. Where data collectors identified a specimen 

as a unique morphospecies (species delineation based solely on morphological characteristics, 

typically identified to genus level with a unique ID differentiating from other species of the same 

genus, as determined by the original data collector), they were included in the species richness 

estimate as an additional species. Records that were not identified to species level, or identified 

as a morphospecies, were excluded. Secondly, typically only adult specimens of many 

earthworm species can be identified to species level (43), so juveniles were excluded from the 

calculation. Therefore, a more appropriate term would be ‘number of identified adult (morpho-) 

species’, but for brevity this will be referred to as ‘species richness’. Species richness was not 

calculated per unit area (i.e., density), as within each study the sampled area was consistent. 

Thus, due to the modelling framework, issues of diversity increasing with sampled area were 

accounted for. 

Species identity 

For datasets where the earthworms had been identified to species level, all species names 

were checked for spelling errors and synonyms. Scientific names were standardised using expert 

opinion (MJIB, GB, MLCB) and DriloBASE (http://drilobase.org/drilobase). Following 

standardisation, earthworm species were categorised into the three main ecological groups: 
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epigeics, endogeics, and anecics (45), plus a fourth minor group, epi-endogeic (species which 

exhibit traits of both epigeics and endogeics). Earthworms provide a variety of ecosystem 

functions, for example, increasing crop yield by enhancing decomposition and nutrient 

minerialization rates (12), but each ecological group contributes in different ways, often on the 

basis of their feeding or habitat preferences (45). Epigeic species are typically found in the upper 

layers of the soil and litter, and, amongst other roles, are important in the first stages of 

decomposition through burial of the litter layer (11, 46, 47). Endogeic species live in the mineral 

soil layers, creating horizontal burrows (45). One function they have been shown to provide is a 

decrease in the density of root-pathogenic nematodes (48, 49), reducing nematode populations 

and disease incidence, which can contribute to increased crop yields (50, 51). Anecic species mix 

the litter and mineral soil via surface cast production (45, 46). In addition, the vertical burrows 

created by anecic species increase water infiltration into deeper soil layers, increasing water 

holding capacity (52, 53), and regulating water availability.  

 

Data extraction and harmonisation across global layers 

In order to predict earthworm communities across the globe, we required harmonised sets of 

spatially distributed variables. We collected 15 globally distributed layers that are described as 

predictors of earthworm distribution (Table S2). For the SoilGrids data (17; https://soilgrids.org; 

modelled global layers of soil properties based on soil profiles and remotely-sensed products), 

which provides soil properties for different layers within the soil profile, we calculated the 

weighted average for the values of the top four layers (corresponding to the top 30 cm of the soil 

profile, which matches the soil depth of the earthworm sampling techniques). For sites missing 

one or more sampled soil properties, the soil properties associated with the 1km pixel 

corresponding to the site’s geographical coordinates were used in the analyses. For CEC, for all 

sites, values were taken from SoilGrids. 

Where possible, the land cover global layer (ESA CCI-LC 300 m; https://www.esa-

landcover-cci.org/) was re-categorised to amalgamate similar habitat cover categories matching 

the ones collected within the dataset (see Table S1). Where not possible, the categories were 

ignored (i.e., classified as NA) during later steps, as estimates could not be produced for 

unknown habitat cover categories. 

No climate variables were taken from the papers or raw data provided, as there was little 

consistency in climate variables across the papers. Instead, five global climate layers 

(climatologies) obtained from the CHELSA climate dataset (55) were used (annual mean 

temperature, temperature seasonality, temperature annual range, annual precipitation, and 

precipitation seasonality) and, from other sources, the number of months of snow cover (56), and 

the aridity index and potential evapotranspiration (PET; 57, 58). The within-year standard 

deviation of PET (PETSD) was calculated as well. Finally, a globally distributed layer of 

elevation (59) was also included in the analysis. For all of these layers, the value within the 1 km 

pixel that matched the site’s coordinates was used in the analyses. 

For an initial harmonisation across all global layers, it was necessary to aggregate or 

disaggregate - when appropriate - the spatial resolution of the different layers to match a one-

kilometre square grid. A nearest neighbour disaggregation algorithm was applied without 

changing the pixel values, but changing the pixel resolution using the one-kilometre square 

resolution from SoilGrids as a reference.  
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Following the spatial harmonisation, the global layers were matched with the collated 

dataset based on the geographic coordinates of the sampled sites. In the case of the climate 

layers, all variables were appended to the dataset. Soil variables were only appended if the sites 

were missing sampled measures, with all studies lacking at least one soil property. 

To help prevent extrapolation, all global layers were truncated to values represented by each 

subset of data, i.e., the minimum and maximum values used in each of the three community 

metric models. The exception was the number of months of snow cover, which was truncated at 

four months, thus any sites or areas of the globe with a greater number of months than four were 

modelled and predicted (respectively) as four months. This ensured an even spread across the 

range of values (many sites were within 0-4 months, only 9% of sites were greater than four). 

 

Mixed effects modelling 

Earthworm species richness, abundance, and biomass models 

Three (generalised) linear mixed effects models were constructed, using lme4 (60), one for 

each of the site-level community metrics: species richness, total abundance (individuals per m2), 

and total biomass (grams per m2). Prior to modelling, the full dataset was split into three subsets, 

based on the response variables (i.e., a dataset containing all sites with a species richness value). 

Within each dataset, we tested for multicollinearity between the elevation, climate, and soil 

variables using Variance Inflation Factors (VIFs) and removing the variable with highest VIF in 

turn until all remaining variables were below the predetermined threshold of 3 (61). 

Abundance and biomass were log transformed (log(x + 1)) prior to modelling and were then 

modelled using a Gaussian error structure. Species richness was not log transformed, but instead 

modelled with a Poisson error structure. All models had random effects that accounted for 

variation between each of the different studies, using an intercept only structure. Fixed effects 

included habitat cover, elevation, soil properties, and climate variables. All continuous variables 

(i.e., elevation, all soil variables, and most climate variables) were centred and scaled (variables 

were centred on the mean value and divided by the standard deviation) to aid model fitting and 

interpretability. Number of months of snow cover was modelled as a categorical variable (and 

therefore not centred and scaled) to allow for a non-linear relationship. As it is expected that 

earthworm diversity will peak with some snow cover, due to increased precipitation, and soil 

protection during freezing months (62), but be restricted by prolonged snow cover (63). This also 

improved the modelling process, as sites were skewed towards the lower number of months, with 

not enough data at the higher latitudes to fit a non-linear regression. 

For each of the three models, the structure of the fixed effects in the maximal model was the 

same. Habitat cover and elevation were included as additive effects with no interactions. The 

other variables were grouped into four themes: ‘soil’, ‘precipitation’, ‘temperature’ and ‘water 

retention’ (Table S3). For example, all precipitation variables that remained (i.e., were not 

removed due to their VIF score) were grouped together. Within the soil and two climate groups, 

all two-way interactions were considered. The water retention group contained specific two-way 

interactions between soil structure variables (clay and silt percentage) and climate variables 

relating to water availability that were present in the two climate themes (annual precipitation, 

precipitation seasonality, PET, PETSD, and aridity). These specific interactions were to account 

for soil moisture and how quickly moisture might leave the soil. 

Each maximal model was then simplified using Akaike information criterion (AIC) values. 

All interactions were tested first, and removed if AIC values were reduced compared to the more 
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complicated model. Any main effects that were not involved with interactions were tested, and 

removed if AIC values were reduced (44, 64) (Table S3). 

Ecological group responses 

The same modelling approach was used to investigate changes in earthworm ecological 

groups across the different habitat types. For each site, the diversity, abundance and biomass of 

the three main ecological groups (epigeic, endogeic, and anecic) and one minor ecological group 

(epi-endogeic) were calculated, based on the category assigned following species name 

standardisation. Three (generalised) linear mixed effects models with diversity, abundance and 

biomass as response variables were constructed as detailed above, with the exception that habitat 

cover interacted with the ecological group (i.e., the biomass of epigeics, endogeics, and anecics 

at each site). The model was simplified following details given above. 

The community metrics of each ecological group in each habitat cover was then predicted, 

using the ‘predict’ function in ‘lme4’ (when all other variables were at zero, i.e., the mean). The 

predicted values for the three main ecological groups (epigeic, endogeic and anecic, which had 

sufficient underlying data. Epi-endogeics were modelled but did not have enough underlying 

data for robust predictions) were plotted using the ‘triangle.plot’ function in ‘ade4’ (65). The 

predicted total biomass, i.e., the total of the predicted biomass of the three main ecological 

groups, was used to determine size of the points within the triangle plot. 

 

Creating maps of earthworm communities 

The global patterns of earthworm communities (species richness, abundance, and biomass) 

were predicted using each of the three models. The values from the relevant global layers (i.e., 

those corresponding to the variables that remained in each model following simplification) were 

used in the ‘predict’ function in the ‘lme4’ package, being predicted based on the coefficients of 

the final models. 

A global layer of predicted values was then presented as maps of local communities of 

earthworms. Although all global layers had been capped at values represented in the underlying 

dataset, extrapolation still occurred during the prediction (there were instances where grid cells 

in multiple layers were at the extreme values, and such combinations were not represented in the 

underlying data, most evident in the predictions of earthworm biomass, see ‘Interpreting the 

model validation’). To prevent outliers skewing the visualization of results, the colour of maps 

were curtailed at the extreme low and high values. Curtailing was based on where the majority of 

values laid. Thus, values lower or higher than the number marked on the scale are coloured the 

same but may represent a large range of values. 

 

Variable Importance 

In order to determine which themes (soil, elevation, habitat cover, precipitation, 

temperature, water retention) were the most influential in driving earthworm communities, 

Variable Importance was performed using random forest models (66, 67). 

For each of the three community metrics, random forest models were constructed (67) with 

all the variables that were present in the final (i.e. simplified) model. Random forest models use 

multiple regression trees to classify data (67). This method was chosen as these models can 

handle non-linear data, whilst interactions are not specified but can be learnt from the data (68). 

Random forest models are an ensemble of individual regression (or classification) trees (66, 67). 

Each tree is created using around two-thirds of the available data, i.e., “out-of-bag” regression, 

and the process is repeated until the ‘forest’ is complete (ntree default = 500 trees). At each node 
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in the tree, the subset of response variables is split using the best predictor variable. Unlike 

regression trees, where at each node the best predictor is used from all available predictor 

variables, random forest models use only a random sample of the predictor variables (“Mtry”) to 

determine the best predictor to split the response variable at each node (66, 67). The default Mtry 

value was used (number of predictors divided by 3), so in our case of 10 to 12 predictor variables 

Mtry = 3 (biomass model) and 4 (species richness and abundance models). The “out-of-bag” data 

is then predicted using the average prediction of all trees (67). 

In addition, random forest models can be used to assess the importance of individual 

variables (66). One such measure is the mean decrease in node impurity calculated from the 

decrease in the residual sum of squares for the variable that was used at the node. The average 

decrease for each variable is averaged across all the trees to create the node impurity (67). An 

alternative importance variable is the mean decrease in accuracy. For each tree, when the “out-

of-bag” data (~one-third of the data) is being predicted, a single predictor variable is permuted, 

and the increase in prediction error calculated (67). This mean decrease in accuracy is often 

considered the best of those available (69), but results between the decrease in node impurity and 

mean decrease in accuracy often correlate well (70). 

For each of the three random forest models, the mean decrease in node impurity and mean 

decrease in accuracy was calculated (using the ‘importance’ function in ‘randomForest’) for each 

predictor variable in the random forest. In order to determine which theme of variables (habitat 

cover, elevation, soil, temperature, precipitation, and water retention) was most important in 

driving patterns in earthworm communities, the mean decrease in node impurity was averaged 

for all variables within each theme and weighted by the number of times each variable was used 

in the random forest compared to the other variables in the same theme.  

 

Model validation and sensitivity analysis 

A number of additional analyses were performed to determine the robustness of the models 

and the ability to predict new values. Firstly, the influence of combining both measured soil 

properties and soil properties from SoilGrids was tested. For the three response variables (species 

richness, abundance, and biomass) models were created that only included data from SoilGrids. 

The same modelling process was used as described above (using VIFs to determine starting 

variables, then simplification). Once the final model had been identified for each of the three 

community metrics, 10-fold cross-validation was performed (71). 

Cross-validation was performed in two ways. Firstly by randomly splitting the dataset 

underlying each of the three models into 10 nearly-equal size groups. Using the model structures 

produced following simplification, the model was built using 9 of the groups of data. The 10th 

group of data was predicted from the re-built model. The predicted data was plotted against the 

observed data. This process was repeated until all 10 groups of data had been predicted. This 

process was done for the models that contained only SoilGrids data, and the main models (that 

used a mixture of soil property data, Fig. S3). Secondly, by splitting the dataset into 10 near-

equal sized groups based on study. Thus, the site-level community metrics for a 10th of the 

studies were predicted by the remaining 9/10 of the data. This process was only performed on the 

main models (Fig. S4). 

For the site-level cross-validated models, the mean squared error (MSE) was calculated 

from the results of the cross-validation. MSE measures the ability of the model to predict new 

data, and the result are easily interpretable as they are on the same scale as the original data. 

MSE was calculated for the total of all models, but as the models may be better at predicting 
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certain ranges of values, MSE was also calculated for the tertiles of the observed data (i.e., the 

ability of the model to predict the low, medium, and high values of earthworm communities). 

Secondly, the R2 values of all models (the main models, and the models with only SoilGrids 

data) were calculated using the MuMIn package (72). The R2 values describe the fit of the model 

to the data. The R2
marginal is the variance explained by the fixed effects, whilst the R2

conditional is the 

variance explained by the fixed and random effects. 

To determine the confidence of the globally predicted values, we followed methods of (9). 

For each of the biodiversity models, we investigated how well the underlying data represented 

the full multivariate environmental covariate space of the global layers. We performed a 

Principal Components based approach on each of the datasets. The centering values, scaling 

values, and eigenvectors were then used to transform all global layers into the same PCA spaces. 

Then, we created convex hulls for each of the bivariate combinations from the first 6 (total 

biomass data) and 7 (richness and total abundance data) i.e., half of the number of variables 

within the model, principal components to cover more than 90% of the sample space variation. 

Using the coordinates of these convex hulls, we classified whether each pixel of each global 

layer falls within or outside each of these convex hulls. Therefore, if all global layers within a 

pixel were within the convex hull, the interpolation percentage would be 100%, while if only 

half of the layers were within the convex hull, the interpolation percentage would be 50%. This 

analysis was performed in Google Earth Engine (73). 

 

Regional latitudinal diversity gradients 

In order to ascertain whether there is a species diversity gradient with latitude, the site-level 

diversity data underlying the species richness model (i.e., contained sites with species level or 

morphospecies identification) was used. The sites were split into latitude zones that contained 

roughly equal numbers of sites. Sites were assigned to a zone based on their latitude, with the 

intention that each zone would contain close to 250 sites. However, all sites with the same 

coordinates were kept within the same band, so the number of sites within a zone did vary (min = 

209, max = 341, mean = 267.6).  The number of unique species, based on species binomials, 

across all sites within each zone was calculated. Within each zone, it was also assumed that each 

uniquely named morphospecies was different from any of the named species (number of 

morphospecies across zones, min = 0, max = 21, mean = 3.05). Some of the sites also contained 

genus-level only identification. When this was the case, a genus was included as one additional 

species if the genus was unique within the zone (i.e., no named species belonged to that genus). 

As the number of morphospecies was biased with latitude (i.e., greater taxonomic expertise in 

the temperate regions, Table S4), the analysis was repeated excluding morphospecies (Fig. S2). 

The two methods resulted in similar patterns, but reduced richness in some of the zones in the 

tropics. 

All statistics, data manipulation and processing of global data layers was implemented in R 

(version 3.3.1; 73). 

Supplementary Text 

Interpreting the model validation 

The results of the biomass model highlighted an issue with the modelling technique used. 

All of the global data layers were cut at values represented by the underlying datasets. However, 

during the prediction, it was often the case that multiple data layers were at the extreme ends of 

the possible range of values. This led to, especially in the case of the biomass model, and to 
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some extent the abundance model, unrealistically high values being predicted. This issue could 

only be fixed with additional data, but does not affect the visual maps produced in this study. For 

the global predictions of biomass, values greater than 2 kg per m2 were deemed to be unrealistic. 

This threshold is over 4 times the maximum recorded biomass of earthworm communities (75), 

and thus is highly unlikely to be realistic. 98.9% of pixels were less than 400 g per m2 (the 

maximum recorded earthworm community biomass recorded in the temperate region (75)). 

Overall, the models had reasonably good fit to the data, assessed using the R2 values (Table 

1C). However, the predictive power of the models was variable. With all models, the total MSE 

(Table 1A) increased mainly due to the ill-fitting of the sites with higher values. It is unclear why 

high values cannot be fitted well with the models; however, it is highly likely that increasing the 

number of sites would help either identify the issue or improve model fit. 

For the majority of the datasets (182 out of 228 studies), the models contained the measured 

soil properties for some of the variables. Where this was missing, we used the SoilGrids data. 

Models which contained only SoilGrids data had a better fit to the data (Table 1C) and were 

typically better at predicting during cross-validation (lower MSE values; Table 1B). However, in 

most instances, the change in MSE was negligible between the different types of models (Table 1 

A versus B). Despite the models that contained only SoilGrids data performing slightly better in 

terms of R2 and MSE, there are other reasons why using a mixture of the measured variables and 

the SoilGrids variables is the best option in the modelling process. Firstly, modelled global 

estimates of the soil properties may not accurately depict site-level conditions (76), which could 

result in the variables appearing less important than they would be if they matched the measured 

communities. Secondly, some of the coordinates within a study were identical which would 

result in identical SoilGrids data (for these datasets, often small-scale field experiments, the 

measured soil properties variables were not identical). Using only SoilGrids data would reduce 

the gradient of soil properties within each study, reducing the number of available gradient 

comparisons across all datasets. And given that a number of studies (106 out of 228 studies) had 

identical climate variables across all sites, having variety in all other variables prevented this 

being an issue within the modelling framework. We call on soil ecologists to collect data on soil 

properties when they measure diversity of soil taxa, as this permits more robust modelling at 

both the small scale, and across larger scales. 

Regardless of whether the model contained measured soil properties or only SoilGrids data, 

the models were consistently worse at predicting when observed values were high (Table 1). 

This is likely due to the small number of studies where sampled values were high. Only 5 studies 

had more than 10 species of earthworms in at least one site, and only 6 studies had more than 

300 grams per m2 of earthworm biomass in at least one site. There were a greater number of 

studies that contained high abundance of earthworms, with 34 studies having at least one site that 

contained more than 600 individuals per m2. Increasing the number of studies and sites would 

help identify whether this, or another cause, is responsible. Ideally, this would improve the 

predictive power of the models. It is hoped that efforts will continue to collate earthworm 

diversity data from across the globe. 

When cross-validation was performed at the study level (Fig. S4) the predictions were not 

scattered around the 1:1 line. However, this is to be expected, as when sites are randomly 

selected and predicted, the study level random-effect is most likely still present in the model. 

This ensures that the community metrics of each sites can be predicted using the variance from 

the study it is within. When an entire study is removed, and so no random-effect level exists for 
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it in the model, all study-level random effects are averaged in order to produce the prediction. 

Thus, the prediction error is increased, and more concentrated around the overall mean. 

For the species richness (Fig. S1A) and total abundance data (Fig. S1B), the interpolation 

percentage across the globe was relatively high (i.e., the underlying datasets adequately captured 

the majority of the multivariate environmental conditions). Regions surrounding the Eurasian 

Steppe, and the Himalayas were some of the most extrapolated regions, with arid regions in 

Africa and boreal regions also having lower interpolation percentages. For the total biomass data, 

more regions of the globe had low interpolation percentages (Fig. S1C). These low-value regions 

were spread across the tropics, particularly Brazil and Indonesia, and large parts of Africa, the 

sub-tropics, such as India, and temperate regions, including northern China and Russia. Overall, 

we would expect the globally predicted values of the biomass model to be more extrapolated, 

than the diversity and total abundance models. 
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Fig. S1. 

 

 

 
Assessment of global extrapolation and interpolation for the (A) species richness data, (B) total 

abundance data, and (C) total biomass data. Scale shows the percentage of pixels (from each of 
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the global layers) falling within the convex hull spaces of the first 6 (biomass) and 7 (richness, 

abundance) Principal Components collectively explaining >90% of the variation. Low 

interpolation percentage values (in blue) indicate that few global layers were represented by data, 

thus extrapolation would have occurred during prediction, whilst high interpolation percentages 

(in yellow) indicated that many or all global layers were represented by data, thus interpolation 

would have occurred during prediction. 
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Fig. S2. 

 
The number of unique species within each latitudinal zone, when the number of sites within each 

zone was kept relatively equal. The height of the bar indicates the number of unique species 

across all sites. The width of the bar shows the latitude range the sites cover. Within each zone 

only the species with binomials, or genera with no other identified species, were included in the 

calculations (morphospecies were excluded). 
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Fig. S3. 

 
10-fold cross validation of the three main community metric models, (A) species richness, (B) 

ln-abundance, and (C) ln-biomass. X-axis shows the observed value, and Y-axis the predicted 

value, black line is the 1:1 line. The underlying dataset of each model was randomly split into 10 

nearly-equal size groups. Using the model structures produced following simplification, the 

model was built using 9 of the groups of data. The 10th group of data was predicted from the re-

built model. This process was repeated until all 10 groups of data had been predicted. The 

predicted data was plotted against the observed data. 
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Fig. S4. 

 
10-fold cross validation of the three main community metric models, (A) species richness, (B) 

ln-abundance, and (C) ln-biomass. X-axis shows the observed value, and Y-axis the predicted 

value, black line is the 1:1 line. The underlying dataset of each model was randomly split into 10 

nearly-equal size groups, so that each group contained all the data of a tenth of the studies. Using 

the model structures produced following simplification, the model was built using 9 of the 

groups of studies. The 10th group of studies was predicted from the re-built model. This process 

was repeated until all 10 groups of studies had been predicted. The predicted data was plotted 

against the observed data. 
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Fig. S5. 

 

Changes in (A) species richness and (B) ln-abundance across the different habitat cover 

categories (+/- SD). Values of species richness and abundance are predicted from the main 
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models when all other variables are at zero, i.e., the mean. Not all habitat cover categories had 

sampled estimates (i.e., species richness could not be estimated for ‘Cropland/Other vegetation 

mosaic’). 
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Fig. S6. 

 
The (A) total abundance and (B) total biomass of the three ecological groups (epigeic, endogeic 

and anecic earthworms) within each habitat cover category based on modelled estimates. Circle 

size is relative to the total biomass predicted for the habitat cover, and circle colour indicates the 

habitat cover. Position within the three axes indicates the proportion of each of the three 

ecological groups within the community, based on the interaction term between habitat cover and 

ecological group. During simplification, the interaction term between habitat cover and 

ecological group was removed in the species richness model, thus those results are not shown. 



 

 

20 

 

Not all habitat cover categories had sampled estimates (i.e., biomass could not be estimated for 

‘Broadleaf evergreen forest’ or ‘Cropland/Other vegetation mosaic’). This figure shows, for 

example, that “Broadleaf deciduous forests” have a rather even predicted biomass distribution 

across the three ecological groups (but low total biomass), while “Production sites” (“Plantation” 

and “Herbaceous”) have high total earthworm abundance, but are dominated by endogeic 

species. 
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Table S1. 

Original habitat cover variable Reclassified habitat cover 

No Data NA 

Cropland, rainfed Production - Herbaceous 

Cropland - herbaceous cover Production - Herbaceous 

Cropland - Tree or shrub cover Production - Plantation 

Cropland, irrigated or post-flooding NA 

Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) 

(<50%) 

Cropland/Other vegetation 

mosaic 

Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland 

(<50%) 

Cropland/Other vegetation 

mosaic 

Tree cover, broadleaved, evergreen, closed to open (>15%) Broadleaf evergreen forest 

Tree cover, broadleaved, deciduous, closed (>40%) Broadleaf deciduous forest 

Tree cover, broadleaved, deciduous, open (15-40%) Broadleaf deciduous forest 

Tree cover, needleleaved, evergreen, closed (>40%) Needleleaf evergreen forest 

Tree cover, needleleaved, evergreen, open (15-40%) Needleleaf evergreen forest 

Tree cover, needleleaved, deciduous, closed (>40%) Needleleaf deciduous forest 

Tree cover, needleleaved, deciduous, open (15-40%) Needleleaf deciduous forest 

Tree cover, mixed leaf type (broadleaved and needleleaved) Mixed forest 

Mosaic tree and shrub (>50%) / herbaceous cover (<50%) Tree open 

Mosaic herbaceous cover (>50%) / tree and shrub (<50%) Herbaceous with spare tree/shrub 

Shrubland Shrub 

Grassland Herbaceous 

Lichens and mosses NA 

Sparse vegetation (tree, shrub, herbaceous cover) (<15%) Sparse vegetation 

Tree cover, flooded, fresh or brackish water NA 

Tree cover, flooded, saline water NA 

Shrub or herbaceous cover, flooded, fresh/saline/brackish water NA 

Urban areas Urban 

Bare areas - consolidated Bare area (consolidated) 

Bare areas - unconsolidated Bare area (unconsolidated) 

Water bodies Water bodies 

Permanent snow and ice NA 
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The re-categorisation of the ESA habitat cover variable. Habitat cover at a sampled site was 

classified based on the ‘Reclassified habitat cover’ column. As not all categories of habitat were 

available in the data (i.e., due to too detailed categories, or in habitats typically devoid of 

sampling), some of the categories of the original habitat cover variable (left-hand column) were 

reclassified (right-hand column). Usually, this meant that categories were grouped together (i.e., 

to reduce the categories based on ‘openness’). 
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Table S2. 

 Variable Source Original Spatial Resolution 

 Habitat Cover ESA CCI-LC 300 m 

 Elevation (59) 1 km 

S
o

il
 P

ar
am

et
er

s 

pH (H20) 

SoilGrids (54) 

1 km 

Organic carbon 1 km 

Soil clay content 1 km 

Soil silt content 1 km 

CEC 1 km 

T
em

p
er

at
u

re
 

Annual Mean Temperature 

CHELSA (55) 

1 km 

Temp. seasonality 1 km 

Temp. annual range 1 km 

PET 

(57, 58) 

1 km 

PETSD 1 km 

P
re

ci
p

it
at

io
n

 

Annual precipitation 

CHELSA (55) 

1 km 

Precip. seasonality 1 km 

Number of Months with 

Snow (56) 1 km 

Aridity Index (57, 58) 1 km 

 

Information for each of the 15 global layers detailed in the methods. Abbreviations: CEC = 

Cation exchange capacity, Temp. = Temperature, Precip. = Precipitation, PET = Potential 

evapotranspiration, PETSD = within year standard deviation of PET 
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Table S3. 
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Results following model simplification of the three community metric models. ‘Main Effect 

Only’ column shows the slope for the main effect of each variable in the final species richness 

(turquoise), total abundance (green) and total biomass (yellow) models. ‘+’ indicates the slope 

was positive, ‘-’ indicates a negative slope, and ‘*’ indicates that the variable was categorical 

(with intercepts and slopes depending on the category). The remaining columns show the 

interactions between the variables. An upwards arrow indicates that the slope of one variable 

would become more positive as the other variable is increased. A downwards arrows indicates 

that the slope of the one variable would become more negative as the other variable is increased. 

However, it may not necessarily indicate that the slope changes direction. Black symbols 

indicate that the coefficient was significant (p < 0.05) within the model, and grey/hatched 

symbols indicate they were not significant [NB. P-values are for illustrative purposes only, as 

models were simplified based on AIC values]. Habitat cover and elevation were only in the 

models as main effects. Also noted is the variable theme in which the variable was grouped. 

Variables that interacted within the ‘water retention’ theme are not shown explicitly, but can be 

deduced based on interactions between a climate variable and soil property variable. 

Abbreviations: CEC = Cation exchange capacity, Temp. = Temperature, Precip. = Precipitation, 

PET = Potential evapotranspiration, PETSD = within year standard deviation of PET. 
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Table S4. 

Latitude 
Number of 

sites 
Number of 

named species 

Mean Latitude 

Range 

Number of 

Morphospecies % Native % Non-native %  Unknown 

(65,70] 55 11 63.66 0 21.02 57.32 21.66 

(60,65] 255 14 56.91 1 0 0 100 

(55,60] 157 18 55.11 0 1.57 0 98.43 

(50,55] 960 35 37.47 3 11.74 2.85 85.41 

(45,50] 1136 38 32.53 1 1 54.42 44.58 

(40,45] 1080 54 29.63 2 7.5 13.7 78.8 

(35,40] 308 47 34.49 1 6.05 7.74 86.22 

(30,35] 113 18 28.15 3 0 0 100 

(25,30] 47 18 56.81 0 0 0 100 

(20,25] 9 12 10.78 3 22.86 0 77.14 

(15,20] 30 11 6.17 2 16.87 45.78 37.35 

(10,15] 26 4 14.18 3 0 0 100 

(5,10] 40 27 5.53 3 27.11 19.88 53.01 

(0,5] 127 10 14.08 12 0 2.17 97.83 

(-5,0] 146 10 14.21 14 0 0 100 

(-10,-5] 22 1 46.08 6 0 0 100 

(-15,-10] 5 0 NA 1 0 0 100 

(-20,-15] 0 NA NA NA NA NA NA 

(-25,-20] 5 8 14.9 4 40 43.33 16.67 

(-30,-25] 0 NA NA NA NA NA NA 

(-35,-30] 150 12 86.6 1 39.66 37.93 22.41 

(-40,-35] 679 16 62.45 0 24.93 74.45 0.62 

(-45,-40] 3 4 105.78 0 0 0 100 

 

Details of the number of sites, and composition of the earthworm species for each 5 degree 

latitudinal band. Based on the geographical coordinates, each site was classified into 5 degree 

latitudinal bands. The number of species is based on the binomial names given by the original 

data collector, then revised for consistency. For each named species in each band the latitudinal 

range (the difference between the minimum latitude and the maximum latitude, based on all sites 

within the dataset that the species occurred) was calculated, and the average taken from all 

species within the band. Morphospecies are individuals that were identified to genus level, and 

identified by the data collectors as morphologically distinct from other (morpho-) species, but 

were not identified to species-level. The percentage of native and non-native species is based on 

information provided by the original data collectors, and is therefore often incomplete (depicted 

in the ‘% unknown’ column). 

 

 


