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9.1 Introduction

Masonry is one of the oldest construction materials and is still commonly

used today to build houses or structures because of its strength, solidity,

durability, resistance, its elegant appearance, etc. However, masonry, which

is not generally thought to be a highly technological material, shows highly

complex behavior, due in particular, to the interactions between the compo-

nents (mortar, bricks) and the anisotropy induced by the direction of the

joints, which are a source of weakness. Masonry structures were classically

designed on the basis of empirical rules. Modern virtual methods of design

have been developed only quite recently. Structures built long ago were

extremely stable because they were massive. In modern masonry buildings,

the walls are very thick, requiring the stability to be studied from a theoreti-

cal point of view, especially when wind or earthquakes are a concern. The

strength of the masonry is thus critical and it is necessary to study the solid-

ity of the structure using fine models and numerical simulations as in the

case of concrete and steel structures. Other problems such as cracks also

require more detailed studies on the design of masonry structures.

Mortar joints are usually weaker than masonry units, which explains the

existence of planes of weakness along which cracks can propagate. Several

models have been developed and presented in the literature for studying and

predicting the behavior of masonry structures. Depending on the level of

accuracy and simplicity required, either macro- or micromodeling strategies

can be used for this purpose.

In continuum structural and macromodels, bricks, mortar, and brick�mortar

interfaces are smoothed out into a homogeneous continuum, the average

properties of which are identified at the level of the constituents, taking their

geometric arrangement into account. This approach is applicable when the

dimensions of a structure are sufficiently large for the ratio between the
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average stresses and average strains to be acceptable such as the macromo-

dels (classical no-tension models; Di Pasquale, 1992; Lourenco, 1998;

Marfia and Sacco, 2005) that have been widely developed in the past.

During the last few decades, other models have been developed such as

micropolar Cosserat continuum models (Masiani and Trovalusci, 1996;

Sulem and Muhlhaus, 1997) as well as applications of the mathematical the-

ories of homogenization to periodic (Anthoine, 1995; Luciano and Sacco,

1997; Ushaksarei and Pietruszczak, 2002) and nonperiodic media (Alpa and

Monetto, 1994). To describe the inelastic behavior of structural masonry,

some authors have combined homogenization techniques with a continuum

damage mechanics approach (Pegon and Anthoine, 1997; Zucchini and

Lourenço, 2004; Chengqing and Hong, 2006). Other authors such as Alpa

and Monetto (1994) and de Buhan and de Felice (1997) have defined suit-

ably macroscopic yield failure surfaces. Macroapproaches obviously require

a preliminary mechanical characterization of the model, based on experimen-

tal laboratory or in situ tests (Gabor et al., 2005, 2006).

In studies based on microanalysis, two main approaches have been used:

the simplified approach and the detailed micromodeling approaches.

Simplified methods consist of modeling the bricks, mortar, and interface sep-

arately by adopting suitable constitutive laws for each component. This

approach gives highly accurate results, especially at a local level. A simpli-

fied micromodel is an intermediate approach, where the properties of the

mortar and the mortar interface unit are lumped into a common element,

while expanded elements are used to model the brick units. Although this

model reduces the computational cost of the analysis, some accuracy is obvi-

ously lost.

Several authors (Lotfi and Shing, 1994; Lourenço and Rots, 1997;

Pegon et al., 2001; Pelissou and Lebon, 2009) have established that the

interface elements reflect the main interactions occurring between bricks

and mortar. Several methods have been presented for modeling the behav-

ior of interfaces with zero thickness and predicting their failure modes.

Giambanco and Di Gati (1997), for example, expressed the constitutive law

at the interface in terms of contact traction and the relative displacements

of the two surfaces interacting at the joint. The fracture of the joint and the

subsequent sliding are associated with the interface yield condition. A

method based on limit analysis combined with a homogenization technique

was recently shown to be a powerful structural analysis tool, giving accu-

rate collapse predictions: de Buhan and de Felice (1997), for example, pre-

sented a homogenized model of this kind that can be used for the limit

analysis of masonry walls. The units are assumed in this model to be infi-

nitely resistant and the joints are taken to be interfaces with zero thickness

having a friction failure surface. In addition, the brittle damage model

developed in Luciano and Sacco (1997) and Pelissou and Lebon (2009)
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involves an elementary cell composed of units, mortar, and a finite number

of fractures at the interfaces.

This chapter summarizes recently developed models based on microme-

chanics (linear and nonlinear homogenization methods) and the coupling of

this approach with structural analysis and/or brittle fracture theory and creep

of masonry components to predict local and overall behavior of masonry and

also to reproduce creep or prevent collapse of these structures.

9.2 Coupling between homogenization techniques and damage
theory

9.2.1 Accounting for damaged brick�mortar interface

Interface models for assessing the safety of civil and historical masonry con-

structions have attracted considerable attention, since their resistance

depends to a large extent on the brick�mortar interfacial properties. In fact,

mortar joints are usually less strong than masonry units, which explains the

existence of planes of weakness along which cracks can propagate. Several

models have been developed and presented in the literature for studying and

predicting the behavior of masonry structures. Depending on the level of

accuracy and simplicity required, either macro- or micromodeling strategies

can be used for this purpose.

This section aims to identify the crack-length evolution laws governing a

recently proposed constitutive equation (Rekik and Lebon, 2010, 2012), gen-

eralized in Raffa et al. (2016, 2017) with a small number parameters for

microcracked interfaces of masonry structures. It also aims to study the effect

of the masonry structure size and the load type on these identified parameters.

Experimental tests (Gabor et al., 2006; Fouchal et al., 2009) on small and

large masonry panels have been used to estimate the small number of para-

meters describing the microcrack evolution law and leading to the best fit

between the numerical and experimental tests. In the case of a masonry struc-

ture under a compression load, the evaluation of the local numerical fields

requires us to add a unilateral contact condition to avoid the overlap between

the bricks and the joints constituents. In our first approach and for the sake of

simplicity, we do not introduce friction between the brick and mortar units.

9.2.1.1 Effective properties of the brick�mortar lamina

Due to the fact that damage occurs mostly at the interface between brick and

mortar materials, we assume the existence of an extremely thin layer of

material between each brick unit and its mortar joint. The mechanical prop-

erties of this layer are obtained by applying an asymptotic limit analysis pro-

cedure (Raffa et al., 2017). For this purpose, it is proposed first to obtain the

mechanical properties of the 3D material obtained by homogenizing those of
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brick and mortar. Assuming brick and mortar to be isotropic and linear elas-

tic materials, the homogenization of the brick�mortar lamina can be carried

out exactly using an analytical homogenization formulation, as described in

Rekik and Lebon (2010, 2012). The homogeneous equivalent undamaged

material, denoted hereafter by HEMu, is transversally isotropic and character-

ized by the effective compliance tensor ~S
u
written in the form of Eq. (9.1)

with respect to the classical Voigt notation. In what follows, exponents h and

v correspond to bed and head joints, respectively; and e3 and e1 represent the

HEMu
h and HEMu

v revolution axis, respectively, as shown in Fig. 9.1.

~S
uh
5

1

~E
0

1

2
~ν0
12

~E
0

1

2
~ν0
12

~E
0

1

1

~E
0

1

2
~ν0
13

~E
0

1

2
~ν0
13

~E
0

1

2
~ν0
13

~E
0

1

2
~ν0
13

~E
0

1

1

~E
0

3

1

~G
0

23

1

~G
0

23

1

~G
0

12

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

ð9:1Þ

For further details about the method of obtaining the components of ~S
h

u

see Rekik and Lebon (2010).

FIGURE 9.1 Determination of the elastic properties of the third material (a brick/mortar lam-

ina) located at bed (A) and head (B) joints.
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9.2.1.2 Effective properties of the microcracked material HEMc

In the previous step, in the case of bed joints, an uncracked homogeneous

material HEMu
h was defined, based on the known properties of brick and

mortar. Now assuming the presence of parallel microcracks to the e1 axis in

this material, it is necessary to determine its effective properties. Many stud-

ies have dealt with assessing the effective elastic properties of damaged

materials with defects of various kinds (holes and/or cracks). The choice of

modeling method depends here mainly on the interactions between cracks.

For the sake of simplicity, we started to model the degradation of the

brick�mortar interface taking only the interactions between microcracks and

neglecting the interactions with the matrix of the HEMu material.

Moreover, we assume the existence of a small number of rectilinear

cracks 21(k) in length. To solve this 2D problem it is proposed to apply the

method proposed by Tsukrov and Kachanov (2000) to determine the equiva-

lent properties of the damaged HEMu material. The accuracy of this model,

which generally depends on the density of the cracks, is satisfactory up to

quite small distances between cracks (distances much smaller than the crack

width). Rectilinear cracks are assumed to be located on the plane (e1, e3) in

a representative area A5 L0e, where L0 is the bed mortar length and e is the

thickness of the microcracked HEMu material.

In the case of the present 2D problem, the Kachanov model includes a

global parameter called the crack density, which is defined by the number

and the length of all the cracks given by:

ρ5
1

A

X
k

ðlðkÞÞ2 ð9:2Þ

The main result obtained with the Kachanov model is that the average

value of the crack opening displacement (COD) vector “b” is colinear with

the average stress σ as follows:

hbi5 nUσUB ð9:3Þ
where n is a vector normal to the crack. The components of the symmetric B

second-order tensor depend on those of the uncracked homogeneous HEMu

material, that is, on the components of ~S
h

u and on the orientation of the crack

with respect to the matrix anisotropy:

Btt 5Cð12D cosð2φÞÞ
Bnn 5Cð11D cosð2φÞÞ
Bnt 5CDðsinð2φÞÞ

8<
: ð9:4Þ

where l is the length of the half-representative rectilinear microcrack in the

HEMu material, as shown in Fig. 9.2.
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We recall that φ is the angle between the vector t tangential to the crack

and the principal axis e1, as illustrated in Fig. 9.3. C and D are scalars that

are independent of the representative microcrack half-length parameter l, and

are given by:
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where ~E
uh

1 ; ~E
uh

3 ; ~νuh13; ~G
uh

13 are the elastic engineering constants of the crack-

free HEMu
h material. On the principal axes, the effective engineering moduli

FIGURE 9.3 Local crack vectors and the principal axis of the masonry.

FIGURE 9.2 Assessment of the effective properties of the microcracked bed (A) and head (B)

joints using the Kachanov model.
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of HEMc denoting the homogeneous material equivalent to the damaged

HEMu are given by:
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In the bed masonry joints, the cracks are assumed to run parallel to the

principal axis e1, that is, with the crack orientation φ5 0. Under plane stress

conditions, the components of the compliance tensor ~S
c
in the (e1, e3) plane

read:
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where

Bttð0Þ5Cð12DÞ
Bnnð0Þ5Cð11DÞ
Btnð0Þ5 0

8<
: ð9:8Þ

As shown in relations (9.7), the effective properties of the cracked lamina

are sensitive to the effective properties of the uncracked lamina ~S
h

u and to the

representative crack length. Inverting the compliance tensor ~S
ch

gives the

corresponding stiffness tensor ~C
ch

associated with the properties of HEMch.

9.2.1.3 Interface constitutive law

It has been assumed that cracks exist only in the plane (e1, e3) parallel to

either the principal axis e1 (in the case of bed joints) or to the e3 vector (in

the case of head joints). We have therefore focused only on the pair of

7



components ~C
ch

3333; ~C
ch

3131

� �
and

�
~C
cv

1111; ~C
cv

1313

�
corresponding to the bed and

head interface stiffness, respectively. Now focusing on the head interface

stiffnesses, the inversion of the compliance tensor ~S
ch

leads to expressing the

components ( ~C
ch

3333; ~C
ch

3131Þ as a function of the microcrack density parameter

ρ and the angle φ is null:

~C
ch

3333 5
αh
33 1 ρβh

33

α0h
33 1 ρβ0h

33 1 ρ2γ0h33
and ~C

ch

1313 5
1

2

αh
13 1 ρβh

13

α0h
13 1 ρβ0h

13 1 ρ2γ0h13
ð9:9Þ

where αh
ij;β

h
ij;α

0h
ij ;β

0h
ij are scalars that are independent of the crack density

parameter ρ. The normal and tangential stiffness of the bed interfaces are

determined as follows:

Ch
N 5

~C
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3333

e
ðeyields0Þ and Ch

T 5
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3131

e
ðeyields0Þ ð9:10Þ

Replacing ρ by the term l2=eLh0 in expressions (9.9), we obtain:
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13L

h
0
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ð9:11Þ

As the components Bnn and Btt depend on the half crack length l (see

relation (9.2)), the expressions for the interface stiffness CN and CT at the

bed position read:

Ch
N 5

Lh0
2Cð11DÞl2 and Ch

T 5
Lh0

4Cð12DÞl2 where dl$ 0 ð9:12Þ

dl is the increment of crack length, assumed to be positive during the shear

loading. It is worth noting that the properties of the material HEMcv, which

is transversally isotropic with e1 as the revolution axis, are deduced from

those of the material HEMch by making a simple 90 degree rotation.

Therefore, the normal and tangential stiffness of the head joints read:

Cv
N 5

~C
cv

1111

e
ðeyields0Þ5 Lv0

Lh0
Ch
N and Cv

T 5
~C
cv

1313

e
ðeyields0Þ5 Lv0

Lh0
Ch
T

ð9:13Þ
where Lh0 is the bed mortar joint length. These defined stiffnesses can be

clearly seen to decrease as the crack length increases with respect to the

applied load F (or shear stress τ). In addition, they are closely related to the

law of microcrack evolution l5 f Forτð Þ; which will be identified in the case

of masonry structures of various sizes under loads of various kinds in the fol-

lowing section. The crack-length evolution is assumed to show a similar ten-

dency at the head and bed interfaces.
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9.2.1.4 Estimation of the representative law of microcrack
evolution based on experimental tests

In view of Eq. (9.10), one of the most important steps consists of defining,

testing, and validating a law governing the crack-length evolution. An alter-

native simpler solution consists of defining directly by choosing crack

lengths at several points on experimental diagrams. Hereafter, it is necessary

to distinguish between the case of quasibrittle failures, with which the

“stress�strain” diagram shows a “plateau” in the postpeak load part (in the

case of nonconfined masonry) and those showing a softening and sliding

parts after the peak in the load. In fact, numerical tests carried out on non-

confined (Rekik and Lebon, 2010) and confined masonry panels have shown

that the laws of crack-length evolution available so far in the case of noncon-

fined masonry are not able to reproduce the softening and sliding parts seen

in the case of the confined masonries.

Hereafter, for numerical computations, the geometry and boundary condi-

tions are given in Fig. 9.4 (with the confining pressure σ) for the case of seven

bricks. Table 9.1 lists the mechanical properties of the bricks and mortar consti-

tuting the prism (Gabor et al., 2006). Because of the symmetry of the prism

problem, only half-structures will be used in the computations. In what follows,

bricks and mortar joints will be modeled using Q4 quadrangular finite elements.

FIGURE 9.4 Initial geometrical configuration and loading conditions imposed on a small con-

fined wall (A and B); deformation of the small wall in a shear test (C).
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Simulation of a confined medium-sized masonry panel under shear
loading conditions

In the case of confined masonry panels subjected to shear loads with various

confining stresses (σ5 0:4; 0:6; 0:8, and 1.2 MPa), the joint response differs

from that observed under nonconfined conditions, as shown in Fig. 9.5.

Experimental results are plotted in dashed lines. In the “stress�displace-

ment” diagrams, the distinction will be made between three stresses, τc, τu,
and τcr (see Fig. 9.6; Rekik and Lebon, 2010, available for nonconfined

masonry structures), where τcr denotes the end of the softening phase.

FIGURE 9.5 Effect of the confining pressure: Experimental and numerical “shear

stress�displacement” diagrams of a small confined wall under shear loading conditions.

TABLE 9.1 Mechanical properties of the prism and wall masonry

constituents.

Young’s modulus (MPa) of full brick 12,800

Poisson’s ratio of full brick 0.2

Young’s modulus (MPa) of mortar 4000

Poisson’s ratio of mortar 0.2

Source: From Gabor, A., Ferrier, E., Jacquelin, E., Hamelin, P., 2005. Analysis of the inplane shear
behavior of FRP reinforced hollow brick masonry walls. Struct. Eng. Mech. 19, 237�260; Gabor,
A., Bennani, A., Jacquelin, E., Lebon, F., 2006. Modelling approaches of the in-plane shear
behaviour of unreinforced and FRP strengthened masonry panels. Comput. Struct., 74, 277�288.
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Additional confining pressure was found to increase the cohesion

between mortar and hollow bricks and thus to induce the occurrence of

softening and sliding processes after the peak load has been reached. These

softening and sliding parts cannot be modeled in the framework of a crack-

length evolution law similar to that used for a nonconfined masonry panel

(Figs. 9.5 and 9.6; Rekik and Lebon, 2010). In this case, a nonlinear piece-

wise increasing representative crack length from the peak load up to failure

gives better predictions. To obtain a better fit between the numerical and

experimental data, the crack lengths were identified at several points on the

experimental diagram. At various confining stresses, the changes in the

crack lengths given in Fig. 9.7 show that it is necessary to include a bilin-

ear or trilinear function in the postpeak load part to account for the set of

the softening and sliding parts. As shown in Fig. 9.7, these functions

describe the increase in the crack length, while the shear stress decreases,

in line with the properties of cohesive cracks (Park et al., 2008; Chaimoon

and Attard, 2009). In the identified functions l5 f ðτÞ corresponding to con-

fining stresses σ5 0:8and1:2 MPa, note the existence of a first positive

slope describing the increase in the crack length with the increase in the

shear stress occurring before the peak of load is reached. This first linear

evolution of l is not included in the description of the crack-length evolu-

tion in the softening and sliding parts given by the “stress�displacement”

diagrams.

The numerical “stress�displacement” curves corresponding to the crack-

length functions depicted in Fig. 9.7 are in line with experimental data as

can be seen from Fig. 9.5 with each of the confining stresses. Table 9.2 lists

the ultimate crack lengths obtained at the various confining pressures tested.

Note that the crack length lu varies slightly with the confining pressure. Its

main value is lcpu 5 6:463 1022 µm. The relative errors er between lu and the

average value lcpu do not exceed 11%.

FIGURE 9.6 Function describing the evolution of the crack half-length with respect to the

shear stress applied: the case of a triplet of hollow bricks (Rekik and Lebon, 2010), a noncon-

fined seven brick structure and that of a wall.
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Fig. 9.8 gives the local shear stress distribution with a 0.4 MPa confined

small wall, which shows a local stress concentration at the longest vertical

interface v1, where the decohesion between brick and mortar mainly occurs,

as in the experimentally tested specimen (Fig. 9.9). Fig. 9.8 gives the local

shear stress distribution with a 0.4 MPa confined small wall, which shows a

local stress concentration at the longest vertical interface v1, where the deco-

hesion between brick and mortar mainly occurs, as in the experimentally

tested specimen (Fig. 9.9).

TABLE 9.2 Identified ultimate representative crack length and the

corresponding relative errors obtained on small confined walls under

shear loading and different confining pressures.

Confining stress, σðMPaÞ luðµmÞ erðluÞð%Þ
0.4 6.223 1022 2.5

0.6 5.983 1022 5.0

0.8 7.633 1022 11.1

1.2 5.983 1022 5.0

FIGURE 9.7 Identified crack-length laws giving the best fit between experimental and numeri-

cal data on confined small walls under shear loads and various confining pressures.
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Discussion of the results

Table 9.3 recapitulates the identified ultimate crack lengths giving a best fit

between the numerical and experimental results at the failure of the wall

with and without the unilateral contact condition. The relative difference

FIGURE 9.9 Experimental deformation of a small confined wall under shear loading conditions.

From Gabor, A., Bennani, A., Jacquelin, E., Lebon, F., 2006. Modelling approaches of the in-plane

shear behavior of unreinforced and FRP strengthened masonry panels. Comput. Struct. 74, 277�288.

FIGURE 9.8 Local shear stress snapshot of a confined small wall (σ5 0.4 MPa) under shear

loading conditions at failure (the identified ultimate crack length is l5 6.223 1022 µm).
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between these values is taken to be negligible (about 7%). It was therefore

proposed to calculate the mean ultimate crack length from the values avail-

able on wall interfaces at failure. The relative errors er between the identified

crack lengths lu and the mean value lwu 5 6.643 1022 µm obtained in the

case of the wall were negligible (below 4%).

Table 9.4 gives the identified (average) ultimate crack lengths obtained with

masonry structures of various sizes under shear loads (with and without confin-

ing pressure) or diagonal compression loads (with and without the unilateral

contact condition). Due to the negligible differences existing between these

values, we will assume that failure occurs when the crack length reaches the

average value of this set of identified crack lengths, that is, lu 5 6.43 1022 µm.

In the case of masonry composed of constituents with the properties

given in Table 9.1, comparisons between the stiffnesses of the interfaces

obtained with masonry of various sizes (see the values for the stiffnesses)

give a mean stiffness value per mm, with upper and lower bounds for the

properties thus identified:

Cav
N 5 2:523 1011

N

mm3

0
@

1
A and Cav

T 5 1:423 1011
N

mm3

0
@

1
A

ð12 11%ÞCav
N #CN # ð11 17%ÞCav

N

8>><
>>: ð9:14Þ

TABLE 9.4 Relative errors in the identified (average) ultimate

representative crack lengths and stiffnesses in the case of masonries of

various sizes under shear loading or diagonal compression conditions.

lu or average of luðµmÞ er luð Þ %ð Þ er CNð Þð%Þ
Nonconfined prism 5.863 1022 5.8 117.4

Confined prism 6.463 1022 0.6 22.0

Wall (with/without u.c.c.) 6.763 1022 3.7 211.0

TABLE 9.3 Identified ultimate representative crack length and the

corresponding relative errors obtained on a diagonally compressed wall

with and without a unilateral contact condition.

Unilateral contact condition luðµmÞ erðluÞð%Þ
With 6.4631022 3

Without 7.1831022 4
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The discrepancies between the individual interface stiffnesses and the

mean value obtained (maximum of 17%) can be explained by the fact that

masonry mortar joints are manmade materials.

9.2.1.5 Conclusions

The identification of the crack-length evolution law for masonry structures

with various sizes subjected to shear and diagonal compression (Rekik and

Lebon, 2010) loads showed the ability of a recently presented model (Rekik

and Lebon, 2010, 2012) to provide estimations for the stiffness of masonry

interfaces. At failure, the discrepancies between the identified crack lengths

were almost negligible (below 6%). The interface stiffnesses are inversely

proportional to the square of the ultimate crack length lu; which explains the

maximum discrepancy of about 17%. An experimental campaign in which

the joint mortar is consistently prepared and laid (constant thickness, regular

rate of cover between brick and mortar) will help to reduce the discrepancies

between the stiffnesses of interfaces at failure. To obtain a good fit between

experimental and numerical data on loaded nonconfined masonry structures

in which the “stress�strain” diagrams show the occurrence of a “plateau”

after the peak load (or stress), it is necessary to adopt a linearly increasing

crack length up to the failure, corresponding to the ultimate load applied.

The number of parameters is reduced to 4 in this case: lc, lu, c, and u. In the

case of confined masonry structures under shear loading conditions, the pres-

ent model gives good agreement with the experimental data, thanks to the

introduction of a bilinear or trilinear function describing the increase in the

crack length with the decrease in the shear stress in the postpeak part (soften-

ing and sliding parts). The number of parameters increases in this case to 6

or 8. In the postpeak part of the “stress�displacement” diagram, a single lin-

ear function describing the increase in the crack length with the decrease in

the shear stress does not suffice to reproduce accurately the softening and

sliding parts.

9.2.2 Accounting for creep of masonry components

The recent collapse of famous historical constructions (e.g., middle-age

masonry buildings) was mainly attributed to the creep behavior of the

masonry (Binda et al., 1992; Shrive et al., 1997; Papa and Taliercio, 2005).

Recent experimental findings have shown that the accumulation of creep-

induced damage in time under sustained loads is a possible reason for this

collapse. Thus, in order to increase the performance and safety of refractory

linings and ancient masonry buildings subjected to heavy sustained loading,

the development of theoretical models of creep evolution and creep-induced

damage is of crucial importance. In Choi et al. (2007), an experimental study

was carried out to investigate the creep of masonry. Different rheological
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models are considered to assess their ability to predict the creep of masonry.

Accordingly, it was found that the Modified Maxwell (MM) model is the

most accurate one. On the other hand, these materials (e.g., refractory lin-

ings, masonries) are generally heterogeneous and composed of bricks and

mortar joints. Therefore, the evaluation of their response requires homogeni-

zation approaches. In this connection, the so-called hereditary approaches

based on Stieltjes convolution in the time domain has been used by many

authors for modeling linear nonaging viscoelastic composites. Two steps are

performed. First, through the use of the Laplace�Carson (LC) transform

with the correspondence principle (Mandel, 1966), the time-dependent con-

stitutive relations of the local phase properties are converted into symbolic

elastic-like relations in the LC domain. Then, the symbolic macroscopic elas-

tic moduli of the fictitious elastic material are derived by using classical

elastic micromechanical schemes such as the self-consistent (SC) scheme

(Hashin, 1969; Rougier et al., 1994), the Mori�Tanaka estimate (Li and

Weng, 1994; Pichler and Lackner, 2009), or the Hashin�Shtrikman bounds

(De Botton and Tevet-Deree, 2004). Finally, the overall properties of the vis-

coelastic composites in the physical domain are obtained by LC inversion,

which can be performed either analytically or numerically. However, apart

from some particular cases (Rougier et al., 1994), the inversion of the LC

transform is usually performed numerically (see, e.g., the collocation

method; Schapery, 1962). Moreover, the analytical method based on the

Bromwich integral defined in the complex plane as shown in Beurthey and

Zaoui (2000) leads most of the time to integral equations over the whole

loading path even if the different phases of the heterogeneous composite

exhibit limited memory effects. This last point makes difficult direct exten-

sions to more general situations (e.g., thermomechanical loading, aging vis-

coelasticity). Moreover, these methods require the complete past history of

stress and strain. To overcome these limitations, a number of theories have

been proposed in the past aiming to formulate incremental constitutive equa-

tions for the linear viscoelastic behavior. Among them, researchers Dubois

et al. (1999), Kim and Sing Lee (2007), and Chazal and Moutu Pitti (2009)

proposed the incremental formulation and constitutive equations in the finite

element (FE) context. In fracture mechanics of viscoelastic materials, Dubois

et al. (2002) and Nguyen et al. (2010) applied the incremental formulation in

order to evaluate the crack growth process in wood and concrete, respec-

tively. Concerning combined damage and creep effects for masonry within

the framework of homogenization, it is worth noting that in the literature

there are few works devoted to these studies. For instance, Brooks (1990)

obtained the creep coefficients of brickwork according to the properties of

the individual constituents. Cecchi and Tralli (2012) adopted an asymptotic

homogenization procedure for the derivation of the creep behavior of

uncracked periodic masonry cell with joints of finite dimensions. For

uncracked masonry, Cecchi and Taliercio (2013) compared predictions given
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by a simplified analytical model and a more accurate FE model, both based

on homogenization procedures. Nguyen et al. (2011) derived the effective

behavior of microcracked linear viscoelastic concrete obeying the Burgers

model by performing a combination of Griffith’s theory (Huy Duong, 1978)

and the Eshelby-based homogenization scheme (Bornert and Suquet, 2001;

Deudé et al., 2002). This model does not rest on a series expansion such as

the widely used Prony�Dirichlet series or the collocation method and its

extensions (the multidata method (Cost and Becker, 1970) or the optimized

collocation method (Rekik and Brenner, 2011)) for the required temporal

functions. Indeed, as the uncracked concrete, the microcracked concrete was

assumed to obey the Burgers model. The FE homogenization method classi-

cally used for uncracked elastic or viscoelastic masonries is extended here to

microcracked viscoelastic masonry.

9.2.2.1 Main objective and hypothesis

The objective of this section is to evaluate at each time t the effective and

local behavior of masonries exhibiting nonlinear behaviors, mainly viscoelas-

tic at short and/or long times especially when subjected to severe or long-

term loading such as historical monuments or refractory masonry linings

working under high temperatures. For the sake of simplicity, it can be

assumed that only the mortar is a microcracked viscoelastic material

(Luciano and Sacco, 1997; Sacco, 2009). Its behavior (at the uncracked state)

obeys the MM rheological model. Blocks or bricks are assumed to be

uncracked and to have either rigid or elastic isotropic behavior. In the mor-

tar, the cracks are assumed to be penny-shaped and to have an isotropic dis-

tribution. The proposed approach is based on three main steps. First, the

homogenization technique is applied in order to assess the effective behavior

of the nonaging microcracked mortar. The results of brittle fracture mechan-

ics—Griffith’s theory—could be useful if we move from the real temporal

space to the symbolic one due to the LC transform. In the latter space, the

apparent behavior of the mortar is linear elastic. This procedure allows the

use of expressions available in the literature for the displacement’s jump

induced by the crack (Nguyen et al., 2011). Assuming again that the dis-

placement jump field depends linearly on the macroscopic stress, it is possi-

ble to define an effective linear behavior for the microcracked mortar in the

symbolic space. To determine the global behavior in the real space time, it is

possible to apply the inverse of the LC transform in some simple cases. It is

then interesting to approach in the symbolic space, at least in short and long

terms, the symbolic effective stiffness (or compliance) by an existing rheo-

logical model. For example, if the uncracked mortar behaves as the MM

model, we can try to approach the symbolic effective behavior of the corre-

sponding microcracked mortar by the same model. After validation of this

approximation at short and long terms, the inversion of the apparent effective
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stiffness will be straightforward. Therefore, the effective creep behavior of

the microcracked viscoelastic mortar could be expressed in the real space

time. This first step permits us to determine fast and easily temporal bulk

and shear moduli of mortar as explicit functions of the crack density parame-

ter (Budiansky and O’Connell, 1976; Dormieux et al., 2006). For the pro-

posed model in this section, the second step relies either on FE

homogenization of the periodic masonry cell (see step s2) in Fig. 9.10 when

considering the FE “direct” method. Basic steps followed by the proposed

FE model are summarized in Fig. 9.10.

9.2.2.2 Creep model for microcracked mortar (step 1)

The rate-dependent mechanical behavior of mortar is often approximated by

a linear viscoelastic model (Choi et al., 2007; Ignoul et al., 2007). For the

sake of simplicity, only nonaging formulation will be considered in this

work. The practical interest of this simple formulation is that it allows us to

FIGURE 9.10 Main steps of the proposed FE model: The first one (s1) relies on the coupling

between Griffith’s brittle fracture theory and stress-based dilute homogenization scheme defining

the homogeneous material HEM-1 (C) equivalent to the microcracked linear nonaging viscoelas-

tic mortar (B)-(i) joints present in the periodic masonry cell (A). At each time and for every

crack density dc, the second step (s2) provides the effective stiffness of the homogeneous mate-

rial HEM-2 (E) equivalent to the masonry’s periodic cell (D). Here, the rheology of the mortar

with penny-shaped microcracks follows the Modified Maxwell (B)-(ii) model.
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transform a time-dependent boundary value problem into a linear elastic one

using the well-known correspondence theorem based on the LC transform.

Among the simplest formulations used to model the nonaging linear viscoelas-

tic mortar’s behavior, it is possible to quote the Ross, Feng, Burgers, and MM

models (Choi et al., 2007; Cecchi and Tralli, 2012) mainly based on connec-

tions in parallel and/or in series of Maxwell (M) and Kelvin�Voigt (KV)

parts. Each element (spring and dashpot) of the M or KV model is character-

ized by an isotropic fourth-order tensor related to its elasticity or viscosity:

Ce
KV 5 3keKVJ1 2μe

KVK; Cv
KV 5 ηsKVJ1 ηdKVK

Ce
M 5 3keMJ1 2μe

MK; Cv
M 5 ηsMJ1 ηdMK

ð9:15Þ

where kα and μα (α5KV or M) denote the bulk and shear moduli and ηsα
and ηdα represent the bulk and shear viscosities, respectively. The tensors J

and K5 I�J are the usual projectors on the subspaces of purely spherical or

deviatoric second-order tensors, and i and I are second- and fourth-order

identity tensors. In the following, only the MM model is considered since it

has been demonstrated in Choi et al. (2007) and Rekik et al. (2016) that this

rheological model is relevant at short and long terms for the masonry. The

constitutive law of the MM’s model (see Fig. 9.10B-(ii)) is given by:

SvMσ1 SeM:σ5 SvMC
e
Rε1 ðI1 SeMC

e
RÞ:ε ð9:16Þ

where for isotropic mortar material, the elastic and viscous compliances of

the Maxwell part are given respectively by:

SeM 5
1

3keM
J1

1

2μe
M

KandSvM 5
1

ηsM
J1

1

ηdM
K ð9:17Þ

The elastic stiffness of the spring reads Ce
R 5 3keRJ1 2μe

RK. The LC trans-

form applied to the behavior law (9.16) leads to:

ðSvM 1 pSeMÞσ� 5 ðSvMCe
R 1 pðI1 SeMC

e
RÞÞε� ð9:18Þ

and allows the definition of the following symbolic MM elastic compliance:

S
�
MM 5 SvMC

e
R1p I1SeMC

e
R

� �� �21ððSvM 1 pSeMÞ ð9:19Þ
Recall that the LC transform of a temporal function f(t) is given by

FðpÞ5 p
ÐN
0

e2ptf ðtÞdt. p is the variable that replaces time t in the symbolic

LC space. Assuming the isotropy of the mortar behavior, the symbolic com-

pliance (9.19) reads:

S
�
MM 5

1

3k
�
s

J1
1

2μ�
s

K ð9:20Þ
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The associated apparent creep function is then given by:

J
�
MM 5

1

E
�
MM

5
1

9k
�
s

1
1

3μ�
s

5
1

9 kR 1

pkMηsM
3

kM 1
pηs

M

2

0
B@

1
CA

1
1

3 μR 1

pμMη
d
M

2

μM 1
pηd

M

2

0
BB@

1
CCA

ð9:21Þ

The analytical direct inversion of (9.21) leads to the MM real creep

function:

JMMðtÞ5
1

9kR
1

1

3μR

2
kM

9kRðkR 1 kMÞ
e2t=τs

MM 2
μM

3μRðμR 1μMÞ
e2t=τd

MM

ð9:22Þ

with the characteristic times τsMM 5 ηsMðkR 1 kMÞ=3kRkM and τdMM 5

ηdMðμR 1μMÞ=2μRμM for the spherical and deviatoric parts of the MM vis-

cous behavior, respectively.

9.2.2.3 Microcracked mortar: Modified Maxwell model
parameters

This section provides elastic and viscous coefficients for a microcracked

mortar following the MM rheological model. The identification procedure of

these parameters, which represents step 1 of the proposed FE model, is

detailed in Rekik et al. (2016).

kRðdcÞ5
kR

ð11 dcQ
0
0Þ
; μRðdcÞ5

μR

11 dcM
0
0

keMðdcÞ5
ðkM 1 kRÞ
ð11 dcQ

N
0 Þ 2

kR

ð11 dcQ
0
0Þ
; μMðdcÞ5

μM 1μR

11 dcM
N
0

2
μR

11 dcM
0
0

ηsMðdcÞ5
ðηsM 1 dcðηsMQ0

0 2 3keRQ
1
0ÞÞ

ð11dcQ
0
0Þ2

; ηdMðdcÞ5
ηdM 1 dcðηdMM0

0 2 3μRM
1
0Þ

ð11dcM
0
0Þ2

ð9:23Þ
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where

Q0
0 5

4ksRð3kR 1 4μRÞ
3μRð3kR 1μRÞ

;

Q1
0 5

2

9

ð2ηsMμR 2 3kRηdMÞð9k2R 1 4μ2
R 1 6kRμRÞ

3μ2
Rð3kR1μRÞ2

M0
0 5

16

45

ð3kR 1 4μRÞð9kR 1 4μRÞ
ð3kR 1μRÞð3kR 1 2μRÞ

;

M1
0 5

8

45

ð3kRηdM 2 2ηsMμRÞð63k2R 1 16μ2
R 1 60kRμRÞ

3μ2
Rð3kR1μRÞ2

QN
0 5

4

3
ðkM 1 kRÞ

1

μM 1μR

1
3

3ðkM 1 kRÞ1 ðμM 1μRÞ

� �

MN
0 5

16

45
ðkM 1 kRÞ

9ðkM 1 kRÞ
3ðkM 1 kRÞ1 ðμM 1μRÞ

2
6ðkM 1 kRÞ

3ðkM 1 kRÞ1 2ðμM 1μRÞ

� �
ð9:24Þ

The approximate creep function of a microcracked mortar matrix that fol-

lows the MM model reads:

J
app
MM t; dcð Þ5 1

kR dcð Þ 12
kM dcð Þ

kR dcð Þ1 kM dcð Þð Þ e
2 t

τs
MM

dcð Þ
� �

1
1

3μR dcð Þ 12
μM dcð Þ

μR dcð Þ1μM dcð Þ� � e2 t

τd
MM

dcð Þ

! ð9:25Þ

where here the characteristic times of the spherical and deviatoric parts of

the MM model are, respectively: τsMM dcð Þ5 ηsM dcð ÞðkR dcð Þ1 kM dcð ÞÞ=
3kR dcð ÞkM dcð Þ and τdMM dcð Þ5 ηdM dcð ÞðμR dcð Þ1μM dcð ÞÞ=2μR dcð ÞμM dcð Þ.

9.2.2.4 Principle of the finite element homogenization of a
microcracked viscoelastic masonry periodic cell (step 2)

Instead of differentiating the mortar’s constitutive law as it can be done

when considering an incremental homogenization approach (Nguyen et al.,

2010), it is easier and more practical to consider the approximate mortar’s

creep function (9.25) identified at the short and long terms, which is an

explicit function of time and crack density parameter. Therefore, there is no

prestress in the considered viscoelastic mortar. At each time t, the behavior

of the viscoelastic phase r can be considered to be “purely elastic” with a
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constant Poisson’s ratio and Young’s modulus Erðt; dcÞ5 1=Jrðt; dcÞ if dam-

aged or ErðtÞ5 1=JrðtÞ otherwise. When applying a constant macroscopic

stress and assuming that the per phase localization tensor Ar is time-

independent following the hypothesis of Deudé et al. (2002) then the average

strain εr per phase r and the masonry overall behavior reduce, respectively,

to εr 5Ar:ε and σ5 ~C : ε, where the overall tangent stiffness is given by
~C 5,C : A. and the average strain localization over the periodic cell

reads ,A. 5 I. It is then important to determine components of the locali-

zation strain tensor Ar
ijkl. Since regular masonry presents periodic microstruc-

ture, it is possible to consider only a periodic cell as shown in Fig. 9.11A.

Moreover, as the periodic cell presents two axes of symmetry, normal and

tangential directions along the unit vectors n and t, respectively, only its

quarter (see Fig. 9.11B) will be retained for computation. To assess the

effective “elastic engineering constants,” it is proposed to subject the unit

cell to three types of loadings: axial compression along n, axial compression

along t, and shear loading, as shown in Fig. 9.10. In this case, strain localiza-

tion components Ar
ijkl are given by the following equations:

εrxx 5Ar
xxyyεyy; εryy 5Ar

yyyyεyy for ε5 εyyey � ey

εrxx 5Ar
xxxxεxx; εryy 5Ar

yyxxεxx for ε5 εxxex � ex

εrxy 5 2Ar
xyxyεxy; for ε5 εxyðex � ey 1 ey � exÞ

ð9:26Þ

FIGURE 9.11 Boundary and symmetry conditions for the considered quarter cell subjected to

axial normal (A) or tangential (B) compression or shear (C) loadings.
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Note that the localization strain tensor Ar is assumed to be orthotropic.

Since the symmetry of the Cauchy strain tensor both in the anisotropic and

isotropic spaces is required, it follows that Ar
ijkl5 Ar

jikl5A
r
jilk (minor symmetry).

The major symmetry of Ar is also necessary Ar
jikl5A

r
klji. It follows that only

the componentsAxxxx; Ayyyy, Axyxy 5Axyyx and Ayxxy 5Ayxyx are not null.

According to the classical Voigt notation, the constitutive behavior law

σ5 ~C:ε of the unit cell reads:

σyy

σxx

σxy

0
@

1
A5

~Cnnnn
~Cnntt 0

~Cnntt
~Ctttt 0

0 0 ~Cntnt

0
@

1
A εyy

εxx
2εxy

0
@

1
A ð9:27Þ

where σ5 hσiV is the overall applied stress on the periodic cell. The soft-

ware Cast3M has been used to provide local mechanical fields and mainly

average mechanical fields such as strain εr, stress σr over each phase r

(r5 b for bricks, m for mortar), and macroscopic strain ε5
P

r5m;b f
rεr

calculated in order to deduce components of the effective tangent stiffness ~C
(Eq. 9.27). The five engineering “constants” are then given by:

1

~Ettðt; dcÞ
5

~Cnnnn

~Ctttt
~Cnnnn 2 ~Cttnn

~Cnntt

;
1

~Ennðt; dcÞ
5

~Ctttt

~Ctttt
~Cnnnn 2 ~Cttnn

~Cnntt

~μntðt; dcÞ5 ~Cntnt; ~νntðt; dcÞ5
~Cnntt

~Ctttt

; ~νtnðt; dcÞ5
~Cttnn

~Cnnnn

ð9:28Þ
Recall that for an isotropic material (brick and mortar), components of

the stiffness tensor Cr (r5 b, m) read:

Cr
xxxx 5Cr

yyyy 5 kr 1
4

3
μr; Cr

xxyy 5Cr
yyxx 5 kr 2

2

3
μr; Cr

xyxy 5 2μr

ð9:29Þ
where kr 5 ðE=3ð12 2νÞÞ and μr 5 ðE=2ð11 νÞÞ are the bulk and shear

moduli, respectively.

9.2.2.5 Time-dependent crack density and first application of
the proposed model

Time-dependent crack density

Various damage models are described in the literature (Lemaitre, 1996;

Garavaglia and Lubelli, 2002; Sukontasukkul et al., 2004). Here, for

the sake of simplicity and as a first approach we have chosen for the

microcracked masonry a simple damage evolution model following

23



Reda Taha and Shrive (2006) and Shrive and Reda Taha (2008).

According to these papers, accumulated damage is assumed to follow

Weibull’s failure rate function such that:

dcðtÞ5
Xt1
t0

100η
τD

t

τD

� �n

ð9:30Þ

where τD is a constant damage time that refers to the time where most

damage would occur. This damage not related to externally applied loads

can be induced by external or internal effects such as freeze�thaw, alka-

li�silica reaction, sulfate�attack, etc. This load-independent model is con-

sistent with Verstrynge et al. (2009) and Garavaglia et al. (2004) who

showed that the Weibull failure rate function could be used successfully to

predict the failure of masonry. As a first approach and according to a dam-

age scenario considered by Shrive and Reda Taha (2008), the coefficients

are taken here as τD5 800 (days), η5 0.3 (days), and n5 10. dc(t) repre-

sents the level of damage accumulated from the time at which damage

starts, t0, to the time of evaluation. In the calculations here, damage is

assumed to begin at 400 days. The rate of damage accumulation with this

model is slow initially, but accelerates over time, as shown in Fig. 9.12

reporting Figure 4.4 in Shrive and Reda Taha (2008). Quite considerable

damage is assumed to occur in a relatively short time in this example.

Here, the damage factor attains about 0.33 after 1000 days with the damage

starting at 400 days. Other possible damage scenarios or sophisticated

accumulated damage functions accounting for both external applied loading

and time parameters as that available for rockslat material developed by

Chan et al. (1992) could be used in future investigations. As shown hereaf-

ter, Eq. (9.30), the only time-dependent model, is a starting point allowing

first assessments of the proposed FE model.

FIGURE 9.12 Nonlinear evolution of damage ratio with time. From Shrive, N.G., Reda Taha,

M.M., 2008. Effects of creep on new masonry structures. In: Binda, L. (Ed.), Learning from

Failure � Long-Term Behaviour of Heavy Masonry Structures. WIT Press, pp. 83�108.
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Case of a periodic unit cell: comparisons at short and long terms

In this section, it is proposed to investigate trends of evolutions with the

time of overall predictions of a periodic masonry cell provided by the pro-

posed FE model and their sensitivity to mortar joint thickness and brick

dimensions (height and width). Microcracked mortar is assumed to follow

the generalized Maxwell (GM) model. Here, for the sake of simplicity, only

one term is considered for the GM model. Accordingly, the rheological

model followed by the mortar’s behavior coincides with the MM’s model. In

this study, bricks are assumed to be either rigid (Eb5 1000Em (t5 0)) or

elastic (Eb5 2.22Em (t5 0)) and uncracked with a Poisson’s ratio νb5 0.15.

Bricks are 250 mm thick. Their dimensions in the plane (x, y) are the follow-

ing: height a5 55 mm and width b5 120 mm. The mortar joint’s thickness

is th5 10 mm. For the viscous rheological model, since the instantaneous

Young’s modulus E0 for the MM model is given by Em (t5 0)5ER1EM,

where the relaxation modulus is set equal to EM5 ei E0, the spring’s

Young’s modulus ER reads ER5 (12 ei)E0. Here, ei is a dimensionless

parameter. All the ensuing computations have been carried out under the

plane stress assumption by using a quadratic element “QUA8” with eight

nodes and a refined mesh comprised of 10,336 elements using the software

Cast3M. This fine mesh is chosen because it provides accurate effective

results. Since we are studying the masonry creep phenomenon, we apply

instantaneously a constant force at selected points of the boundary (i.e., a

sustained macroscopic stress) as shown in Fig. 9.10. Hereafter, for a mortar

joint thickness th5 10 mm and properties identified at short (Table 9.5) and

long terms (Table 9.6), time evolutions of effective tangent creep coefficients

TABLE 9.5 Elastic and viscous moduli of a mortar identified at the short

term and tested by Brooks (1990) and Cecchi and Taliercio (2013).

E0ðMPaÞ νm ei er luð Þð%Þ
Mortar 7700 0.2 0.7602 7.1

TABLE 9.6 Elastic and viscous moduli of hybrid mortar gathered at the

long term.

EMðMPaÞ τM sð Þ ERðMPaÞ τR sð Þ νm

4000 23 108 2112 300,000 0.29

Source: From Verstrynge, E., Ignoul, S., Schueremans, L., Gemert, V.D., 2008. Modelling of damage
accumulation in masonry subjected to a long-term compressive load. In: d’Ayala, D., Fodde, E. (Eds.),
Structural Analysis of Historic Construction. CRC Press, pp. 525�532 (Verstrynge et al., 2008).
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provided by the FE model for masonries with rigid bricks and cracked mor-

tar with a crack density evolving according to (Eq. 9.30) are reported in

Fig. 9.13. Table 9.7 shows the decrease with increasing time and crack den-

sity of mortar’s Young’s moduli either for short- or long-term identified

properties.

FE predictions: As a whole, it is observed that FE predictions for

masonry’s effective tangent moduli decrease with the increase of time. This

can be explained by the increase of the damage level with time as illustrated

in Fig. 9.12. For masonry with short-term mortar properties and either elastic

(Fig. 9.14, Rekik et al., 2016) or rigid (Fig. 9.4) bricks, effective moduli

FIGURE 9.13 FE predictions for effective tangent moduli of masonry with rigid bricks

(Eb5 1000Em (t5 0)), joints thickness th5 10 mm, and mortar parameters identified at short (A)

and long terms (B).

TABLE 9.7 Mortar Young’s moduli for different crack densities evolving

due to the law (Eq. 9.30).

t (days) dc Ej (short term) (MPa) Ej (long term) (MPa)

0 0 7700 6112

50 3.413 10214 2148 6027

150 2.013 1029 1855 5866

350 9.633 1026 1846 5575

450 1.193 1024 1846 5441

650 4.703 1023 1831 5159

750 1.963 1022 1784 4923

850 6.873 1022 1645 4454

900 1.21731021 1517 4074

950 2.103 1021 1345 3581
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decrease significantly during the first 50 days. This is consistent with the sig-

nificant decrease of the mortar’s Young’s modulus as illustrated in Table 9.7

(column “short term”). After almost 100 days, the decrease of effective mod-

uli is slow as observed for the case of masonry with long-term mortar prop-

erties throughout the whole period considered ([0, 950] (days)). Moreover,

masonries with rigid bricks (Eb5 1000Em (t5 0)) show pronounced anisot-

ropy compared to those with elastic bricks (Eb5 2.22Em (t5 0)) for which

effective Young’s moduli ~Exx and ~Eyy are close mainly at the long term, see

Fig. 9.14B (Rekik et al., 2016). Hereafter, only the time range [600, 950]

(days) is considered since the crack density is almost negligible for the time

period [0, 600] (days) (see Table 9.7). According to Fig. 9.15, the decrease

of the mortar thickness from 10 mm to 4 mm for masonries with rigid bricks

almost double the masonry effective moduli.

On the other hand, it can be seen in Figs. 9.16 and 9.17 that ~Exx and ~Eyy

are almost nonsensitive to the change of the brick height and width.

However, note that the increase of brick height a (width b) causes the

increase of the effective moduli ~Eyy ( ~Exx) and ~μxy. Also note that the shear

effective moduli ~μxy is more sensitive to the brick’s height a than to the

brick’s width b. Similar trends are observed for time evolutions of masonry’s

effective tangent moduli with elastic bricks and long-term mortar’s proper-

ties (see Figs. 9.18 and 9.19 in Appendix B; Rekik et al., 2016).

Quantitatively, the decrease of the mortar’s thickness only slightly affects

the masonry’s effective tangent properties with elastic bricks in contrast to

the rigid ones. Table 9.8 summarizes the trends of evolutions of the micro-

cracked masonry’s effective moduli with variation of the parameters mortar

thickness, brick height, or width.

These results allow us to conclude that effective FE predictions are as a

whole more sensitive to the change of brick height “a” and also to the

decrease of morta thickness “th” for both elastic and rigid bricks. Indeed, the

lowest value of brick height gives the lowest masonry stiffness. It is then

more beneficial to dispose of the highest possible value for “a.” Moreover,

FIGURE 9.14 Comparisons at time t5 900 days of CTR (A and C) and FE (B and D) predic-

tions for stress snapshots (σyy (A and B), σxy (C and D)) in the compressed wall with rigid bricks

Eb5 1000Em (t5 0) and mortar’s properties identified at the long term.
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FIGURE 9.15 Masonry with rigid bricks (Eb5 1000 Em (t5 0)) and mortar’s parameters iden-

tified at the long term: sensitivity of the FE predictions for Young’s ~Eyy (A), ~Exx; (B) shear ~μxy;

and (C) moduli to mortar joint’s thickness.

FIGURE 9.16 Masonry with mortar’s parameters identified at the long term and rigid bricks

(Eb5 1000Em (t5 0)): sensitivity of FE predictions for Young’s ~Eyy (A), ~Exx (B); shear ~μxy; and

(C) moduli to the brick’s height a (mm).
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the lowest value of the mortar thickness provides the stiffest masonry mainly

in the case of rigid bricks. Lastly, there is no great profit in increasing the

brick width “b,” which induces little increase of ~Eyyand ~μxy moduli.

Case of a compressed masonry panel

In this subsection, it is proposed to investigate FE predictions allowing the

assessment of the relevance of the CTR model (Rekik et al., 2016) at the

FIGURE 9.17 Masonry with mortar’s parameters identified at the long term and rigid bricks

(Eb5 1000Em (t5 0)): sensitivity of the FE predictions for Young’s ~Eyy (A), ~Exx; (B) shear ~μxy;

and (C) moduli to the brick’s width “b” (mm).

FIGURE 9.18 Comparisons at time t5 900 days of CTR (A and C) and FE (B and D) predic-

tions for strain snapshots (εyy (A and B), εxy (C and D)) in the compressed wall with rigid bricks

Eb5 1000Em (t5 0) and mortar’s properties identified at the long term.
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local level. For this purpose, we study the case of a masonry panel of dimen-

sions L5 1560 mm (length) and H5 1040 mm (height) treated in Cecchi and

Tralli (2012) and subjected to boundary conditions BC-2 with three distrib-

uted loads at the top and two lateral edges and an additional concentrated

load F applied on the top as shown in Fig. 9.20A. Here, according to the

results obtained in the “Case of a periodic unit cell: comparisons at short and

long terms” section and for the sake of brevity, only the case of rigid bricks

is treated (Eb5 1000Em (t5 0)). The mortar inside joints are assumed to be

microcracked with a matrix that obeys linear viscoelastic behavior following

the MM model. Microcrack is assumed to evolve with time following the

nonlinear law (9.30). On the other hand, as the arrangement of the bricks is

FIGURE 9.19 Comparisons at time t5 900 days of evolutions with abscise x of CTR and FE

predictions for stress components (σyy (A) and σxy (B)) at the middle height’s of the compressed

wall with rigid bricks Eb5 1000 Em (t5 0) and mortar’s properties identified at the long term.

TABLE 9.8 Sensitivity to various parameters (mortar thickness th, brick

dimensions) of time evolutions of FE predictions for masonry effective

tangent moduli with microcracked mortar and viscous parameters

identified at the long term (Table 9.6).

Parameter Bricks ̃Exx ̃Eyy ̃μxy

Mortar’s
thickness

Rigid m for th k m for th k m for th k

Elastic m for th k
(small effect)

m for th k m for th k

Brick’s height, a Rigid No effect of a m for a m m for a m

Elastic m for a m m for a m m for a m
(small effect)

Brick’s width, b Rigid m for b m No effect of b Small m for b m

Elastic m for b m B no effect of b Small m for b m
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regular, the effective behavior of the panel is assumed to be well estimated

by that of a periodic cell (see Fig. 9.21A). The panel can then be modeled as

a homogeneous material with properties that coincide with those of the

equivalent material HEM-2 (Fig. 9.20B). The mortar data used to compute

this problem are those gathered at the long term as shown in Table 9.6.

Qualitatively, under BC-2, distribution of the stress field σyy either for the

FE or CTR model is symmetric (Fig. 9.14B) by reference to the axis of sym-

metry of the panel x5 L/2 unlike that of the stress σxy which is antisymmet-

ric (Fig. 9.14D).

Similar qualitative aspects are observed for snapshots of strains εyy (sym-

metric; see Fig. 9.19B) and εxy (antisymmetric according to Fig. 9.19D).

Snapshots of strain (Fig. 9.18) and stress (Fig. 9.18) fields show similar

localization areas at the vicinity of the application’s point of the concentrated

load F under condition BC-2. Quantitatively, FE and CTR estimates for

stress components are close under BC-2 as shown in Fig. 9.22, illustrating

evolutions of stress components along the x axis located at the middle height

of the wall (x5H/2).

For both the FE and CTR models, as shown in the maps of the stress

component σyy, except for area surrounding the application’s point of load F,

which is subjected to compression (σyy# 0), the wall is subjected locally to

tensile stress (σyy$ 0). In this area, it can be noted that the absolute values

FIGURE 9.20 Equivalent problem (B) for the masonry panel submitted to boundary conditions

BC-2 (A).

FIGURE 9.21 Periodic masonry cell (A) and its quarter part (B) considered for the modeling.
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of CTR estimates for σyy and σxy are stiffer than the FE ones. Moreover, for

this area, the FE and CTR estimates for shear stress σxy are close compared

to local predictions for stresses σyy. In contrast, at the middle height of the

wall, it can be observed that the FE and CTR estimates are close either for

σyy or σxy. Moreover, CTR predictions for shear stress are slightly softer

than FE ones. However, CTR estimates for σyy are slightly stiffer when

x-L/2; otherwise, they are almost the same. Globally, under this boundary

condition, it is observed that the MM model predicts small strains.

Moreover, the CTR model seems to overestimate strain localization by com-

parison to FE predictions. Indeed, in the area at the vicinity of the applica-

tion’s point of load F, local strains (εyy and εxy) derived from the CTR

model are almost three to four times greater than those provided by the FE

model. The evolutions of strain components εyy and εxy (Fig. 9.18) at the

middle height of the wall confirm that the CTR model overestimates local

strains. However, away from the area at the vicinity of the application’s

point of load F, the CTR and FE estimates for strain components are closer

since CTR predictions are around 1.2�1.5 times greater than the FE ones.

9.2.2.6 Conclusions and perspectives

This section extends the FE homogenization method for regular micro-

cracked viscoelastic masonries. It provides accurate orthotropic overall tan-

gent properties for this masonry in the short and long terms. The accuracy of

this model is based on similar in-plane stress hypotheses for constitutive

functions in joints and bricks in contrast to the analytical model. Moreover,

this accuracy is a function of both factors: numerical error function of the

mesh refinement and the choice of the mean-field homogenization scheme

used to assess the behavior of the microcracked mortar. Moreover, in this

work, there is no recourse to the LC transform when assessing the creep

behavior of the mortar. This work, which rests on the computation of the

FIGURE 9.22 Comparisons at time t5 900 days of evolutions with abscise x of CTR and FE

predictions for strain components (εyy (A) and εxy (B)) at the middle height’s of the compressed

wall with rigid bricks Eb5 1000Em (t5 0) and mortar’s properties identified at the long term.
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strain localization tensors in each phase constituting the masonry (brick and

mortar), proposes an alternative to an incremental homogenization approach

that requires additional parameters such as the time increment and polariza-

tion tensors in viscoelastic phases. Estimates provided by the proposed

numerical homogenization model serve to assess the accuracy of the recently

proposed extension of the Cecchi and Taliercio’s model for microcracked

masonry—the CTR approach (Rekik et al., 2016)—at the local and global

levels for different parameters (mortar thickness and brick dimensions). In a

future work, it could be interesting to investigate the effects of more sophisti-

cated damage evolution law functions of both time and external loading

(Taliercio and Papa, 2008) on FE predictions and the accuracy of the CTR

model. Moreover, the choice of the mean-field homogenization scheme

could influence the overall and local results of the proposed numerical

model. Indeed, a mean-field homogenization model accounting for crack

interactions such as the Ponte�Castañeda and Willis model (Bornert, 2001)

could be more appropriate to assess the creep behavior of microcracked mor-

tar and to account for higher crack densities (more than 20%). At last, taking

into account the creep of bricks and crack propagation as proposed in

Nguyen and Dormieux (2015) for homogeneous material could improve and

enrich the proposed numerical model.

9.3 Nonlinear homogenization methods for masonry

For reasons of durability and resistance to harmful factors (fire, water, chem-

ical products, etc.), conventional bonded masonry is sometimes replaced by

mortarless masonry systems such as interlocking mortarless hollow concrete

block systems (Thanoon et al., 2008a); dry-stack mortarless sawn stone con-

structions (such as the Egyptian pyramids and the Zimbabwe ruins; Senthivel

and Lourenco, 2009); and refractory linings of industrial furnaces including

vessels of steel industry where the ceramic bricks are laid in direct contact

with each other (Andreev et al., 2012).

In contrast to conventional mortared masonry structures, for mortarless

masonry, there have been limited analytical and numerical studies, and these

depend mainly on the type of blocks used to assemble the walls. Among

these studies, a FE model was proposed by Oh (1994) to simulate the behav-

ior of interlocking mortarless block developed in Drexel University. Such a

procedure is useful to simulate the contact behavior of mortarless joints

including geometric imperfection but is suitable only for modeling small

masonry assemblies. Material nonlinearity is not considered to account for

the behavior of the masonry near the ultimate load and to predict the failure

mechanism. Alpa and Monetto (1998) suggested a macromodel based on

homogenization techniques to model the joint and block as a homogenous

material. That model focuses on the joint movement mechanism assuming a

perfect joint. This model ignores significant issues such as material
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nonlinearity, joint imperfection, and progressive material failure. Recently,

Thanoon et al. (2008a,b) proposed an FE model and developed an incremen-

tal iterative program to predict the behavior and failure mechanism of the

system under compression. The nonlinear progressive contact behavior of

mortarless joint that takes into account the geometric imperfection of the

block-bed interfaces is included based on experimental testing. The devel-

oped contact relations for dry joints within specified bounds can be used for

any mortarless masonry system efficiently with less computational effort. On

the other hand, Senthivel and Lourenco (2009) developed a nonlinear FE

analysis based on experimental data to model deformation characteristics

such as load�displacement envelope diagrams and failure modes of dry-

stack masonry shear walls subjected to combined axial compression and lat-

eral shear loading. This analysis is based on a multisurface interface model

where bricks and joints are assumed elastic and inelastic, respectively. More

recently, Andreev et al. (2012) investigated the compressive closure of dry

joints in two classes of refractory bricks: Magnesia�Carbon and

Magnesia�Chromite bricks. The general aim of the investigation was to

obtain data on the compressive joint closure behavior to get better insight

into the masonry stress state and the joint condition during the service cycle

of the furnace. To this end, the process of joint closure was measured indi-

rectly by compressing samples with and without joints in a wide temperature

range. At room temperature, direct optical measurements were also per-

formed. FEM computer analysis was used to interpret the measurement

results.

For both conventional mortared or mortarless masonry structures, a contin-

uum model based on micromechanical considerations is preferable. Indeed,

recently, especially in the case of regular masonry, efficient and reliable mod-

els based on periodic homogenization have been created to allow nonlinear

analysis of large-scale structures at low numerical cost. The present work is

closely connected with the latter kind of analysis. Its relevance is based on its

dependence on nonlinear homogenization methods sustaining mean-field the-

ories classically applied to nonlinear composites. In this section, it is then pro-

posed to assess the accuracy of predictive schemes belonging to the class of

secant methods (the classical; Hutchinson, 1976; Berveiller and Zaoui, 1979)

and its modified approach (Ponte Castañeda, 1991; Suquet, 1995, 2001)) to

the particular case of refractory mortarless masonry.

At room temperature, the nonlinear behavior of the mortarless ceramic

joint was identified experimentally based on the digital image correlation

(DIC) method (Rekik et al., 2015; Allaoui et al., 2017). The behavior of the

brick unit was assumed to be linear elastic. Linearization procedures defining

a linear comparison composite (LCC) were then applied only for the head

and bed dry joint behaviors. The linear homogenization of the LCC behavior

was performed using the FE method. Therefore, the approximations on the

macroscopic level are related to the sole linearization procedure.
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The results of nonlinear homogenization sustaining mean-field theories

are compared at global and local scales to the results of the nonlinear refer-

ence solution. Furthermore, it is proposed to improve the results of the clas-

sical secant scheme to better estimate local and global behaviors of

mortarless masonry. Note that the methodology proposed in this part can be

enlarged to the more general case of mortared masonry or eventually for

masonry at high temperatures.

9.3.1 Experimental characterization of mortarless joint behavior

In many furnaces (e.g., converters of the steel industry) Magnesia�Carbon

(MaC) bricks are laid on dry joints, without mortar. Quantitative knowledge

of the compressive behavior of dry joints is an essential design parameter.

As an example, consider the superposition of the stress-reducing effect of the

joint. For these reasons and in order to support optimization of refractory

masonry structures, only the compressibility of dry joints will be investi-

gated. Compressive tests on a stack of two MaC bricks (without mortar)

were carried out. Commercially available MaC bricks were used. Their com-

position is shown in Table 9.9. Because of their high resistance against

chemical and mechanical wear the bricks are used in the insulating linings of

steel-making vessels. The morphology of the brick is bigger grains of mag-

nesia and graphite in the matrix of small magnesia grains. The maximal

grain size is 5 mm. The bricks are resin bonded.

TABLE 9.9 Chemical composition and physical properties of MaC bricks.

Material type MaC

Density (g/cm3) 2.93

Open porosity (%) 10

MgO (%) 98

Cr2O3 (%) �
CaO (%) 1

FeO3 (%) 0.5

Al2O3 (%) �
SiO2 (%) 0.5

Total C (%) 14

Source: From Andreev, K., Sinnema, S., Rekik, A., Allaoui, S., Blond, E., Gasser, A., 2012.
Compressive behavior of dry joints in refractory ceramic masonry. Constr. Build. Mater. 34,
402�408.
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Tests were performed at atmospheric conditions on a mechanical frame

Instron 4507 with a load cell of 200 kN (Fig. 9.23). The load accuracy was

about 0.2% of the reached load. The samples were cut from bricks with

dimensions of 1003 503 50 mm3 and the faces were not polished. The com-

pression tests were performed with a constant displacement rate of

0.033 mm/min. Two-dimensional DIC (Sutton et al., 1983; Vacher et al.,

1999) was used to measure the compressive behavior of the dry joint with

7D correlation software (Vacher et al., 1999). The DIC is an optical method

based on gray value digital images. The plane surface of the specimen was

observed by a CCD camera with a resolution of 13803 1024 pixels in our

case. Then, the images on the specimen surface, one before and others after

deformation, were recorded, digitized, and stored in a computer as digital

images. These images were compared to detect displacements by searching a

matched point from one image to another using a series of mathematical

mapping and cross-correlation functions. Once the location of this point in

the deformed image was found, the local strain tensor was determined from

the spatial distribution of the displacement field for each image.

As it is almost impossible to find the matched point using a single pixel,

an area with multiple pixel points is used to perform the matching process.

This area, usually called a subset, should contain several clear features, but it

is often a compromise between resolution and accuracy. As a general rule,

larger subset sizes will increase the accuracy, whereas smaller subsets will

increase the resolution. However, realistically, the size of a subset is deter-

mined by the quality of the image and the speckle pattern. In our case,

another criterion is added for the subset size. Indeed, in order to evaluate the

joint behavior, the grid must be put in place on the joint and must have

only a small overlap onto the bricks. For this reason, the grid steps were

optimized before using the DIC analysis on joints. The chosen subset

FIGURE 9.23 Experimental setup, compression test on brick-dry joint-brick laminate.
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was 63 6 pixels, which corresponds to an area width of about 0.5 mm. The

accuracy of the DIC reached 0.01 pixels, which represents, in our case, a res-

olution of 0.001 mm on the displacement. In order to perform this process, a

grayscale random pattern that allows matching the subset was needed on the

surface of the specimen. In our case, the natural pattern of the bricks is

enough to produce a suitable pattern.

Due to roughness, shape defaults, and nonparallelism of faces, the dry

joint was not horizontally aligned and its thickness was not constant. It was

difficult to contain the joint in the same line of subsets. For this, measure-

ments were performed at different locations along a joint (Fig. 9.24).

For each location, the DIC method allowed the measurement of the evo-

lutions of the local normal εnn, tangential εtt, and shear εnt strains. These

strain components were averaged over each grid area and led to the dry joint

compressive stress�strain curves shown in Fig. 9.25A for the third selected

area, for example. Note that the DIC method does not provide the local stress

in the dry joint. Moreover, as the bricks and dry joints were disposed in

series, it is possible to assume that σðxÞ is set equal to the imposed normal

stress σnnn� n. In Fig. 9.25A, it can be seen that at the beginning, the inten-

sive joint strain develops at relatively low stresses. With progressive loading,

the reaction to the compaction increases.

At a certain stress level the joint appears to be closed completely as the

closure curve aligns itself parallel to the compressive stress axis. After the

joint closure, the compressive behavior of the sandwich brick/dry-joint/brick

will be approximatively linear. Fig. 9.25B presents an example of measure-

ments taken at different locations of a MaC dry joint. We note that the com-

pressive strains are different according to the place where they were

determined, but the dispersion remains correct. The fluctuation of the

obtained data is due to the pattern size, which is function of the microstruc-

ture size of the MaC material. The bad contact resulting from natural rough-

ness or from the fact that the contacting surfaces were not perfectly parallel

FIGURE 9.24 Optical measurement areas during a two-brick compression test (MaC).
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is also a parameter that influences the fluctuation and the dispersion of the

measured strains.

In the following, the subscripts b and j denote the bricks and joints,

respectively. The properties of the dry joint were evaluated in terms of the

average over all the selected areas Ai (i5 1, N) of the local normal stress and

strain componentsεnn, εtt, εnt, and εzz. Indeed, the latter component is not

null under the adopted assumption of plane stress. Moreover, the shear strain

components εlz (l5 t or n) are null and the strain components εtt and εzz are
assumed to be equal in the (t, z) plane orthogonal to the direction of the com-

pressive loading.

FIGURE 9.25 “Stress�strain components” curves (A) and “σnn 2 εnn” (B) evolutions at differ-

ent areas selected around the mortarless joint of MaC material.
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9.3.2 Nonlinear homogenization of refractory mortarless linings

Since refractory mortarless linings present periodic microstructure, it is pos-

sible to consider only a periodic cell as shown in Fig. 9.25A. Note that the

MaC bricks were assumed to follow an isotropic linear elastic behavior. The

behavior of the dry joints is nonlinear as identified previously by the DIC

method. The lining’s periodic microstructure enables a FE computation of

the local and global responses. The FE result is regarded as a reference solu-

tion and denoted hereafter by NL. Note that the local and overall behavior of

the mortarless masonry can also be estimated or approximated using nonlin-

ear mean-field homogenization theories such as the classical secant proce-

dure and its modified extension. Other “stress�strain” linearization schemes

(e.g., the affine formulation) or potential-based approaches (e.g., the tangent

second-order formulation) are to be addressed in the future since they need

many more material parameters such as the polarization (or prestress) and

the prestrain for thermoelastic “stress�strain” formulations or the potential

strain energy for “potential-based” approaches.

For mortarless refractory linings, in order to assess the accuracy of the

existing secant linearization schemes known to provide predictions that are

too stuff for usual viscoplastic power-law composites (see, e.g., Rekik et al.,

2015), it is proposed to compare their predictions at global and local scales

by referencing the NL solution. Moreover, in order to evaluate the sole effect

of the linearization scheme without any bias or ambiguity, it is proposed to

avoid any approximation related to the linear homogenization step. The main

idea relies on the adoption of an LCC with an identical microstructure to

that of the original problem and to perform FE linear homogenization on this

LCC using the FE method. Moreover, as the periodic cell presents two axes

of symmetry—the normal and the tangential directions along the unit vectors

n and t, respectively—only its quarter (see Fig. 9.25B) will be retained for

computation. In this section, note that the term “exact” is set in quotation

marks since the accuracy of the reference solution depends on the numerical

errors and mainly on the accuracy of the adopted functions fitting the experi-

mental data.

9.3.2.1 Reference solution: finite element nonlinear
homogenization

Reference material properties of the constituents

The following power-law relation between the local normal stress σnn and

normal strain εnn is identified using the experimental data for the MaC mor-

tarless joint (see Fig. 9.26):

σnnðεnnÞ5Ej
eεnn 1σ0εm0

nn ð9:31Þ
where the scalars Ej

e, σ0 (MPa) and m0 are given in Table 9.10.
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Note that the scalar Ej
e can be considered as the initial Young’s modulus

of the interphase since it is determined by the linear part of the curves

σnn�εeq (see Fig. 9.26A). Moreover, by analogy with the usual (concave)

power-law viscoplastic materials, the constant 0 can be assumed to represent

the flow stress parameter.

Note that, in the current study, the exponent m0 is superior to 1, which is

not the case for the usual viscoplastic (concave) power-law composites for

which it is well known that the work-hardening exponent m is less than 1.

This is due to the convex qualitative trend of the σnn 2 εnn constitutive law.
The local normal compressive behavior of the dry joint can then be

defined by the nonlinear convex power-law “hσnnij 2 hεnnij” relationship

given by Eq. (9.31). However, the transversal behavior of the considered

interphase can be defined by the evolution of the ratio 2ðhεttij=hεnnijÞ
between the tangential and normal strain field components over the inter-

phase, denoted hereafter by the parameter νj, as a function of the interphase

FIGURE 9.26 Evolutions of the experimental data: the linear part of the MaC mortarless joints

“σnn 2 εnn” relation (A) and “ðσnn 2 ðEe
j εnnÞÞ2 εnn” evolution (B) functions of the local normal

strain εnn.
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local normal strain εnn. This evolution depicted in Fig. 9.27A can be fitted

by the ensuing polynomial second-order evolution:

νjðεnnÞ5 c2ε2nn 1 c1εnn 1 c0 ð9:32Þ
The scalars ciði5 0; 2Þ are given by Table 9.11. A linear approximation

of the evolution of “νj 2 εnn” was avoided because it presents more than one

slope (two different slopes) and the accuracy for each linear approximation

is less than the 0.5 shown in Fig. 9.27A. Moreover, since this evolution (see

Fig. 9.27A) is very fluctuant, a polynomial approximation of the parameter j

with a degree greater than 2 was also avoided. Indeed, in practice, such poly-

nomial approximation does not necessarily improve the accuracy shown in

Fig. 9.27A—it is either inferior or not much higher (e.g., around 0.6 instead

of 0.5 for a polynomial function of degree 3 or 4). For the isotropic linear

elastic behavior of the MaC bricks, the Young’s modulus and Poisson’s ratio

were taken, respectively, and set equal to Eb5 10 GPa and νb 5 0:1 (see

Andreev et al., 2012).

Reference local and global behaviors of the nonlinear mortarless
masonry

For the considered nonlinear problem, the local stress σ and strain ε fields in

the periodic unit cell, assumed to have the volume V and to be submitted to

the macroscopic strain ε, are solutions of the following set of equations

(Bornert, 2001):

uðxÞ5 ε:x1 u�ðxÞ; ’ xAV and u� on @V

εðuðxÞÞ5 1

2
ðruðxÞ1 truðxÞÞ5 ε1 εðu�ðxÞÞ; ’xAV

divðσÞ5 0; ’ xAV and σ:n2 on @V
σðxÞ5

X
r5 j; b

χrðxÞgrðεðxÞÞ; ’ xAV

8>>>>>><
>>>>>>:

ð9:33Þ

where u is the local displacement vector and u� is its fluctuating part; χrðxÞ
is the characteristic function of phase r (set to 1 if xAVr and 0 otherwise);

and gr is the nonlinear constitutive law σ5 grðεÞ followed by this phase. The

general notations and 2 # mean that the fluctuating part of the displacement

vector u� and the surface compression σ:n (n being the outer normal) are

TABLE 9.10 Parameters of the “normal stress�normal strain” relation for

the MaC mortarless joint.

E
j
e

σ0 m0

0.489 2.113 106 4.6
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FIGURE 9.27 Evolution of the dry joint’s parameter νj as function of (A) the local normal

strain εnn and (B) the spherical part traceðεÞ of the local strain.

TABLE 9.11 Parameters of the evolution law of ν j as a function of the

MaC mortarless joint’s local normal strain.

c2 c1 c0

29.16 2 3.313 0.131
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periodic and antiperiodic on the cell boundary, respectively. Note that the

average hε ðu�Þij over the periodic unit cell of the strain field of the fluctuat-

ing part u of the displacement vector is null (Michel et al., 2001).

The local and effective behaviors of the mortarless refractory unit cell

were computed using the software Cast3M (http://www-cast3m.cea.fr/

cast3m/indeIX.jsp) under the assumption of a plane stress field. In the unit

periodic cell, the joints and bricks were assumed to be perfectly bonded. To

determine the effective behavior of the cell, three types of loading were

applied to the periodic mortarless unit cell. Since the behavior of the dry

joints can be assumed to be piecewise linear, it is possible to define at each

strain increment the following macroscopic law (Eq. 9.34) where ~L denotes

the instantaneous “secant” effective stiffness of the reference unit cell.

According to the classical Voigt notation, the constitutive behavior law

of the unit cell reads:

σnn

σtt

σnt

0
@

1
A5

~Lnnnn ~Lnntt 0
~Lnntt ~Ltttt 0

0 0 ~Lntnt

0
@

1
A εnn

εtt
2εnt

0
@

1
A ð9:34Þ

where σkl 5 fjσ
j
kl 1 fbσb

kl fr is the volume fraction of the phase r defined by

fj 5Vr=V and ar 5 hair is the average over phase r of the stress or strain

field component a.

Note that the software Cast3M provides the reference local strain and

stress fields inside each phase (bricks and mortarless joints). Moreover, it

allows the calculation of the average fields over each phase. For computation

purposes, note that the components εtt and εzz inside the dry joint are not

assumed to be equal, as is the case in the previous section, but they are given

due to the FE method. The relations between the components of the effective

stiffness ~Lijkl and the overall elastic engineering constants (normal ~En and

tangential ~Et Young’s modulus, Poisson’s ratios νnt and νtn, and shear modu-

lus ~μnt) under plane stress assumption read:

~Lnnnn 5
~En

12 ~vnt ~vtn

~Ltttt 5
~Et

12 ~vnt ~vtn

~Lnntt 5
~En ~vtn

12 ~vnt ~vtn

~Lntnt 5 ~Gnt
~vnt
~En

5
~vtn
~Et

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð9:35Þ
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To assess the effective elastic engineering constants, it is proposed to

subject the unit cell to three types of loading: compression along t, com-

pression along n; and shear loading. In the following, as we have only

experimental data related to the compressive behavior of the MaC mortar-

less joint, we will consider only two types of loading (axial compression

along n, axial compression along t). The case of shear loading is left for

future work.

9.3.2.2 Secant linearization schemes for assessing global
behavior of masonry

It is worth noting that a nonlinear mean-field homogenization approach

relies on two steps: linearization and linear homogenization. The first step

consists of applying one of the numerous available linearization schemes in

order to linearize the nonlinear behavior and thus to define a LCC. For

secant linearization schemes, the original nonlinear problem (9.36) can

then be rewritten as:

uðxÞ5 ε:x1 u�ðxÞ; ’ xAV and u� # on @V

εðuðxÞÞ5 1

2
ðruðxÞ1 truðxÞÞ5 ε1 εðu�ðxÞÞ; ’ xA

divðσÞ5 0; ’ xAV and σ:n2 # on @V
σðxÞ5

X
r5 j; b

χrðxÞLrðεðxÞÞ

9>>>>>>=
>>>>>>;

Lr 5 LrðεrÞ
εr 5, ε. r ðfor SECÞ or εr ðfor VARÞ

	
nonlinear relations

local linear problem

8>>>>>>>>>><
>>>>>>>>>>:

ð9:36Þ

where LrðεÞ are known functions whose exact expressions depend on the

chosen linearization scheme. The procedure followed to solve this system

of equations is described below (see “The linearization step” section).

The second step of a nonlinear mean-field homogenization evaluates the

effective properties of the LCC defining thus the homogeneous equivalent

material (HEM). The effective properties of the HEM were assessed by

applying one of the available approximative linear homogenization

schemes such as the Hashin�Shtrikman (HS) bounds or the SC model

(Bornert, 2001). Frequently, since such approaches induce differences

between the microstructure of the nonlinear composite and that of the

LCC, it is proposed in this chapter—as in Rekik et al. (2007)—to carry

out an “exact” linear homogenization step by considering an LCC with

an identical microstructure to that of the nonlinear composite—that is,

the periodic unit cell—and using the FE method to compute the effective

properties of the LCC. Accordingly, the sole effect of the linearization
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step can be evaluated without any bias related to a change of microstruc-

ture or other hypothesis adopted by a classical linear homogenization

scheme.

For the linearization step, it is possible to adopt one of the several lineari-

zation schemes available in the literature. Nevertheless, since the experimen-

tal data in our disposal, related to the dry joint’s properties are limited, only

secant linearization schemes that means the classical secant model

(Hutchinson, 1976; Berveiller and Zaoui, 1979), referred to as by SEC and

the modified secant method (Ponte Castañeda, 1991; Suquet, 1995, 2001)

noted in the following by VAR will be treated in this chapter. The VAR

method accounts for both the inter- and intraphase strain fluctuations unlike

its original version, SEC, which considers only the interphase fluctuations. In

the following, we propose also to test an empirical version of the classical

secant method referred to as SECα.

The linearization step

Interphase properties in the LCC: Since a secant linearization scheme attri-

butes to each phase r in the LCC a secant shear moduli ~μsct defined by the

equation (Suquet, 1995; Bornert and Suquet, 2001)

μr
sctðεeqÞ5

σeqðεeqÞ
3εeq

ð9:37Þ

where the von Mises stress (respectively strain) measures the deviatoric part

of the stress (respectively strain) tensor as done in Ponte Castañeda (1991),

Gilormini et al. (2001), and Rekik et al. (2007), it is useful to define the

interphase behavior in terms of the “σeq 2 εeq” evolution as shown in

Fig. 9.28 provided by the experimental data. According to the definition

(9.37), the secant shear modulus of the interphase in the LCC defined by a

secant linearization scheme reads:

μjðεeqÞ5μj
e 1μ1ε

m1

eq ð9:38Þ
where the scalars μe

j and μ1 (MPa) and the exponent m1 are given in

Table 9.12.

Note that, in this study, there is no use of the von Mises plasticity crite-

rion since the deviatoric part of the dry joint’s behavior is assumed to be

nonlinear elastic following a power-law type relation. The constant μe
j can

be considered as the elastic shear modulus of the dry joint since it is pro-

vided by the linear part (see Fig. 9.28A) of the “σeq 2 εeq” evolution (i.e.,

μe
j 5σeqðεeqÞ=3εeq for εeq # 0:012). It is worth noting that a polynomial

approximation of the shear modulus evolution was avoided as it could lead

to aberrant (negative) values for j for some ranges of the local equivalent

strain. An exponential approximation was also avoided since such function

overestimates μj with the increase of the local equivalent strain. For this

step, we chose to not linearize the spherical part of the joint’s behavior but
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to use the “exact” expression of the parameter j as a function of the spherical

part traceðεÞ of the strain field in the joint. It reads:

νjðtrðεÞÞ5 b2ðtrðεÞÞ2 1 b1ðtrðεÞÞ1 b0 ð9:39Þ
where the scalars biði5 1; 3Þ are provided in Table 9.13 and tr εð Þ5 ε: i.

The secant Young’s modulus of the interphase can then be deduced as

follows: Ej
sec 5 2jð11 νjÞ. Its bulk modulus reads kj 5Ej=3ð12 νjÞ. In the

LCC, the MaC interphase is then assumed to be an isotropic linear elastic

phase characterized by the secant Young’s modulus Ej
sec and the “exact”

FIGURE 9.28 Periodic mortarless masonry cell under compression along n (A and B) or com-

pression along t (C and D): effective mechanical properties versus the macroscopic strain.

TABLE 9.12 Parameters of the evolution of the dry joint’s secant shear

modulus versus the local equivalent strain.

μj
e

μ1 m1

0.208 107 4.05
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joint’s parameter ν j (see formulae (9.39)). Recall that the term “exact” is set

in quotation marks since it is related to the accuracy of the approximative

function used to fit the fluctuant evolution of the parameter νj as a function

of the spherical part of the local strain.

For the interphase, it was also possible to linearize the (convex power-

law) spherical part of the MaC joint’s behavior by evaluating the joint’s

secant bulk modulus as kj 5σmðεmÞ=3εm and therefore to deduce the

Poisson’s ratio νj 5 ð3kjsec 2 2μ j
secÞ=2ð3k j

sec 1μ j
secÞ. Nevertheless, the latter

secant bulk modulus kjsec risks coming to aberrant (negative) values for the

Poisson’s ratio if the adopted (or chosen) function fitting the “σm 2 εm” evo-

lution provided by the DIC method is not so accurate.

Resolution of the nonlinear problem (Eq. 9.36): To define the LCC for each

loading step, the reference strain εr for the SEC and VAR procedures needs to

be assessed. Since there is no experiment carried out on the periodic mortarless

masonry cell using the DIC method as is the case for the laminate elementary

structure (see Section 9.2), we do not have experimental data allowing the

deduction of the reference strains εj for the mortarless linings. Accordingly, we

propose to use an iterative method (e.g., the fixed point) in order to resolve the

nonlinear set Eq. (9.36). For this nonlinear system, it is recalled that LrðεÞ are
known functions whose exact expressions depend on the chosen linearization

procedure. Moreover, to ensure numerical accuracy in these investigations, the

convergence criterion adopted for the iterative fixed-point method in this work

was set equal to 1026ððpr1 1 pr0Þ=2Þ, where pr1 denotes the new evaluation of

the reference strain εr and pr0 is its initial value in each phase r. More details

about this iterative method are given in Rekik et al. (2007).

Results and discussion

This section provides insight into the influence of the secant linearization pro-

cedures on the global and local behavior of MaC regular mortarless masonry.

With this aim, we consider a periodic cell made of bricks of dimensions

1003 50 mm2 and mortarless joint with 0:104 mm thickness. This cell is dis-

cretized through a mesh relying into 503 25; 43 50; and 23 25 four nodes

quadrilateral finite elements inside the brick, the bed, and the head joints in

the quarter cell, respectively. The choice of such discretization instead of a

TABLE 9.13 Parameters used to approximate the MaC dry joint’s

parameter ν j 52 ðhεttij=hεnnijÞ as a function of the spherical part of the

strain field in the joint.

b2 b1 b0

33.23 23:46 0.127
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more refined mesh with eight-node quadrilateral finite elements was motivated

by the fact that the former allows the fixed point to converge faster and due to

negligible differences between results provided by both meshes. For the simu-

lated results, it is noted that the computations are run until εnn5
23 1025 ðεtt 5 1:753 1025Þ for unit cells under compression along n (along t).

Effective properties Evolutions of the computed effective stiffnesses

ð ~Lnnnn; ~LttttðMPaÞÞ and Poisson’s ratios (νnt and νtn) with respect to the

imposed macroscopic strain are depicted in Fig. 9.21.

For the mortarless periodic cell submitted to compression along n, the

secant estimates (see Fig. 9.21A and B) reproduce qualitatively well the evo-

lutions of the reference solutions. Moreover the VAR method provides good

estimates for the effective stiffness ~Lnnnn and Poisson’s ratio νtn of the MaC

mortarless masonry. Unlike for usual viscoplastic (concave) power-law com-

posites, the classical secant model leads to too soft overall estimates for the

mortarless masonry. The SECαn
empirical model where the scalar n is found

to be set to 1.3 improves the overall estimates of the classical secant proce-

dure. Note that αn is superior to 1. This amplification of the reference strain

εjeq for the classical secant model allows then the definition of an improved

LCC more relevant than that defined by the SEC scheme.

Note that the reference strain αnεreq almost coincides with the second-

order moment of the strain field εreq (see Fig. 9.10 in Rekik et al., 2016).

This argues the quasiequality between the overall predictions of SECαn
and

VAR. Note that, even though the VAR model is a sophisticated model

accounting for both the inter- and intraphase strain field fluctuations, the

empirical model SECαn
accounting only for the interphase field fluctuations

could be a satisfactory alternative for the VAR scheme as it is easier to

implement and requires less theoretical investigation and numerical expense.

However, it requires the implementation of an automatized inverse identifi-

cation procedure not yet done in this work.

For computations carried out under compression along t (Fig. 9.21C and

D), it is observed that the secant (SEC and VAR) schemes (highly) overesti-

mate the overall reference response. The SECαt
estimates, with a scalar

αt 5 0:85 less than 1, softens the SEC estimates. Indeed, as shown in

Fig. 9.10B in Rekik et al. (2016), the reference αtεreq is softer than the sec-

ond moment ε r

eq and obviously softer than the first moment εreq with

αnεreq # εreq # ε r

eq: Accordingly and due to the convex qualitative trend of the

“σeq 2 εeq” curve for the mortarless MaC joint, the scheme SECαt
leads to

better global estimate than those provided by VAR and SEC. The inequality

εreq # ε r

eq justifies also that VAR overall estimate is stiffer than that provided

by SEC in the current study unlike for results obtained for usual viscoplastic

(concave) power-law composites.

The different general trends observed for the SEC and VAR predictions

at the global scale for mortarless masonry under compression along n and
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that along t can be justified by the hypotheses adopted in this study.

Indeed, for compression along t, the dry joint was assumed to behave as a

joint submitted to compression along n. Moreover, the strain field compo-

nents εtt and εzzwere assumed to be equal, which is not necessarily true.

The third hypothesis was related to the plane stress assumption for the non-

linear problem and the linear problems associated with the LCC defined by

the secant schemes. Accordingly the overall trends observed for a mortar-

less unit under compression along n should be more rigorous. Those

obtained for the mortarless unit cell under compression along t to be

checked or confirmed by the investigation of the real dry joint’s behavior

under compression along t using DIC or another appropriate experimental

technique. This idea is left for future work.

9.3.3 Conclusions and perspectives

In this section, the dry joint was assumed to be an interphase perfectly

bonded with MaC bricks. Accordingly it was possible to apply mean-field

homogenization theories to the mortarless masonry. A convex power-law

behavior was identified for the dry joint using the DIC method for an ele-

mentary mortarless specimen under compression orthogonal to the plane of

the joint. A rigorous assessment of the existing secant linearization schemes

for a mortarless periodic masonry with reference to the FE solution demon-

strated the superiority of the VAR model compared to the SEC scheme for

mortarless unit cells under normal compression. This result confirms again—

as is the case for the usual viscoplastic (concave) power-law materials—the

relevance of the VAR model since it accounts for both the inter- and intra-

phase strain fluctuations instead of the SEC model, which considers only the

interphase fluctuations. Unusually, the SEC estimates are softer than the

VAR and nonlinear responses. This is due to the convex qualitative trend of

the deviatoric part of the dry joint behavior instead of the usual concave

trend of viscoplastic power-law composites. For mortarless unit cells under

tangential compression, different trends were observed. The secant estimates,

especially the VAR predictions, were found to be too stiff. To improve these

results, an empirical variant SECα of the SEC scheme was proposed. It relies

on the adjustment of a scalar in order to reduce (amplify) the reference strain

εreq if the SEC overall estimate is stiffer (softer) than the nonlinear solution.

The appropriate value of the parameter led to global and local estimates in

well agreement with the reference solution. Even though the proposed model

is not based on theoretical investigations and accounts only for interphase

field fluctuations, it could be a satisfactory alternative for the secant schemes

(SEC and VAR) if these models lead to too stiff or soft estimates.

The evaluations and comparisons carried out in the current study can be

extended to mortarless refractory linings submitted to loading�unloading

compressive cycles at room and high temperatures. They can also be carried
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out under other mechanical tests (shear or biaxial loading) at various ranges

of temperatures. However, it is important to have reliable reference solutions

provided, for instance, by experiments based on the DIC method. These per-

spectives are left for future work. The empirical parametrical model pro-

posed in this section for the classical secant scheme can also be applied for

the VAR model. But these parametrical models require a reference solution

provided by experiments or FE or FFT method. A computational inverse pro-

cedure could facilitate the determination of the tuning parameter. This

approach can also be extended either for other types of brick materials or

more generally for conventional mortared masonry at room or high

temperatures.
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