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SUMMARY

Noise control and source design require the measurement of sound radiation at low frequen-
cies. Anechoic rooms, which are designed for this purpose, allow echo-free measurements at
medium or high frequency but passive wall treatment is less effective at low frequency and in
practice no facility provides anechoicity below 50Hz. This paper discusses the applicability of an
active control algorithm which has been previously introduced to minimize the echoes from a
scattering object to the cancellation of the low frequency wall echoes in an anechoic room inclu-
ding wall-embedded secondary sources. At first the paper discusses, in the general case then for
a free half-space as a model case, the algorithm key which consists in estimating the scattered
acoustic pressure from total pressure measurements. Boundary Element Method computations
are secondly used to simulate estimation and active control of error signals accounting for the
low-frequency scattered pressure in an anechoic room. The simulations show that control with
a few dozen microphones and noise sources allows a large reduction of the noise scattered from
the walls at low-frequency.

1 Introduction

Lower audible frequencies have received an increased interest during the last decades, espe-
cially because light structures are spreading in many application fields. Annoyance problems are
then rising, requiring suitable measurement means and standards. Conversely, existing measu-
rement facilities are barely adapted to the measurement of sources below 70-100 Hz, as conven-
tional lining depth cannot be increased enough for technical and economical reasons. It is thus
well known that, at lower frequencies, some unwanted modes of an anechoic room may appear
[1]. As an example, measurement of usual audio loudspeakers is a real concern [2]. Although
alternatives to free-field measurements have been proposed [3] and are becoming available as
commercial solutions [4], most standards still recommend the use of an anechoic room for res-
ponse measurements [5].

Alternatives to thick lining involving fibrous or porous materials have thus been proposed,
among which active control seemed a good candidate as its efficient frequency range comple-
ments the one of conventional materials. The use of basic active noise control for the reduction
of wall reflections is an old topic, proposed several decades ago for underwater acoustics [6] and
audio use [7]. This concept has then been thoroughly validated and improvements have been
proposed [8, 9, 10, 11, 12, 13]. Related work is still in progress, the main concerns being to
implement a practical sensing method and widen the application range.
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Basic active noise control is however limited to lower frequencies, and becomes less efficient
when frequency increases. So-called ”hybrid” absorbers have thus been studied, combining ab-
sorbing materials and transducers driven so that the resulting device exhibits the performances
of a conventional passive lining at higher frequencies and suitable performances at lower fre-
quencies. Such systems have also been thoroughly investigated, with varying combinations of
passive material, actuator, and control strategies [14, 15, 16, 17, 18, 19, 20].

Most of the above-mentioned results deal with plane-wave field inside a waveguide, with a
normal incidence angle. As pointed out in [21], the absorption coefficient estimated in a plane-
wave tube is a confusing indicator, barely representative of actual absorption performances inside
a room. Some works thus addressed this aspect, considering the influence of incidence angles
or the behavior of 3D volumes. For example, a speaker array was used to control an oblique
incident plane wave [22], dipolar sources were used to damp the first modes of a small room [23],
an array of hybrid cells was studied under various incidences [24], or an hybrid cell has been
used to dampen a structural-acoustic coupled system [25].

Although one might feel intuitively that lining the walls of a room with ”perfect” absorbers
should approximate an anechoic situation, there is no direct relation between achieving a locally
reacting absorbing condition and anechoicity. This has been simulated by driving hybrid cells
from a local or global error criterion, showing that maximum absorption by a local criterion
does not achieve a true anechoic condition [26]. This motivated our work aiming at the active
control of the pressure reflected by the walls of a 3D volume, taking into account a non-local
boundary condition. This is a problem similar to the control of the field diffracted by an object
in free field - but here the ”object” surrounds a volume.

The acoustic facets of active control are introduced in text-books such as [27] which spe-
cifically includes a chapter dedicated to the control of diffracted sound fields. This chapter
discusses earlier references and control strategies that mainly focused at reducing the echoes to
sonar excitation. Some recent references also address scattering by an obstacle in a fluid medium
[28, 29, 30, 31, 32]. A main difficulty is then to get a reliable estimate of the scattered field, a
non-measurable quantity. For example, the diffracted pressure may be deduced from two series
of measurements, with and without the diffracting object.

For the application to an anechoic room, the diffracted pressure is the pressure reflected by
the walls of the room so that such a method cannot be applied. An integral relation may be used
to estimate a quantity to be minimized (the scattered field) from the total pressure observed
with usual pressure microphones [33, 34]. This mathematical operator is considered here as a
matrix of filters to be applied to the error microphones. For practical purposes, this matrix is
estimated during a calibration step, using a set of reference sources and an array of identification
microphones. As a first test of the method, an experiment was carried out in a scaled mock-up
of an actual room [35, 36].

The aim of the present paper is twofold. First, some theoretical developments are provided
in order to characterize the relation between the total and the diffracted pressure. Secondly, the
efficiency of the method is shown on a numerical example of control. The paper is organized as
follows. Section 2 presents the details of the method. Section 3 is dedicated to the study of the
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Figure 1 – Active control of the sound pressure in an anechoic room

operator used to relate the total pressure measured on the array of identification microphones
and the diffracted pressure measured at any minimization point. Section 4 presents a example
of control. Section 5 presents the conclusion of the study at this stage.

2 Description of the method

The geometry considered in this paper is shown in Figure 1. In what follows, it is assumed
that the walls of the room provide some acoustic absorption. The method is based on the
assumption that it is possible to write a relation between ptot the total pressure measured on
a surface Γ and pdif the diffracted pressure received at an observation point M located in the
volume Ω inside Γ. This relation is expressed with the help of an operator or a “filter” H as :

pdif (S,M) =

∫

Γ
ptot(S, P )H(M,P )dσ(P ) (1)

The observation point M may represent any of the minimization microphones as defined in the
previous section. The surface Γ represents the surface described by the set of the identification
microphones. The relation will be applied to S the primary source, that is the source to be
characterized in the room.

The existence of such a relation is not so conventional. Indeed, it is well known that the
diffracted pressure may be written as an integral of the total pressure and the normal derivative
of the total pressure on any surface inside the room by using integral representations. The point
of interest here is to express the diffracted pressure as a function of the total pressure only. If
the relation exists and if the operator H is known, the total pressure measured on Γ can be used
to drive the secondary sources of the active control system and reduce the diffracted pressure
at point M . In practice, the integral relation is discretized and the surface Γ is approximated
by the set of identification microphones. The method includes two steps. The first one is a
precalibration step in which an approximation of the filter H is evaluated. The second one is a
control step in which an active control algorithm is applied to drive the secondary sources.

The precalibration step is based on the essential fact that H does not depend on the source S.
It can therefore be evaluated with a set of sources denoted here identification sources which are
chosen such that their sound radiation patterns are known. It is determined by minimizing the
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difference between the diffracted pressure at point M and its expression (1). Once a numerical
approximation of H is obtained, the approximation of the integral relation can be used to
compute the diffracted pressure for any other source. Then the active control step is carried out.

Previous experimental results showed that such a method provides efficient control results
[34]. However it is still necessary to prove the validity of formula (1) and to check the existence
and the properties of the operator H. Indeed the quality of the control relies on the properties
of this operator. This is the aim of the analysis presented in the next paragraph.

3 The integral relation between the total pressure and the dif-

fracted pressure

By using conventional Green’s representations it is possible to relate the sound pressure
inside a volume to the values of this pressure and of its first normal derivative on the boundary
of the volume [37]. Writing a relation such as (1) with no normal derivative term is a bit more
challenging.

A simple idea is to choose the specific Green’s function defined in the volume inside Γ
which satisfies a homogeneous Dirichlet boundary condition on Γ. This leads to a relation of
the expected form (1). However this Green’s function is not uniquely defined for frequencies
equal to the Dirichlet resonance frequencies of the volume. Since the aim of the study is to
evaluate the mathematical properties of the operatorH it is more efficient to introduce only well-
defined (uniquely defined) Green’s functions to construct the operator. Therefore the propagation
problem is transformed into a transmission problem [38, 39] between two domains : The domain
Ω1 corresponding to the inside of the surface Γ of the identification microphones and the domain
Ω2 located between Γ and the walls of the room. The sound pressures defined in each domain are
related by continuity conditions on the interface Γ. The method consists in using two Green’s
functions defined for any real frequency and applying integral representations to the two sound
pressures. Developments are given for the most general case and then for the half-space case for
which some analytical expressions based on 2D-Fourier transforms are obtained.

3.1 The general case

The transmission problem is considered for a volume with absorbing conditions on the walls.
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n

Figure 2 – Geometry of the problem
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The room is divided into two domains, an interior domain Ω1 and an exterior domain Ω2 as
shown in Figure 2. The surface Γ is the boundary between the two domains and Σ represents
the outside boundary of Ω2 that is the walls of the room. Two unit normal vectors ~n are defined,
both directed towards the interior of Ω2. One is normal to the boundary Γ and the other one is
normal to the boundary Σ.

Both domains are characterized by the same sound speed c and density ρ. An acoustic source
is placed in Ω1 and emits a sinusoidal signal denoted by e−ıωt. The sound pressure is denoted p1
in Ω1 and p2 in Ω2. The problem of sound transmission between the two domains is described
by the following system :























(∆ + k2)p1(M) = F in Ω1

(∆ + k2)p2(M) = 0 in Ω2

p1 = p2 on Γ
∂np1 = ∂np2 on Γ
A(p2, ∂np2) = 0 on Σ

where k = ω/c is the wavenumber and ∂npi denotes the normal derivative of pi on the boundary
Γ. At this stage, the operator A does not need to be specified but it must include an absorbing
condition (in a simple case, A could correspond to an impedance condition for example). Because
of this absorbing condition, the solution (p1, p2) to this system exists and is unique [39, 37, 40].

Let G1 be the conventional Green’s function defined in the infinite space :

G1(M,M ′) = −
eıkR(M,M ′)

4πR(M,M ′)

where R(M,M ′) is the distance between two points M and M ′.
The Green’s representation of p1 in Ω1 writes :

p1(M) = pinc(M)− (2)
∫

Γ
[∂n′p1(P )G1(M,P )− p1(P )∂n′G1(M,P )]dP

where pinc is the incident sound pressure. The term ∂n′ is used for the normal derivative at the
integration point P and dP is shortly written for the element of integration. The integral on Γ
is equal to the diffracted pressure pdif (M). It can be formally written as :

pdif (M) = V1[∂n′p1] + U1[p1] (3)

with the definitions, for any function µ on Γ :

V1[µ](M) ≡ −

∫

Γ
µ(P )G1(M,P )dP

U1[µ](M) ≡

∫

Γ
µ(P )∂n′G1(M,P )dP

In this representation, U1 is a double layer potential operator which operates on the value
of the total pressure on Γ, similarly to the operator H.

The operator V1 corresponds to a simple layer potential and operates on the derivative of
the total pressure on Γ. In order to obtain a formula similar to (1) this first term must be
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transformed into a term which relates the total pressure on Γ to the diffracted pressure in Ω1.
This is done by writing another relation to link p1 and its normal derivative on Γ.

Let the Green’s function G2 be defined in Ω2 as the solution to the system of equations :







(∆ + k2)G2(M,M ′) = δ(M,M ′) in Ω2

G2 = 0 on Γ
A(G2, ∂nG2) = 0 on Σ

Because the condition on Σ is an absorbing condition,G2 exists and is unique (see for example
[40]). Let us recall that explicit analytic expressions of G2 are known for a few number of simple
conditions and geometries [41].

The Green’s formula applied to G2 and the pressure p2 in Ω2 leads to :

p2(M) = −

∫

Γ
p2(P

′)∂n′G2(M,P ′)dP ′ (4)

because of the boundary condition of G2 on Γ. The next step is to apply a normal derivative
to this expression and take the limit when M tends to a point P on Γ. This requires special
attention since it leads to the derivative of a double layer potential which is a highly singular
integral but can still be defined properly (see [37, 40]) :

∂np2(P ) = −∂n(P )

∫

Γ
p2(P

′)∂n′G2(P, P
′)dP ′

Introducing the continuity conditions between p1 and p2 in this equation leads to :

∂np1(P ) = −∂n(P )

∫

Γ
p1(P

′)∂n′G2(P, P
′)dP ′

≡ [T [p1]](P ) (5)

where P is a point on Γ. The second equality defines the operator T which relates the total
pressure p1 to its derivative ∂np1 both defined on Γ. The next step is to replace ∂n′p1(P ) in the
first term of the right-hand side in Equation (3) by T [p1]. This leads to :

V1[∂np1](M) = V1[T [p1]](M) =
∫

Γ
∂n(P )

[
∫

Γ
p1(P

′)∂n′G2(P
′, P )dP ′

]

G1(M,P )dP

Following [37] it is possible to show that the two integrals in this expression can be inter-
changed. This gives :

V1[T [p1]] =
∫

Γ
p1(P

′)∂n′

[
∫

Γ
G1(M,P )∂n′G2(P

′, P )dP

]

dP ′

Using this last equation and Equation (3) shows that the operator can be formally expressed :

H = −∂n′G1 + ∂n′

[
∫

Γ
G1∂n′G2

]
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This is a way to obtain an expression of the operator H. Let us point out that the method
used here is based on two Green’s functions which are defined and unique for any real frequency.
In the general case it is not so easy to determine the mathematical properties of the operator.
Their study will provide the necessary information on the minimization problem but stands
beyond the purpose of the present article. It could be based on the theory of pseudo-integral
operators [42]. As shown in the next paragraph, in the simple case of a half-space geometry
and an impedance condition, an explicit expression of the operator H can be obtained. This is
of interest since as far as the mathematical non-smoothness of the operator is concerned the
properties obtained for the half-space case and for the general case are of the same order.

3.2 The half-space case

In the half-space case the total and diffracted sound pressures can be calculated in the Fourier
domain in order to get a closer idea of the characteristics of the operator H. Here the surfaces Σ
and Γ corresponding to the walls of the room and to the array of the identification microphones
are chosen as the infinite planes z = 0 and z = a respectively. The problem is solved for a point
harmonic source located at S = (0, 0, s > a). The minimization points are in the domain (z > a).
The sound pressure p in the domain z > 0 is the solution to the following system :







(∆ + k2)p(M) = δ(S,M) in z > 0
A(p, ∂np) = 0 on Σ(z = 0)
Sommerfeld conditions at infinity

Since the propagation medium is homogeneous and isotropic, the pressure only depends on
the radial coordinate ρ =

√

x2 + y2 and may be written p(ρ, z). The 2D transverse Fourier
transform and its inverse are defined by :

p̂(ξ, z) = 2π

∫ ∞

0
p(ρ, z)J0(ρξ)ρdρ

and

p(ρ, z) =
−ı

4

∫ ∞

−∞
p̂(ξ, z)H

(1)
0 (ρξ)ξdξ

where J0 is the Bessel function of zero order and H
(1)
0 the Hankel function of zero order and of

the first kind. In the second integral the lower limit (−∞) must be understood as (∞ eıπ) for a
correct definition of the Hankel function [43].

The solution p̂(ξ, z) may be written for z > 0 :

p̂(ξ, z) = p̂tot(ξ, z) =
eıK|z−s|

2ıK
+ Â(ξ)

eıK(z+s)

2ıK

where K =
√

k2 − ξ2 chosen such that Im(K) > 0 and Â(ξ) is the plane wave reflection
coefficient. The second term on the right-hand side is the diffracted pressure p̂dif (ξ, z).

The operator Ĥ is equal to the ratio between p̂dif (ξ, z) and p̂tot(ξ, z = a) :

Ĥ(ξ, z) ≡
p̂dif (ξ, z)

p̂tot(ξ, a)
=

Â(ξ)eıKz

e−ıKa + Â(ξ)eıKa
(6)
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Let us remark that Ĥ depend on ξ and a and does not depend on the source position s as
expected.

For the particular case of an impedance condition on (z = 0) Â(ξ) is explicitly obtained.
The impedance condition is written ∂np + ıkp/ζ = 0 where ζ represents the reduced specific
normal impedance and ~n is the unit vector normal to the plane (z = 0) and pointing towards
the domain (z > 0). Therefore :

Â(ξ) =
Kζ − k

Kζ + k

and

Ĥ(ξ, z) = eıKz Kζ − k

2Kζ cosKa− 2ık sinKa

The inverse Fourier transform of Ĥ can be formally expressed as a sum of layer potentials
located in the (z = a) plane, following steps and results presented in [44]. The details of the
calculation are given in Appendix. The result may be written :

H(Q) = −1
2

∂
∂z

(

eıkr(O,P )

4πr(O,P )

)

− ı
2

∂
∂z

∫

z′=a

∑

n cnH0(λnρ(P
′)) ∂

∂z′

(

eıkr(Q,P ′)

4πr(Q,P ′)

)

dP ′ (7)

where cn = λn hb(λ
2
n)/D

′(λ2
n) with the notations defined in Appendix.

Finally the diffracted pressure is expressed as :

pdif (Q) =

∫

z=a

ptot(P ) H(Q− P )dP (8)

Replacing H by formula (7) leads to an expression similar to the one obtained in the general
case with integrals on Γ. In particular the first term of (8) is :

−1

2

∫

z′=a

ptot(P )
∂

∂z

(

eıkr(Q,P )

4πr(Q,P )

)

dP

4 An example of control

As said in the introduction, the method proposed here was first tested experimentally on a
scaled model (see [35, 36]). The aim of this section is to present a detailed numerical example
which illustrates the way the method applies and to examine its efficiency. The efficiency criterion
is taken from the standard rules for anechoic rooms (ISO 3745 and ANSI S12.35 norms). The
comparison is made between the sound pressure levels obtained with control along one axis in
the room and the corresponding exact incident pressure levels. The anechoicity criterion is said
to be fulfilled if the deviations stay within ± 1.5 dB.

In this example the “measured” data (incident and diffracted pressure at all microphones) are
computed using a BEM code called FELIN [30]. The code is based on the Green’s formula and
the solutions are obtained by using piecewise-constant approximations on triangular elementary
domains. In what follows these data are called “exact”.

The next paragraphs present the geometry of the problem, the precalibration step and the
control step. The source S̃ represents the source to be characterized (such as the loudspeaker in
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Figure 3 – Reduced specific normal impedance versus frequency - Real part (continuous line)
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example [3]). For the precalibration step, comparisons are presented between the exact diffrac-
ted pressure levels computed at a set of minimization points Mℓ and those obtained from the
identification of the operator H by using Equation (1). To illustrate the control, comparisons
are presented between the exact incident pressure levels emitted by a source S̃ at points Mℓ and
those obtained after control.

Let us point out that for this example, both steps are carried out in the frequency domain.
In practical situations, the precalibration will be carried out in the frequency domain and the
active control will be implemented in real-time using the Fx-LMS algorithm [45].

4.1 The geometry

The dimensions of the room are those of the scaled model that is a room of dimensions (2 m
× 1.2 m × 1.1 m). The computations described here are carried out for the 50-450 Hz frequency
band. This means that the maximum dimension of the room goes from 0.3λ to 2.7λ.

The precalibration step is achieved with a set of Nm = 32 identification microphones Pi and
a set of Ns = 32 positions of identification sources Sj . For the control, 32 loudspeakers Vk are
mounted in the walls so that they are flush with the walls.

The six walls of the room are described by the same impedance values. Figure 3 presents
the curve of the reduced specific normal impedance (real and imaginary parts) as a function
of frequency. The choice of these impedance values was not meant to reproduce the behaviour
of the walls in an anechoic room but rather to provide a reflection coefficient with very high
values at low frequency going down to low values around 450Hz. Here the amplitude reflection
coefficient goes from 0.98 at 50 Hz to 0.47 at 450 Hz. This is a way to explore several kinds of
regimes, to get modes at low frequency and increasing absorption at medium frequency. Indeed,
at very low frequency, some modes may be observed in anechoic rooms. A specific study of the
effect of the impedance parameter on the identification results shows, not surprisingly, that the
best identification of the diffracted pressure is obtained for resonance frequencies that is where
the amplitude of the diffracted pressure is large compared with the incident pressure. On the
contrary if the diffracted pressure level is low, the identification of the pressure is not that good
but in that case an accurate control is not necessary. So this is a positive aspect for the active
control.
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The source S̃ to be characterized is here a monopole located at (0.48, 0.46, 0.47) and 7
minimization points Mℓ are located on a straight line in the plane z = 0.59 at a distance from
the source going from 0.22 (point 1) to 1.17 (point 7). They are presented in Figure 4. All
distances and lengths are given in meters.

4.2 The identification or precalibration step

This step consists in estimating the diffracted sound pressure pdif (S̃,Mℓ) from the identifi-
cation of the operator H. Since the operator H does not depend on the source an approximation
is obtained by minimizing the linear system :

F (Sj ,Mℓ) = ||pdif (Sj ,Mℓ)−

Nm
∑

i=1

ptot(Sj , Pi)H(Mℓ, Pi)||

The identification sources Sj are used one by one in turn. Their radiation pattern in free-field
is supposed to be known. Here they are chosen as monopoles.

Let us define the two vectors H and E and the matrix P by :

Hi = H(Mℓ, Pi) i = 1, Nm

Ej = pdif (Sj ,Mℓ) j = 1, Ns

Pij = ptot(Sj , Pi) i = 1, Nm and j = 1, Ns

(9)

The element Pij is the total pressure emitted by the source Sj alone and measured at microphone
Pi. Ej is the diffracted pressure due to the source Sj alone and received at pointM . This quantity
cannot be measured in a straightforward way ; it is computed as the difference (ptot(Sj ,M) −
pinc(Sj ,M)) where the first term is measured and the second term is known as soon as Sj is
known.

This optimization problem is solved by a Singular Value Decomposition method (SVD) [46].
Once H is known, the estimate denoted pdest of the diffracted pressure can be computed for any
source S̃ inside the boundary Γ by formula (1) applied to the source S̃.

The positions of the identification microphones and sources are shown in Figure 5. The
microphones Pi are regularly spaced on a rectangular array which is 0.15 m away from the walls
of the room. The shortest distance between two microphones is 0.56 m (except close to the
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Frequency (Hz) 50 130 250 330 450
Index E 7.10−3 0.032 0.51 0.98 1.6

Table 1 – Error index as a function of frequency

corners of the room where it goes down to 0.37 m). The identification sources Sj are located
inside the volume bounded by the antenna of microphones. These sources represent a rectangular
volume with boundaries situated at minimum distances of 0.33 m, 0.50 m and 0.23 m from the
walls (along the x, y, z-axis respectively). They are regularly spaced inside the volume because
it is a convenient geometry for experimental conditions. However the spaces may differ of a few
cms in order to avoid any specific data redundancy.

Figures 6 to 8 present the curves obtained for 3 frequencies 130, 250 and 330 Hz. The abscissa
corresponds to the 7 positions of the minimization microphones. In each figure, the upper part
presents the comparison of the exact and estimated diffracted pressure levels. The continuous line
represents the exact diffracted pressure level pdif (S̃,Mℓ) and the crosses represent the estimated
pressures pdest(S̃,Mℓ). The lower part presents a comparison of the exact and estimated phase
of the diffracted pressure. The same scales are used for the 3 figures.

For the sound levels, at 130 Hz, the estimation is quite close to the exact value. At 250 Hz,
the error goes from 0 to 2.5 dB. At 330 Hz, the error goes up to 10dB. In order to quantify the
error, a global index has been defined as the mean value, over all points Mℓ, of the amplitude
of the difference between the exact diffracted pressure and its estimated value. It increases from
7.10−3 at 50 Hz to 1.6 at 450 Hz as shown in Table 1. As far as the phases are concerned, the
comparison is correct at 130Hz. At 250Hz, the difference goes from 0 to 1.1 at the end points.
At 330Hz, the difference is small at points 4 to 7 but goes up to π for point 2. For both levels
and phases, the errors increase with frequency as expected.
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Figure 7 – Diffracted pressure levels and phases at 250 Hz - exact (line) and estimated (+)
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Figure 8 – Diffracted pressure levels and phases at 330 Hz - exact (line) and estimated (+)
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4.3 The control step

The active control consists in estimating the control commands u of the loudspeakers Vk by
minimizing the quantity :

J(Mℓ) = ||pdif (S̃,Mℓ) + Ct(Vk,Mℓ)u(Vk)||
2

+ α||u(Vk)||
2 (10)

where Ct is the transfer matrix between the secondary sources Vk and points Mℓ. The second
term adds a condition on the norm of the solutions u in order to get a well-posed problem even
for very small α. The minimization of J(Mℓ) can be carried out with the exact value of the
diffracted pressure pdif or with its estimated value pdest. For the commands this leads to two
minima called uex and uest from which two approximations of pdif are defined as follows :

p̃dex = −Ctuex and p̃dest = −Ctuest

The comparison between the two terms is a way to point out the influence of the identification
step. The corresponding incident pressures are then estimated from the substraction between
the exact total pressure and the estimated diffracted pressure. For example, p̃iest = ptot − p̃dest.
This is not a conventional way to present active control results. The idea here is to show the
efficiency of the active control in relation with the respective levels of the incident and the
diffracted pressures. As said before in the cases for which the diffracted pressure is quite small
compared with the incident pressure, there is little interest for a high reduction of the diffracted
pressure.

Figures 9 to 11 present the results obtained for the same 3 frequencies. The continuous
curve represents the exact incident pressure pinc(S̃,Mℓ) as a function of the 7 points Mℓ. For
all frequencies the incident pressure p̃iex is equal to the exact incident pressure which means
that the control step itself works efficiently. This is not surprising since it consists in solving
a problem with more unknowns than equations. The crosses + and × respectively represent
the values of the estimated incident pressure p̃iest and the exact total pressure ptot. The total
pressure levels are shown in order to give the relative values of the diffracted pressure levels.
Again the higher the diffracted pressure level is, the higher its estimate is crucial. In each figure,
the two dotted lines are located 1.5dB below and above the exact incident levels. This interval
corresponds to the anechoicity criterion defined previously.

Figure 9 shows a good agreement between the sound levels of pinc and p̃iest. The difference
between the total and the incident pressure levels points out that the diffracted pressure is a
large part of the total pressure. This shows that the method (identification+control) provides
a convenient tool at low frequency. At 250 Hz (figure 10) the agreement is still good except at
point 7 (with a 5dB deviation) and the diffracted pressure level is small compared with the total
pressure. At 330 Hz (Figure 11) the method is not that efficient however the diffracted pressure
level is much lower so that the accuracy on its estimation is not so critical. This shows that even
if the accuracy of the results obtained in the identification step is not good the final result of
the control step may still be satisfying. This points out that the identification criterion (used
for the precalibration step) must be adapted to the final criterion.

In this example, most levels lie within the 3dB interval around the exact incident pressure.
This means that the method can be useful regarding the anechoicity standard rules. However this
will not be sufficient in more specific studies such as the case of characterization measurements
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Figure 9 – Incident pressure levels at 130 Hz - exact (continuous line) and estimated (+), total
pressure levels (×), the dotted lines represent a 3dB interval around the exact incident pressure
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Figure 10 – Incident pressure levels at 250 Hz - exact (continuous line) and estimated (+),
total pressure levels (×), the dotted lines represent a 3dB interval around the exact incident
pressure
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Figure 11 – Incident pressure levels at 330Hz - exact (continuous line) and estimated (+), total
pressure levels (×), the dotted lines represent a 3dB interval around the exact incident pressure
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for the radiation of a source for which higher accuracy should be required. Further numerical
studies must also be carried out to thoroughly determine the influence of the parameters and
for more complex cases. For example, in realistic applications, active control may lead to errors
if the number of minimization microphones is larger than the number of secondary sources.

5 Conclusion

In this paper, it has been shown that the total pressure measured on a closed surface is
directly related to the diffracted pressure at any point inside this boundary. The proof of its
existence relies on the mathematical study of a transmission problem. It has been shown that in
the simple case of a half-space with an impedance condition, a formal explicit expression of the
operator H can be obtained. This example is a convenient tool to further study the properties of
non-smoothness of H which in turn provide information on the properties of the inverse problem
and its regularization.

The relation between the total and the diffracted pressure provides a method to develop
an active control system. The numerical tests presented were carried out for a scaled model on
the frequency band 50-450 Hz in order to illustrate the method in the case of an anechoicity
criterion.

Many questions still arise on numerical and experimental aspects. On the numerical side,
the main points are the discretization of the formula and the regularization of the inverse pro-
blem. The parameters are the number and positions of the identification sources and micro-
phones. Some results on compressive sensing [48] could provide some ideas on other choices of
the sources location in order to obtain a better conditioning of the identification matrix. Pos-
sibly the directivity of the identification sources are also to be considered in order to improve
the well-posedness of the problem. Let us underline that the essential criterion to be taken into
account is the influence of the regularization of the identification problem on the active control
performance rather than on the identification of the operator itself. On the experimental side,
a first full-scale test is now carrying out in a semi-anechoic room with one highly reflecting
vertical wall and five absorbing walls. The experiment will provide information on the best ways
to associate identification and control and on the efficiency of the control.

Let us finally point out that this method can be useful for rooms other than anechoic and
therefore for sound field synthesis.

APPENDIX

A The half-space case - calculation of the operator H

The method follows [44]. The operator is obtained by inverting the Fourier transform through
an integration in the complex plane. The integral to be calculated is given by :

H(ρ, z) =
−ı

4

∫ ∞

−∞
Ĥ(ξ, z) H

(1)
0 (ρξ)ξdξ

It is well defined since the function to be integrated exponentially decreases at infinity and
is properly defined at ξ = 0 [43]. Following the principle of limit absorption (equivalent to
Sommerfeld conditions [47]) it is assumed that the wave number k has a small positive imaginary

15



part and the final expression of H will be the limit of the result obtained by letting the imaginary
part of k tend to zero. The calculation below is therefore done with k non real in which case the
denominator of H has no zeros on the real axis.

In order to obtain layer potentials in the (z = a) plane the first step is to introduce a term
eıK|z−a| with :

Ĥ = eıK|z−a|F̂ (ξ2)

with

F̂ (ξ2) =
eıKa(Kζ − k)

2Kζ cosKa− 2ık sinKa
= eıKaKζ − k

2Y (ξ2)

Because of the square root K, the integration in the complex plane involves branch integrals.
However as remarked in [44], these branch integrals disappear if the function to be integrated is
even in K.

Therefore the function F̂ is first written as :

F̂ (ξ2) =
1

2
+ B̂(ξ2) with B̂ =

−k cosKa+ ıKζ sinKa

2Y

where B̂ is uneven in K. To obtain an even function one more step is introduced by using the
following equalities :

B̂(ξ2)eıK|z−a| =
−2

ıK
B̂(ξ2)

−ıK

2
eıK|z−a|

=
hb(ξ

2)

D(ξ2)

−ıK

2
eıK|z−a|

where D = KY and hb = ı(−k cosKa+ ıKζ sinKa). The function hb/D is an even function in
K.

The next step is to compute the inverse Fourier transform of the two terms I and II defined
by Ĥ = I + II with :

I =
1

2
eıK|z−a| and II =

hb(ξ
2)

D(ξ2)

−ıK

2
eıK|z−a|

For the first one let us remark that :

I =
∂

∂z

eıK|z−a|

2ıK
(11)

so that the inverse Fourier transform is given by :

∂

∂z

(

−eıkr

4πr

)

(12)

For the second term let us similarly remark that :

−ıK

2
eıK|z−a| =

∂2

∂z∂a

(

eıK|z−a|

2ıK

)

which is the Fourier transform of :
∂2

∂z∂a

(

−eıkr

4πr

)

(13)
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The Fourier transform of the function hb/D is obtained by the method of residues. The poles
of this function, denoted λn, are the zeros of the denominator D. Let us assume for simplicity
that these zeros are simple zeros, the integral can be written :

−
ı

2

∑

n

hb(λ
2
n)

D′(λ2
n)

λnH0(λnρ(P
′)) (14)

where D′(λ2
n) = ∂D(ξ2)/∂(ξ2) at ξ = λn.

The inverse Fourier transform of II is the convolution product of the terms in Equations
(13) and (14). It is given by :

−
ı

2

∂

∂z

∫

z′=a

∑

n
hb(λ

2
n)

D′(λ2
n)
λnH0(λnρ(P

′))

× ∂
∂z′

(

eıkr(Q,P ′)

4πr(Q,P ′)

)

dP ′ (15)

with Q = (x, y, z), P ′ = (x′, y′, z′).
The inverse Fourier transform of Ĥ is the sum of Equation(12) and (15) which leads to the

final expression (7).
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