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This paper presents a two-dimensional (2D) cavity-by-cavity description of a convective
instability near a lined wall with low dissipation due to the coupling of hydrodynamic
modes with resonance of the wall. For a liner consisting of an array of deep cavities period-
ically placed along a duct containing a mean shear flow, the acoustic and hydrodynamic
disturbances are described by the linearized Euler equations. The Bloch modes and the
scattering matrix of periodic cells are used to examine the instability over the liner. The
unstable Bloch mode is due to the coupling of a hydrodynamic mode in the shear flow
with the cavity resonance. It is demonstrated that even when all the transverse modes are
stable in the duct-cavity system, i.e. when the Kelvin-Helmholtz instability of the shear
flow over the cavities does not occur, such an instability over the liner can still exist. The
unstable Bloch wave, excited by the incident sound wave at the upstream part of the
liner, convectively grows along the liner, and regenerates sound near the downstream edge
of the liner with a sound level higher than that incident sound level. It is shown that a
homogenized approach, where the wall effect is described by a homogeneous impedance,
can also explain the unstable behaviour above the liner. It reveals that a small wall
resistance and a small and positive reactance are two necessary conditions for such an
instability.

Key words:

1. Introduction

Liners are widely used to mitigate noise emissions from ducts. In most of the practical
applications, from air conditioning systems to aero-engines, a flow is present in the duct.
The interaction between flow and sound in the vicinity of a lined wall is complex and,
therefore, a precise description of the flow-acoustic coupling near a liner still attracts a
lot of attention (Tam et al. 2014; Zhang & Bodony 2012, 2016; Khamis & Brambley
2016, 2017). Surprisingly, under certain circumstances, instead of being attenuated, the
sound can be amplified by a liner with a grazing flow. Indeed, it was observed that the
transmission coefficient of a plane wave propagating through a liner in the flow direction
can have a peak in amplitude larger than unity near the resonance frequency of the
liner (Brandes & Ronneberger 1995; Ronneberger & Jüschke 2007; Aurégan & Leroux
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2008). Such a sound amplification appears at high flow velocities when the liner has
a low resistance. The fluctuating fields, the convection velocity, and the growth rate
of these unstable surface modes have been measured with optical technics (Marx et al.
2010). Those measurements have shown that the unstable disturbance near the lined wall
increases exponentially along the liner with a relatively low amplification rate. Since no
saturation mechanism appears experimentally, a linear approach to this problem seems
possible. It can also be noted that such convectively unstable modes may also exist above
porous materials (Aurégan & Singh 2014; Alomar & Aurégan 2017). In this case, the
behaviour of unstable disturbances is more complex due to a slight flow inside the porous
material which leads to separation on the downstream end of the material.

Many theoretical works have been performed on sound propagation in a lined duct with
flow (Tester 1973; Koch & Mohring 1983; Rienstra 2003; Brambley & Peake 2006). A
uniform mean flow was often assumed. To account for the effect of the infinitely thin vor-
tex sheet on liner surface, the Ingard-Myers impedance boundary condition that requires
the continuity of particle displacement across the vorticity sheet, is enforced (Ingard
1959; Myers 1980). With a uniform flow assumption plus the Ingard-Myers condition, a
convective unstable mode (Tester 1973) and a surface unstable mode (Rienstra 2003)
have been detected. However, some problems linked to the Ingard-Myers condition have
been revealed: for instance, it is ill-posed in the time domain (Brambley 2009), and it can
over-predict sound attenuation by over 10 dB compared to the results from the linearized
Euler equations (Gabard 2013). To overcome the problem of ill-posedness, profiles
with small but finite-thickness boundary layers were taken into account in impedance
boundary conditions (Brambley 2011; Rienstra & Darau 2011; Khamis & Brambley
2016). These models are able to predict an absolutely or convectively unstable mode
over the lined wall. In the modeling of the flow-acoustic coupling near the lined wall,
the importance of taking into account viscosity was demonstrated (Aurégan et al. 2001;
Marx & Aurégan 2013; Khamis & Brambley 2017). Including turbulent viscosity leads
to more accurate predictions of the the growth rate and the velocity shape of the unstable
surface mode above a liner. Also, the instability over the liner is influenced by the spatial
development of the mean flow along the lined duct (Marx et al. 2010; Xin et al. 2016).
All these efforts, however, are based on the assumption of a homogeneous impedance of
the liner whereas in practice, this liner is constituted by a large number of small holes.

The limitations of the continuous impedance model in describing liners with flow have
been revealed recently. It was first observed in experiments that two different impedances
were measured according to whether the wave was propagating in the direction of flow or
whether it was propagating against the flow (Renou & Aurégan 2011). Since a uniform
flow was assumed, the Ingard-Myers boundary condition was used in the impedance
eduction from the experimental data. It could therefore be argued that the difference
between these two impedances could be due to the imprecision of the impedance boundary
condition. However, even taking into account the actual shear flow profile, the difference
between the two impedances cannot be eliminated (Dai & Aurégan 2016). The fact that
liner impedance depends on flow direction has been verified in many laboratories, using
different eduction methods and impedance boundary conditions (Spillere et al. 2017),
and even using the linearized Navier-Stokes equations for wave propagation (Weng et al.
2018). From these experimental and theoretical works, we can draw a conclusion that the
complex flow-acoustic coupling over the liner cannot be fully described by the currently
used boundary conditions that involve a single quantity: an equivalent liner impedance.

The first objective of the present paper is, therefore, to examine the validity of
the homogenized approach in describing the instability above a liner. To this end, a
discrete approach of the aeroacoustic instability over a liner is developed. As sketched
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Figure 1. (Colour online) (a) Sketch of flow-acoustic coupling over a liner, (b) a periodic unit
of the discrete model.

in figure 1, deep narrow cavities are periodically located along a duct containing a
mean shear flow (period W = L + S). The spacing between the adjacent cavities S
is small compared to size L of the cavity and very small compared to the acoustical
wavelength. This liner can be seen as a two-dimensional (2D) version of the ones used
in the previous experiments (Aurégan & Leroux 2008; Marx et al. 2010). The acoustic
and hydrodynamic disturbances are described by the linearized Euler equations (LEEs).
To be able to describe the instability that appears in the experiments, some damping is
required in the system. It is done artificially by adding a resistive layer at the inlet of
the cavities and by adding an artificial damping to the hydrodynamic modes. This rough
description of the viscous and turbulent effects only provides a qualitative comparison
with the experiments, but it allows a better understanding of the mechanisms involved.
For such periodic system, the wave propagation can be calculated using the Floquet-Bloch
theorem, which states that the field can be split into a 2D periodic field modulated by a
wave part of wavenumber kB . The Bloch wave and the scattering matrix of the system
can be used to study the instability over the liner due to flow-acoustic coupling. Section
2 explains the multimodal method used to compute the scattering in one-cell and multi-
cell liners and the calculation of the Bloch waves is described. Using this model, the
results of the periodic approach are presented and analyzed in section 3.1. It is first
demonstrated that the aeroacoustic instability in the duct results from the coupling of a
hydrodynamic mode in the boundary layer with the acoustic resonance of the cavities.
Such an aeroacoustic instability can occur even if all transverse modes of the duct-
cavity system are stable. It is also demonstrated that for the unstable behaviour of the
configuration shown in figure 1, a homogenized method based on an equivalent wall
impedance is a reasonable approximation to the complete Bloch analysis. In section 3.2,
a case where each periodic cell consists of two cavities of different depths is considered.
It is found that a small depth difference can suppress the unstable behaviour above the
liner, and explanations from both the Bloch and the homogenized point of view are given.

2. Numerical model

2.1. Modal scattering in one cell

In an inviscid perfect fluid when the nonlinear effects are neglected, the propagation
of small disturbances about a steady mean flow can be described by the linearized Euler
equations (LEEs):
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where all the quantities have been put in dimensionless form using:
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,
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0

c∗0
, t =

t∗c∗0
H∗ ,

where ρ∗0 is the mean density, c∗0 is speed of sound, U∗
0 and M0 are the average mean

velocity and Mach number in the duct with the profile prescribed by the function
f(y) = M(y)/M0, u∗ and v∗ are the velocity disturbance in respectively the x- and
y-direction, p∗ is the pressure disturbance, ω∗ is the angular frequency. In this paper, all
the quantities with a star are quantities with dimensions while all the quantities without
star are dimensionless quantities.

The variables are sought in the form:

p = P (y) exp(−ikx) exp(iωt),

v = V (y) exp(−ikx) exp(iωt), (2.4)

where i2 = −1 and k is dimensionless wavenumber. The equation (2.2) is written in term
of these new variables as:

i(ω −M0fk)V = −dP

dy
. (2.5)

Removing the axial velocity from (2.1) and (2.3) leads to:

(
1−M2

0 f
2
)
k2P + 2ωM0fkP − ω2P − d2P

dy2
= −2iM0

df

dy
kV. (2.6)

This formulation of the equation is close to the classical Pridmore-Brown equation
(Pridmore-Brown 1958) which is obtained when the value of V extracted from (2.5)
is inserted in (2.6).

A unit cell of the duct-cavity system is split into 2 zones denoted by Roman number
in figure 1(b). A shear flow is assumed in the duct, and its velocity profile is considered
to be unchanged along the duct where y < 1. The flow velocity inside the cavities,
where y > 1 is zero. To solve this problem of linear propagation in a shear flow, the
multimodal method is used (Kooijman et al. 2008, 2010), where the disturbances in the
ducts are expressed as a linear combination of acoustic modes and hydrodynamic modes.
The equations (2.5) and (2.6) are discretized in the y-direction by taking N1 equally
spaced points in zone I, N2 equally spaced points in zone II.

The spacing between interior points in all segments is ∆h = H/N1 = (H + D)/N2,
and the first and last points are taken ∆h/2 from the the duct walls. Since the problem
under study is known to lead to slope discontinuities in the profile of hydrodynamic
modes, a low-order numerical scheme is used to solve the problem: the second-order
centered finite difference method. The following generalized eigenvalue problem coming
from (2.5) and(2.6) and using Q = kP is formed in each of the segments:
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where I is the identity matrix, f , f2 and fa are diagonal matrices with on the diagonal
the values of f , f2 and df/dy at the discrete points in the ducts. Q, V , and P are
the column vectors giving respectively the value of Q(y), V (y) and P (y) at the discrete
points. D1 and D2 are matrices for the first and second order differential operators with
respect to y. The boundary condition dp/dy = 0 on the duct walls is taken into account
in the differential operator matrices by introducing ghost points outside the duct walls.
Solving the eigenvalue problem (2.7) (using the eig function of MATLAB) gives the
eigenmodes and the corresponding wavenumbers in each zone. In the zone I, 3N1 modes
are found, including N1 acoustic modes propagating or decaying (evanescent modes) in
the +x direction, N1 acoustic modes propagating or decaying in the −x direction, and
N1 hydrodynamic modes propagating in the +x direction. In zone II, the mean flow
velocity and its derivative are zero at discrete points where y > 1. The last N2−N1 rows
and columns of the middle parts in the matrices in (2.7) and the last N2 −N1 elements
of V are skipped, corresponding to the no-flow part of this segment. Thus, there are N2

acoustic modes propagating or decaying both in the +x direction and in the −x direction,
and N1 hydrodynamic modes propagating in the +x direction in zone II.

To mimic the effects of a resistive sheet like a wiremesh or to mimic the cavity resistance
due to thermo-viscous effects, a resistance R denoted by the red dashed lines in figure
1(b) is introduced at the mouth of each cavity. This resistance induces a pressure jump
at y = 1 for 0 < x < L in zone II formulated as,

∆py=1 = R vy=1 for 0 < x < L. (2.8)

The nth eigenvectors of (2.7) in the zone j is t(Qj
n,V

j
n,P

j
n), where Qj

n, V j
n, and P j

n

are the mode profiles of q (Note q = i∂p/∂x), v, and p, respectively. In each zone, the
column vectors giving respectively the values of Q(y), P (y), and V (y) are written as a
linear combination of the modes:

Qj(x) =

N∑
n=1

Cj
nQ

j
n exp(−ikjnx),

P j(x) =

N∑
n=1

Cj
nP

j
n exp(−ikjnx),

V j(x) =

N∑
n=1

Cj
nV

j
n exp(−ikjnx),

where Cj
n is the coefficient of the nth mode in zone j and N = 3N1 in zone I and

N = 2N2 +N1 zone II.
The modes in each duct segment are then matched using the continuity of pressure p,

velocity v, and ∂p/∂x at the interfaces between zones I and II, and ∂p/∂x = 0 on the
vertical walls inside the cavity. The continuity and wall conditions can be put in the form
of a large matrix that links all the incoming waves in the cell to out-going waves and to
all the internal variables. From this large matrix, the scattering matrix is written:(

C+
2

C−
1

)
= S

(
C+

1

C−
2

)
, (2.9)



6 X. Dai and Y. Aurégan

where vectors C±
1 (resp. C±

2 ) contain the duct mode coefficients for x = 0 (resp. x = W )
for wave going in the flow direction (resp. for wave propagation opposite to the flow) and

S =

(
T+ R−

R+ T−

)
,

where T+ (2N1×2N1), R+ (N1×2N1), T− (N1×N1) and R− (2N1×N1) are transmission
and reflection matrices with and against the mean flow.

2.2. Modal scattering of several cells

The scattering matrix for two adjacent cells can be obtained from the scattering
matrices of the single cells S(1) and S(2) by:

S(1+2) =

(
T+(2)ET+(1) R−(2) + T+(2)R−(1)FT−(2)

R+(1) + T−(1)R+(2)ET+(1) T−(1)FT−(2)

)
, (2.10)

where

E = (I − R−(1)R+(2))−1,

F = (I − R+(2)R−(1))−1.

The above iterative scattering matrix algorithm is used to obtain the scattering matrix
of the periodic system shown in figure 1.

2.3. Bloch modes of the periodic system

Since the governing equations, the boundary conditions, and the geometry are W -
periodic along x (where W = L + S is the period), the Floquet-Bloch theorem states
that any quantities φ(x, y) can be written as φ(x, y) = φB(x, y)e−ikBx, meaning that
φ(x, y) is split into a field φB(x, y) which is W -periodic along x superimposed to an
exponential part in the x-direction involving only the Bloch wavenumber kB (Bradley
1994; Nennig et al. 2012; Schmid et al. 2017). This decomposition leads to φ(x+W, y) =
φB(x + W, y)e−ikB(x+W ) = φB(x, y)e−ikB(x+W ) = φ(x, y)e−ikBW . On the upstream and
downstream boundaries of a unit cell, x = 0 and x = W for example, the relation between
the qualities is φ(W, y) = φ(0, y)e−ikBW , which can be written in a vectorial form:(

C+
2

C−
2

)
= e−ikBW

(
C+

1

C−
1

)
. (2.11)

The scattering relation given by the equation (2.9) can be rewritten as,

M1

(
C+

1

C−
1

)
= M2

(
C+

2

C−
2

)
, (2.12)

where

M1 =

(
T+ 0
−R+ I

)
, M2 =

(
I −R−

0 T−

)
.

Using equations (2.11) and (2.12), a generalized eigenvalue problem for a unit cell of
the liner is found:

M1

(
C+

1

C−
1

)
= e−ikBW M2

(
C+

1

C−
1

)
, (2.13)

The eigenvalue problem (2.13) gives the Bloch wavenumbers kB . Each eigenvector con-
tains the coefficients of the modes solved in (2.7), the combination of which gives a Bloch
mode of the cell.
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Figure 2. (Colour online) Transmission coefficients in (a) and against (b) the flow direction.
The peak of |T+| for the liner with 30 cells occurs at ω = 0.4310 (1573 Hz).

3. Results

Calculations in the following are carried out on an array of 2D cells sketched in figure
1. Each cell consists of a deep narrow cavity attached to a short duct containing a mean
shear flow. The geometrical parameters are: H∗ = 15 mm, D∗ = 55 mm, L∗ = 1 mm,
and S∗ = 0.2 mm. The Mach number averaged over the cross-section is M0 = 0.1 and
the velocity profile is given by a simple polynomial law with a unity average value,

f = f0 (1− ym) with f0 =
m+ 1

m
, (3.1)

where the parameter m = 10 is used in the present calculations. At the mouth of each
cavity a thin sheet with a normalized resistance R = 0.0175 has been added. This value
has been empirically chosen such as the global cell instability exists (see discussion of
figure 7) while the unstable modes over the cavities are suppressed. The number of the
discrete points in the duct is 600, so 1800 transverse modes are solved from (2.7) in the
duct.

3.1. Instability near the acoustic resonance

The transmission coefficients for a plane wave propagating through one and several
cells in the ±x-directions are shown in figure 2. Without flow, |T±| of a single cell shows
a minimum at the resonance frequency. This minimum is larger than zero because of the
resistive sheet. The liner with 30 cells stops the sound transmission more effectively at
resonance than a single cell. With flow, minimums of |T±| around resonance still happen
for one or several cells. The symmetry of sound propagation in the±x-directions, however,
is broken by the convective effect and the flow-acoustic interaction near the liner. More
interestingly, a narrow hump is observed in |T+| with flow. Especially, the amplitude can
be larger than unity, which means the incident plane sound wave is amplified as it passes
through the periodic cells. Figure 3 shows the pressure fields in the duct-liner system for a
plane wave incidence from the upstream duct. At the peak frequency of the hump shown
in figure 2(a), a surface wave excited by the sound wave at the upstream part of the liner
is observed in figure 3(b). It convectively grows over the liner and regenerates sound near
the downstream edge of the liner. In this case, the incident plane wave is transformed
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(a)

(b)

Figure 3. (Colour online) Iso-colour plots of the real part of the pressure for a plane sound
wave incidence at frequencies (a) ω = 0.4266 (1557 Hz) and (b) ω = 0.4310 (1573 Hz). Note
that the fields are only plotted for the duct and part of the liner cavities.

into an unstable hydrodynamic wave that is amplified as it propagates though the lined
segment. At the downstream edge, this hydrodynamic wave generates an acoustic wave
whose level is higher than the incident level. At a slightly lower frequency, ω = 0.4266
(1557 Hz), figure 3(a) also shows a surface wave over the liner. However, it decreases
along the liner and no sound amplification is observed. So, the incident sound wave is
stopped by the liner due to acoustic resonance. The results of the fields over the surface
of the liner bear interesting resemblance to PIV experiments (Marx et al. 2010). Such
convectively growing surface wave and the associated sound amplification, first observed
in experiments, were attributed to hydrodynamic instabilities (Ronneberger & Jüschke
2007; Aurégan & Leroux 2008; Marx et al. 2010).

To explore the root cause of such an instability, the shear layer instability in zone
II is first examined by looking the wavenumbers of the acoustic and hydrodynamic
modes deduced from (2.7). With a shear flow, in addition to the classical modes, neutral
hydrodynamic modes (Brambley et al. 2012) appear. They result from the singularities of
the Pridmore-Brown equation (Pridmore-Brown 1958) when ω−Mk = 0, thus they form
a continuous hydrodynamic spectrum on the real axis, ω/Mmax < k < ω/Mmin, where
M is the non-dimensional mean flow velocity. Under certain conditions, an unstable
hydrodynamic mode can occur, which is known as the Kelvin-Helmholtz instability
(Schmid & Henningson 2000). The Briggs-Bers causality criterion is used to distinguish
an unstable hydrodynamic mode from an acoustic mode decaying in the −x direction
(Briggs 1964; Bers 1983). For that, in the exp(i(ωt − kx)) convention, a negative
imaginary part is added to the frequency ω and the modes with wavenumbers that
are in the lower complex plane when Im(ω)→ −∞ propagate in the +x direction, while
the modes with wavenumbers that are in the upper complex plane when Im(ω) → −∞
propagate in the −x direction. The Briggs-Bers criterion states that, if one of the mode
crosses the real axis while the imaginary part of the frequency Im(ω) ranges from −∞
to 0, it means that this mode is convectively unstable. The wavenumbers of the acoustic
and hydrodynamic modes in zone II are plotted by circles in figure 4 when the frequency
is real. It can be noted that the continuous line of hydrodynamic modes on the real axis
has been transformed into a set of points because of the discretization of the problem.
When the resistance R = 0, see figure 4 (a), one unstable mode with a high amplification
rate appears. This unstable mode is stabilized when a resistive sheet is added, as shown
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Figure 4. (Colour online) Tracing of the eigenvalues in zone II: Re(ω) is kept constant 0.4310
(1573 Hz) while Im(ω) runs from 0 (results are denoted by the circles) to -0.2740 (results
are denoted by the triangles). (a) No resistive sheet and (b) a resistive sheet R = 0.0175 is
introduced at the opening of the cavity. The small arrows indicate the direction of the variation
of the eigenvalues for the increasing negative part of ω.

in figure 4 (b). It should be noted that the unstable mode is gradually stabilized by
increasing R. However, it can be observed that several neutral modes are now slightly
out of the real axis. This effect is due to the discretization and those modes tend to the
real axis when the number of discretization points is increased. To avoid this numerical
instability and to mimic the effect of turbulence that dissipates quickly the coherent
hydrodynamic waves, an artificial damping is added to all the hydrodynamic modes by
adding to their wavenumbers kh a negative imaginary part −iεRe(kh). The effect of this
artificial damping on the sound amplification is presented in figure 11(a) of the Appendix
A. For all the results presented in this paper (except on figures 4 and 10 where ε = 0
and on figure 11 where the effect of ε is studied), a damping with ε = 0.06 was added to
the hydrodynamic modes in zones I and II. This value has been empirically chosen to be
the smallest value that stabilizes all the discrete hydrodynamic modes, in the frequency
range of sound amplification shown in figure 2(a).

The aeroacoustic behaviour of one cell, consisting of zones I and II, can be determined
by the Bloch wavenumbers kB which are obtained from the eigenvalues problem (2.13).
Note that in the calculations of |T±| in this paper the wave reflection by the sudden
changes from hard to lined to hard duct is included, whereas in Bloch mode analysis,
an infinitely long periodic structure is considered. Figure 5(a) gives the variation of
kB when the frequency goes from ω = 0.2740 to 0.4932. It can be seen that one of
the cell’s hydrodynamic modes is emerging from the line of attenuated hydrodynamic
modes and it is passing through the real axis to become amplified. This unstable Bloch
mode is observed in a very limited range of frequencies (0.4277 < ω < 0.4332) near
the quarter wavelength (λ/4) resonance of the cavity. The maximum amplification rate
of the Bloch unstable mode, i.e. the maximum in the imaginary part of kuB , happens
at the same frequency as the peak of |T+| for 30 cells in figure 2. The relative errors
of the calculations are shown in figure 5(b), where the errors are defined as |kuB(N1) −
kuB(N1R)|/|kuB(N1R)| with the reference result computed with N1R = 1920 (same for T±).
It is interesting to note that even when all the transverse modes are stable in zones I
and II (the hydrodynamic modes have been stabilized by the artificial damping in zones
I and II), a cell instability can still occur. It should also be noted that the upstream-
propagating acoustic wave identified by k−B0 is strongly attenuated when the instability
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Figure 5. (Colour online) (a) Bloch wavenumbers kB of one cell for frequency sweep from
ω = 0.2740 to 0.4932 (1000–1800 Hz). The arrows in (a) denote the direction of the variation of
the modes with increasing frequency. The red squares indicate the kB at frequency ω = 0.4310
(1573 Hz), which is the peak frequency of |T+| for 30 cells in figure 2. (b) The relative errors of
|kuB | and |T±| for 30 cells at frequency ω = 0.4310 (1573 Hz).

occurs (k−B0 = −17.56 + 100.8i at frequency ω = 0.4310). This means that the global
instability that consists of the unstable hydrodynamic wave and the first left-running
acoustic mode described in lined duct by Pascal et al. (2017) does not occur in our
system.

Figure 6(a) and (b) show the periodic fields for ω = 0.4310 when the unstable Bloch
wave propagates through the lined duct with the maximum amplification. This unstable
Bloch mode presents a sharp peak of vorticity at yc = 0.9590. At this position the mean
velocity is M0f(yc) = 0.03763 that is equal to the wave velocity that can be computed
from the wavenumber kuB = 11.453 + 1.949i. This indicates that this wave is convected
by the mean flow and it could be called a hydrodynamic unstable mode.

Some inhomogeneous effects in the x-direction are present very close to the mouths
of the cavities (y > 0.98) and they are shown by the black thin lines in figure 6 (c) and
(d). Nevertheless, at vertical position y = yc the quantities displayed by the red thick
lines are nearly constant. It means that, except very near the wall, the periodic field of
the unstable mode is nearly independent of x and that any field can be written with a
transverse mode form: φ(x, y) = φT (y)e−ikBx. In this case, (2.5) and (2.6) can be easily
solved using a new variable Y , such as dP/dy = Y P , whose variations are given by

dY

dy
= −Y 2 − 2M0kB

ω −M0fkB

df

dy
Y − (ω −M0kBf)

2
+ k2B . (3.2)

The equation (3.2) can be integrated from y = 0 where Y = 0 to y = 1. When Y
is known, the pressure P can be found by integrating dP/dy = Y P and all the other
variables can be deduced from those values. On figure 6 (e) and (f), the values obtained
by this integration is favourably compared to the values obtained by the Bloch method.
This approximated method helps to understand the coupling of this hydrodynamic mode
with the λ/4 resonance of the cavity. The value of Y at the wall is directly linked to an
equivalent impedance of the wall by Zw = −iω/Y (1). For ω = 0.4310 and kB = kuB , the
impedance is Zu

w = 0.0219 + 0.0132i which can be compared to the impedance without
flow of the cavity Zm = (W/L)(R − i/ tan(ωD)) = 0.0210 + 0.0113i. Thus Zw (which
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Figure 6. (Colour online) Iso-colour plots of the amplitude of the periodic part of (a) pressure
and (b) v-velocity when the unstable Bloch mode propagates in the lined duct. (c) and (d)
show respectively the amplitudes of the periodic part of pressure and v-velocity as a function
of x, the lines denote quantities at 2 different y-positions: black thin lines for y = 1 − ∆h/2,
and red thick lines for y = 0.9590. (e) and (f) present the comparison of the periodic part of p
and v-velocity averaged along x on one cell (solid lines) and obtained from (3.2) (dashed lines).
The horizontal dashed lines represent the y-position of the peak of vorticity (y = yc = 0.9590),
where the mean flow velocity equals to the wave velocity of kuB . The calculations are made at
frequency ω = 0.4310. Note that the fields are only plotted for the duct and part of the liner
cavities. Also note that the short-wavelength oscillations very close to y = 1 observed in (d) are
due to the spurious numerical modes caused by the discontinuity at the interface between the
two zones at y = 1 (same in figure 9(d)).

only depends, at given frequency and wavenumber, on the Mach number and on the
shape of the profile) is a reasonable approximation of the impedance that must be put
on the wall to sustain an unstable hydrodynamic mode. By studying the variation of
Zw when the wavenumber kB is slightly varied around the value obtained by the Bloch
computation kuB (see figure 7 ), it can be seen that an increase in the resistance R induces
a decrease of the amplification Im(kB) and that for each frequency there is a maximum
resistance over which no unstable mode can exist. In the present case, this maximum
resistance is 0.0285. This maximum resistance is always very small and that is why in
most of the practical applications where the dissipation is much higher, this instability
does not appear. One way of increasing the wall resistance is to increase the spacing S
between the cavities so that the percentage of open area is decreased. The effect of S
on the sound amplification is presented in figure 11 (b) of the Appendix A. It is shown
that an increase in S, i.e. an increase in the equivalent wall resistance, can mitigate or
suppress the sound amplification. The imaginary part of Zw is also small compared to
1 and always positive around kuB . With a cavity or a Helmholtz resonator this kind of
small values can only be obtained near the resonance of the wall (p ' 0). The positive
value of the imaginary part of Zw means that instability occurs for frequencies slightly
higher than the resonance frequency because the imaginary part of the impedance of a
cavity always increases from −∞ when ω → 0 and being 0 at the wall resonance.
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0

5
-0.01

0

20

0.01

15

0.02

10 105

0

5-0.02

-0.01

20

0

15

0.01

0.02

10 105

(a) (b)

Figure 7. Real (a) and imaginary (b) parts of the wall impedance Zw that is computed using
(3.2) for ω = 0.4310. The blue thick lines correspond to Zw = Zu

w and the black thin lines to
Zw = 0.

The above analysis using (3.2) is valid here because the vorticity of the mode is
concentrated far from the wall. The results can differ if this vorticity mode interact
strongly with the axial non-uniformities due to the sidewalls of the cavities. In this case
the full Bloch analysis cannot be simplified.

The instability occurring in this system of small cavities is then due to a vorticity mode
that is regularly amplified by the resonance of the cavities and it transfers some energy
from the mean flow to the perturbations. This mechanism is quite different from those
which cause whistling or amplification of sound in cavities, side branches, corrugated
pipes, or Helmholtz resonators studied by Tam & Block (1978), Ziada & Shine (1999),
Nakiboglu et al. (2011, 2012), Nakiboglu & Hirschberg (2012), Yamouni et al. (2013),
Dai et al. (2015), and Golliard et al. (2016). Ziada & Shine (1999) and Nakiboglu &
Hirschberg (2012) studied the hydrodynamic interference between multiple side branches
or cavities and its effect on the Strouhal number. Sound amplification in those situations
occurs when the length of the cavity opening is approximately equal to an integer
multiplied by the unstable wavelength thus the Strouhal number Src = ωL/(2πMc)
is around 1, 2, 3,..., where Mc is the convection velocity of the instability wave. For
the present case, Mc calculated from the real part of the Bloch wavenumber at the
peak amplification is 0.3763M0, which gives us Src = 0.1215 and the wavelength of the
unstable mode is not linked to the length of a single cavity or cell (here this wavelength
is about 7 times the length of a cell).

It can also be noted that along the system of 30 cells computed for figures 2 and 3, the
unstable Bloch mode is amplified by a factor of more than 80 while the acoustic wave is
amplified only by a factor of about 2. This means that the transfers from the incident
plane acoustic mode to the hydrodynamic unstable mode and from the hydrodynamic
unstable mode to the transmitted plane acoustic mode are rather inefficient.

3.2. Bloch mode stabilization by using cavities with different depths

We know from the previous experiments (Aurégan & Leroux 2008; Marx & Aurégan
2013) that the hydrodynamic instability over a liner that consists of identical cavities
can be suppressed by increasing the damping of the system or by increasing the spacing
between cavities. The effects of these parameters on such an instability are qualitatively
replicated in the previous subsection, where the validity of the homogenized approach
has also been verified. In this subsection, we examine a liner that consists of different
cavities.

Starting from the case studied in section 3.1, we slightly increase the depth of one
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presents |T+| for a plane wave incidence to the liner as a function of d. (c) shows the variation
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frequency ω = 0.4310.
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Figure 9. (Colour online) Iso-colour plots of the amplitudes of (a) pressure and (b) v-velocity
for 3 periodic cells when the Bloch mode (kB = 10.056− 0.3252i) propagates in the lined duct.
The vertical dashed lines denote the boundaries of the periodic cells. Each cell consists of two
cavities with different depths: D1 = D − d and D2 = D + d, where d = 0.04 (d∗ = 0.6 mm).
(c) and (d) show the amplitudes of pressure and v-velocity as a function of x at 2 different
y-positions: black thin lines for y = 1 − ∆h/2, and red thick lines for y = 0.9525 where the
mean flow velocity equals to the wave velocity of kB . The calculations are made at frequency
ω = 0.4310. Note that the fields are only plotted for part of the duct and the liner cavities.

cavity out of two and slightly decrease the depth of the other cavity by the same amount
so that the average remains the same, see figure 8(a). Thus, we consider 15 periodic
cells, each of which consists of two cavities of different depths. The sound amplification
is progressively suppressed by increasing the difference d between the depths of the
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Figure 10. (Colour online) Educed resistance (a) and reactance (b) from the Bloch modes, as a
function of d for the liner sketched in figure 8(a). (c) Comparison of the transmission coefficients
obtained by the Bloch and the homogenized approaches. In (a) and (b), circles, crosses and dots
are impedances respectively educed from the Bloch modes kuB , k+B1 and k−B1 using (3.2), triangles
denote Zav. In (c), squares denote the Bloch approach, circles, crosses, dots, and triangles denote
the homogenized approach with wall impedances educed from kuB , k+B1, k−B1, and given by Zav

respectively. The calculations are made at frequency ω = 0.4310. Note that no damping is added
to the hydrodynamic modes in the calculation of this figure, i.e. ε = 0.

two cavities, see figure 8(b). A very small difference in depth (around 1 %) completely
destroys the instability. The Bloch fields of the amplitudes of p and v for 3 periodic cells
when d = 0.04 are presented in figure 9. The chosen Bloch mode, with a wavenumber
kB = 10.056−0.3252i, is the one that is progressively stabilized by increasing d, see figure
8(c). The periodical decrease of the disturbances from cell to cell is demonstrated in the
pressure and the velocity fields. It is also shown that the hydrodynamic disturbances grow
when passing the smaller cavity, but reduce in the segment with the deeper cavity. In the
case of identical cavities, the phase relation between the vorticity and the vertical velocity
is such that some energy can be transferred from the mean flow to the perturbations. In
the two depths case, there is a phase difference in the vertical velocities from two adjacent
tubes. Near the resonance, this phase difference increases quickly when the depth changes.
Therefore, the energy transfer can no longer be positive for the two adjacent cavities.

In figure 10 the homogenized results are compared to the complete Bloch analysis.
For this, we first used the Bloch mode wave numbers to compute the homogeneous
impedances by integrating (3.2). In figure 10 (a) and (b), the real and imaginary part
of the impedance obtained from the unstable hydrodynamic Bloch mode kuB (circles)
and the least attenuated acoustic modes in the ±x-directions k±B1 (crosses and points)
are presented. They are close to each other for d < 0.04. For d > 0.04, the impedance
deducted from kuB becomes almost constant but we can note that, for these d values,
the mode reaches the hydrodynamic continuum where the wave numbers no longer
depend on impedance. The impedance values deduced are therefore questionable. On the
same figures, the educed impedances are compared to the average impedance (triangles)
without flow over one cell: Zav = 2W/L/(1/Z1 + 1/Z2), where Z1 = R − i/ tan(ωD1)
and Z2 = R− i/ tan(ωD2). The predicted and educed resistances correspond reasonably
well for d < 0.04. There is a larger difference in reactance. When d =0, the velocity is
almost the same in each successive cavity. When d increases, there is a velocity difference
between successive cavities and part of the fluid passes by turning from one cavity to
the next. This results in an additional effective mass that could explain the difference
between predicted and induced reactances. The transmission coefficient calculated using
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the impedance educed from kuB is shown in figure 10 (c) and it is compared to the full
Bloch approach. It indicates that the homogenized approach approximates to the full
Bloch analysis when the impedance educed from unstable Bloch mode is used to describe
the lined wall. The good agreement of the results in the unstable regime shows that the
homogenized approach is a very good first approximation for the unstable behaviour over
a liner even if the tubes are of different heights. The disappearance of the unstable mode
when d increases is therefore simply related to the increase in equivalent resistance which
is in line with the results in figure 7(a). Note that the average impedance Zav and the
impedances educed from k+B1 and k−B1 can also predict the trend of stabilization by the
increasing d. However, a large discrepancy in the calculated transmission coefficients is
observed even though Zav is very close to the educed impedance when d is close to zero.
For d = 0, the difference between Zav and the educed impedance is 1.9 % for resistance
and 2.6 % for reactance. This difference induces a 7 % change in the amplification Im(kuB)
and, due to the exponential amplification, a 61 % increase in the transmission coefficient.
This example shows the very large sensitivity of the peak in the transmission coefficient
to a very precise description of the wall condition.

4. Conclusion

The aeroacoustic instability over a low resistance liner with a grazing flow is studied
by a two-dimensional (2D) cavity-by-cavity approach using the multimodal method in
combination with the Bloch theory. The mean shear flow over the liner is assumed
unaltered in the streamwise direction and the acoustic and hydrodynamic disturbances
are described by the linearized Euler equations with artificial damping. Such an instability
was first observed in experiments and has been investigated by many homogenized
methods based on an equivalent wall impedance.

We first consider a liner of 30 periodic cells, each of which consists of a deep narrow
cavity attached to a short duct containing a mean shear flow. A sound amplification of the
incident plane wave in the upstream duct is predicted by the present discrete model. The
amplification happens in a very limited frequency range that is slightly higher than the
resonance frequency of the cavities. At the amplification frequencies, a hydrodynamic
surface wave is excited by the sound wave at the upstream part of the liner. After a
convective growth over the liner, it regenerates sound near the downstream edge of the
liner at a level higher than this incident level. The effects of an artificial damping and
of the spacing between cavities on the sound amplification are estimated. The results
obtained with this periodic analysis are very similar to the previous experimental results.
Nevertheless, due to the large sensitivity of the instability to the relevant parameters,
such as the dissipations and the longitudinal inhomogeneity of the mean flow, quantitative
comparisons with experiments is rather difficult.

The liner instability is demonstrated by the present Bloch approach. From the variation
of the Bloch wavenumbers as a function of frequency, we can see that one of the
hydrodynamic modes emerges from the line of attenuated hydrodynamic modes and
crosses the real axis to become amplified. This unstable Bloch mode appears in a very
limited range of frequencies near the quarter wavelength (λ/4) resonance of the cavity.
The maximum amplification rate of the Bloch unstable mode, i.e. the maximum in the
imaginary part of the Bloch wavenumber, occurs at the same frequency as the maximum
in the acoustic transmission coefficient. One of the interesting results of this analysis is
to show that even when all the transverse modes are stable in the duct-cavity system
(the hydrodynamic transverse modes have been stabilized by an artificial damping), a
global cell instability can still occur. This means that the Kelvin-Helmholtz instability
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over the cavities is not a necessary condition for the hydrodynamic instability over the
liner and the related sound amplification.

This instability is due to a vorticity mode that is regularly amplified by the resonance
of the cavities and it transfers some energy from the mean flow. The unstable Bloch mode
has a sharp peak of vorticity at a transverse position in the flow duct, where the mean
velocity is equal to the wave velocity computed from the Bloch wavenumber. It means
that this wave is convected by the mean flow and it could be called a hydrodynamic
unstable mode. The periodic part of the pressure, velocity and vorticity at the position
of the vorticity peak is nearly constant, which suggests that a homogenized method
based on an equivalent wall impedance can be used to describe the behaviour of such
unstable mode. The homogenized model reveals that a small wall resistance and a small
and positive reactance are two necessary conditions for the liner instability.

In a case where each periodic cell consists of two cavities of different depths, it is shown
that a small depth difference can completely suppress the unstable behaviour above the
liner. A homogenized approach can also correctly model the hydrodynamic instability
in this case and it reveals that for the Bloch mode stabilization, increasing the depth
difference is equivalent to increasing the resistance of the lined wall.
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Appendix A. Effects of the artificial damping and the spacing
between cavities on sound amplification

As mentioned in section 3.1, some artificial damping has been added to the hydrody-
namic modes in the calculations. To analyze its effect on propagation, we calculated |T+|
of 30 cells with the same geometry but for different dissipation rates on the hydrodynamic
modes of zones I and II. It is shown in figure 11(a) that an increase in the dissipation
factor ε of the hydrodynamic waves leads to a clear reduction in sound amplification. This
effect has already been observed in Marx & Aurégan (2013) and shows the importance
of having dissipation to correctly predict the peak amplitude. Also, to verify that our
model can explain the experimental observation that the peak is very sensitive to the
percentage of open area (POA) (Aurégan & Leroux 2008), the spacing between the
cavities S has been varied and the results are shown in figure 11(b). They show that the
peak value is highly dependent on the POA (division by 20 when the spacing is doubled).
This effect can be interpreted as being related to the increase in coating resistance with
the decrease in POA in the continuous impedance approach (see figure 7).
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Aurégan, Y., Starobinski, R. & Pagneux, V. 2001 Influence of grazing flow and dissipation



Cavity-by-cavity description of liner instability 17

0.42 0.425 0.43 0.435 0.44
10

3

10
2

10
1

10
0

10
1

ω

|
+
|

ε=0

ε=0.06

ε=0.12

0.42 0.425 0.43 0.435 0.44
10

3

10
2

10
1

10
0

10
1

ω

|
+
|

S=0.0133

S=0.0200

S=0.0267

(a) (b)

Figure 11. (Colour online) Effects of the dissipation of the hydrodynamic modes (a) and the
length of spacing between the adjacent cavities (b) on the sound amplification in the periodic
liner with 30 cells. In (a), the calculations are made with the default geometrical parameters
but different artificial damping factor ε. In (b), ε = 0, while the length of spacing S is varied.

effects on the acoustic boundary conditions at a lined wall. J. Acoust. Soc. Am. 109,
59–64.

Bers, A. 1983 Space-time evolution of plasma instabilities – absolute and convective. In Basic
Plasma Physics, Handbook of Plasma Physics (ed. A. A. Galeev & R. N. Sudan), vol. 1,
pp. 451–517. North–Holland.

Bradley, C. E. 1994 Time harmonic acoustic Bloch wave propagation in periodic waveguides.
Part I. theory. J. Acoust. Soc. Am. 96, 1844–1853.

Brambley, E.J. 2009 Fundamental problems with the model of uniform flow over acoustic
linings. J. Sound Vib. 322, 1026–1037.

Brambley, E.J. 2011 A well-posed boundary condition for acoustic liners in straight ducts with
flow. AIAA J. 49, 1272–1282.

Brambley, E. J., Darau, M. & Rienstra, S. W. 2012 The critical layer in linear-shear
boundary layers over acoustic linings. J. Fluid Mech. 710, 545–568.

Brambley, E.J. & Peake, N. 2006 Classification of aeroacoustically relevant surface modes
in cylindrical lined ducts. Wave Motion 43, 301–310.

Brandes, M. & Ronneberger D. 1995 Sound amplification in flow ducts lined with a periodic
sequence of resonators. AIAA peper 95-126, pp. 893–901.

Briggs, R. J. 1964 Electron-Stream Interaction with Plasmas, MIT.
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