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ON SOME BERNSTEIN PROCESSES SIMILAR TO COX-INGERSOLL-ROSS ONES
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We present some results on Bernstein processes, which are Brownian diffusions that appear in Euclidean Quantum Mechanics. We express the distributions of these processes with the help of those of Bessel processes. We then determine two solutions of the dual equation of the heat equation with potential.

These results first appeared in the first author's PhD thesis (Rouen, 2013).

Introduction

Bernstein processes or reciprocal diffusions combine two dynamic behaviors : forward and backward.These processes are useful tools of stochastic quantum mechanics, and also find applications in various other fields.

We give in this paper an explicit expression for the distribution density of a special Bernstein process. This process is similar to the Cox-Ingersoll-Ross process of financial mathematics. Indeed, in this work, we show that each one-factor affine interest rate model (in the sense of Leblanc-Scaillet [START_REF] Leblanc | Path dependent options on yields in the affine term structure model[END_REF]) can be described using such a Bernstein process. See also [START_REF] Lescot | Solving stochastic differential equations with Cartans exterior differential systems[END_REF].

The groundbreaking idea of replacing the complex Schrödinger equation by forward and backward heat equations in duality goes back to Schrödinger ( [START_REF]Schrödinger Über die Umkerhrung der Naturgesetze[END_REF], pp. 144-153).

Two solutions of the dual equation have been computed by Lescot, Quintard and Zambrini [START_REF] Lescot | Solving stochastic differential equations with Cartans exterior differential systems[END_REF] by using the Gaussian character of Ornstein-Uhlenbeck process and Brownian motion. In this paper, this goal is reached by using another class of diffusion which is that of Bessel processes. Indeed, in our case, the Bernstein process defined by a square root of a Cox-Ingersoll-Ross process (CIR) can be represented in terms of a Bessel process ( [START_REF] Göing-Jaeschke | A survey and some generalizations of Bessel processes[END_REF], p.314 (2)), and the density of this Bessel process is well known [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF], p.441 (1.4)). So, by using the link between the two families of diffusions, we are able to determine the density of the law of this Bernstein process.

Let us first give some definitions and recall some preliminary results. and, for each given t > 0, the law of z(t) is η(t, q)η * (t, q)dq. The function η is assumed to be an everywhere positive solution to the backward heat equation with potential V :

θ 2 ∂η ∂t = - θ 4 2 ∂ 2 η ∂q 2 + V η (C (V ) 1 ) .
Similarly, η * is assumed to be everywhere positive and a solution to

-θ 2 ∂η * ∂t = - θ 4 2 ∂ 2 η * ∂q 2 + V η * (C (V )
2 ) .

Definition 1.2.

[1],p.454 (2.1) The Bessel function J λ with index λ ∈ C is defined by

J λ (z) = ( z 2 ) λ ∞ n=0 (-z 2 ) n 2 2n n! Γ(n + λ + 1)
.

This function satisfies the Bessel equation with parameter λ ∈ C

z 2 ω + z ω + (z 2 -λ 2 ) ω = 0 . (1.1)
Definition 1.3. The Bessel modified function I ν with index ν ∈ R is defined by

I ν (z) = i -ν J ν (iz) .
This function satisfies the linear differential equation of the second order

z 2 Ïν (z) + z İν (z) -(z 2 + ν 2 )I ν (z) = 0 , thatis (1.2) Indeed, we have I ν (z) = i -ν J ν (iz) , İν (z) = i -ν i Jν (iz) et Ïν (z) = i -ν i 2 Jν (iz) . Equation (1.1) gives (iz) 2 i ν i -2 Ïν (z) + iz i ν i -1 İν (z) + (-z 2 -ν 2 ) i ν I ν (z) = 0 z 2 Ïν (z) + z İν (z) -(z 2 + ν 2 )I ν (z) = 0 , which yields (1.2).
We refer to [START_REF] Dieudonné | Calcul infinitésimal[END_REF] for details on Bessel functions.

Definition 1.4. For all δ ≥ 0 and x 0 ≥ 0, the unique solution of the stochastic differential equation

Y t = x 0 + δt + 2 t 0 |Y s |dw(s)
(starting from x 0 ) is called squared Bessel process of dimension δ. This process will be denoted by BESQ δ x0 . We refer to [START_REF] Göing-Jaeschke | A survey and some generalizations of Bessel processes[END_REF] and [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF] for a survey on Bessel processes.

Definition 1.5. The Cox-Ingersoll-Ross (CIR) family of diffusions, also known as square root diffusions, solve

dX t = (a + bX t )dt + c X t dw t ,
where X 0 = x 0 , a ≥ 0, b ∈ R, c > 0, and (w t ) t≥0 is a standard Brownian motion.

Proposition 1.6. [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF], p.441 (1.4)) If x 0 = 0, then the density q δ t of the law of Y t is given by

q δ t (0, y) = (2t) -δ 2 Γ( δ 2 ) -1 y δ 2 -1 exp(- y 2t ) , t > 0 . (1.3)
If x 0 > 0, then the density q δ t of the law of Y t is given by

q δ t (x 0 , y) = 1 2t ( y x 0 ) ν 2 exp(- x 0 + y 2t ) I ν ( √ x 0 y t ) , t > 0, (1.4)
where ν: = δ 2 -1.

Affine interest rate models

Let (Ω, F, (F t ) t≥0 , Q) be a filtered probability space, and let (w(t) t≥0 ) be an (F t ) t≥0 standard Brownian motion.

A one-factor affine interest rate model is characterized by the instantaneous rate r(t), satisfying the stochastic differential equation

dr(t) = αr(t) + β dw(t) + (φ -λr(t)) dt under the risk-neutral probability Q [3], p.351).
Assuming α = 0, let us set, with the notations of Lescot-Quintard-Zambrini [START_REF] Lescot | Solving stochastic differential equations with Cartans exterior differential systems[END_REF],

φ = φ + λβ α , δ = 4 φ α , A = α 4 128 (δ -1)(δ -3) , and 
B = λ 2 8 .
The following result of Lescot-Quintard-Zambrini [START_REF] Lescot | Solving stochastic differential equations with Cartans exterior differential systems[END_REF] shows that the diffusion term of a one-factor affine interest rate model is a Bernstein process. So this means that we are able to describe the law of the interest rate process by using this Bernstein process.

Proposition 2.1. (Lescot-Quintard-Zambrini [START_REF] Lescot | Solving stochastic differential equations with Cartans exterior differential systems[END_REF]) Let X t be defined by

X t = αr(t) + β .
The process X is then Cox-Ingersoll-Ross diffusion in the sense of Definition 1.5. Define Z(t) by

Z(t) = αr(t) + β .
Then Z is a Bernstein process with θ = α 2 and the potential

V (t, q) = A q 2 + Bq 2 . Lemma 2.2. [2] p.314 (2) Let X 0 = x 0 , then X(t) = e -λt Y (s) ,
where s = α 2 (e λt -1)

4λ
and Y is BESQ δ x0 .

Our main result is the following : we determine two solutions of the dual equation (C

(V )
2 ), when the potential V is written as

V (t, q) = A q 2 + Bq 2 .
Firstly we compute the density ρ t (q) of the law of Z t . Here, two cases arise : x 0 = 0 or x 0 > 0.

Proposition 2.3. If x 0 = 0, then the density ρ t (q) of the law of Z t is written as

ρ t (q) = α -δ 2 δ 2 +1 λ δ 2 (e λt -1) -δ 2 Γ( δ 2 
) -1 q δ-1 exp( λδ 2 t) exp( -2λe λt q 2 α 2 (e λt -1) )1 {q>0} .

Proof. For fixed t and for all g bounded continuous,

E (g(X t )) = E [g (exp(-λt)Y (s))] = (1.3) ∞ 0 g(exp(-λt)y)(2s) -δ 2 Γ( δ 2 ) -1 y δ 2 -1 exp(- y 2s )dy = (2s) -δ 2 Γ( δ 2 ) -1 ∞ 0 g(exp(-λt)y)y δ 2 -1 exp(- y 2s )dy .
By the change of variable x = exp(-λt)y, we get

E (g(X t )) = (2s) -δ 2 Γ( δ 2 ) -1 ∞ 0 g(x)[x exp(λt)] δ 2 -1 exp(- e λt x 2s ) exp(λt)dx = ∞ 0 g(x)(2s) -δ 2 Γ( δ 2 ) -1 x δ 2 -1 exp( λδ 2 t) exp(- e λt x 2s )dx.
Then the density Xt of the law of X t is given by

Xt (x) = α -δ (2λ) δ 2 (e λt -1) -δ 2 Γ( δ 2 ) -1 x δ 2 -1 exp( λδ 2 t) exp( -2λe λt x α 2 (e λt -1) )1 {x>0} .
For fixed t and for all bounded continuous ϕ, we have

E[ϕ(Z t )] = E[ϕ( X t )] = ∞ 0 ϕ( √ x) Xt (x)dx .
By the change of variable q = √ x , we get

E[ϕ(Z t )] = ∞ 0 ϕ(q)α -δ (2λ) δ 2 (e λt -1) -δ 2 Γ( δ 2 ) -1 q δ-2 exp( λδ 2 t) exp( -2λe λt q 2 α 2 (e λt -1) ) 2qdq = ∞ 0 ϕ(q)α -δ 2 δ 2 +1 λ δ 2 (e λt -1) -δ 2 Γ( δ 2 ) -1 q δ-1 exp( λδ 2 t) exp( -2λe λt q 2 α 2 (e λt -1) ) dq .
This proves the result.

Let η(t, q) be defined by

η(t, q) = exp( λδt 4 - λq 2 α 2 ) q δ-1 2 .
The function η is a solution of

θ 2 ∂η ∂t = - θ 4 2 ∂ 2 η ∂q 2 + V η (C (V ) 1 ) , with V (t, q) = A q 2 + Bq 2 .
Proposition 2.4. The function η * (t, q) defined by

η * (t, q) = ρ t (q) η(t, q) = 2 δ 2 +1 α δ λ δ 2 Γ( δ 2 ) (e λt -1) -δ 2 q δ-1 2 exp( λδt 4 - λq 2 α 2 tanh( λt 2 )
) ,

satisfies the dual equation

-θ 2 ∂η * ∂t = - θ 4 2 ∂ 2 η * ∂q 2 + V η * (C (V ) 2 ) . Proof. Let C = α -δ 2 δ 2 +1 λ δ 2 Γ( δ 2 ) -1
and

C 1 = C(e λt -1) -δ 2 . We have ∂η * ∂t = - δ 2 (λe λt ) + λδ 4 - λq 2 α 2 (- 2λe λt (e λt -1) 2 ) C(e λt -1) -δ 2 q δ-1 2 exp( λδt 4 - λq 2 α 2 tanh( λt 2 ) ) , ∂η * ∂q = ( δ -1 2 ) q δ-3 2 + q δ-1 2 (- 2λq α 2 tanh( λt 2 ) ) C 1 exp( λδt 4 - λq 2 α 2 tanh( λt 2 ) ) , ∂ 2 η * ∂q 2 = ( δ -1 2 )( δ -3 2 ) q δ-5 2 + ( δ -1 2 ) q δ-3 2 (- 2λq α 2 tanh( λt 2 ) ) + q δ-1 2 (- 2λ α 2 tanh( λt 2 ) ) + ( δ -1 2 ) q δ-3 2 (- 2λq α 2 tanh( λt 2 ) ) + q δ-1 2 (- 2λq α 2 tanh( λt 2 
)

) 2 C 1 exp( λδt 4 - λq 2 α 2 tanh( λt 2 )
) , and

V (t, q) η * (t, q) = ( A q 2 + Bq 2 ) η * (t, q) = ( α 4 2 7 (δ -1)(δ -3) q -2 + λ 2 2 3 q 2 ) η * (t, q) = α -δ+4 2 δ 2 -6 λ δ 2 (δ -1)(δ -3)q δ-5 2 + α -δ 2 δ 2 -2 λ δ 2 +2 q δ+3 2 Γ( δ 2 ) 
-1

(e λt -1) -δ 2 × exp( λδt 4 - λq 2 α 2 tanh( λt 2 )
) .

It is then straightforward to see that, for all (t, q

) ∈ R * + × R * + , -θ 2 ∂η * ∂t = - θ 4 2 ∂ 2 η * ∂q 2 + V η * (C (V )
2 ) .

Proposition 2.5. If x 0 > 0, then the density ρ t (q) of the law Z t is given by

ρ t (q) = 4λ α 2 z ν 0 e λt( δ 4 + 1 2 )
(e λt -1) I ν ( 4λz 0 e λt 2 q α 2 (e λt -1)

) q δ 2 exp(-2λ α 2 ( z 2 0 + e λt q 2 (e λt -1)

))1 {q>0} .

Proof. We have

X t = e -λt Y (s) , s = α 2 4λ (e λt -1)
and

Z t = √ X t Z 0 = √ x 0 .
For fixed t, for all g bounded continuous, using (1.4), we get

E(g(Z t )) = E g( e -λt Y (s)) = ∞ 0 g( e -λt y) 1 2s ( y x 0 ) ν 2 exp(- x 0 + y 2s ) I ν ( √ x 0 y s )dy .
By the change of variable z = e -λt y, we obtain

E(g(Z t )) = ∞ 0 g(z) 1 2s ( e λt z 2 z 2 0 ) ν 2 exp(- z 2 0 + e λt z 2 2s ) I ν ( z 0 ze λt 2 s ) 2ze λt dz .
We then find the density ρ t (q) of the law de Z t by replacing s and ν by their values.

Proposition 2.6. The function η * (t, q) defined by

η * (t, q) = ρ t (q) η(t, q) = 4λ α 2 z ν 0 e λt 2
(e λt -1) I ν ( 4λz 0 e λt 2 q α 2 (e λt -1)

)

q 1 2 exp( λq 2 α 2 - 2λ α 2 ( z 2 0 + e λt q 2 (e λt -1) ))
satisfies the dual equation (C

(V )
2 ).

Proof. We have

∂η * ∂t = (- 2λ 2 α 2 z ν 0 e λt 2 (e λt + 1) (e λt -1) 2 q 1 2 + 8λ 3 α 4 z ν 0 e 3λt 2 (e λt -1) 3 q 5 2 + 8λ 3 α 4 z ν 0 e 3λt 2 (e λt -1) 3 z 2 0 q 1 2 )I ν ( 4λz 0 e λt 2 q α 2 (e λt -1) ) - 8z 0 λ 3 α 4 z ν 0 e λt e λt + 1 (e λt -1) 3 q 3 2 I ν ( 4λz 0 e λt 2 q α 2 (e λt -1) ) exp λq 2 α 2 - 2λ α 2 z 2 0 + e λt q 2 e λt -1 , ∂η * ∂q = ( 1 2 q -1 2 - 2λ α 2 
(e λt + 1) (e λt -1) q

2 ) I ν ( 4λz 0 e λt 2 q α 2 (e λt -1) ) + 4λz 0 α 2 e λt 3 
(e λt -1) q

1 2 I ν ( 4λz 0 e λt 2 q α 2 (e λt -1) ) × 4λ α 2 z ν 0 e λt 2 (e λt -1) exp λq 2 α 2 - 2λ α 2 z 2 0 + e λt q 2 e λt -1 , ∂ 2 η * ∂q 2 = (- 1 4 q -3 2 - 4λ α 2 (e λt + 1) (e λt -1) q 1 2 + 4λ 2 α 4
(e λt + 1) 2 (e λt -1) 2 q z 2 0 + e λt q 2 e λt -1 , and V (t, q) η * (t, q) = ( A q 2 + Bq 2 ) η * (t, q) = ( α 4 2 7 (δ -1)(δ -3) q -2 + λ 2 2 3 q 2 ) η * (t, q) = λ α 2 2 5 (δ -1)(δ -3) q -3 2 + λ 3 2α 2 q 5 2 e λt 2 z ν 0 (e λt -1)

I ν ( 4λz 0 e λt 2 q α 2 (e λt -1) )

× exp( λq 2 α 2 -2λ α 2 ( z 2 0 + e λt q 2 (e λt -1) )) .

Taking into account Equation (1.2) for the Bessel function I ν , it is then straightforward to see that for all (t, q) ∈ R *

+ × R * + , -θ 2 ∂η * ∂t = - θ 4 2 ∂ 2 η * ∂q 2 + V η * (C (V )
2 ) .

  Definition 1.1. Let θ > 0 denote a parameter. A Bernstein process z is a process satisfying a stochastic differential equation of the form

	dz(t) = θdw(t) + B(t, z(t))dt
	relatively to the canonical filtration of the Brownian motion w and the dual stochas-
	tic differential equation		
	d * z(t) = θdw * (t) + B * (t, z(t))dt
	relatively to the canonical decreasing filtration of another Brownian motion w *
	which is independent of w, where		
		∂η
	B: ≡ θ 2	∂q η	,
			∂η *
	B * : ≡ -θ 2	∂q η *	,