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Introduction

Landsat-8, launched on February 11 st 2013, carries the Operational Land Imager (OLI) and the Thermal InfraRed Sensor (TIRS). L8-OLI (Table 1) has four spectral bands in the visible, four in the near infrared, and one panchromatic band, while TIRS collects signal within two thermal infrared bands.

Recent studies have demonstrated the potential of L8-OLI for ocean color related applications where its medium-spatial resolution (30 m) provides new insights for a better understanding of processes occurring in coastal waters [START_REF] Pahlevan | Leveraging EO-1 to evaluate capability of new generation of Landsat sensors for coastal/inland water studies[END_REF][START_REF] Vanhellemont | Turbid wakes associated with offshore wind turbines observed with Landsat 8[END_REF]. Atmospheric correction algorithms have been developed to retrieve the remote sensing reflectance (Rrs(λ), where λ is the wavelength in nm), from the top of atmosphere (TOA) radiometric signal measured by OLI [START_REF] Franz | Ocean color measurements with the Operational Land Imager on Landsat-8: implementation and evaluation in SeaDAS[END_REF][START_REF] Pahlevan | Landsat 8 Remote Sensing Reflectance (Rrs) Products, Evaluations, Intercomparisons, and Enhancements[END_REF]. Due to the increased radiometric sensitivity from 8-bit to 16-bit data in comparison with the previous Landsat sensors series, the assessment of in water parameters, such as the suspended particulate matter concentration (SPM), the Secchi-disk depth, and the colored dissolved organic matter (CDOM), from Rrs(λ) is now possible, mainly from empirical and regional approaches, with a relatively good accuracy over coastal waters [START_REF] Vanhellemont | Turbid wakes associated with offshore wind turbines observed with Landsat 8[END_REF][START_REF] Concha | Retrieval of color producing agents in Case 2 waters using Landsat 8[END_REF]Kutser et al., 2016;[START_REF] Lymburner | Landsat 8: Providing continuity and increased precision for measuring multi-decadal time series of total suspended matter[END_REF][START_REF] Lee | A semi-analytical scheme to estimate Secchi-disk depth from Landsat-8 measurements[END_REF][START_REF] Urbanski | Application of Landsat 8 imagery to regional-scale assessment of lake water quality[END_REF][START_REF] Slonecker | The new Landsat 8 potential for remote sensing of colored dissolved organic matter (CDOM)[END_REF][START_REF] Li | Spatiotemporal dynamics of chlorophyll-a in a large reservoir as derived from Landsat 8 OLI data: understanding its driving and restrictive factors[END_REF]. A challenge, however, still remains to automatically detect water pixels over which these different atmospheric and bio-optical algorithms can finally be applied. Cloud and cloud shadow should indeed be correctly detected, which is still rather challenging over coastal and inland waters, bodies that are generally turbid. An over-masking procedure results in a loss of water-pixels, while an under-masking procedure results in a wrong assessment of the remote sensing reflectances and their associated in-water components.

Numerous algorithms have been developed to detect and extract surface water from remote sensing technology for about four decades. For example, the Normalized Difference Vegetation Index (NDVI) [START_REF] Rouse | Monitoring Vegetation Systems in the Great Plains with ERTS[END_REF], based on the red and near-infrared bands, has been used to distinguish land cover from clear to slightly turbid water surface (Vermote & Saleous, 2007 ;[START_REF] Jawak | A review on extraction of lakes from remotely sensed optical satellite data with a special focus on cryospheric lakes[END_REF]. To specifically identify water pixels, the Normalized Difference Water Index (NDWI), based on the difference between reflectance in the green band, which is greatly impacted by water surface, and the one in the NIR band, has been introduced by [START_REF] Mcfeeters | The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features[END_REF]. However, this very widely used index, cannot efficiently suppress the signal from built-up land and water. Combination of this index with a Geographic Information System (McFeeters, 2013), or modification of this index (MNDWI) by substituting the medium infrared band for the near infrared band (Xue, 2006) have therefore been proposed to improve the detection of water surface in environments with complex signal background.

The application of all the latter approaches require manually defined threshold values depending on the study area, which may not be adequate for automatically detecting of water surface pixels whatever the considered environment. Because of its relatively good performance, as well as its full automation, the Fmask (Function of mask) algorithm is commonly used for masking cloud, cloud shadow, and snow in Landsat images [START_REF] Zhu | Object-based cloud and cloud shadow detection in Landsat imagery[END_REF]. This algorithm is based on predefined thresholds of TOA reflectance values at specific bands, cloud probability calculation, brightness temperature (BT) analysis, NDVI, and normalized difference snow index (NDSI), for many different objects (land, water, cloud shadow, snow, and cloud). Despite the recent improvements of Fmask [START_REF] Zhu | Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4-7, 8, and Sentinel-2 images[END_REF], which take advantage of the new cirrus band for Landsat 8, and which use a dynamic threshold instead of a fixed one for cloud detection over water, some wrong identifications of water pixels, as those presented in the present study, still remain, especially over turbid waters (see section 4). This is explained by the fact that Fmask does not specifically focus on the detection of water pixels, but on the masking of cloud, cloud shadow, and snow over land and water. In contrast to Fmask, the present study specifically aims at detecting water pixels of inland and coastal waters, and does not specifically focus on the individual identification of each considered object. Because of the high contribution of the Rayleigh component to the TOA signal, its contribution should first be removed for a better characterization of the spectral shape of the reflectance over each object [START_REF] Nordkvist | Cloud masking of SeaWiFS images over coastal waters using spectral variability[END_REF]. For these reasons, the present algorithm, referred to as WiPE in the text (for Water Pixel Extraction), uses the Rayleigh-corrected top of atmosphere reflectance spectra (ρrc(λ)) as input parameters. WiPE is based on the combination of spectral criteria applied to ρrc(λ) to mainly discriminate water pixels from land, clouds and vegetation pixels, and on the application of a Hue-Saturation-Value or Brightness, HSV, analysis to optimize the detection of thin clouds and cloud shadow pixels over water areas.

The database of L8-OLI and S2-MSI images collected over contrasted coastal and inland water areas, and dedicated to the development and validation of the algorithm, is first presented. The new algorithm is then described for L8-OLI. Finally, WiPE is evaluated from an independent validation database, and the results are compared with those obtained by Fmask. While the present algorithm is fully described for the OLI sensor, the same methodology is applied to MSI on Sentinel-2a (launched on 23 June 2015) which present some slight differences in terms of spectral bands and spatial resolutions (Table 1). The adaptation of WiPE on S2-MSI is discussed at the end of the paper from illustration examples. This adaptation, performed for S2a-MSI, can fully be applied on S2b-MSI, as the spectral bands of S2a-MS1 and S2b-MSI only differ by about less than one nanometer in the visible and NIR spectral domains.

Development and validation data sets

General description of the satellite data sets

Level-1 of Landsat-8 TOA reflectance and Brightness Temperature (BT) have been downloaded

from USGS (https://landsat.usgs.gov/) over different geographical locations covering contrasted atmospheric and environmental conditions (Fig. 1). suspended sediment loads, green coastal waters with a high concentration of phytoplankton (aquaculture areas in Chinese coastal waters, Halong bay, phytoplankton blooms in Vietnam coastal waters, and in the Liguria sea), and blue offshore waters of the Mediterranean Sea. Water pixels for the development data set have only been selected in coastal and offshore waters to limit mixed water/land situations typically found in inland waters. These different locations have been chosen in order to cover a wide range of water types based on our current knowledge of these specific areas, and on a visual examination of Rayleigh corrected images. This broad range of aquatic environments is reflected in the large variability of the Rayleigh-corrected reflectance spectra, ρrc(λ), extracted over water pixels (Fig. 2). The amplitude and spectral position of the maximum of ρrc(λ), mainly driven by the bio-optical properties of the water body span over a large range of values. For instance, the maximum of ρrc(λ) is observed at band 1, 2, 3, 4, and 5 for 2.3%, 22.9%, 45.4%, 26.6%, and 2.8% of the water pixels used in the development data set (Fig. 2), respectively. This spectral shift reflects a change in the turbidity level, as the maximum of water remote sensing reflectance is observed in the blue and near-infrared for clear and very turbid waters, respectively [START_REF] Han | Development of a Semi-Analytical Algorithm for the Retrieval of Suspended Particulate Matter from Remote Sensing over Clear to Very Turbid Waters[END_REF]. In contrast to L8-OLI where each visible and NIR spectral channels used in WiPE have the same spatial resolution (i.e. 30 m), the MSI-S2 relevant channels present some discrepancies in terms of spatial representative examples, the Huangmao river estuary (China) and the Tonle Sap lake (Cambodia). We will specifically focus on the impact of the MSI per-channel spatial resolution variation.

The Rayleigh correction procedure

In order to better characterize the spectral signature of the different selected objects, the signal due to air molecules, which contributes to a large part of ρTOA(λ), should be removed. The TOA reflectance, ρTOA(λ), can be developed as follows [START_REF] Gordon | Atmospheric correction of ocean color imagery in the Earth Observing System era[END_REF]:

= + + + + + (1) 
where ρR(λ) is the reflectance due to multiple scattering of a purely air molecules atmosphere, ρa(λ) is the reflectance of multiple scattering by aerosols in a pure aerosol atmosphere, and ρRa(λ) stands for the interaction term in a real atmosphere containing both molecules and aerosols. T(λ) and t(λ) are the direct and diffuse transmittances of the atmosphere, respectively. ρg(λ), ρwc(λ), and ρw(λ) are the reflectances due to sun glint, whitecaps, and in-water optically significant components, respectively. The sunglint and whitecaps reflectances are related to wind speed and geometry [START_REF] Wang | Correction of sun glint contamination on the SeaWiFS ocean and atmosphere-products[END_REF].

The pixel value recorded by L8-OLI at the top of the atmosphere is a digital number, from which the TOA radiance, LTOA(λ), and reflectance, ρTOA(λ), are calculated through Eq.( 2) and Eq.( 3), respectively [START_REF] Vanhellemont | Turbid wakes associated with offshore wind turbines observed with Landsat 8[END_REF]).
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where LTOA(λ) is the spectral radiance (in W m -2 sr -1 μm -1 ), ML(λ) the radiance multiplicative scaling factor (i.e. gain) for each band, Qcal(λ) the Level-1 pixel value in digital number, and AL(λ) is the radiance additive scaling factor (i. e. offset) for each band. d, F0, and θ0 are the Earth-Sun distance in Astronomical Units, the band average solar irradiance, and the sun zenith angle, respectively.

The reflectance due to Rayleigh scattering in a purely molecular atmosphere, , is given by the following equation [START_REF] Gordon | Exact Rayleigh scattering calculations for use with the Nimbus-7 coastal zone color scanner[END_REF]Wang and King, 1997):

= $ % & 4()*+ ()*+ , -. (4) 
where τR(λ) is the Rayleigh scattering optical thickness, pR(&) the Rayleigh scattering phase function at a scattering angle, &, θv the viewing zenith angle, and θ0 the sun viewing angle. The optical thickness at the atmospheric pressure P is calculated as follows:

$ = 0 0 # $ (5)
where τR0(λ) is the optical thickness at the standard atmospheric pressure P0 of 1013.25 mbar.

The Rayleigh scattering phase function pR(&) is defined as:

% & = 1 & -+ 34 + , + 4 + 51 & + (6) 
The term involving & -provides the contribution due to photons which are backscattered from the atmosphere without interacting with the sea surface. The term involving &+ accounts for photons which are scattered in the atmosphere toward to the sea surface. These terms are computed from sun-sensor geometry as:
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with ; and ; , are sun and sensor azimuth angles. r(θ) is the Fresnel reflectance for air-incident rays at incidence angle θ. The Rayleigh scattering phase function 1 & for scattering angle &, and the Fresnel reflectance r(θ) for air-incident rays at an incidence angle θ are calculated as follows:
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The Rayleigh-corrected reflectance is defined in Eq.( 11) as:

L = - = + + + + (11) 
Rayleigh scattering generally contributes about 80% to 90% of the TOA reflectance in the blue part of the spectrum from clear to turbid waters, respectively [START_REF] Gordon | Exact Rayleigh scattering calculations for use with the Nimbus-7 coastal zone color scanner[END_REF]IOCCG, 2010).

3. Spectral database for each selected object

Classified objects are manually selected on Rayleigh-corrected color image composites.

Polygons are drawn over homogenous areas of the considered objects, and pixels are counted using the QGIS software. Mixed situations are manually disregarded, except those specifically considered here as cloud shadows and thin clouds over land and water. All TOA reflectance and Rayleigh-corrected spectra are stored for each of the following objects: clouds over land and water (664 pixels), thin clouds over land and water (9493 pixels), shadows over land and water (13,582 pixels), water (164,681 pixels), vegetation (4817 pixels), barren land (2103 pixels), and constructions (1398 pixels). The whole database of the ρrc(λ) spectra over the six non-water selected objects is provided in Fig. 3. Similarly to the water pixels (Fig. 2), each of the previous object is characterized by a large range of variability of ρrc(λ) spectra, as shown by the large standard deviations observed around each mean spectrum. Based on this latter pattern, we can assume that the database covers a broad range of situations for each object, which makes it quite suitable for the algorithm development phase. The benefit of using ρrc(λ) instead of ρTOA(λ) to detect water pixels is illustrated in Fig. 4, where typical spectra over water bodies are displayed. From clear (Fig. 4a) to very turbid waters (Fig. 4d) the spectral shape (as well as the amplitude) of ρrc(λ) significantly differs from one water type to another. These latter spectral shape differences are less pronounced for ρTOA(λ), especially between clear (Fig. 4a) and green water (Fig. 4b). 

Development of the new algorithm (referred to as WiPE)

1. General approach

While the average ρrc(λ) spectra for the different identified objects present significant differences in terms of spectral shape and amplitude, the associated large standard deviation values (Fig. 3) also stress a potential overlap between them. This patterns has oriented the development of the algorithm through the use of a clustering approach developed in different spaces generated by the combination of ρrc(λ) (or ρrc(λ) ratios) spectral values (first step of the algorithm), or by the combination of ρrc(λ), V, and S values of the HSV transformation (second step of the algorithm).

Typical examples of ρrc(λ) spectra, which allow the understanding of the different spectral criteria adopted in WiPE, are displayed over the six non-water objects in Fig. 5. With a relatively sharp increase of ρrc(λ) from band 1 (blue) to band 5 (near infrared), the barren land (Fig. 5a) and construction spectra (Fig. 5b) significantly differ from other objects. This spectral shape, combined with the high peaks in bands 5 (near infrared) and 6 (short wave infrared), allow barren land (Fig. 5a), and construction (Fig. 5b) to be distinguished from the other objects. In the same way, the sharp increase of ρrc(λ) observed between bands 4 and 5 for vegetation pixels (Fig. 5d) is a remarkable identification pattern of the corresponding pixels. Further, the relatively flat ρrc(λ) spectral shape, associated with a high level of signal in the blue-red part of the spectrum, allow clouds to be relatively well identified from other objects (Fig. 5c). Based on these observations, criteria have been developed on the spectral shape and amplitude of ρrc(λ) spectra in order to distinguish water pixels from land (vegetation, barren land, and construction)

and clouds over water. The application of these different spectral criteria represents the first step of the algorithm (Fig. 6). In contrast to the previous objects, the ρrc(λ) spectra over thin cloud (Fig. 5e) and shadow (Fig. 5f) pixels may strongly be modified by the spectra of the overlaid water pixels which makes the identification of these two objects over water areas very challenging from spectral shape analysis as performed in the first step of the algorithm. For that purpose, the second step of the algorithm is based on a multispectral colorimetric method, i. e., HSV transformation, which allows a better identification of water pixels in these difficult configurations (Fig. 6). 

First step of the algorithm: the spectral shape analysis

Spectral shapes and amplitude of ρrc(λ) spectra over all objects are used for the algorithm development. Some objects with specific ρrc(λ) spectral signature will be masked in the first step (Fig. 6). This is the case of vegetation, barren land, construction, clouds, and shadow over land that will be removed based on some different combinations of ρrc(λ) band ratios. Standard indexes, as those presented in the introduction (e.g. NDWI; MNDWI), have also been tested but they did not provide any better results compared to those selected for step 1. The different equations and threshold values used in the two steps of the WiPE algorithm and presented in the flowchart (Fig. 6), have been empirically defined from visual examination of the data points in the different considered (x; y) spaces (Fig. 7). Because of their very specific spectral signatures in the NIR domain (Figure 5d), vegetation pixels are the first to be removed (step 1.1 in Fig. 6). Pixels with near infrared to red ratio value, ρrc(5)/ρrc(4), greater than 1.53 are identified as vegetation in the (ρrc(5)/ρrc(4); ρrc(1)) space (Fig. 7a). This threshold value, manually fixed based on the examination of the data points in the (ρrc(5)/ρrc(4); ρrc(1)) space, allows vegetation pixels to be remarkably well separated from water pixels (Fig. 7b), avoiding the mixing of water and vegetation pixels even over very challenging situations such as inland productive waters. In addition to removing the totality of the vegetation pixels, the application of this ratio also removed many pixels from other objects, such as barren land (86%), thin clouds (7%) and almost all shadow pixels over land (Fig. 7b). Clouds over land and water pixels present the highest Rayleigh-corrected reflectance in almost every bands (Fig. 5c), but because of the high range of variability observed at each band, cloud pixels may be difficult to distinguish from barren land (Fig. 5a) and construction (Fig. 5b) pixels which present relatively similar spectral shape. For this reason, cloud over water and land, barren land, and construction pixels are removed simultaneously at the step 1.2, using a combination of ρrc(1) and ρrc(7)/ρrc(3) (see step 1.2 in Fig. 6). When ρrc(1) is higher than -0.09*ρrc(7)/ρrc(3) + 0.11 the pixel is rejected (Fig. 7c). By pulling cloud, barren land, and construction all together, this test will not allow for a specific identification of these three different objects. However, that specific identification of non-water objects is not the objective of the present method, which is only dedicated to the extraction of free water pixels. Interestingly, this test also removed almost all thin clouds (Fig. 7d) over land and waters (98.9%).

The remaining thin-cloud pixels (1.1%) after the application of this first step are only found over water pixels (Fig. 7d).

Shadow pixels are by essence difficult to remove, due to their relatively low reflectance value and the strong impact of the spectral shape of the overlaid object. Based on the development database, identified shadow pixels over land present a minimum ρrc(2) value, while almost all land objects have ρrc(6) > ρrc(2). For that purpose the ρrc(6)/ρrc(2) ratio, which presents a large range of variability, is plotted against ρrc(1), for which shadow pixels over land show the lowest variability compared to other bands (Fig. 5f). Based on these observations, pixels with ρrc(1) higher than -0.14*ρrc(6)/ρrc(2) + 0.16 are rejected (Fig. 7e). The application of this criterion allows one to remove the remaining shadow pixels over land that were still present after step 1.1. Only shadow pixels over water remain (the black dots in Fig. 7f). Shadow pixels over water or land can be distinguished from one another, because, while the ρrc(λ) signal over these two different objects is undoubtedly attenuated by clouds shadow, the marked differences in their spectral shapes are still noticeable, allowing the differentiation between shadow over land and shadow over water. The performance of the spectral shape analysis procedure is illustrated over a very complex aquaculture area at Rio Guayas in Ecuador where water and vegetation areas are especially difficult to distinguish from one another on the Red-Green-Blue (RGB) composite (Fig. 8a).

Distinction between waters and vegetation/land/clouds pixels is very well performed. This has been confirmed by a visual examination of images provided on google earth allowing a distinct identification of aquaculture farms. However, while cloud shadows over land are appropriately masked, cloud shadows areas over water (red circles in Fig. 8a) are misleadingly identified as water. 

Second step of the algorithm: the HSV approach

Based on the spectral shape analysis developed in the first step of the algorithm, cloud over land and water, shadow over land, vegetation, barren land, and construction pixels are remarkably well removed. At this stage, only water pixels, thin clouds and shadow over water pixels remain. Cloud shadow pixels over water may therefore falsely be considered as water (Fig. 8). The significant differences observed in the ρrc(λ) spectral shape over turbid (Fig. 9a), green (Fig. 9c), and clear (Fig. 9e) waters fade away in presence of shadow (Fig. 9b, d, andf). For this reason, Rayleigh-corrected reflectance spectra are transferred into the HSV color space which uses Hue, Saturation, and Value for color representation. In contrast to the standard RGB color space, where the color information and its intensity are generally mixed, the HSV color space is better adapted for image analysis and segmentation [START_REF] Smith | Colour Gamut Transform Pairs[END_REF][START_REF] Ganesan | HSV color space based segmentation of region of interest in satellite images[END_REF]. For instance, this color transformation, based on a mechanism of human model, has facilitated the extraction of water pixels over land [START_REF] Pekel | A near real-time water surface detection method based on HSV transformation of MODIS multi-Spectral time series data[END_REF]Singh et al., 2016), and the correction of thin clouds which have high brightness, low saturation, and contrast [START_REF] Pratt | Digital Image Processing[END_REF][START_REF] Shen | An Uneven Illumination Correction Algorithm for Optical Remote Sensing Images Covered with Thin Clouds[END_REF]. the color is (a white object has a S value of 0). For instance, a pure green is fully saturated, with a saturation of 1 while tints of green have saturations less than 1. At last, the Value component, V, describes the intensity (or brightness) of the color of a considered pixel for a given image. In contrast to H, both S and V values are between 0 and 1. Because the Hue of the ground object is relatively invariant in presence of thin clouds [START_REF] Shen | An Uneven Illumination Correction Algorithm for Optical Remote Sensing Images Covered with Thin Clouds[END_REF], only the value, V, and saturation, S, will be taken into account in the present algorithm. The S and V values of the Rayleigh-corrected spectra are calculated as follows:

M = N OPQ -N ORS N OPQ (12)
with Vmax and Vmin defined as:
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where max L 8 represents the maximum value of L 8 observed over the whole image for the band i. Depending on the spectral band where Vmax is obtained, different criteria involving Vmax and S are applied to extract shadow as well as thin cloud pixels over water (Fig. 6). Importantly, in contrast with the first step which is a pixel per pixel approach, the maximum values are here assessed over the whole scene. Figure 10 shows the remaining pixels identified in Figure 7f and transferred into HSV space for the three possible values of Vmax: when Vmax is observed in the red (Fig. 10a,b), green (Fig. 10c,d),

and blue (Fig. 10e,f). The sum of the water, thin clouds, and shadow pixels observed in Fig 10a,c, and e is equal to the number of water, thin clouds, and shadow pixels at the end of step 1 (Fig. 7f). When

Vmax is reached at band 4 (red) (Fig. 10 a,b), shadow pixels and thin clouds are removed if ρrc(1) is higher than -0.14*ρrc(6)/ρrc(2) + 0.16. This condition allows 69% of the shadow pixels over turbid waters, and 50% of the few remaining thin clouds to be removed. The remaining shadow pixels are observed in a restricted area of the V(ρrc(4)) vs. ρrc (4)/ρrc (2) space (Fig. 10b) where there is a risk of confusion. A flag, indicating the potential presence of cloud shadows over water pixels, can be raised when the pixel belongs to this restricted space. When Vmax is reached at band 3 (green) (Fig. 10 c,d) or 2 (blue) (Fig. 10 e, f), shadow pixels and thin clouds are removed after the application of three or seven complementary criteria as defined in Fig. 6, respectively. In contrast to turbid waters, where the maximum of ρrc is generally observed in the red, extraction of shadow pixels over green and blue waters is more challenging.

For instance, only 40% and 30% of shadow pixels over green and blue waters have been removed by the HSV approach, respectively. However, these relatively clear water pixels are located in relatively offshore waters, especially the blue ones, for which the signal over noise ratio of OLI prevents the exploitation of this signal for bio-optical applications. The full processing (i. e. step 1 + step 2) of the image collected over a complex aquaculture area discussed previously (Fig. 8), and not used in the development data set, is now provided in Fig. 11. Cloud shadow pixels, falsely identified as water pixels after the application of the spectral shape analysis (Fig. 11a), are now well classified at the second step of the algorithm (Fig. 11b). the application of each criterion adopted in steps 2.1, 2.2, and 2.3 are provided in each panel. 

Application of WiPE to OLI and comparison with Fmask over contrasted water bodies

The WiPE algorithm is based on the use of spectral relationships empirically established on a given development data set, and cannot, by essence, account adequately for all situations encountered, especially for mixed situations (i. e. flooded land, clouds and clouds shadow boundaries, bottom albedo in very clear shallow waters, mountain areas, etc). For example, the spectral shape of 4( over water pixels can also be affected by the bottom albedo in very clear shallow waters, especially in the blue and green parts of the spectrum. While the differentiation between cloud (or land) and water pixels should not be affected by the bottom albedo due to the relatively low water reflectance compared to the cloud (or land) reflectances, this may represent an issue for masking shadow and thin clouds pixels over water.

This issue can only be addressed by adding a flag cautioning for potential confusion in the processing scheme for clear and very shallow aquatic environment. Adjacency effects may also be another source of uncertainty in the border areas between different objects. The detection of water pixels in mountain areas is also very challenging, due to numerous shadow areas and adjacency effects. The application of WiPE to a complex mountain area in the North West of China shows however that water pixels are still well identified in such complex environment (Fig. 12). Being aware of these specific and complex situations, the performance and limitation of the WiPE algorithm are now addressed in details using the second data set gathering images collected by the OLI sensor over contrasted coastal and inland environments. For each selected image, a reference water pixels map (referred to as the reference WPM hereafter) was derived as follows. First the WiPE algorithm has been applied on the image. Then, based on a visual analysis of the image, polygons have been drawn

using the QGIS software on the missing water pixels areas (P1) as well as on the areas where WiPE wrongly classify pixels as water pixels (P2). The reference WPM for each image is then generated using the results of WiPE corrected by adding (removing) water pixels from the P1 (P2) polygons. The Mean Absolute Percentage Difference (MAPD) is then calculated between the reference number of water pixels (WPM), and the number of water pixels generated by WiPE and Fmask (Table 2).

. The evaluation of WiPE, and the inter-comparison with Fmask (version 3.3) have been performed

over the whole validation data set (Table 2), but illustrations are only provided for some representative areas extracted from 6 different scenes and presenting a large range of complex situations (Fig. 131415161718).

For the 12 complete scenes used for the validation, the MAPD values range between 0.005 and 6% for WiPE. Over the six examined sub-scenes, the highest MAPD value of 11% was related to the presence of thin clouds. The MAPD present higher values for Fmask than for WiPE, with a general tendency for Fmask to under-estimate the number of water pixels, mainly in the presence of turbid waters. Note that for three of the twelve tested scenes, Fmask does not provide any possible solution. Similarly to Fmask, the distinction between water pixels and clouds, as well as between vegetation/land/barren land and water pixels are generally well performed by . The main differences between the two algorithms are observed over very turbid waters , cloud shadows over waters (Figs. 13,15,16,17), and complex coastal environments (Fig. 18). The image acquired over the Rio Guayas (Fig. 13) shows that while the two approaches provide relatively good results over most of the image (MAPD of 7.8% and 0.005% for Fmask and WiPE, respectively), only WiPE is able to extract very turbid water pixels as those encountered far from the river mouth (red circle n°2 in Fig. 13). From the river mouth to the upper part of the river, the maximum value of the ρrc(λ) spectrum, driven by the water leaving signal, shifts from the green (Fig. 13e) to the near-infrared (Fig. 13f), a typical spectral behavior observed when the water turbidity increases [START_REF] Han | Development of a Semi-Analytical Algorithm for the Retrieval of Suspended Particulate Matter from Remote Sensing over Clear to Very Turbid Waters[END_REF]. This pattern is observed over different scenes where the ρrc(λ) spectra peak in the near-infrared, as the one provided in Fig. 14 showing part of the Hangzhou bay where the Qiantang river, characterized by high concentration of sediment, flows [START_REF] Xie | Numerical modeling of tidal currents, sediment transport and morphological evolution in Hangzhou Bay, China[END_REF]. For this specific image, almost all "true" water pixels are detected as land pixels by Fmask (MAPD = 87.7%), and few of them, probably partly due to the low temperature (5°C), as snow pixels (Fig. 14). In contrast, WiPE is able to identify properly water pixels over the whole scene (MAPD=0.006%). The areas where turbid water pixels are falsely identified as land by Fmask present a ρrc(λ) spectrum with a maximum in the near-infrared (Fig. 14f).

The very few water pixels which are correctly detected by Fmask over this very turbid area are those for which the maximum ρrc(λ) values are reached in band 4 (see red circle n°1 in Fig. 14e) or band 3 as for the water pixels in the bottom left corner of Fig. 14g. For low turbidity level, where the ρrc(λ) maximum values are not reached in the near-infrared (band 5), water pixels are generally well detected by the two different algorithms (Fig. 13, 15-18). As mentioned by [START_REF] Zhu | Object-based cloud and cloud shadow detection in Landsat imagery[END_REF], the adopted threshold procedure for the detection of water bodies from Fmask works well for most water bodies but may fail over cold (compared to surrounding areas) and bright (i.e. turbid) pixels. For this reason, and in a similar way to the procedure applied for the detection of clouds in land areas, the last version of Fmask uses a dynamic threshold for detecting clouds in water areas [START_REF] Zhu | Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4-7, 8, and Sentinel-2 images[END_REF]. While such dynamical approach provides better cloud detection over water areas [START_REF] Zhu | Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4-7, 8, and Sentinel-2 images[END_REF], the present study shows that detection of water pixels over very turbid waters, where the maximum ρrc(λ) value is observed at band 5, is still not satisfactory. The dynamic threshold procedure used in Fmask should then be adapted for such environments. In contrast to L8-OLI for which the spatial resolution of all bands is the same and equal to 30 meters, the spatial resolution of the algorithm-required bands for S2a-MSI are equal to 10 (bands 2, 3, and 4), 20 (7, 11, and 12), and 60 (band 10) meters. These different spatial resolutions introduce some artefacts in the extraction of water pixels, especially at the border of objects under strong contrast, such as cloud shadow in the immediate proximity of clouds. This is clearly illustrated in Fig. 21 where cloud shadows are well detected when they are relatively far from the cloud (white circle in Fig. 21b), and not detected when they are at the very border of the clouds (red circle in Fig. 21b). Future works are therefore needed to figure this specific issue out. 
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 7 Fig. 7. (left panels) Scatter plots of ρrc(λ) as a function of ρrc(λ) band ratios for the seven different objects

Fig. 8 .

 8 Fig. 8. (a) RGB image collected by L8-OLI over an aquaculture area at Rio Guayas in Ecuador
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 12 Fig. 12 (a) RGB image over a complex mountain area in the North West of China (15/08/2018). (b)
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 13 Fig. 13. (a) RGB image over the Rio Guayas (Ecuador, 17/05/2015). Results of the water pixel extraction (in blue) after the first (b) and second (c) steps of the new algorithm and of Fmask (d). (e and f) ρrc(λ)
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 19 Fig. 19. The logic flow of the water extraction pixel algorithm based on the combination of spectral shape
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 20 Fig. 20. (a) RGB image over the Huangmao river estuary in China. (b) Results of the water pixel
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 21 Fig. 21. (a) RGB image over the Tonle Sap in Cambodia. (b) Results of the water pixel extraction by
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Table 1 .

 1 S2-MSI and L8-OLI spectral bands and spatial resolutions

		Sentinel-2			Landsat-8	
	Band	Wavelength	Spatial	Band	Wavelength	Spatial
		(nm)	Resolution (m)		(nm)	Resolution (m)
	1	421 -457	60	1	433 -453	30
	2	439 -535	10	2	450 -515	30
	3	537 -582	10	3	525 -600	30
	4	646 -685	10	4	630 -680	30
	5	694 -714	20			
	6	731 -749	20			
	7	768 -796	20			
	8	767 -908	10			
	8A	848 -881	20	5	845 -885	30
	9	931 -958	60			
	10	1338 -1414	60	9	1360 -1390	30
	11	1539 -1681	20	6	1560 -1660	30
	12	2072 -2312	20	7	2100 -2300	30

Table 2 .

 2 Performance of the WiPE and Fmask algorithms on the validation data set. The number of water pixels identified by Fmask, WiPE, and "visual" interpretation (see text) are used to calculate the Mean Absolute Percentage Difference (MAPD in %). The number are given for the whole 12 considered scenes, while the number between brackets are those obtained over the 6 different sub-scenes provided in Figs.

	13-18.					
	Figure	Fmask	WiPE	Visual	MAPD_Fmask	MAPD_WiPE
	N°	(water pixel)	(water pixel)	interpretation	(%)	(%)
	Name: LC80110622015137LGN00 Location: Rio Guayas, Ecuador	
	13	11,761,455	12,525,625	12,400,369	5.15 (7.8)	1.01 (0.005)
	Name: LC81180392015039LGN00 Location: Hangzhou Bay, China	
	14	1,810,769	6,862,337	6,793,712	73.35 (87.74)	1.01 (0.006)
	Name: LC82330542015220LGN00 Location: Rio Grande, Venezuela	
	15	4,181,740	4,287,095	4,244,224	1.47 (14)	1.01 (11)
	Name: LC80200242014261LGN00 Location: Moose River, Canada	
	16	7,829,913	11,161,707	10,938,473	28.42 (24.6)	2.04 (0.04)
	Name: LC81360452015293LGN00 Location: Meghna River Estuary, Bangladesh	
	17	25,151,428	25,330,607	25,254,615	0.41 (12.3)	0.30 (0.005)
	Name: LC81220442015291LGN00 Location: Zhujiang River, China	
	18	4,824,260	4,247,824	4,162,868	15.89 (28.1)	2.04 (0.08)
	Name: LC81230512016045LGN00 Location: Center East Sea, Vietnam	
		NA	28813483	27949071	NA	3.09
	Name: LC81480452015153LGN00 Location: Gulf of Khambhat, India	
		1,872,122	5,436,606	5,408,972	65.39	0.51
	Name: LC82040522015305LGN00 Location: Geba River Estuary, Guinea-Bissau	
		12,859,652	16,041,540	15,602,484	17.58	2.81
	Name: LC82240842015061LGN00 Location: Rio de La Plata, Argentina-Uruguay	
		NA	11623842	12408451	NA	6.32
	Name: LC82250602014321LGN00 Location: Rio Amazonas, Brazil	
		3,094,867	5,073,280	4,933,148	37.26	2.84
	Name: LC81230522016045LGN00 Location: Center East Sea, Vietnam	
		NA	25,447,149	25,632,556	NA	0.72

All images show that the detection of shadow pixels over water increases after the application of the HSV-space based criteria (i.e. the second step of WiPE). While some "true" shadow pixels are considered as water after the application of the first step of the algorithm (black circles in panels b of Figures 13,14,16,17), they are correctly identified as shadow after the second step (black circles in panels c of Fig. 13,14,16,17). The detection of thin clouds, especially over clear waters, seems to be slightly underestimated by WiPE (already discussed in section 3.2) and Fmask (see white circles Figure 13). Cloud masking is usually well performed by the two different approaches. However, while the new approach tends to slightly under-estimate the cloud shadow areas in favor of water pixels, Fmask tends to over-estimate cloud shadow areas. Cloud shadow pixels which are classified as water by the new approach are those belonging to the confusing area in the V-S space (Fig. 10). An example of wrong shadow pixel identification by WiPE is provided in Fig. 15 (black circles). These pixels, which are characterized by a ρrc(λ) maximum in the red (channel 4), present V and S values around 0.12, and 0.26, respectively, and are therefore classify as belonging to the confusing space, for which a flag could be raised during the image processing. In the same way, Fmask, which provides relatively good estimates of cloud shadows, may falsely classify cloud shadows as water pixels, especially when the shadow area is located over land (Fig. 16) and barren land (Fig. 18). Over very complex areas such as the harbor area of the outlet of the Zhujiang river in China (Fig. 18) the new algorithm performs remarkably well. Fine structures like harbor protections in water are identified. Misclassification of construction as cloud by Fmask may also occur (the southern part of the image in Fig. 18), resulting in a detection of false shadow pixels over water areas.

Adaptation of WiPE for MSI on Sentinel 2a

The WiPE algorithm, originally developed for L8-OLI, has been adapted to S2a-MSI using the seven following spectral bands: bands 2 (496.6 nm), 3 (560 nm), 4 (664.5 nm), 7 (782.5 nm), 10 (1373.5 nm), 11 (1613.7 nm), and 12 (2202.4 nm). The same methodology used to develop WiPE for L8-OLI, has been adopted for S2a-MSI. The two steps are both applied to the Rayleigh corrected reflectance. The first step is dedicated to the removal of barren land, construction, vegetation, clouds and a minority of thin clouds and clouds shadows. The second step, based on the HSV transformation, is dedicated to the removal of the remaining thin clouds and cloud shadows. Similar results as those obtained for L8-OLI have been obtained in terms of water pixel extraction, as demonstrated by the complex image of an aquaculture area in the Huangmao river estuary in China (Fig. 20) or over the Tonle Sap in Cambodia (Fig. 21). It is worth to notice that, thanks to the high spatial resolution of MSI, fish cages present in the Huangmao river estuary illustration map are well detected and not mixed with water pixels (Fig. 20d).

Remote sensing is a major observation tool for estimating surface water areas for many environmental and economical applications (aquaculture, flooding survey, water management, etc). In addition to this quantification aspect of surface water bodies, the detection of water pixels from remote sensing observations is an essential and critical step before the application of adapted algorithms aiming at estimating parameters describing the biogeochemical status of surface water bodies from space. A new algorithm (referred as WiPE) has been developed to assess water pixels from L8-OLI, and has been adapted for the MSI sensor. Unlike existing algorithm, WiPE is based on the Rayleigh-corrected reflectance, ρrc(λ), which makes it more sensitive to the spectral signature of the different objects considered: clouds, thin clouds, cloud shadow, vegetation, barren land, construction, and water. In contrast to other approaches, such as Fmask, the present algorithm is not able to distinguish the different considered objects individually, but rather to extract water pixels from other pixels. For that purpose, this algorithm consists of two main steps. First, clouds, thin clouds over land, cloud shadow over land, vegetation, barren land, and construction are removed based on a spectral shape analysis of ρrc(λ).

Second, the Rayleigh-corrected reflectance spectra are transferred into the HSV color space to improve the distinction between water pixels and thin cloud and shadow pixels over water areas not affected by sun glint. This second step is based on the contrast of the whole image, and does not require any knowledge on the position and altitude of clouds. The present algorithm generally shows very good performance for the detection of water pixels over complex aquatic environments, especially in very turbid areas where the maximum of ρrc(λ) is observed in the near-infrared. The main limitation of the approach is for the detection of cloud shadow over blue to green waters where a confusion between cloud shadow pixels and water pixels may occur. As WiPE does not make any assumption on the presence/absence of clouds and then on the potential location of areas affected by cloud shadow, future improvement of the method could account for the proximity of clouds.