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 16 

Abstract: Identification of water pixels over natural water bodies is a prerequisite step prior to applying 17 

algorithms dedicated to the estimation of bio-optical properties of surface waters from remote sensing 18 

observations. For visible remote sensing sensors, clouds affect the quantity and quality of the 19 

observations, directly by hiding part of the scene and indirectly by their shadows. A certain level of 20 

confusion could occur for detection of clouds over turbid (i.e. bright) waters and for detection of their 21 

shadows over any kind of surface water. Some algorithms exist but their performance is not satisfactory, 22 

especially over turbid waters where cloud-free pixels are sometimes classified as cloud or land, leading 23 

to a loss of data. This is particularly important for medium spatial resolution observations such as those 24 

performed by the Operational Land Imager (OLI) sensor on Landsat-8 or the Multispectral Instrument 25 

(MSI) on Sentinel-2 (a and b). In the frame of this study, we developed a two-step algorithm for the 26 
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extraction of water pixels (referred to as WiPE) for these medium spatial resolution sensors. In contrast 27 

to other approaches based on the top of atmosphere (TOA) reflectance, this algorithm uses the Rayleigh-28 

corrected TOA reflectance (ρrc(λ)) as input parameter allowing the spectral signature of each object to 29 

be better characterized. The first step, based on the ρrc(λ) spectral shape analysis of each object, allows 30 

water pixels to be discriminated from cloud, vegetation, barren land, and constructions pixels. The second 31 

step, in which the ρrc(λ) spectra are transferred into the Hue-Saturation-Value space, greatly improves 32 

the detection of cloud shadow over waters.  This second step, based on the processing of the whole image, 33 

does not require any knowledge on the location and altitude of clouds. Thin clouds are identified during 34 

the two steps of the algorithm. This algorithm has been successfully tested over a broad range of 35 

environments. WiPE, specifically designed for the extraction of water pixels, generally shows better 36 

performance over turbid waters than the standard algorithm developed for Landsat imagery (Fmask). 37 

This is explained by the fact that Fmask does not specifically focus on the detection of water pixels, but 38 

on the masking of cloud, cloud shadow, and snow over land and water.  39 

 40 

Key word: Medium Spatial Resolution Sensors, coastal and inland waters, water pixel extraction, cloud 41 

mask. 42 

1. Introduction 43 

 Landsat-8, launched on February 11st 2013, carries the Operational Land Imager (OLI) and the 44 

Thermal InfraRed Sensor (TIRS). L8-OLI (Table 1) has four spectral bands in the visible, four in the 45 

near infrared, and one panchromatic band, while TIRS collects signal within two thermal infrared bands. 46 

Recent studies have demonstrated the potential of L8-OLI for ocean color related applications where its 47 

medium-spatial resolution (30 m) provides new insights for a better understanding of processes occurring 48 

in coastal waters (Pahlevan and Schott, 2013; Vanhellemont and Ruddick, 2014). Atmospheric correction 49 

algorithms have been developed to retrieve the remote sensing reflectance (Rrs(λ), where λ is the 50 
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wavelength in nm), from the top of atmosphere (TOA) radiometric signal measured by OLI (Franz et al., 51 

2015; Pahlevan et al., 2017).  52 

 53 

Table 1. S2-MSI and L8-OLI spectral bands and spatial resolutions 54 

 55 

Sentinel-2 Landsat-8 

Band Wavelength 

(nm) 

Spatial 

Resolution (m) 

Band Wavelength 

(nm) 

Spatial 

Resolution (m) 

1 421 - 457 60 1 433 - 453 30 

2 439 - 535 10 2 450 - 515 30 

3 537 - 582 10 3 525 - 600 30 

4 646 - 685 10 4 630 - 680 30 

5 694 - 714 20    

6 731 - 749 20    

7 768 - 796 20    

8 767 - 908 10    

8A 848 - 881 20 5 845 - 885 30 

9 931 - 958 60    

10 1338 - 1414 60 9 1360 - 1390 30 

11 1539 - 1681 20 6 1560 - 1660 30 

12 2072 - 2312 20 7 2100 - 2300 30 

 56 

 57 

 58 

 Due to the increased radiometric sensitivity from 8-bit to 16-bit data in comparison with the 59 

previous Landsat sensors series, the assessment of in water parameters, such as the suspended particulate 60 

matter concentration (SPM), the Secchi-disk depth,  and the colored dissolved organic matter (CDOM),  61 

from Rrs(λ) is now possible, mainly from empirical and regional approaches, with a relatively good 62 

accuracy over coastal waters (Vanhellemont and Ruddick, 2014; Concha and Schott, 2016; Kutser et al., 63 

2016; Lymburner et al., 2016; Lee et al., 2016; Urbanski et al., 2016; Slonecker et al., 2016; Li et al., 64 

2017). A challenge, however, still remains to automatically detect water pixels over which these different 65 
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atmospheric and bio-optical algorithms can finally be applied. Cloud and cloud shadow should indeed 66 

be correctly detected, which is still rather challenging over coastal and inland waters, bodies that are 67 

generally turbid. An over-masking procedure results in a loss of water-pixels, while an under-masking 68 

procedure results in a wrong assessment of the remote sensing reflectances and their associated in-water 69 

components. 70 

 Numerous algorithms have been developed to detect and extract surface water from remote 71 

sensing technology for about four decades. For example, the Normalized Difference Vegetation Index 72 

(NDVI) (Rouse et al., 1973), based on the red and near-infrared bands, has been used to distinguish land 73 

cover from clear to slightly turbid water surface (Vermote & Saleous, 2007 ; Jawak et al., 2015). To 74 

specifically identify water pixels, the Normalized Difference Water Index (NDWI), based on the 75 

difference between reflectance in the green band, which is greatly impacted by water surface, and the 76 

one in the NIR band, has been introduced by McFeeters (1996). However, this very widely used index, 77 

cannot efficiently suppress the signal from built-up land and water. Combination of this index with a 78 

Geographic Information System (McFeeters, 2013), or modification of this index (MNDWI) by 79 

substituting the medium infrared band for the near infrared band (Xue, 2006) have therefore been 80 

proposed to improve the detection of water surface in environments with complex signal background.  81 

The application of all the latter approaches require manually defined threshold values depending on the 82 

study area, which may not be adequate for automatically detecting of water surface pixels whatever the 83 

considered environment. Because of its relatively good performance, as well as its full automation, the 84 

Fmask (Function of mask) algorithm is commonly used for masking cloud, cloud shadow, and snow in 85 

Landsat images (Zhu and Woodcock, 2012). This algorithm is based on predefined thresholds of TOA 86 

reflectance values at specific bands, cloud probability calculation, brightness temperature (BT) analysis, 87 

NDVI, and normalized difference snow index (NDSI), for many different objects (land, water, cloud 88 

shadow, snow, and cloud).  Despite the recent improvements of Fmask (Zhu et al., 2015), which take 89 

advantage of the new cirrus band for Landsat 8, and which use a dynamic threshold instead of a fixed 90 
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one for cloud detection over water, some wrong identifications of water pixels, as those presented in the 91 

present study, still remain, especially over turbid waters (see section 4). This is explained by the fact that 92 

Fmask does not specifically focus on the detection of water pixels, but on the masking of cloud, cloud 93 

shadow, and snow over land and water. In contrast to Fmask, the present study specifically aims at 94 

detecting water pixels of inland and coastal waters, and does not specifically focus on the individual 95 

identification of each considered object.  Because of the high contribution of the Rayleigh component to 96 

the TOA signal, its contribution should first be removed for a better characterization of the spectral shape 97 

of the reflectance over each object (Nordkvist et al., 2009). For these reasons, the present algorithm, 98 

referred to as WiPE in the text (for Water Pixel Extraction), uses the Rayleigh- corrected top of 99 

atmosphere reflectance spectra (ρrc(λ)) as input parameters. WiPE is based on the combination of spectral 100 

criteria applied to ρrc(λ) to mainly discriminate water pixels from land, clouds and vegetation pixels, and 101 

on the application of a Hue-Saturation-Value or Brightness, HSV, analysis to optimize the detection of 102 

thin clouds and cloud shadow pixels over water areas.  103 

 The database of L8-OLI and S2-MSI images collected over contrasted coastal and inland water 104 

areas, and dedicated to the development and validation of the algorithm, is first presented. The new 105 

algorithm is then described for L8-OLI. Finally, WiPE is evaluated from an independent validation 106 

database, and the results are compared with those obtained by Fmask. While the present algorithm is 107 

fully described for the OLI sensor, the same methodology is applied to MSI on Sentinel-2a (launched on 108 

23 June 2015) which present some slight differences in terms of spectral bands and spatial resolutions 109 

(Table 1).  The adaptation of WiPE on S2-MSI is discussed at the end of the paper from illustration 110 

examples. This adaptation, performed for S2a-MSI, can fully be applied on S2b-MSI, as the spectral 111 

bands of S2a-MS1 and S2b-MSI only differ by about less than one nanometer in the visible and NIR 112 

spectral domains. 113 

2. Development and validation data sets 114 
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2.1 General description of the satellite data sets 115 

Level-1 of Landsat-8 TOA reflectance and Brightness Temperature (BT) have been downloaded 116 

from USGS (https://landsat.usgs.gov/) over different geographical locations covering contrasted 117 

atmospheric and environmental conditions (Fig. 1). The whole dataset has been split into two different 118 

sub-groups. The first group, gathers 196,738 independent pixels (with 164,681 water pixels) extracted 119 

from 32 different scenes, is used for algorithm development.  The second one is composed by 12 different 120 

scenes for independent testing and validation of the algorithm. The mean and standard deviation values 121 

of the sun zenith angle for the development and validation data sets are 28.3°±9.2° and 34.4°±10.1°, 122 

respectively. The percentage of cloud cover in the images used for the development and validation data 123 

sets are 0.92±14.7 % and 24.6±16.6 %, respectively. The cloud cover is much higher for the validation 124 

data set to be able to test the algorithms over a variety of cloud types.    125 

The top of atmosphere (ρTOA(λ)),  as well as the Rayleigh-corrected (ρrc(λ)) reflectances are 126 

provided over each considered object, which are water, cloud, thin cloud, cloud shadow, construction, 127 

barren land, and vegetation. BT, one of the input parameters in Fmask, is also provided over each pixel 128 

of each validation scene for the inter-comparison exercise. This dataset covers various bio-optical aquatic 129 

environments such as river outlets characterized by brown waters characterized by high (Mekong river 130 

delta, Amazon estuary, Rio de la Plata estuary, Gulf of Khambhat) to moderate (south of Hudson bay) 131 

suspended sediment loads, green coastal waters with a high concentration of phytoplankton (aquaculture 132 

areas in Chinese coastal waters, Halong bay, phytoplankton blooms in Vietnam coastal waters, and in 133 

the Liguria sea), and blue offshore waters of the Mediterranean Sea. Water pixels for the development 134 

data set have only been selected in coastal and offshore waters to limit mixed water/land situations 135 

typically found in inland waters. These different locations have been chosen in order to cover a wide 136 

range of water types based on our current knowledge of these specific areas, and on a visual examination 137 

of Rayleigh corrected images. This broad range of aquatic environments is reflected in the large 138 
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variability of the Rayleigh-corrected reflectance spectra, ρrc(λ), extracted over water pixels (Fig. 2). The 139 

amplitude and spectral position of the maximum of ρrc(λ), mainly driven by the bio-optical properties of 140 

the water body span over a large range of values. For instance, the maximum of ρrc(λ) is observed at 141 

band 1, 2, 3, 4, and 5 for 2.3%, 22.9%, 45.4%, 26.6%, and 2.8% of the water pixels used in the 142 

development data set (Fig. 2), respectively. This spectral shift reflects a change in the turbidity level, as 143 

the maximum of water remote sensing reflectance is observed in the blue and near-infrared for clear and 144 

very turbid waters, respectively (Han et al., 2016).  145 

 146 

 147 

Fig. 1. Location of L8-OLI images used for the development (red dots, 32 different scenes) and validation 148 

(blue dots, 12 different scenes) steps of the algorithm.  149 

 150 
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 151 

Fig. 2. Mean and standard deviation of ρrc(λ) spectra over the 164,681 selected water pixels of the 152 

developing data set for L8-OLI. 153 

 154 

In contrast to L8-OLI where each visible and NIR spectral channels used in WiPE have the same 155 

spatial resolution (i.e. 30 m), the MSI-S2 relevant channels present some discrepancies in terms of spatial 156 

resolution (Table 1). Following the two steps approach developed for L8-OLI, WiPE is adapted to S2-157 

MSI based on a development data set of 65 S2-MSI images collected from 158 

https://scihub.copernicus.eu/dhus in contrasted aquatic environments (European, South America, 159 

Vietnam, and China coastal waters). Considering the similar performance of WiPE on S2-MSI and L8-160 

OLI images (not shown here), and because the validation of WiPE is deeply examined for OLI in the 161 

present paper, we will only discuss the performance of WiPE for S2-MSI observations on two 162 

representative examples, the Huangmao river estuary (China) and the Tonle Sap lake (Cambodia). We 163 

will specifically focus on the impact of the MSI per-channel spatial resolution variation.  164 

 165 

2.2. The Rayleigh correction procedure 166 
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In order to better characterize the spectral signature of the different selected objects, the signal 167 

due to air molecules, which contributes to a large part of ρTOA(λ),  should be removed. The TOA 168 

reflectance, ρTOA(λ), can be developed as follows (Gordon, 1997): 169 

������� = �	��� + ����� + �	���� + �������� + ���������� + ��������� (1) 170 

where ρR(λ) is the reflectance due to multiple scattering of a purely air molecules atmosphere, ρa(λ) is 171 

the reflectance of multiple scattering by aerosols in a pure aerosol atmosphere, and ρRa(λ) stands for the 172 

interaction term in a real atmosphere containing both molecules and aerosols. T(λ) and t(λ) are the direct 173 

and diffuse transmittances of the atmosphere, respectively. ρg(λ), ρwc(λ), and ρw(λ) are the reflectances 174 

due to sun glint, whitecaps, and in-water optically significant components, respectively.  The sunglint 175 

and whitecaps reflectances are related to wind speed and geometry (Wang and Bailey, 2001).  176 

 The pixel value recorded by L8-OLI at the top of the atmosphere is a digital number, from which 177 

the TOA radiance, LTOA(λ), and reflectance, ρTOA(λ), are calculated through Eq.(2) and Eq.(3), 178 

respectively (Vanhellemont and Ruddick, 2014). 179 

������� = ������������ + �����      (2) 180 

������� = ����������
������ !�"#�       (3) 181 

where LTOA(λ) is the spectral radiance (in W m-2 sr-1 μm-1), ML(λ) the radiance multiplicative scaling 182 

factor (i.e. gain) for each band, Qcal(λ) the Level-1 pixel value in digital number, and AL(λ) is the radiance 183 

additive scaling factor (i. e. offset) for each band. d, F0, and θ0 are the Earth-Sun distance in Astronomical 184 

Units, the band average solar irradiance, and the sun zenith angle, respectively.  185 

The reflectance due to Rayleigh scattering in a purely molecular atmosphere, �	���, is given by the 186 

following equation (Gordon et al., 1988; Wang and King, 1997): 187 
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�	��� = $	���%	�&��4()*+�()*+,�-.     (4) 188 

where τR(λ) is the Rayleigh scattering optical thickness, pR(&) the Rayleigh scattering phase function at 189 

a scattering angle, &,  θv the viewing zenith angle, and θ0 the sun viewing angle. The optical thickness at 190 

the atmospheric pressure P is calculated as follows: 191 

$	��� = 0
0#

$	����        (5) 192 

where τR0(λ) is the optical thickness at the standard atmospheric pressure P0 of 1013.25 mbar. 193 

The Rayleigh scattering phase function pR(&) is defined as: 194 

%	�&� = 1	�&-� + 34�+,� + 4�+��51	�&+�     (6) 195 

The term involving & - provides the contribution due to photons which are backscattered from the 196 

atmosphere without interacting with the sea surface. The term involving &+ accounts for photons which 197 

are scattered in the atmosphere toward to the sea surface. These terms are computed from sun-sensor 198 

geometry as: 199 

()*�&±� = ±()*�+��()*�+,� − *89�+��*89�+,�()*|;� − ;,|  (7) 200 

with ;�and ;,are sun and sensor azimuth angles. r(θ) is the Fresnel reflectance for air-incident rays at 201 

incidence angle θ. The Rayleigh scattering phase function 1	�&�for scattering angle &, and the Fresnel 202 

reflectance r(θ) for air-incident rays at an incidence angle θ are calculated as follows: 203 

1	�&� = <
= >1 + ()*@�&�A       (8) 204 

4�+� = 0.5 E!FG��"-"H�
!FG��"I"H� + J�G��"-"H�

J�G��"I"H�K      (9) 205 

+J = *89-.>9�*89�+�A       (10) 206 
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The Rayleigh-corrected reflectance is defined in Eq.(11) as: 207 

�L���� = ������� − �	��� = ����� + �	���� + �������� + ���������� + ��������� (11) 208 

Rayleigh scattering generally contributes about 80% to 90% of the TOA reflectance in the blue part of 209 

the spectrum from clear to turbid waters, respectively (Gordon et al., 1988; IOCCG, 2010). 210 

2. 3. Spectral database for each selected object 211 

 Classified objects are manually selected on Rayleigh-corrected color image composites. 212 

Polygons are drawn over homogenous areas of the considered objects, and pixels are counted using the 213 

QGIS software. Mixed situations are manually disregarded, except those specifically considered here as 214 

cloud shadows and thin clouds over land and water.  All TOA reflectance and Rayleigh-corrected spectra 215 

are stored for each of the following objects: clouds over land and water (664 pixels), thin clouds over 216 

land and water (9493 pixels), shadows over land and water (13,582 pixels), water (164,681 pixels), 217 

vegetation (4817 pixels), barren land (2103 pixels), and constructions (1398 pixels). The whole database 218 

of the ρrc(λ) spectra over the six non-water selected objects is provided in Fig. 3. Similarly to the water 219 

pixels (Fig. 2), each of the previous object is characterized by a large range of variability of ρrc(λ) spectra, 220 

as shown by the large standard deviations observed around each mean spectrum. Based on this latter 221 

pattern, we can assume that the database covers a broad range of situations for each object, which makes 222 

it quite suitable for the algorithm development phase. 223 

 224 



12 of 46 

 225 

Fig. 3. Mean and standard deviation of ρrc(λ) spectra collected by L8-OLI over (a) barren land, (b) 226 

construction, (c) clouds over land and water, (d) vegetation, (e) thin clouds over land and water, and (f) 227 

cloud shadows over land and water. 228 

 229 
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The benefit of using ρrc(λ) instead of ρTOA(λ) to detect water pixels is illustrated in Fig. 4, where 230 

typical spectra over water bodies are displayed. From clear (Fig. 4a) to very turbid waters (Fig. 4d) the 231 

spectral shape (as well as the amplitude) of ρrc(λ) significantly differs from one water type to another. 232 

These latter spectral shape differences are less pronounced for ρTOA(λ), especially between clear (Fig. 233 

4a) and green water (Fig. 4b). 234 

 235 

Fig. 4. Different ρrc(λ) and ρTOA(λ) spectra collected by L8-OLI over (a) blue (i.e. clear) (b) green, (c) 236 

turbid, and (d) very turbid water areas.  237 

 238 

3. Development of the new algorithm (referred to as WiPE) 239 

3. 1. General approach 240 

While the average ρrc(λ) spectra for the different identified objects present significant differences 241 

in terms of spectral shape and amplitude, the associated large standard deviation values (Fig. 3) also 242 

stress a potential overlap between them. This patterns has oriented the development of the algorithm 243 
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through the use of a clustering approach developed in different spaces generated by the combination of 244 

ρrc(λ) (or ρrc(λ) ratios) spectral values (first step of the algorithm), or by the combination of  ρrc(λ), V, 245 

and S values of the HSV transformation (second step of the algorithm).  246 

Typical examples of ρrc(λ) spectra, which allow the understanding of the different spectral criteria 247 

adopted in WiPE, are displayed over the six non-water objects in Fig. 5. With a relatively sharp increase 248 

of ρrc(λ) from band 1 (blue) to band 5 (near infrared), the barren land (Fig. 5a) and construction spectra 249 

(Fig. 5b) significantly differ from other objects. This spectral shape, combined with the high peaks in 250 

bands 5 (near infrared) and 6 (short wave infrared), allow barren land (Fig. 5a), and construction (Fig. 251 

5b) to be distinguished from the other objects.  In the same way, the sharp increase of ρrc(λ) observed 252 

between bands 4 and 5 for vegetation pixels (Fig. 5d) is a remarkable identification pattern of the 253 

corresponding pixels. Further, the relatively flat ρrc(λ) spectral shape, associated with a high level of 254 

signal in the blue-red part of the spectrum, allow clouds to be relatively well identified from other objects 255 

(Fig. 5c). Based on these observations, criteria have been developed on the spectral shape and amplitude 256 

of ρrc(λ) spectra in order to distinguish water pixels from land (vegetation, barren land, and construction) 257 

and clouds over water. The application of these different spectral criteria represents the first step of the 258 

algorithm (Fig. 6). In contrast to the previous objects, the ρrc(λ) spectra over thin cloud (Fig. 5e) and 259 

shadow (Fig. 5f) pixels may strongly be modified by the spectra of the overlaid water pixels which makes 260 

the identification of these two objects over water areas very challenging from spectral shape analysis as 261 

performed in the first step of the algorithm. For that purpose, the second step of the algorithm is based 262 

on a multispectral colorimetric method, i. e., HSV transformation, which allows a better identification of 263 

water pixels in these difficult configurations (Fig. 6).  264 

 265 
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 266 

Fig. 5. Examples of ρrc(λ) spectra collected by L8-OLI over the following non-water objects:(a) barren 267 

land, (b) construction, (c) clouds over water, (d) vegetation, (e) thin clouds over green water, and (f) 268 

clouds shadow over clear water.  269 

3.2. First step of the algorithm: the spectral shape analysis 270 

 Spectral shapes and amplitude of ρrc(λ) spectra over all objects are used for the algorithm 271 

development. Some objects with specific ρrc(λ) spectral signature will be masked in the first step (Fig. 272 

6). This is the case of vegetation, barren land, construction, clouds, and shadow over land that will be 273 

removed based on some different combinations of ρrc(λ) band ratios. Standard indexes, as those presented 274 
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in the introduction (e.g. NDWI; MNDWI), have also been tested but they did not provide any better 275 

results compared to those selected for step 1. The different equations and threshold values used in the 276 

two steps of the WiPE algorithm and presented in the flowchart (Fig. 6), have been empirically defined 277 

from visual examination of the data points in the different considered (x; y) spaces (Fig. 7). 278 

 279 

Fig. 6. The logic flow of the water extraction pixel algorithm based on the combination of spectral shape 280 

analysis (step 1) and HSV analysis (step 2) for the L8-OLI sensor. This flowchart requires the Rayleigh 281 

corrected reflectance (Eq.11) at bands 1, 2, 3, 4, 5, 6, and 7 as input parameters.  282 
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 283 

Fig. 7. (left panels) Scatter plots of ρrc(λ) as a function of ρrc(λ) band ratios for the seven different objects 284 

of the development data set. The black line corresponds to the limit adopted to remove (a) vegetation 285 

(step 1.1), (c) clouds, construction, and barren land (step 1.2), and (e) cloud shadow over land pixels 286 

(step 1.3). Each color corresponds to a different object as indicated. The number of pixels before (panels 287 
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a, c, and e) and after (panels b, d, and f) the application of each criterion adopted in steps 1.1, 1.2, and 288 

1.3 are provided in each panel.  289 

 290 

Because of their very specific spectral signatures in the NIR domain (Figure 5d), vegetation pixels 291 

are the first to be removed (step 1.1 in Fig. 6). Pixels with near infrared to red ratio value, ρrc(5)/ρrc(4), 292 

greater than 1.53 are identified as vegetation in the (ρrc(5)/ρrc(4); ρrc(1)) space (Fig. 7a). This threshold 293 

value, manually fixed based on the examination of the data points in the (ρrc(5)/ρrc(4); ρrc(1)) space, 294 

allows vegetation pixels to be remarkably well separated from water pixels (Fig. 7b), avoiding the mixing 295 

of water and vegetation pixels even over very challenging situations such as inland productive waters. In 296 

addition to removing the totality of the vegetation pixels, the application of this ratio also removed many 297 

pixels from other objects, such as barren land (86%), thin clouds (7%) and almost all shadow pixels over 298 

land (Fig. 7b). Clouds over land and water pixels present the highest Rayleigh-corrected reflectance in 299 

almost every bands (Fig. 5c), but because of the high range of variability observed at each band, cloud 300 

pixels may be difficult to distinguish from barren land (Fig. 5a) and construction (Fig. 5b) pixels which 301 

present relatively similar spectral shape. For this reason, cloud over water and land, barren land, and 302 

construction pixels are removed simultaneously at the step 1.2, using a combination of ρrc(1) and 303 

ρrc(7)/ρrc(3) (see step 1.2 in Fig. 6). When ρrc(1) is higher than -0.09*ρrc(7)/ρrc(3) + 0.11 the pixel is 304 

rejected (Fig. 7c). By pulling cloud, barren land, and construction all together, this test will not allow for 305 

a specific identification of these three different objects. However, that specific identification of non-water 306 

objects is not the objective of the present method, which is only dedicated to the extraction of free water 307 

pixels. Interestingly, this test also removed almost all thin clouds (Fig. 7d) over land and waters (98.9%). 308 

The remaining thin-cloud pixels (1.1%) after the application of this first step are only found over water 309 

pixels (Fig. 7d).  310 
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Shadow pixels are by essence difficult to remove, due to their relatively low reflectance value 311 

and the strong impact of the spectral shape of the overlaid object. Based on the development database, 312 

identified shadow pixels over land present a minimum ρrc(2) value, while almost all land objects have 313 

ρrc(6) > ρrc(2). For that purpose the ρrc(6)/ρrc(2) ratio, which presents a large range of variability, is 314 

plotted against ρrc(1), for which shadow pixels over land show the lowest variability compared to other 315 

bands (Fig. 5f). Based on these observations, pixels with ρrc(1) higher than -0.14*ρrc(6)/ρrc(2) + 0.16 are 316 

rejected (Fig.7e). The application of this criterion allows one to remove the remaining shadow pixels 317 

over land that were still present after step 1.1. Only shadow pixels over water remain (the black dots in 318 

Fig. 7f). Shadow pixels over water or land can be distinguished from one another, because, while the 319 

ρrc(λ) signal over these two different objects is undoubtedly attenuated by clouds shadow, the marked 320 

differences in their spectral shapes are still noticeable, allowing the differentiation between shadow over 321 

land and shadow over water. The performance of the spectral shape analysis procedure is illustrated over 322 

a very complex aquaculture area at Rio Guayas in Ecuador where water and vegetation areas are 323 

especially difficult to distinguish from one another on the Red-Green-Blue (RGB) composite (Fig. 8a). 324 

Distinction between waters and vegetation/land/clouds pixels is very well performed. This has been 325 

confirmed by a visual examination of images provided on google earth allowing a distinct identification 326 

of aquaculture farms. However, while cloud shadows over land are appropriately masked, cloud shadows 327 

areas over water (red circles in Fig. 8a) are misleadingly identified as water. 328 

 329 
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 330 

Fig. 8. (a) RGB image collected by L8-OLI over an aquaculture area at Rio Guayas in Ecuador 331 

(17/05/2015). (b) water pixel extraction (in blue) showing the performance of the spectral shape analysis 332 

(first step) to distinguish vegetation/cloud/land and water pixels in such challenging environment. At this 333 

stage (step 1), pixels with shadow over water are still not removed and are falsely identified as water (see 334 

red circles).  335 

 336 

3.3. Second step of the algorithm: the HSV approach 337 

 Based on the spectral shape analysis developed in the first step of the algorithm, cloud over land 338 

and water, shadow over land, vegetation, barren land, and construction pixels are remarkably well 339 

removed. At this stage, only water pixels, thin clouds and shadow over water pixels remain. Cloud 340 

shadow pixels over water may therefore falsely be considered as water (Fig. 8). The significant 341 

differences observed in the ρrc(λ) spectral shape over turbid (Fig. 9a), green (Fig. 9c), and clear (Fig. 9e) 342 

waters fade away in presence of shadow (Fig. 9b, d, and f). For this reason, Rayleigh-corrected 343 

reflectance spectra are transferred into the HSV color space which uses Hue, Saturation, and Value for 344 

color representation. In contrast to the standard RGB color space, where the color information and its 345 

intensity are generally mixed, the HSV color space is better adapted for image analysis and segmentation 346 
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(Smith, 1978; Ganesan et al., 2014). For instance, this color transformation, based on a mechanism of 347 

human model, has facilitated the extraction of water pixels over land (Pekel et al., 2014; Singh et al., 348 

2016), and the correction of thin clouds which have high brightness, low saturation, and contrast (Pratt 349 

et al., 2001; Shen et al., 2015).  350 

 351 

 352 

Fig. 9. Left panels - ρrc(λ) spectra collected by L8-OLI  over (a) turbid water, (c) green water, and (e) 353 

blue water. Right panels - ρrc(λ) spectra for shadow pixels over (b) turbid water, (d) green water, and (f) 354 

blue water. 355 

 356 

Hue is the angular component and indicates the color relative to the wavelength. The Hue 357 

component values, H, range between 0° to 360°, and represents the Hue of red (from 0° to 60°), yellow 358 
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(from 60° 120°), green (120° to 180°), etc. The Saturation component, S, is determined by the 359 

combination of light intensity and how much it is distributed across the spectrum. It describes how white 360 

the color is (a white object has a S value of 0). For instance, a pure green is fully saturated, with a 361 

saturation of 1 while tints of green have saturations less than 1. At last, the Value component, V, describes 362 

the intensity (or brightness) of the color of a considered pixel for a given image. In contrast to H, both S 363 

and V values are between 0 and 1. Because the Hue of the ground object is relatively invariant in presence 364 

of thin clouds (Shen et al., 2015), only the value, V, and saturation, S, will be taken into account in the 365 

present algorithm. The S and V values of the Rayleigh-corrected spectra are calculated as follows:  366 

M = �NOPQ-NORS�
NOPQ

      (12) 367 

with Vmax and Vmin defined as: 368 

TU�V = WXY Z [\]�=�
U�V>[\]�=�A , [\]�<�

U�V>[\]�<�A , [\]�@�
U�V>[\]�@�A^  (13) 369 

TUFG = W89 Z [\]�=�
U�V>[\]�=�A , [\]�<�

U�V>[\]�<�A , [\]�@�
U�V>[\]�@�A^  (14) 370 

 where max �L� �8� represents the maximum value of �L��8� observed over the whole image for 371 

the band i. Depending on the spectral band where Vmax is obtained, different criteria involving Vmax and 372 

S are applied to extract shadow as well as thin cloud pixels over water (Fig. 6). Importantly, in contrast 373 

with the first step which is a pixel per pixel approach, the maximum values are here assessed over the 374 

whole scene. Figure 10 shows the remaining pixels identified in Figure 7f and transferred into HSV space 375 

for the three possible values of Vmax: when Vmax is observed in the red (Fig. 10a,b), green (Fig. 10c, d), 376 

and blue (Fig. 10e, f). The sum of the water, thin clouds, and shadow pixels observed in Fig 10a, c, and 377 

e is equal to the number of water, thin clouds, and shadow pixels at the end of step 1 (Fig. 7f).  When 378 

Vmax is reached at band 4 (red) (Fig. 10 a, b), shadow pixels and thin clouds are removed if ρrc(1) is 379 

higher than -0.14*ρrc(6)/ρrc(2) + 0.16. This condition allows 69% of the shadow pixels over turbid waters, 380 

and 50% of the few remaining thin clouds to be removed. The remaining shadow pixels are observed in 381 
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a restricted area of the V(ρrc(4)) vs. ρrc (4)/ρrc (2) space (Fig. 10b) where there is a risk of confusion. A 382 

flag, indicating the potential presence of cloud shadows over water pixels, can be raised when the pixel 383 

belongs to this restricted space. When Vmax is reached at band 3 (green) (Fig. 10 c, d) or 2 (blue) (Fig. 10 384 

e, f), shadow pixels and thin clouds are removed after the application of three or seven complementary 385 

criteria as defined in Fig. 6, respectively. In contrast to turbid waters, where the maximum of ρrc is 386 

generally observed in the red, extraction of shadow pixels over green and blue waters is more challenging. 387 

For instance, only 40% and 30% of shadow pixels over green and blue waters have been removed by the 388 

HSV approach, respectively. However, these relatively clear water pixels are located in relatively 389 

offshore waters, especially the blue ones, for which the signal over noise ratio of OLI prevents the 390 

exploitation of this signal for bio-optical applications. The full processing (i. e. step 1 + step 2) of the 391 

image collected over a complex aquaculture area discussed previously (Fig. 8), and not used in the 392 

development data set, is now provided in Fig. 11. Cloud shadow pixels, falsely identified as water pixels 393 

after the application of the spectral shape analysis (Fig. 11a), are now well classified at the second step 394 

of the algorithm (Fig. 11b). 395 

 396 
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 397 

Fig. 10. Scatter plots of the Value component as a function of the Saturation component in the red (panels 398 

a and b), green (panels c and d), and blue (panels e and f) for the water (blue dots) and shadow pixels 399 

above water (black dots). The number of pixels before (panels a, c, and e) and after (panels b, d, and f) 400 

the application of each criterion adopted in steps 2.1, 2.2, and 2.3 are provided in each panel.  401 
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 402 

 403 

Fig. 11. (a) Water pixel extraction (in blue) after the application of the first step of the algorithm over 404 

the aquaculture area at Rio Guayas presented in Fig. 8. (b) as (a) but after the application of the second 405 

step of the algorithm showing the identification of the cloud shadow pixels over water. See Fig. 8 for the 406 

RGB image. 407 

 408 

4. Application of WiPE to OLI and comparison with Fmask over contrasted water bodies 409 

 410 

 The WiPE algorithm is based on the use of spectral relationships empirically established on a 411 

given development data set, and cannot, by essence, account adequately for all situations encountered, 412 

especially for mixed situations (i. e. flooded land, clouds and clouds shadow boundaries, bottom albedo 413 

in very clear shallow waters, mountain areas, etc). For example, the spectral shape of �4(��� over water 414 

pixels can also be affected by the bottom albedo in very clear shallow waters, especially in the blue and 415 

green parts of the spectrum. While the differentiation between cloud (or land) and water pixels should 416 

not be affected by the bottom albedo due to the relatively low water reflectance compared to the cloud 417 
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(or land) reflectances, this may represent an issue for masking shadow and thin clouds pixels over water. 418 

This issue can only be addressed by adding a flag cautioning for potential confusion in the processing 419 

scheme for clear and very shallow aquatic environment. Adjacency effects may also be another source 420 

of uncertainty in the border areas between different objects. The detection of water pixels in mountain 421 

areas is also very challenging, due to numerous shadow areas and adjacency effects. The application of 422 

WiPE to a complex mountain area in the North West of China shows however that water pixels are still 423 

well identified in such complex environment (Fig. 12). 424 

 425 

 426 



27 of 46 

 427 

Fig. 12 (a) RGB image over a complex mountain area in the North West of China (15/08/2018). (b) 428 

Results of the WiPE algorithm with the detected water pixels appear in red. Each of the colored squares 429 

represent the two areas where water pixels have been detected. (c) RGB zoom on the region delimited 430 

by the yellow square. (d) Result of the WiPE algorithm on the region in (c). (e) and (f) as (c) and (d) but 431 

for the region delimited by the red square. 432 

 433 
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Being aware of these specific and complex situations, the performance and limitation of the WiPE 434 

algorithm are now addressed in details using the second data set gathering images collected by the OLI 435 

sensor over contrasted coastal and inland environments. For each selected image, a reference water pixels 436 

map (referred to as the reference WPM hereafter) was derived as follows. First the WiPE algorithm has 437 

been applied on the image. Then, based on a visual analysis of the image, polygons have been drawn 438 

using the QGIS software on the missing water pixels areas (P1) as well as on the areas where WiPE 439 

wrongly classify pixels as water pixels (P2). The reference WPM for each image is then generated using 440 

the results of WiPE corrected by adding (removing) water pixels from the P1 (P2) polygons. The Mean 441 

Absolute Percentage Difference (MAPD) is then calculated between the reference number of water pixels 442 

(WPM), and the number of water pixels generated by WiPE and Fmask (Table 2).  443 

.  444 

The evaluation of WiPE, and the inter-comparison with Fmask (version 3.3) have been performed 445 

over the whole validation data set (Table 2), but illustrations are only provided for some representative 446 

areas extracted from 6 different scenes and presenting a large range of complex situations (Fig. 13-18).  447 

For the 12 complete scenes used for the validation, the MAPD values range between 0.005 and 6% for 448 

WiPE. Over the six examined sub-scenes, the highest MAPD value of 11%  was related to the presence 449 

of thin clouds. The MAPD present higher values for Fmask than for WiPE, with a general tendency for 450 

Fmask to under-estimate the number of water pixels, mainly in the presence of turbid waters. Note that 451 

for three of the twelve tested scenes, Fmask does not provide any possible solution. Similarly to Fmask, 452 

the distinction between water pixels and clouds, as well as between vegetation/land/barren land and water 453 

pixels are generally well performed by WiPE (Figs. 13-17).  The main differences between the two 454 

algorithms are observed over very turbid waters (Figs. 13-14), cloud shadows over waters (Figs. 13, 15, 455 

16, 17), and complex coastal environments (Fig. 18). 456 

Table 2. Performance of the WiPE and Fmask algorithms on the validation data set. The number of water 457 

pixels identified by Fmask, WiPE, and “visual” interpretation (see text) are used to calculate the Mean 458 
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Absolute Percentage Difference (MAPD in %). The number are given for the whole 12 considered scenes, 459 

while the number between brackets are those obtained over the 6 different sub-scenes provided in Figs. 460 

13-18.  461 

Figure 

N° 

Fmask 

(water pixel) 

WiPE 

(water pixel) 

Visual 

interpretation 

MAPD_Fmask 

(%) 

MAPD_WiPE 

(%) 

Name: LC80110622015137LGN00 Location: Rio Guayas, Ecuador 

13 11,761,455 12,525,625 12,400,369 5.15 (7.8) 1.01 (0.005) 

Name: LC81180392015039LGN00 Location: Hangzhou Bay, China 

14 1,810,769 6,862,337 6,793,712 73.35 (87.74) 1.01 (0.006) 

Name: LC82330542015220LGN00 Location: Rio Grande, Venezuela 

15 4,181,740 4,287,095 4,244,224 1.47 (14) 1.01 (11) 

Name: LC80200242014261LGN00 Location: Moose River, Canada 

16 7,829,913 11,161,707 10,938,473 28.42 (24.6) 2.04 (0.04) 

Name: LC81360452015293LGN00 Location: Meghna River Estuary, Bangladesh 

17 25,151,428 25,330,607 25,254,615 0.41 (12.3) 0.30 (0.005) 

Name: LC81220442015291LGN00 Location: Zhujiang River, China 

18 4,824,260 4,247,824 4,162,868 15.89 (28.1) 2.04 (0.08) 

Name: LC81230512016045LGN00 Location: Center East Sea, Vietnam 

 NA 28813483 27949071 NA 3.09 

Name: LC81480452015153LGN00 Location: Gulf of Khambhat, India 

 1,872,122 5,436,606 5,408,972 65.39 0.51 

Name: LC82040522015305LGN00 Location: Geba River Estuary, Guinea-Bissau 

 12,859,652 16,041,540 15,602,484 17.58 2.81 

Name: LC82240842015061LGN00 Location: Rio de La Plata, Argentina-Uruguay 

 NA 11623842 12408451 NA 6.32 

Name: LC82250602014321LGN00 Location: Rio Amazonas, Brazil 

 3,094,867 5,073,280 4,933,148 37.26 2.84 

Name: LC81230522016045LGN00 Location: Center East Sea, Vietnam 

 NA 25,447,149 25,632,556 NA 0.72 

 462 

The image acquired over the Rio Guayas (Fig. 13) shows that while the two approaches provide 463 

relatively good results over most of the image (MAPD of 7.8% and 0.005% for Fmask and WiPE, 464 

respectively), only WiPE is able to extract very turbid water pixels as those encountered far from the 465 
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river mouth (red circle n°2 in Fig. 13). From the river mouth to the upper part of the river, the maximum 466 

value of the ρrc(λ) spectrum, driven by the water leaving signal, shifts from the green (Fig. 13e) to the 467 

near-infrared (Fig. 13f), a typical spectral behavior observed when the water turbidity increases (Han et 468 

al., 2016). This pattern is observed over different scenes where the ρrc(λ) spectra peak in the near-infrared, 469 

as the one provided in Fig. 14 showing part of the Hangzhou bay where the Qiantang river, characterized 470 

by high concentration of sediment, flows (Xie et al., 2013). For this specific image, almost all “true” 471 

water pixels are detected as land pixels by Fmask (MAPD = 87.7%), and few of them, probably partly 472 

due to the low temperature (5°C), as snow pixels (Fig. 14). In contrast, WiPE is able to identify properly 473 

water pixels over the whole scene (MAPD=0.006%). The areas where turbid water pixels are falsely 474 

identified as land by Fmask present a ρrc(λ) spectrum with a maximum in the near-infrared (Fig. 14f). 475 

The very few water pixels which are correctly detected by Fmask over this very turbid area are those for 476 

which the maximum ρrc(λ) values are reached in band 4 (see red circle n°1 in Fig. 14e) or band 3 as for 477 

the water pixels in the bottom left corner of Fig. 14g.  For low turbidity level, where the ρrc(λ) maximum 478 

values are not reached in the near-infrared (band 5), water pixels are generally well detected by the two 479 

different algorithms (Fig. 13, 15-18). As mentioned by Zhu and Woodcock (2012), the adopted threshold 480 

procedure for the detection of water bodies from Fmask works well for most water bodies but may fail 481 

over cold (compared to surrounding areas) and bright (i.e. turbid) pixels. For this reason, and in a similar 482 

way to the procedure applied for the detection of clouds in land areas, the last version of Fmask uses a 483 

dynamic threshold for detecting clouds in water areas (Zhu et al. 2015). While such dynamical approach 484 

provides better cloud detection over water areas (Zhu et al. 2015), the present study shows that detection 485 

of water pixels over very turbid waters, where the maximum ρrc(λ) value is observed at band 5, is still 486 

not satisfactory. The dynamic threshold procedure used in Fmask should then be adapted for such 487 

environments. 488 
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All images show that the detection of shadow pixels over water increases after the application of 489 

the HSV–space based criteria (i.e. the second step of WiPE). While some “true” shadow pixels are 490 

considered as water after the application of the first step of the algorithm (black circles in panels b of 491 

Figures 13, 14, 16, 17), they are correctly identified as shadow after the second step (black circles in 492 

panels c of Fig. 13, 14, 16, 17). The detection of thin clouds, especially over clear waters, seems to be 493 

slightly underestimated by WiPE (already discussed in section 3.2) and Fmask (see white circles Figure 494 

13). Cloud masking is usually well performed by the two different approaches. However, while the new 495 

approach tends to slightly under-estimate the cloud shadow areas in favor of water pixels, Fmask tends 496 

to over-estimate cloud shadow areas. Cloud shadow pixels which are classified as water by the new 497 

approach are those belonging to the confusing area in the V-S space (Fig. 10). An example of wrong 498 

shadow pixel identification by WiPE is provided in Fig. 15 (black circles). These pixels, which are 499 

characterized by a ρrc(λ) maximum in the red (channel 4), present V and S values around 0.12, and 0.26, 500 

respectively, and are therefore classify as belonging to the confusing space, for which a flag could be 501 

raised during the image processing. In the same way, Fmask, which provides relatively good estimates 502 

of cloud shadows, may falsely classify cloud shadows as water pixels, especially when the shadow area 503 

is located over land (Fig. 16) and barren land (Fig. 18). Over very complex areas such as the harbor area 504 

of the outlet of the Zhujiang river in China (Fig. 18) the new algorithm performs remarkably well. Fine 505 

structures like harbor protections in water are identified. Misclassification of construction as cloud by 506 

Fmask may also occur (the southern part of the image in Fig. 18), resulting in a detection of false shadow 507 

pixels over water areas. 508 
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 509 

Fig. 13. (a) RGB image over the Rio Guayas (Ecuador, 17/05/2015). Results of the water pixel extraction 510 

(in blue) after the first (b) and second (c) steps of the new algorithm and of Fmask (d). (e and f) ρrc(λ) 511 

spectra extracted over the two identified sub-pixels identified by red circles. (g) as (d) but showing the 512 

results of Fmask using a color code for water (blue), land (green), cloud (white), shadow (black), and 513 
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snow (yellow). Note that snow is not present in this image. The black and white circles show area of 514 

cloud shadow and thin clouds (see text). 515 
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 516 

Fig. 14. As Fig. 13 but for the Hangzhou bay (China, 08/02/2015). 517 
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 518 

Fig. 15. As Fig. 13 but for the Rio Grande (Venezuela, 17/11/2014)  519 
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 520 

Fig. 16. As Fig. 13 but for the Moose river (Canada, 18/09/2014). The yellow circles show land areas 521 

identified as water by Fmask, the black circle shows a cloud shadow area, and red circles delimit the 522 

water areas where the ρrc(λ) spectra 1 (e) and 2 (f) are extracted (see text). 523 
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 524 

Fig. 17. As Fig. 13 but for the Maghna estuary (Bangladesh, 20/10/2015)  525 
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 526 

Fig. 18. As Fig. 13 but for the Hong Kong bay (China, 18/10/2015). 527 

 528 
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5. Adaptation of WiPE for MSI on Sentinel 2a 529 

 530 

The WiPE algorithm, originally developed for L8-OLI, has been adapted to S2a-MSI using the 531 

seven following spectral bands: bands 2 (496.6 nm), 3 (560 nm), 4 (664.5 nm), 7 (782.5 nm), 10 (1373.5 532 

nm), 11 (1613.7 nm), and 12 (2202.4 nm). The same methodology used to develop WiPE for L8-OLI, 533 

has been adopted for S2a-MSI. The two steps are both applied to the Rayleigh corrected reflectance. The 534 

first step is dedicated to the removal of barren land, construction, vegetation, clouds and a minority of 535 

thin clouds and clouds shadows. The second step, based on the HSV transformation, is dedicated to the 536 

removal of the remaining thin clouds and cloud shadows. Similar results as those obtained for L8-OLI 537 

have been obtained in terms of water pixel extraction, as demonstrated by the complex image of an 538 

aquaculture area in the Huangmao river estuary in China (Fig. 20) or over the Tonle Sap in Cambodia 539 

(Fig. 21). It is worth to notice that, thanks to the high spatial resolution of MSI, fish cages present in the 540 

Huangmao river estuary illustration map are well detected and not mixed with water pixels (Fig. 20d).  541 

 542 

 543 
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Fig. 19. The logic flow of the water extraction pixel algorithm based on the combination of spectral shape 544 

analysis (step 1) and HSV analysis (step 2) for the S2a-MSI sensor. This flowchart requires the Rayleigh 545 

corrected reflectance (Eq.11) at bands 2, 3, 4, 7, 10, 11, and 12 as input parameters.   546 

 547 

 548 

 549 

 550 

 551 

Fig. 20. (a) RGB image over the Huangmao river estuary in China. (b) Results of the water pixel 552 

extraction by WiPE. (c) Zoom of the area framed in red (a) showing the fish cages which are also 553 

identified with WiPE in (b) and zoomed in (d). (e) Fishes cages showed from Google Earth image. 554 

 555 

 556 

 557 
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 558 

Fig. 21. (a) RGB image over the Tonle Sap in Cambodia. (b) Results of the water pixel extraction by 559 

WiPE. The white and red circles indicate situations with correct and wrong cloud shadows identification, 560 

respectively. 561 

 562 

In contrast to L8-OLI for which the spatial resolution of all bands is the same and equal to 30 563 

meters, the spatial resolution of the algorithm-required bands for S2a-MSI are equal to 10 (bands 2, 3, 564 

and 4), 20 (7, 11, and 12), and 60 (band 10) meters. These different spatial resolutions introduce some 565 

artefacts in the extraction of water pixels, especially at the border of objects under strong contrast, such 566 

as cloud shadow in the immediate proximity of clouds. This is clearly illustrated in Fig. 21 where cloud 567 

shadows are well detected when they are relatively far from the cloud (white circle in Fig. 21b), and not 568 

detected when they are at the very border of the clouds (red circle in Fig. 21b). Future works are therefore 569 

needed to figure this specific issue out. 570 

 571 

6. Concluding remarks  572 
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Remote sensing is a major observation tool for estimating surface water areas for many 573 

environmental and economical applications (aquaculture, flooding survey, water management, etc). In 574 

addition to this quantification aspect of surface water bodies, the detection of water pixels from remote 575 

sensing observations is an essential and critical step before the application of adapted algorithms aiming 576 

at estimating parameters describing the biogeochemical status of surface water bodies from space. A new 577 

algorithm (referred as WiPE) has been developed to assess water pixels from L8-OLI, and has been 578 

adapted for the MSI sensor. Unlike existing algorithm, WiPE is based on the Rayleigh-corrected 579 

reflectance, ρrc(λ), which makes it more sensitive to the spectral signature of the different objects 580 

considered: clouds, thin clouds, cloud shadow, vegetation, barren land, construction, and water. In 581 

contrast to other approaches, such as Fmask, the present algorithm is not able to distinguish the different 582 

considered objects individually, but rather to extract water pixels from other pixels. For that purpose, this 583 

algorithm consists of two main steps. First, clouds, thin clouds over land, cloud shadow over land, 584 

vegetation, barren land, and construction are removed based on a spectral shape analysis of ρrc(λ). 585 

Second, the Rayleigh-corrected reflectance spectra are transferred into the HSV color space to improve 586 

the distinction between water pixels and thin cloud and shadow pixels over water areas not affected by 587 

sun glint. This second step is based on the contrast of the whole image, and does not require any 588 

knowledge on the position and altitude of clouds. The present algorithm generally shows very good 589 

performance for the detection of water pixels over complex aquatic environments, especially in very 590 

turbid areas where the maximum of ρrc(λ) is observed in the near-infrared. The main limitation of the 591 

approach is for the detection of cloud shadow over blue to green waters where a confusion between cloud 592 

shadow pixels and water pixels may occur. As WiPE does not make any assumption on the 593 

presence/absence of clouds and then on the potential location of areas affected by cloud shadow, future 594 

improvement of the method could account for the proximity of clouds.  595 

 596 
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