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a b s t r a c t

A woven glass-fibre-reinforced composite with a polyamide 6,6 matrix is considered for the purpose of
being integrated into an automotive part. Fatigue tests were conducted on both [(0/90)3] and [(±45)3]
stacking sequences. In order to analyze the influence of moisture content on the fatigue behaviour,
samples were conditioned at RH0, RH50 and RH100. Although moisture content affects the fatigue life for
high stress levels, this effect tends to disappear for low stress levels. This phenomenon was confirmed by
additional fatigue tests in a climatic chamber. This paper aims to investigate damage mechanisms
developing within the material during fatigue test in order to understand the origin of this phenomenon.
Two in-situ non-destructive techniques were used in order to detail the fatigue damage scenario:
namely, acoustic emission and infrared thermography. These techniques allow locating and differenti-
ating the main damage mechanisms: matrix cracking, fibre/matrix debonding and fibre breakages. In
addition, microscopic observations and synchrotron X-ray microtomography were realized on fatigue
coupons to visualize fibre breakages. Results have highlighted an increase in the amount of fibre
breakage when the applied fatigue stress decreases, which explains the observed phenomenon.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

In order to reduce the CO2 emission level of vehicles, automotive
manufacturers aim to maximize engine performance, improve ve-
hicle's aerodynamics and reduce their mass. For the latter, the
integration of composite components represents a high-potential
solution. In this industrial context, composites with thermoplastic
matrix are more attractive than thermosetting matrix due to their
recyclability and their ease of application. However, some ther-
moplastic resins tend to be sensitive to moisture absorption, such
as polyamide 6,6 (PA66) [1,2]. As a semi-crystalline polymer, PA66
is formed by a crystalline and an amorphous phase. The latter can
be either in the glassy or the rubbery state, depending on the
temperature. The limit between these two states is defined as the
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glass transition temperature. In presence of water, polyamide
molecules can interact with water molecules: hydrogen bonds
betweenmolecular chains are then disrupted. This reaction leads to
an increase of the chains mobility: this phenomenon is known as
the plasticizing effect of water [1,3]. As a consequence, the glass
transition temperature tends to decrease when the moisture con-
tent increase. Mechanical properties are also affected by the pres-
ence of moisture since the strain at break increases while the stress
at break and the Young modulus decrease [4,5].

When it comes to automotive applications, structural parts
undergo cyclic loading in various temperature and moisture
conditions. Several authors have studied the fatigue behaviour of
composites with thermoplastic matrix, either with short fibres
[6e8] or woven fabric [9,10]. Concerning the fatigue behaviour of
woven composite, it has been shown in the literature that the
earlier damage mechanism is fibre-matrix debonds leading to the
cracking of transverse yarn [11]. Then, when the transverse crack
has reached the edge of the yarn, either it propagates into a
matrix-rich area or it is deflected into the adjacent longitudinal
yarn, which is called meta-delamination [12]. Lastly, the final
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Fig. 1. Dimensions specification of dogbone specimen for fatigue testing.
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failure of the material is always the result of catastrophic failure of
the longitudinal fibres. These damage mechanisms can be high-
lighted by using different non-destructive techniques as ultra-
sonic techniques [13], acoustic emission [12,14] and infrared
thermography [15e17]. Acoustic emission is widely used for the
monitoring of damage process in composite materials. The
objective of this technique is to create clusters of acoustic events
which possess similar acoustic signature (the signature being
composed by the parameters which define the acoustic wave).
Each cluster is then attributed to a specific damage mechanism.
Clustering methods can be separated in two categories, namely
parametric [18e21] or multi-parametric analysis [22e26]. Iden-
tification of these different damage mechanisms is often validated
by microscopic observations or scanning electron microscopy
(SEM) [12,21,27]. 3D observations of damages can also be per-
formed by X-ray microtomography [28e30]. However, to be able
to detect smallest damages like fibre breakages, the achieved
voxel resolution has to be in the range of a few microns. This can
be realized by using synchrotron radiation.

To our knowledge there is no publication about the influence
of moisture on the fatigue life of a woven glass-fibre-reinforced
thermoplastic composite. However, some authors have studied
the effect of water on the fatigue life of thermoset composites
[31e38]. Hu et al. [31] have studied the tension-tension fatigue
behaviour of both UD glass/polydicyclopentadiene laminates and
UD glass/epoxy laminates after ageing in salt water. They have
showed that salt water ageing has a greater influence on low-
cycle fatigue than on high-cycle fatigue. Patel and Case [35]
have studied the influence of moisture on the fatigue life of a
graphite/epoxy woven composite material. This study has shown
that fatigue life of this type of composite is not affected by
moisture.

This study is focused on a woven glass-fibre-reinforced com-
positewith a polyamide 6,6matrix. As, the PA66 behaviour is highly
influenced by moisture content, three conditionings are studied:
RH0, RH50 and RH100which correspond respectively to the dry-as-
moulded, the ambient and the water-saturated state. The influence
of fabric orientation is also investigated through the study of three
layups referred as [(0/90)3], [(90/0)3] and [(±45)3]. First, S-N curves
were established for all studied configurations at ambient tem-
perature and hygrometry. To ensure that the initial conditioning of
the samples remain the same during the entire cyclic solicitation,
additional tests were done in a climatic chamber. By the association
of infrared thermography and acoustic emission during fatigue
tests, and post-mortem microscopic observations (optical micro-
scopy and synchrotron X-ray microtomography), a damage sce-
nario was then proposed.

2. Materials and methods

2.1. Tested material

The composite material studied is made of a 2/2 twill woven
glass fabric impregnated with polyamide 6,6 resin (GFRPA66). The
glass fibre fabric has a weight of 600 g/m2 and a warp to weft ratio
of 50/50. The fibre mass fraction (mf) is equal to 0.63 and the void
content is below 1%. The resulting composite plates are character-
ized by a density of 1.78 g/cm3. The material is provided as plates of
1.56 mm thick and dogbone coupons are cut using water jut cutting
technique. It has been checked that this technique has no signifi-
cant influence on the material moisture content.

The influence of fabric orientation on mechanical properties is
studied using three different stacking sequences. The first one,
referred as [(0/90)3], has the warp direction of each ply oriented at
0� from the tensile axis (x axis). The second one, referred as [(90/
0)3], has the weft direction of each ply oriented at 0� from the
tensile axis (x axis). Finally, the [(±45�)3] has the warp direction of
each ply oriented alternately at þ45� and �45� from the tensile
axis.

Three conditionings were studied in order to evaluate the in-
fluence of moisture on the fatigue life of the composite: namely,
RH0, RH50 and RH100. The first one corresponds to the dry-as-
moulded state of the composite material. RH50 and RH100 cou-
pons were conditioned in a climatic chamber until weight stabili-
zation by the material supplier by following the standard ISO 1110.

2.2. Mechanical testing

Monotonic tensile tests were performed using an INSTRON 4505
electromechanical machine with a cross-head speed of 1 mm/min,
strain being measured by a 25 mm gauge length extensometer.
Rectangular coupons were used with the dimensions of
200 � 20 � 1.56 mm.

Fatigue tests were performed by using an INSTRON 8501 servo-
hydraulic machine. For these tests, dogbone specimens were used
in order to ensure the failure of the coupon in the gauge length. The
dimensions of dogbone specimen are specified in Fig. 1.

The jaws of the test machine clamp 40 mm of each specimen
extremity. In addition, 80 grit sand papers were used between the
jaws and the sample to improve clamping. Constant amplitude
loads were applied in a sinusoidal waveform at the frequency of
1 Hz. The stress ratio (R), i.e. ratio between minimum (smin) and
maximum (smax) stresses, was equal to 0.1 for all tests.

2.3. Non-destructive techniques

2.3.1. Acoustic emission (AE)
Acoustic emission monitoring was performed by using the AE

system fromMistras Group. Two sensors Micro-80 with a resonant
frequency of 300 kHz and an active surface diameter of 10mmwere
used. They were placed at the gauge extremities of the specimen
using silicon grease as the coupling agent. Sensors are separated
with a distance of 100 mm between their centers. The amplitude
threshold has been chosen equal to 35 dB. Table 1 shows the set-
tings of the AE system used.

Each test was preceded by a data acquisition calibration step.
Using a pencil lead break procedure, the acoustic wave speed as
well as the attenuation phenomenon was measured. For the latter,
the lead breakage operation was repeated several times between
the two sensors, at regular intervals (Hsu-Nielsen method). This
procedure has shown that the attenuation phenomenon is negli-
gible in the present work.

Post-processing was done using a multi-parametric identifica-
tion, based on the k-means algorithm. The k-means algorithm aims
to partition observations into k clusters by minimizing the
Euclidian distance between each observation and the nearest
centre (Ck ¼ c1, c2, …, cn). This algorithm is unsupervised, which



Table 1
Settings of the AE system.

Preamplifier gain 40 dB
Threshold of detection 35 dB
Type of sensors Micro-80
Couplant Silicon grease
PDT (Peak Definition Time) 30 ms
HDT (Hit Definition Time) 100 ms
HLT (Hit Lockout Time) 1000 ms
Resonant Frequency 300 kHz
Bandwidth 1 kHze3 MHz
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means that the number of clusters k has to be known a priori.
Observations are assimilated to a n-dimensional vector (X ¼ x1, x2,
…,xn). The k-means algorithm procedure can be detailed as follow:

1. Random initialization of the cluster centre for all k-classes
(Ck ¼ c1, c2, …, cn).

2. Euclidian distance calculation between each observation and
cluster centers.

3. Assignment of each observation to the cluster which minimize
the Euclidian distance between the observation and the cluster
centre.

4. Calculation of the new cluster centers for the new k-classes
created.

5. Go to step 2 while there is change in the coordinates of the
cluster centers.

In this study, observations are acoustic events and n is chosen
equal to five among all AE descriptors: amplitude, duration, rise
time, energy and number of counts. Each cluster is then associated
to one damage mechanism. Studies dealing with woven composite
damage process have highlighted three major damage types: ma-
trix cracking, interface damage and fibre breakage [11,12,39,40].
Thus, it was chosen to create three clusters. Attribution of each
cluster to one particular damage mechanism was done by using
previous results for clustering based on the amplitude only. Several
authors [18, 19, 41e43] have shown that acoustic events with lower
amplitudes are associated to matrix cracking whereas those with
higher amplitudes are associated to fibre breakage. The interme-
diate range corresponds to interface damages (Table 2). Based on
Table 2
State of the art about the amplitude of acoustic events and the damage mechanisms rela

Literature Review Matrix Fibres Am

M

[16] Epoxy Glass [4
[15] PP Glass [4
[37] Epoxy Hemp [3
[38] Epoxy Flax [4
[39] Polyester Glass [4

Table 3
Tensile properties for [(0/90)3] and [(±45)3] composite layups at RH0, RH50 and RH100.

[(±45)3]

RH0 RH50 RH100

su [MPa] 143.0 ± 8.1 124.4 ± 1.1 102.3 ± 1.0
εu

[%]
13.30 ± 0.70 18.45 ± 1.39 24.10 ± 2.30

E [GPa] 6.8 ± 0.8 2.6 ± 0.1 1.3 ± 0.1
n 0.625 ± 0.045 0.885 ± 0.002 0.907 ± 0.03
these results, each cluster was associated to one damage mecha-
nism depending on its amplitude centre value.
2.3.2. Infrared thermography
An infrared camera from Cedip Infrared Systems with a detector

resolution of 90 mm/pixel was used. The energy radiated by the
specimen can be converted into temperature levels assuming that
the specimen emissivity is known. In this study, this parameter
could not be determined experimentally. Thus, instead of the ab-
solute temperature, the temperature variation at the surface of the
specimen has been considered.
2.4. Observations

2.4.1. Optical microscopy
The edge of some specimens was observed by using an optical

microscope ZEISS Axio Imager. Coupons were cut and cold moun-
ted in an epoxy resin first. Then, samples were polished down to 1
mm before observations.
2.4.2. X-ray tomography
Two samples were observed on the line ID19 of the European

Synchrotron Radiation Facility (ESRF) in Grenoble (France). These
observations were done with a resolution of 3.06 mm/pixel making
it possible to visualize precisely the fibres within the sample. Image
processing was done with the software Avizo.
3. Results and discussion

3.1. Mechanical properties

A preliminary study was completed in order to determine the
mechanical tensile properties of the composite for both [(±45)3]
and [(0/90)3] layups and the three studied conditionings.

The ultimate tensile strength (su), the strain at failure (εu), the
Young modulus (E) and the Poisson ratio (n) are shown in Table 3. It
is worth noticing that the [(0/90)3] and [(90/0)3] layups have
exhibited the same monotonic mechanical behaviour. More details
can be found in a previous study [44].
ted for different composite types.

plitude Range

atrix Cracking Interface Damage Fibres Breakage

0e60 dB] 65 dB [90e95 dB]
0e55 dB] [60e85 dB] [85e95 dB]
5e53 dB] [58e63 dB] [66e100 dB]
2e60 dB] [60e70 dB] [70e100 dB]
0e55 dB] [55e70 dB] [80e100 dB]

[(0/90)3] and [(90/0)3]

RH0 RH50 RH100

377.7 ± 11.0 343.5 ± 1.0 290 ± 3.0
2.15 ± 0.06 2.05 ± 0.04 1.84 ± 0.10

19.6 ± 0.4 17.5 ± 0.5 16.2 ± 0.8
2 0.072 ± 0.021 0.070 ± 0.009 0.065 ± 0.009



Fig. 2. S-N curves of the GFRPA66 composite for three moisture conditions (RH0, RH50 and RH100) for (a) [(±45)3] and (b) [(0/90)3] and [(90/0)3] layups.
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3.2. Fatigue life

Fatigue tests were performed on [(0/90)3], [(90/0)3] and [(±45)3]
layups until failure of coupons. A fatigue life model has been
developed in a previous study [45,46].
3.2.1. Influence of conditioning on fatigue life
Fatigue tests were first performed at ambient temperature and

hygrometry. Fig. 2 shows S-N curves for all configurations tested.
For the [(±45)3] layup, 29 samples were tested in fatigue. For the
[(0/90)3] and [(90/0)3] layups, 34 samples were tested. Samples
that did not fail after 106 cycles were stopped and arrowheads were
added in Fig. 2. The dispersion of fatigue lives is about half a decade,
which is quite low for a composite material. This little scattering
may be a direct consequence of the low porosity of the material
(<1%). As expected, both [(0/90)3] and [(90/0)3] layups show the
same fatigue behaviour (Fig. 2b).

Below 104 cycles, the increase of the relative humidity content
within the sample implies a reduction of the fatigue life. At the
opposite, above 104 cycles, the conditioning does not seem to in-
fluence the fatigue life anymore. This would indicate that for the
Fig. 3. Influence of the testing moisture conditions on the fatigue life of GFRPA
lower fatigue stress, the fatigue life is independent of the moisture
content in the coupon.

Since fatigue tests were performed at ambient temperature and
hygrometry, it is possible that the moisture content would change
during fatigue tests of several hours. For instance, samples initially
conditioned at RH100 might dry during fatigue tests whereas
samples initially conditioned at RH0 might take up moisture from
the air. As a consequence, both RH100 and RH50 S-N curves could
get closer to the RH50 S-N curve. Thus, to check this theory, fatigue
tests were reproduced in a climatic chamber with temperature and
hygrometry regulation.
3.2.2. Influence of hygrometry conditions
In order to maintain the samples conditioning at its initial state,

some RH0 and RH100 samples were tested in a climatic chamber,
respectively at 15% and 95% of relative humidity and 20 �C. Results
are presented in Fig. 3 as well as the fatigue lives determined at
ambient hygrometry for comparison. Fatigue lives of samples tested
in the climatic chamber are slightly higher that the equivalent fa-
tigue life determined at ambient hygrometry. However, this in-
crease is not significant and is in the dispersion range.
66 composite at RH0 and RH100 for (a) [(±45)3] and (b) [(0/90)3] layups.



Fig. 4. Location of acoustic event recorded during a fatigue test (a) on a [(±45)3] sample conditioned at RH50 for smax/su ¼ 50% and (b) on a [(0/90)3] sample at RH50 for smax/
su ¼ 55%. Comparison with temperature elevation cartographies (IR thermography).
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Finally, these tests show that the S-N curves determined at
ambient temperature and hygrometry are relevant in the context of
this study (Fig. 2). Thus, the reunification of the RH0, RH50 and
RH100 S-N curves beyond 104 cycles is not due to a testing artefact
but to a material characteristic. A damage analysis was then per-
formed in order to understand this phenomenon.

3.3. Damage analysis

In situ damage analysis was performed by combining acoustic
emission and infrared thermography during fatigue tests.

3.3.1. Damage location
Acoustic events are recorded during fatigue tests and then

attributed to a specific damage mechanism among matrix cracking,
interface damage and fibre breakage. They are also located in the
gauge length of the coupon, along the x axis. By the same time,
temperature elevation cartography is determined using infrared
(IR) thermography.

Fig. 4a shows results for a [(±45)3] sample (RH50) for a fatigue
loading level of smax ¼ 50% su. Acoustic events are relatively well
distributed along the gauge length. However, an accumulation of
acoustic events related to fibre breakage is observed at 118 mm.
This abscissa is consistent with the location of the failure, as shown
by IR thermography image. IR cartography shows that the heating
of the sample is very important (above 20 �C) and affect the main
part of the gauge length. This observation is in accordance with the
distribution of acoustic events and tends to demonstrate that, for
this layup, damage is distributed all along the gauge length until
failure.

Fig. 4b shows results for a [(0/90)3] sample (RH50) for a fatigue
loading level of smax ¼ 55% su. Whereas matrix-related and
interface-related events are distributed all along the gauge length,
acoustic events related to fibre breakage are mainly located around
the future failure location. Before failure, IR cartography shows a
temperature elevation (4 �C) at the same abscissa. These results
show that the temperature elevation in the sample is strongly
linked to the fibre breakage mechanism since the development of
the latter is highly localized for this stacking sequence. For both
layups, this in-situ damage analysis shows that the ultimate failure
is driven by fibre breakages.

3.3.2. Damage evolution
Infrared thermographyallows the studyof the surfaceheating for

both [(0/90)3] and [(±45)3] layups. The latter is characterized by an
important temperature rise from the very beginning of the fatigue



Table 4
Influence of the stacking layup and the conditioning on the distribution of acoustic
events recorded at the end of fatigue tests for smax/su ¼ 50% for each damage
mechanism.

smax
=su

¼ 50% [(±45)3] [(0/90)3]

RH0 RH50 RH100 RH0 RH50 RH100

Damage Type Matrix [%] 56.0 52.0 35.5 73.9 69.4 65.2
Interface [%] 34.2 41.8 50.5 25.6 29.1 29.9
Fibres [%] 9.7 6.2 13.9 0.5 1.4 5.0

A. Malpot et al. / Composites Part B 130 (2017) 11e2016
tests, in thewhole gauge length (Fig. 4). The final surface heating, at
the time of failure reaches 20 �C. This temperature rise ismainly due
to the fibre orientation for this stacking sequence. The presence of
fibres oriented at ±45� from the loading axis leads to the reor-
ientation of fibres at each cycle. This cyclic change in the fibres angle
is probably at the origin of internal friction resulting in temperature
rise in thewhole gauge length. At the opposite, [(0/90)3] coupons do
not experienced surface heating in the gauge length during fatigue
tests. Only a small heating point appears in the last cycles of the
fatigue life, indicating a high damage level in this area.

For both [(0/90)3] and [(±45)3] layups and all conditionings,
acoustic emission recordings allow an analysis of the evolution of
damage mechanisms: matrix cracking, fibre/matrix debondings
(interface) and fibre breakages.

Fig. 5a shows for instance the evolution of the cumulative
number of acoustic events for each type of damage during the fa-
tigue lives of [(0/90)3] samples tested at smax/su ¼ 50% and
conditioned at RH0, RH50 and RH100. These results indicate that
the evolution of the cumulative number of acoustic events is
dependent of the conditioning. Results obtained for [(±45)3] layup
(not presented in this study) and for other fatigue loadings have
shown that the cumulative number of acoustic events is also highly
dependent of both the stacking sequence and the value of the ratio
smax/su.

Fig. 5b shows the final distribution (at the time of failure) of
acoustic events for the three damage mechanisms and for different
Fig. 5. Acoustic emission analysis during fatigue tests on [(0/90)3] samples conditioned at RH
damage (b) Distribution of events recorded at the end of fatigue tests for different fatigue
fatigue loading levels. From these results, it appears that the pro-
portion of matrix-related and interface-related events is highly
dependent of the applied fatigue stress and the conditioning of
samples. However, one common trend appears for all condition-
ings: the reduction of the fatigue stress applied induces an increase
of the proportion of fibre-related events. In order to study the in-
fluence of stacking sequence and conditioning on the distribution
of acoustic levels, Table 4 proposes a comparison for an equivalent
fatigue level of smax/su ¼ 50%. Irrespective of the stacking
sequence, the increase of the moisture content implies a reduction
in the acoustic activity of the matrix and an increase in the acoustic
activity of the interfaces. Moreover, the number of fibre breakages
tends to grow with the humidity content. Finally, these results
indicate also that the damage of interfaces and fibres is more
important for the [(±45)3] layup than the [(0/90)3].
0, RH50 and RH100 (a) Cumulative number of events for smax/su ¼ 50% for each type of
stress levels.



Fig. 6. Absolute number and percentage of acoustic events related to fibre damage
recorded at the end of fatigue tests (R ¼ 0.1 and f ¼ 1Hz) for different fatigue stress
levels and the three studied conditionings: (a) [(±45)3] layup and (b) [(0/90)3] layup.
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3.4. Influence of fatigue stress on fibre breakage

3.4.1. Number of acoustic events related to fibre breakage
In this part, only acoustic events related to fibre breakage are

considered. In order to study the influence of the fatigue stress
level, three smax/su ratios were analysed for each configuration
studied. Absolute number of acoustic events related to fibre
Fig. 7. Microscopic observations of (a) [(±45)3] and (b) [(0/90)3] sa
damage is reported in Fig. 6 for the three conditionings and the two
layups studied. The corresponding percentage, namely the number
of acoustic events related to fibre damage divided by the total
number of acoustic events recorded, is also shown in this figure.

For the [(±45)3] layup, apart from samples conditioned at RH0,
the lower the fatigue stress applied, the higher the number of
acoustic events related to fibre damage. This observation is also
true if the percentage of acoustic events related to fibre damage is
considered (Fig. 6a). For the [(0/90)3] layup, the reduction of the
fatigue stress level implies an increase of the number and the
percentage of acoustic events related to fibre damage (Fig. 6b).
Moreover, it seems that this phenomenon is exacerbated by the
increase of the moisture content of the sample. A comparison be-
tween the two layups shows that the fibre damage mechanism is
always more important for the [(±45)3] layup.
3.4.2. Linear density of fibre breakage
Interrupted fatigue tests were done on both [(±45)3] and [(0/

90)3] samples conditioned at RH50. As previously, three loading
levels were applied in order to study the influence of the fatigue
stress on the fibre damage mechanism. Tests were interrupted at
Nf/2 and then, coupons were cut, cold-mounted and polished in
order to be observed (Fig. 7). [(±45)3] samples were cut in the fibres
direction in order to visualize fibres either in the longitudinal or the
transverse view.

These observations are used in order to count the number of
longitudinal broken fibres at Nf/2. In order to determine a linear
density of fibre breakages, the number of broken fibres is divided by
the length of observed sample. Results are shown in Fig. 8 for both
[(±45)3] and [(0/90)3] layups at three fatigue loading levels.

For the [(±45)3] layup, the linear density of fibre breakages is
doubled when the loading level decreases from 60% to 50%. One can
notice a not significant decrease when the applied fatigue stress is
reduced by 5% (Fig. 8a). For the [(0/90)3] layup, the linear density of
fibre breakages increases gradually when the fatigue loading level
decreases. However, its value is multiplied by three when the fa-
tigue loading level drops from 70% to 45% of the material strength
(Fig. 8b). The comparison of the two layups shows that the linear
density of broken fibres is higher for the [(±45)3] stacking
sequence. These results are consistent with information given by
acoustic emission and presented in section 3.4.1.
3.4.3. Volume ratio of fibre breakage
Two [(0/90)3] coupons conditioned at RH50 were tested

respectively at 70% and 40% of the ultimate strength at 1 Hz and
R ¼ 0.1 in order to be analysed by synchrotron XR tomography.
Fatigue tests were instrumented with acoustic emission and
infrared thermography and were interrupted at Nf/2. For both
mples conditioned at RH50. Interrupted fatigue tests at Nf/2.



Fig. 8. Linear density of fibre breakages for (a) [(±45)3] and (b) [(0/90)3] samples tested at R ¼ 0.1 and f ¼ 1 Hz. Interrupted tests at Nf/2 for three fatigue loading levels.
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samples, the choice of the tomography scan location was driven
by the presence of a slight surface heating recorded by IR ther-
mography associated to few fibre-related acoustic events. High
resolution XR tomography scans were performed on samples of the
size 12 � 20 � 1.56 mm, which represents a total volume of
376.8 mm3.

In order to isolate longitudinal fibre breakages on tomography
scans, post-processing is done by using the software Avizo as
detailed on Fig. 9. From a sub volume, a Gaussian filter is applied in
order to reduce the image noise (Fig. 9a). Then, the “image
gradient” filter is applied: this filter allows highlighting fibre
breakages as well as smoothing the longitudinal yarn inwhich they
are located (Fig. 9b). Next, fibre breakages can be isolated by
Fig. 9. Illustration of the different steps of sync
applying the appropriate threshold (Fig. 9c). However, this opera-
tion also leads to the selection of some transverse fibres, thus, it is
necessary to perform a sieve analysis in order to exclude these fi-
bres. This final step generates two groups, represented in Fig. 9d in
yellow and red, corresponding respectively to the transverse fibres
and the fibre breakages. It is necessary to precise that the term
“fibre breakages” corresponds in fact to the void arising from the
rupture of the fibre.

The volume fractions corresponding to fibre breakages deter-
mined by using this post-processing are shown in Table 5. As the
number of acoustic events or the linear density, the volume fraction
related to fibre damage increases when the fatigue stress applied
decreases.
hrotron image post-processing using Avizo.



Table 5
Volume fraction corresponding to fibre breakage for two GFRPA66 [(0/90)3] samples
conditioned at RH50 and tested in fatigue at 70% and 40% of the ultimate strength
until Nf/2.

smax ¼ 70% su smax ¼ 40% su

Vfibre breakages/Vtoatal 15.7 � 10�5 24.4 � 10�5

Table 6
Indicators of the amount of fibre breakages in the damage process for [(±45)3] and
[(0/90)3] samples conditioned at RH50 for three fatigue stress levels.

smax/su [%] log(Nf) lfibres [mm�1] vfibres nEA,fibres

[(0/90)3] 70 3.0 0.54 15.7 � 10�5 300
55 3.6 0.95 e 480
40e45 4.7 1.43 24.4 � 10�5 3012

[(±45)3] 65 3.2 1.32 e 735
50 4.4 3.21 e 7609
45 5.1 3.01 e 13981
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3.4.4. Discussion
Several indicators, shown in Table 6, have been studied in order

to understand the role of fibres in the damage process of a GFRPA66
composite:

- The number of acoustic events related to fibre breakages
recorded at the time of failure (nEA,fibres);

- The linear density of fibre breakages counted from microscopic
observations at half the lifetime (lfibres);

- The volume fraction corresponding to fibre breakage deter-
mined by using synchrotron XR tomography at half the lifetime
(vfibres);

All these parameters indicate that there is an increase of the
number of broken fibres during the fatigue test when the fatigue
stress applied decreases. According to Table 6, the stress threshold
is about 50% of the stress at break. This value corresponds to a fa-
tigue life close to 104 cycles.

Fig. 10 represents the S-N curve of the [(0/90)3] layup condi-
tioned at RH50 superimposed with S-N curves found in the liter-
ature for neat PA66, neat PA6 and unimpregnated bundles (30 glass
fibres) [47]. Fatigue tests were performed at the same load ratio
(R ¼ 0.1). Maximum fatigue stress applied has been normalized by
the ultimate strength of the considered material. Fig. 10 shows that
the composite S-N curve is close to the neat resin S-N curve for low
Fig. 10. Comparison of S-N curves for the GFRPA66 [(0/90)3] at RH50 with data on neat
resin and unimpregnated glass fibres from the literature.
fatigue life, and close to the glass fibres S-N curve for high fatigue
life. It confirms the results obtained in Table 6: the longitudinal
fibres experienced fatigue breakage in the case of low fatigue stress
applied. In addition, section 3.3.1 has previously shown that fibres
breakages are at the origin of the failure of samples (Fig. 4).

All these data support the assumption that for low fatigue stress,
and thus high fatigue life, the coupon failure is driven by the fatigue
behaviour of the longitudinal fibers. Since fibres are insensitive to
moisture, this can explain that the conditioning of samples has no
influence on the fatigue life of the composite for this range of
applied stress (Fig. 2).

4. Conclusion

This study deals with the fatigue damage process of a woven
glass-fibre-reinforced composite with polyamide 6,6 matrix. Two
layups were deeply studied, namely [(0/90)3] and [(±45)3] as well
as three conditionings referred as RH0, RH50 and RH100. First, fa-
tigue tests were performed on all configurations at ambient
hygrometry and temperature. These tests have shown that the in-
fluence of conditioning is almost negligible for fatigue life higher
than 104 cycles. This result contributes to fear a loss of conditioning
for RH0 and RH100 samples during fatigue tests. So, these tests
were repeated in a climatic chamber. Fatigue lives were found equal
to those obtain at ambient hygrometry, confirming that the mois-
ture content has less influence in the case of long fatigue lives and
therefore of low fatigue stress. Damage analysis was performed
using infrared thermography, acoustic emission, microscopic ob-
servations and synchrotron XR tomography. All the data monitored
have allowed highlighting a change in the damage process
depending on the applied fatigue stress. When the loading level is
lower than 50% of the stress at break, the importance of fibre
breakage increases. Given that fibres mechanical properties are not
affected by the presence of water, this could explain the equiva-
lence of fatigue lives regardless of the conditioning for low fatigue
stress levels.
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