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Viscoelastic effective properties for composites 
with rectangular cross-section fibers using the 
asymptotic homogenization method

Oscar L. Cruz-González, Reinaldo Rodríguez-Ramos, José A. Otero, Julián

Bravo-Castillero, Raúl Guinovart-Díaz, Raúl Martínez-Rosado, Federico J. Sabina,

Serge Dumont, Frederic Lebon, and Igor Sevostianov

Abstract The present work deals with the estimation of the linear viscoelastic effec-

tive properties for composites with periodic structure and rectangular cross-section

fibers, using the two-scale asymptotic homogenization method (AHM). As a partic-

ular case, the effective properties for a layered medium with transversely isotropic
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properties are obtained. Two times the homogenization method, in different direc-

tions, according to the geometrical configuration of the composite material is applied

for deriving the analytical expressions of the viscoelastic effective properties for

a composite material with rectangular cross-section fibers, periodically distributed

along one axis. In addition to that, models with different creep kernels, in particular,

the Rabotnov’s kernel are analyzed. Finally, the numerical computation of the effec-

tive viscoelastic properties is developed for the analysis of the results. Moreover, a

numerical algorithm using FEM is developed in the present work. Comparisons with

other approaches are given as a validation of the present model.

10.1 Introduction

Many materials like metals, polymers, and ceramics especially at high temperature

exhibit time dependent behavior. For linear non ageing viscoelastic materials, the

convolution product in the Stieltjes space is often used for modeling of the time

dependent constitutive law. The overall behavior of viscoelastic composite materials

is investigated by many researchers based on homogenization techniques. Classically,

the investigation of effective properties of non ageing linear viscoelastic compos-

ites are mainly based on the correspondence principle and Laplace transform. This

approach changes the convolution constitutive law describing the linear non age-

ing viscoelastic behavior into a fictitious linear elastic one in the Laplace domain.

Linear homogenization method can then be used to drive the effective properties in

the frequency domain. The time dependent effective properties can be obtained by

performing numerical inversion of their Laplace transform. Based on this method-

ological approach, many researchers investigated the overall non ageing behavior of

linear viscoelastic composites.

Important results obtained for elastic materials can be translated to linear non

ageing viscoelastic materials using the correspondence principle (Hashin, 1965,

1970b; Christensen, 1969; Schapery, 1967; Wang and Weng, 1992; Kachanov, 1992;

Lahellec and Suquet, 2007; Dormieux et al, 2006). It can be shown that in the

Laplace-Carson (LC) transform space, the writing of the constitutive behavior is

the same as in elasticity, the stiffness tensors being nevertheless functions of the

LC transform variable (denoted thereafter LC variable). However, assuming that the

solution in LC space is obtained, there are still considerable difficulties in obtaining

the inverse LC transform to find the corresponding results in time space (Lévesque

et al, 2007; Le et al, 2007).

Homogenization of viscoelastic composites can be performed analytically by

solving the homogenization equations in Laplace-Carson space with the so-called

correspondence principle (Hashin, 1966, 1970a; Laws and McLaughlin, 1978; Beur-

they and Zaoui, 2000; Lévesque et al, 2007). The time domain solution is usually

obtained with inversion algorithms,such as the collocation method (Schapery, 1964;

Lévesque et al, 2007). The recently developed method of Lévesque et al (2007)

is quite accurate, leads to thermodynamically admissible materials but requires a
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moderate computation time. Another approach consists of a time-integration ap-

proach, relying on variational principles (Lahellec and Suquet, 2007). While it avoids

Laplace-Carson transforms and solves the viscoelastic problem directly in the time

domain, its numerical implementation is challenging. Finally, another technique

relies on a direct quasi-elastic approximation in the Laplace-Carson space (Brenner

et al, 2002). This method is computationally-efficient but at the expense of accuracy.

Finally, Ricaud and Masson (2009) have shown that the Laplace-Carson scheme,

making use of the Prony series approximation, is equivalent to a time-integration

scheme of the internal variable formulation, establishing a link between the two

approaches.

This work is devoted to Gerard A. Maugin, who apported significant contributions

in the micro-mechanic area. In particular, the authors had the pleasant opportunity

to collaborate with him in the piezoelectric composites area (Berger et al, 2003,

2006; Otero et al, 2003). In the present contribution, making use of the two-scale

asymptotic homogenization method (AHM) and correspondence principle, an equi-

librium viscoelastic heterogeneous problem is solved similar to the elastic case, but

in Laplace-Carson space. The overall behavior of composite non-ageing constituents

is investigated with the estimation of the linear viscoelastic effective properties. As

a particular case, the explicit formulae to predict the effective relaxation modulus

for a two-layered medium with transversely isotropic properties are obtained. The

numerical algorithm proposed by Hollenbeck (1998), to invert the Laplace transform,

is using to calculate the properties to the homogenized composites in the time do-

main. Different creep kernels are analyzed, in particular, a time-dependent function

considerated by Dischinger’s model (see Maghous and Creus, 2003) and the fraction-

exponential function or Rabotnov’s kernel (see Sevostianov et al, 2015, 2016) with

the aim to make several comparison and to validate the numerical results. A model

of finite element method is implemented and comparisons with the obtained results

using finite element method is also realized. An alternative approach, using double

homogenization scheme, is considered to estimate the linear viscoelastic effective

properties for composites with periodic structure and rectangular cross-section fibers.

This approach is inspired in the geometric design of the material.

10.2 Statement of the Viscoelastic Heterogeneous Problem

A heterogeneous material with periodic structure exhibiting a linear viscoelastic

behavior is considered. It occupies a region Σ in R
3. Cartesian coordinate system xxx(xi)

is used where the stress tensor, external force field, surface force field, displacement

field and outer unit normal to the boundary ∂Σ of Σ (see Fig. 10.1) are denoted

by σσσ (σi j) , fff ( fi) , sss0 (s0
i ) , uuu(ui) and nnn(ni), respectively. The equilibrium equation

under the action of external force field is written as (see Persson et al, 1993)

div σσσ(xxx, t)+ fff (xxx) = 000, in Σ. (10.1)
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Fig. 10.1: Scales of the heterogeneous structure. a) Macroscopic heterogeneous

structure, b) periodic microstructure and c) periodic cell.

The corresponding boundary conditions associated to (10.1) are

uuu(xxx, t) = uuu0, on Σ1, (10.2)

σσσ(xxx, t)·nnn = sss0, on Σ2. (10.3)

The initial condition for Eq. (10.1) is

uuu(xxx, t) = 000, in Σ ×{0}, (10.4)

where Σ1 ∪Σ2 = ∂Σ and Σ1 ∩Σ2 =∅, (see Fig 10.1).

The stress and strain fields are linearly related to the constitutive law (see vis-

coelastic theory in Christensen, 1971; Pipkin, 1986)

σσσ(xxx, t) =

t∫

0

RRR(xxx, t − τ) :
∂εεε

(
uuu(xxx,τ)

)

∂τ
dτ, (10.5)

where RRR (Ri jkl) and εεε (εkl) denote a fourth rank tensor (the creep kernel or relaxation

modulus) and the Cauchy strain tensors, respectively.

The Eq. (10.5) can be expressed in a simplified form

σσσ(xxx, t) =RRR(xxx, t)◦εεε
(
uuu(xxx, t)

)
, (10.6)

where ◦ is indicating the convolution integral (Zhang and Ostoja-Starzewski, 2015).

The following relationship is satisfied for small displacements

εkl

(
uuu(xxx, t)

)
=

1

2

(
∂uk(xxx, t)

∂xl

+
∂ul(xxx, t)

∂xk

)
. (10.7)

Replacing (10.6) into (10.1) and using (10.2) - (10.4), the mathematical statement

for the equilibrium viscoelastic heterogeneous problem is obtained
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−div
(

RRR(xxx, t)◦εεε
(
uuu(xxx, t)

))
= fff (xxx), (10.8)

uuu(xxx, t) = uuu0, ∀xxx ∈ Σ1 ∧ ∀t ∈ R, (10.9)

RRR(xxx, t)◦εεε
(
uuu(xxx, t)

)
·nnn = sss0, ∀xxx ∈ Σ2 ∧ ∀t ∈ R, (10.10)

uuu(xxx,0) = 000, ∀xxx ∈ Σ . (10.11)

The following additional conditions are considered:

1. xxx (xi) is called the global coordinate. Also, is introduced the local or fast scale

coordinate yyy (yi), where yyy = ξ−1xxx. The parameter ξ is the fine mesh size of the

cell structure (see Persson et al, 1993).

2. The relaxation modulus fulfills the memory principle RRR(xxx, t)→ 0 as t → ∞ (see

Sevostianov et al, 2016). In particular, we have RRRξ (xxx, t) =RRR(xxx/ξ , t) =RRR(yyy, t) is

Y−periodic related to the fast variable yyy.

3. RRR(yyy, t) ∈C∞(R3 ×R).
4. ǫǫǫα,β , t0 such that 0 ≤ α ≤RRR(yyy, t0)≤ β ≤ ∞ ∀yyy ∈ R

3 (ξ → 0).

5. fff (xxx) ∈C∞(Σ).

The non-aging linear viscoelastic problem corresponds to elastic problems thanks

to the Laplace-Carson transform (Lavergne et al, 2016). The transformed of a function

ggg(xxx, t) is defined by

LC[ggg(xxx, t)] = ĝgg(xxx, p) = p

∞∫

0

e−ptggg(xxx, t)dt.

From now on, the functions with the symbol (̂) depending on the parameter p denotes

the Laplace-Carson space.

Considering the convolution theorem (see Sokolnikoff and Redheffer, 1968), the

equilibrium viscoelastic heterogeneous problem (10.8)-(10.11) becomes,

P ûuu(xxx, p) = fff (xxx), (10.12)

ûuu(xxx, p) = uuu0, ∀xxx ∈ Σ1 ∧ ∀p ∈ [0,∞], (10.13)

R̂RR(xxx, p) : εεε
(
ûuu(xxx, p)

)
·nnn = sss0, ∀xxx ∈ Σ2 ∧ ∀p ∈ [0,∞], (10.14)

ûuu(xxx,0) = 000, ∀xxx ∈ Σ , (10.15)

where

P ûuu(xxx, p) =−div
(

R̂RR(xxx,p) : εεε
(
ûuu(xxx,p)

))
.

10.3 Two-Scale Asymptotic Homogenization Method to Solve the

Heterogeneous Problem

In this section the two-scales homogenization technique is used to obtain the basic

equations and the effective characteristic of the composite. A formal asymptotic
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solution (see definition in Bakhvalov and Panasenko, 1989) for finding the solution

of the problem is proposed. The asymptotic according to Bakhvalov and Panasenko

(1989) for solving (10.12)-(10.15) is given in the form

ûuu(xxx,ξ , p) =
∞

∑
a=0

ξ a ûuu
(a)(xxx,yyy, p), (10.16)

where ûuu
(a) (û

(a)
i ) is Y−periodic related to the variable yyy ∀a, ∀xxx ∈ Σ , ∀p ∈ [0,∞] and

ûuu
(a)(xxx,yyy, p) ∈C∞(Σ ×R

3 × [0,∞]).
Besides, the expressions eklx and ekly are defined as follows (see Persson et al,

1993)

εklx

(
Φ̂ΦΦ(xxx, p)

)
=

1

2

(∂Φ̂k(xxx, p)

∂xl

+
∂ Φ̂l(xxx, p)

∂xk

)
, (10.17)

εkly

(
Φ̂ΦΦ(yyy, p)

)
=

1

2

(∂Φ̂k(yyy, p)

∂yl

+
∂Φ̂l(yyy, p)

∂yk

)
. (10.18)

According to the chain rule and from (10.7), (10.16) - (1.18) can be obtained

εkl

(
ûuu
(a)(xxx,xxx/ξ , p)

)
= εklx

(
ûuu
(a)(xxx,yyy, p)

)
+ξ−1 εkly

(
ûuu
(a)(xxx,yyy, p)

)
. (10.19)

Now, the objective is to find the expression of the coefficients such that the

following equality is satisfied (Bakhvalov and Panasenko, 1989)

P(ξ ) ûuu(xxx,ξ , p)− fff (xxx) = O(ξ ). (10.20)

In order to guarantee (10.20), the following operator is defined

Lαβ (•) :=−
∂

∂α j

(
R̂i jkl(yyy, p)εklβ (•)

)
, (10.21)

for α,β = xxx,yyy indistinctly and taken into account the rule for derivation

∂ (•)

∂x j

≡
∂ (•)

∂x j

+
1

ξ

∂ (•)

∂y j

. (10.22)

Then, replacing (10.16), (10.19) - (10.22) into (10.20), applying some simplifica-

tions and grouping in powers of ǫ , the following sequence of problems are obtained

ξ−2 → Lyyûuu
(0)(xxx,yyy, p) = 000, (10.23)

ξ−1 → Lxyûuu
(0)(xxx,yyy, p)+Lyxûuu

(0)(xxx,yyy, p)+Lyyûuu
(1)(xxx,yyy, p) = 000, (10.24)

ξ 0 → Lxxûuu
(0)(xxx,yyy, p)+Lxyûuu

(1)(xxx,yyy, p)+Lyxûuu
(1)(xxx,yyy, p)

+Lyyûuu
(2)(xxx,yyy, p)− fff (xxx) = 000. (10.25)

The problems (10.23) - (10.25) can be solved in a recursive form.
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Considering the asymptotic (10.16) as an approximation of the exact solution

of the original problem (10.12)-(10.15) and replacing (10.16) into the boundary

conditions (10.13) and (10.14)

ûuu
(0)(xxx,yyy, p) = uuu0, ∀xxx ∈ Σ1 ∧ ∀p ∈ [0,∞], (10.26)

R̂RR(xxx, p) : εεε(ûuu(0)(xxx,yyy, p))·nnn = sss0, ∀xxx ∈ Σ2 ∧ ∀p ∈ [0,∞]. (10.27)

Besides, the remaining terms are assigned by

ûuu
(a)(xxx,yyy, p) = 000, ∀xxx ∈ Σ1 ∧ ∀p ∈ [0,∞] ∧ ∀a > 0, (10.28)

R̂RR(xxx, p) : εεε(ûuu(a)(xxx,yyy, p))·nnn = 000, ∀xxx ∈ Σ2 ∧ ∀p ∈ [0,∞] ∧ ∀a > 0 (10.29)

The conditions (10.26)-(10.29) are justified by construction because of the formal

asymptotic solution is considered.

In order to solve (10.23)-(10.25) the following lemma is required. The proof of

this lemma is given in Sect. 4.3 of Persson et al (1993).

Lemma 10.1. Let FFF (Fi) be square integrable function over Y and consider the

boundary value problem

LyyΦΦΦ =FFF ,

where ΦΦΦ is Y -periodic. Then the following conditions hold,

(i) A Y -periodic solution ΦΦΦ exists if and only if 〈FFF〉= 0.

(ii) If a Y -periodic solution ΦΦΦ exists, then it is unique up to a constant vector ccc.

The notation 〈•〉 defines the average over the Y -cell, i.e.,

〈FFF〉 :=
1

|Y |

∫

Y
FFFdy,

where |Y | is the measure of Y . Subsequently, the main results for each power of ǫ are

summarized.

10.3.1 Contribution of the Level ξ−2 Problem

The problem (10.23) and (10.26)-(10.27) is stated as follows

Lyyûuu
(0)(xxx,yyy, p) = 000, (10.30)

ûuu
(0)(xxx,yyy, p) = uuu0, ∀xxx ∈ Σ1 ∧ ∀p ∈ [0,∞], (10.31)

R̂RR(xxx, p) : εεε(ûuu(0)(xxx,yyy, p))·nnn = sss0, ∀xxx ∈ Σ2 ∧ ∀p ∈ [0,∞], (10.32)
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ûuu
(0)(xxx,yyy,0) = 000, ∀xxx ∈ Σ . (10.33)

Equation (10.30) has the trivial solution ûuu
(0)(xxx,yyy, p)≡000. Thus, Lemma 10.1 indicates

that ûuu
(0)(xxx,yyy, p) is a solution of (10.30) if and only if it is a constant with respect to

the variable yyy. It implies that,

ûuu
(0)(xxx,yyy, p) = v̂vv(xxx, p), (10.34)

where v̂vv(xxx, t) is a infinitely differentiable function (see Persson et al, 1993).

Now, from (10.31) - (10.33) are obtained

ûuu
(0)(xxx,yyy, p) = v̂vv(xxx, p) = uuu0, ∀xxx ∈ Σ1 ∧ ∀p ∈ [0,∞], (10.35)

R̂RR(xxx, p) : εεε(v̂vv(xxx, p))·nnn = sss0, ∀xxx ∈ Σ2 ∧ ∀p ∈ [0,∞], (10.36)

ûuu
(0)(xxx,yyy,0) = v̂vv(xxx,0) = 000, ∀xxx ∈ Σ . (10.37)

10.3.2 Contribution of the Level ξ−1 Problem

According to (10.34), the first term of (10.24) is zero, Lxyûuu
(0)(xxx,yyy, p) = Lxyv̂vv(xxx, p) =000.

In this case, the problems (10.24) and (10.28)-(10.29) are reduced to

Lyyûuu
(1)(xxx,yyy, p) = −Lyxûuu

(0)(xxx,yyy, p), (10.38)

ûuu
(1)(xxx,yyy, p) = 000, ∀xxx ∈ Σ1 ∧ ∀p ∈ [0,∞], (10.39)

R̂RR(xxx, p) : εεε(ûuu(1)(xxx,yyy, p))·nnn = 000, ∀xxx ∈ Σ2 ∧ ∀p ∈ [0,∞], (10.40)

ûuu
(1)(xxx,yyy,0) = 000, ∀xxx ∈ Σ . (10.41)

Applying the Lemma 10.1 on (10.38), having into account (10.34), the divergence

theorem and the Y−periodicity condition of R̂RR(yyy, p) (see the additional condition

(2)), the following result is satisfied

〈
−Lyxûuu

(0)(xxx,yyy, p)

〉
= 0.

Consequently, the existence of one solution for the problem (10.38) is guaranteed.

Now, using separation of variables and the condition (ii) of Lemma 10.1, a general

solution of (10.38) can be given by

ûuu
(1)(xxx,yyy, p) = N̂NN

rs
(yyy, p)εrsx(v̂vv(xxx, p))+ŵww(xxx, p), (10.42)

where N̂NN
rs

(N̂rs
i ) is called the local function and ŵww (ŵi) is infinitely differentiable

function.

Finally, replacing (10.34) and (10.42) into (10.38) and after some simplifications

the cell problem is obtained
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−
∂

∂y j

(
R̂i jkl(yyy, p)εkly

(
N̂NN

rs
(yyy, p)

))
=

∂

∂y j

(
R̂i jrs(yyy, p)

)
, (10.43)

where, employing the Lemma 10.1 on (10.43), N̂NN
rs

is Y -periodic function.

Having into account (10.35) - (10.37), (10.39) - (10.42), the boundary conditions

and initial condition to the cell problem are written in term of the local function

N̂NN
rs
(yyy, p) = 000, ∀yyy ∈ Y ∧ ∀p ∈ [0,∞], (10.44)

R̂RR(xxx, p) : εεε(N̂NN
rs
(yyy, p))·nnn = 000, ∀yyy ∈ Y ∧ ∀p ∈ [0,∞], (10.45)

N̂NN
rs
(yyy,0) = 000, ∀yyy ∈ R

3. (10.46)

10.3.3 Contribution of the Level ξ 0 Problem

The problem (10.25) and (10.28)-(10.29) are given as follows

Lyyûuu
(2)(xxx,yyy, p)= fff (xxx)−Lxxûuu

(0)(xxx,yyy, p)−Lxyûuu
(1)(xxx,yyy, p)−Lyxûuu

(1)(xxx,yyy, p), (10.47)

ûuu
(2)(xxx,yyy, p) = 000, ∀xxx ∈ Σ1 ∧ ∀p ∈ [0,∞], (10.48)

R̂RR(xxx, p) : εεε(ûuu(2)(xxx,yyy, p))·nnn = 000, ∀xxx ∈ Σ2 ∧ ∀p ∈ [0,∞], (10.49)

ûuu
(2)(xxx,yyy,0) = 000, ∀xxx ∈ Σ . (10.50)

The Lemma 10.1 guarantees the existence of one Y -periodic solution of the problem

(10.47), if and only if

〈
fff (xxx)−Lxxûuu

(0)(xxx,yyy, p)−Lxyûuu
(1)(xxx,yyy, p)−Lyxûuu

(1)(xxx,yyy, p)

〉
= 0. (10.51)

The functions R̂RR(yyy, p) and N̂NN
rs
(yyy, p) are Y−periodic and the function v̂vv(xxx, p) is

independent of yyy. Therefore, using (10.42) and the divergence theorem can be proved

〈
Lyxûuu

(1)(xxx,yyy, p)

〉
= 0.

Then, from (10.51), the homogenized equation is obtained and it can be written in

the form

−R̂
(e)
i jrs(p)

∂

∂x j

εrsx(v̂vv(xxx, p)) = fi(xxx), (10.52)

where

R̂
(e)
i jrs(p) =

〈
R̂i jrs(yyy, p)+ R̂i jkl(yyy, p)εkly

(
N̂NN

rs
(yyy, p)

)〉
, (10.53)

are the homogenized coefficients or the effective coefficients.
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To obtain a well posed problem in (10.52), the boundary conditions and initial

condition are needed for v̂vv(xxx, p). From (10.35) and (10.36) the boundary conditions

for the Eq. (10.52) are given in the form

v̂vv(xxx, p) = uuu0, ∀xxx ∈ Σ1 ∧ ∀p ∈ [0,∞], (10.54)

R̂RR(xxx, p) : εεε(v̂vv(xxx, p))·nnn = sss0, ∀xxx ∈ Σ2 ∧ ∀p ∈ [0,∞], (10.55)

and from (10.37) the initial condition is

v̂vv(xxx,0) = 000, ∀xxx ∈ Σ . (10.56)

10.4 Two Phase Viscoelastic Composite

Now, we study a layered medium (see Fig 10.2). It is a composite formed by cells that

are periodically distributed along one axis and each cell is made of a finite number

of layers. In particular, we take x3 the axis that describe the periodicity and it is

perpendicular to the layers. The relaxation modulus R̂RR(xxx, p) is periodic function of

the coordinate x3 and it does not depend on x1 and x2.

Expanding the cell problem (10.43) for the index j, the first two terms are vanished

because the fast variable depends only on y3, (y3 = ξ−1x3), and therefore

−
∂

∂y3

(
R̂i3kl(yyy, p)εkly

(
N̂NN

rs
(yyy, p)

)
+ R̂i3rs(yyy, p)

)
= 0. (10.57)

The symmetry properties of the relaxation viscoelastic modulus are considered

Ri jkl(xxx, t) = R jikl(xxx, t) = Ri jlk(xxx, t) = Rkli j(xxx, t),

where the last equality is consistent with the reciprocity principle stated by Onsager

(see Maghous and Creus, 2003). Expanding (10.57) for the index k and l, this equation

Fig. 10.2: Scales of a layered structure. a) Macroscopic structure, b) periodic mi-

crostructure, c) unit cell.
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 becomes in the simplified form

−
∂

∂y3

(
R̂i3k3(yyy, p)

∂ N̂rs
k (yyy, p)

∂y3
+ R̂i3rs(yyy, p)

)
= 0. (10.58)

From (10.58) is obtained

R̂i3k3(yyy, p)
∂ N̂rs

k (yyy, p)

∂y3
+ R̂i3rs(yyy, p) = Âi3rs(p), (10.59)

and therefore,

∂ N̂rs
k (yyy, p)

∂y3
= R̂ −1

i3k3(yyy, p)

(
Âi3rs(p)− R̂i3rs(yyy, p)

)
. (10.60)

As N̂NN
rs

is Y−periodic function, applying the average operator to both sides of (10.60)

and using the divergence theorem we obtain

〈
∂ N̂rs

k (yyy, p)

∂y3

〉
= 0, (10.61)

and consequently

Âi3rs(p) =

〈
R̂ −1

i3q3(yyy, p)

〉−1〈
R̂ −1

p3q3(yyy, p)R̂p3rs(yyy, p)

〉
. (10.62)

Replacing (10.62) into (10.60) and after some algebraic manipulations

∂ N̂rs
k
(yyy,p)

∂y3
= R̂ −1

l3k3(yyy, p)

〈
R̂ −1

l3q3(yyy, p)

〉−1〈
R̂ −1

p3q3(yyy, p)R̂p3rs(yyy, p)

〉

− R̂ −1
l3k3(yyy, p)R̂l3rs(yyy, p).

(10.63)

Using the formula of the effective coefficients (10.53)

R̂
(e)
i jrs(p) =

〈
R̂i jrs(yyy, p)+ R̂i jkl(yyy, p)εkly

(
N̂NN

rs
(yyy, p)

)〉

=

〈
R̂i jrs(yyy, p)+ R̂i jk3(yyy, p)

(∂ N̂rs
k (yyy, p)

∂y3

)〉
. (10.64)

Replacing (10.63) into (10.64), the expression of the effective coefficients is given

in the final form

R̂
(e)
i jrs(p) =

〈
R̂i jrs(yyy, p)

〉
+

〈
R̂i jk3(yyy, p)R̂ −1

l3k3(yyy, p)

〉〈
R̂ −1

l3q3(yyy, p)

〉−1

·

〈
R̂ −1

p3q3(yyy, p)R̂p3rs(yyy, p)

〉
−

〈
R̂i jk3(yyy, p)R̂ −1

l3k3(yyy, p)R̂l3rs(yyy, p)

〉
. (10.65)
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The Eq. (10.65) represents the general expression for the effective coefficients in

Laplace-Carson space (see Pobedria, 1984).

In case of a two-layered medium where each constituent has isotropic charac-

teristic, the expression of the effective coefficients derived from (10.57) are the

following

R̂
(e)
1111(p) = R̂

(e)
2222(p)

= 〈λ +2µ〉+

〈
1

λ +2µ

〉−1〈 λ

λ +2µ

〉2

−

〈
λ 2

λ +2µ

〉
, (10.66)

R̂
(e)
3333(p) =

〈
1

λ +2µ

〉−1

, (10.67)

R̂
(e)
1122(p) = R̂

(e)
2211(p) = 〈λ 〉+

〈
1

λ +2µ

〉−1〈 λ

λ +2µ

〉2

−

〈
λ 2

λ +2µ

〉
, (10.68)

R̂
(e)
1133(p) = R̂

(e)
3311(p) = R̂

(e)
3322(p) = R̂

(e)
2233(p) =

〈
λ

λ +2µ

〉〈
1

λ +2µ

〉−1

, (10.69)

R̂
(e)
1313(p) = R̂

(e)
2323(p) =

〈
1

µ

〉−1

, (10.70)

R̂
(e)
1212(p) = 〈µ〉. (10.71)

Notice that the global behavior is transversely isotropic for this type of laminate

composite with isotropic constituents where their properties are denoted by the

Lame’s constants λ and µ .

10.5 Numerical Results

The above described method allows to find for two-layered viscoelastic medium with

isotropic constituents, the value of the effective properties. In the literature, there

are different creep kernels that describe the viscoelastic properties of a material. As

examples, two different models are analyzed.

10.5.1 Model I

The first case is a two-layered medium (see Fig 10.3) structured by a layer 1 with

linear elastic behavior and a layer 2 with viscoelastic behavior. This last layer is

described by Dischinger’s model (see Maghous and Creus, 2003). The Dischinger’s

model considers a time-dependent function, given in the form

ϕ(τ, t) = exp (−αt)− exp (−ατ). (10.72)

12



The correspondent Lame’s constants for the elastic layer 1 are taken by the

relations

µ1 = µ2,0, λ1 = K −
2

3
µ2,0, (10.73)

and the relaxation functions for the viscoelastic layer 2 are defined for τ ≤ t by

µ2(τ, t) = µ2,0 exp

(
µ2,0

αβ
ϕ(τ, t)

)
, λ2(τ, t) = K −

2

3
µ2(τ, t), (10.74)

where K is the bulk elastic modulus and µ2,0 represents a constant. Besides, α and

β are parameters of model. In Table 10.1 can be found the values of the parameters

related to Dischinger’s model. The results are obtained for τ = 0, a medium with

non-ageing.

The computation of the effective coefficients are done using the formulae (10.66)-

(10.68) and (10.70). The behavior of the macroscopic properties are displayed in

Fig. 10.4. This result by AHM is compared with Maghous and Creus (2003). Besides,

in Fig. 10.4 are added the Voigt upper bound (VUB) and Reuss lower bound (RLB)

to verify that the overall properties of the composite are between them. Since the

composite has two phases and piecewise constant properties, the bounds can be

calculated as follows

R̂
(Voigt)
i jkl (p) = η1R̂

(1)
i jkl(p)+η2R̂

(2)
i jkl(p), (10.75)

R̂
(Reuss)
i jkl (p) =

(
η1

R̂
(1)
i jkl(p)

+
η2

R̂
(2)
i jkl(p)

)−1

, (10.76)

where η1 and η2 are the volume fractions of layer 1 and layer 2 respectively. The

superscripts (1), (2) in the kernels are indicating the corresponding material in each

Fig. 10.3 Cell of two-layered

medium.

Table 10.1: Parameters of Dischinger’s model.

K µ20 α·β α η1 η2

(GPa) (GPa) (GPa) (days−1) (dimensionless) (dimensionless)

10 000 8571 35667 0.026 0.5 0.5

13
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Fig. 10.4: Comparison between AHM, FEM, Maghous and Creus model and the

Voigt and Reuss bounds. The results have been normalized with respect to the first

phase and are obtained for τ = 0.

layer. In the computational process the numerical implementation of the effective

coefficients is necessary. The function INVLAP2, developed in Matlab and the expla-

nation given in Hollenbeck (1998), is adapted to guarantee the necessary technical

support for the numerical inversion of Laplace-Carson transform.

As another validation of the present algorithm, a finite element method to compute

homogenized coefficients, using Eqs. (10.58) and (10.61) written in the physical

space, is implemented. For that purpose, the time interval [0,T ] is firstly discretized

ti = k∆ t, (k = 0, . . . ,NT ), and the time integral is approximated using a midpoint

quadrature rule. As a consequence, the kernel of the convolution is evaluated on a

staggered grid. Then, we obtain a sequence of Poisson’s equations that are discretized

using a standard finite element method (for more details, see for example Chen et al,

2010; Dumont and Duval, 2013).

10.5.2 Model II

In the previous model, the proposed creep kernel is a composed exponential function.

The main problem is that, simplest kernels as exponential function or their linear

combinations, does not always describe correctly the viscoelastic behavior for de-

14



termined materials (see Sevostianov et al, 2016). The use of fraction-exponential

functions (see Rabotnov, 1948, 2014; Blair and Coppen, 1939, 1943)

∋α (β , t) = t−α
∞

∑
n=0

(−β )ntn(1−α)

Γ[(n+1)(1−α)]
, (10.77)

with 0 ≤ α < 1 and 0 < β , as kernel of viscoelastic operators, simplify and solve

this situation. Furthermore, they allow, analytically, to obtain results with the use

of Laplace transform and at the same time, offer an excellent concordance with the

experimental data (see Sevostianov et al, 2016).

The algebraic properties of the Rabotnov’s kernel are very well developed in

Rabotnov (1977). One of the most important aspect described in the theory of this

function is the analytical treatment of its Laplace transform

L
[
∋α (β , t)

]
≡

∞∫

0

∋α (β , t)e−pt =
1

p1−α +β
. (10.78)

Now, consider a two-layered medium with the structure: the layer 1 exhibits elastic

properties and the layer 2 viscoelastic properties. The following data, obtained from

Sevostianov et al (2016), has been selected to guarantee the numerical computation.

The corresponding Lame’s constants for the layer 1 are given as follows

µ1 = 8.571GPa, λ1 = K1 −
2

3
µ1GPa. (10.79)

Taking the relaxation modulus of layer 2 as a fraction-exponential function or

Rabotnov’s kernel and applying the Laplace-Carson transform, having in mind the

expression (10.71), the following analytic formulae are obtained,

µ̂2(p) = p ·µ20

(
1+

γ2

p(1−α2)+β2

)
, λ̂2(p) = K2 −

2

3
µ̂2(p), (10.80)

where µ20 is the instantaneous shear modulus and µ20,α2,β2 and γ2 are parameters of

the material given experimentally. The material parameters are shown in Table 10.2.

The obtained effective coefficients (10.66)-(10.68) and (10.70), for this model,

are displayed in Fig. 10.5. The expression (10.77) is reduced to exponential function

for α = 0. In this case, it describes the properties of standard viscoelastic material

or Kelvin model (see Sevostianov et al, 2015). Therefore, the numerical results of

the effective coefficients by AHM are compared with the corresponding coefficients

calculated by Kelvin’s model (AHM-Kelvin). Besides, the Voigt upper bound (VUB)

and Reuss lower bound (RLB) are added to the comparison (see Fig. 10.5) as a

validation of the results obtained by the present model (AHM).
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Fig. 10.5: Computation of the effective coefficients using Rabotnov’s kernel. Com-

parison with Kelvin’s model, Voigt and Reuss bounds. The coefficients have been

normalized with respect to the first phase.

10.5.3 Viscoelastic Effective Constants for Composites with

Rectangular Cross-Section Fibers: Double Homogenization

The purpose now is to obtain, using the asymptotic homogenization method, the

viscoelastic effective properties for a composite material with rectangular cross-

Table 10.2: Material parameters.

Layer 1 K1 η1 - - - -

(GPa) (-)

10.0 0.5 - - - -

Layer 2 K2 η2 α2 β2 γ2 µ20

(GPa) (-) (-) (day1−α ) (day1−α ) (MPa)

5.97 0.5 0.47 0.98 49.6 1.7
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Fig. 10.6: Composites material with rectangular cross-section fibers. (a) First

homogenization structure. (b) Second homogenization structure.

section fibers, periodically distributed (see Fig 10.6) along one axis with the aim of

the aforementioned results applied to layered composites.

The basic idea is applied two times the homogenization method, in different

directions, according to the geometrical configuration of the composite material.

Therefore, we can divided the problem into two homogenization stages.

1. In a first moment, the composite is homogenized in the direction x2. This structure

can be analyzed as a two-layered medium with transversely isotropic properties

after the homogenization process (see Fig. 10.6 (a)). In Sect. 10.4 is applied the

homogenization method on this type of material in the direction x3, obtaining the

effective coefficients using (10.66)-(10.71). Now, as the problem is formulated

in the direction x2, it is affected the disposition of the subscripts in the formulae

of the effective coefficients. In order to solve this issue, only it is necessary to

change the subscripts (3 → 2) and (2 → 3) in all the formulae. Moreover, the

superscript (e1) is added indicating the first homogenization step. For example,

(10.71) is transformed as follows R̂
(e1)
1313(p) = 〈µ〉. Clearly, for this two-layered

medium 〈 f 〉 = η1 f (1)+η2 f (2), where the superscripts (1), (2) are indicating

the corresponding layer (see Fig. 10.6 (a)).

2. Finally, the effective coefficients are calculated in the direction x3. The structure

can be analyzed as a two-layered medium (see Fig 10.6 (b)). In this case, the for-

mulae obtained are just the same that (10.66)-(10.71). Besides, the notation (e2)
is added as superscript denoting the second homogenization step. For example,

the coefficient R
(e2)
1212(t) can be obtained from (10.71) as follows, R̂

(e2)
1212(p) = 〈µ〉.

Now, is necessary to take into account that 〈 f 〉 = η1 f (1)+η2 f (e1), where the

17



superscript (1) indicates the elastic property of the layer 1 and the superscript

(e1) denotes the effective viscoelastic property of the layer 2. This last properties

are calculated in the first homogenization step, see Fig. 10.6 (b).

In the Fig. 10.7 is displayed the computation of the effective coefficients for

a composite material reinforced with rectangular cross-section fibers. A fraction-

exponential function (see Model II in Sect. 10.5) is assigned as relaxation modulus

for the viscoelastic layer 2. The volume fractions are taken as follow η1 = 0.7 and

η2 = 0.3. The remaining data has been taken from Table 10.2.

10.6 Conclusions

In this work, the two-scale asymptotic homogenization method is applied to calculate

the linear viscoelastic effective properties for layered composites where the distribu-

tion of the layers are perpendicular to one preferential axis. The local problems and

the analytic expressions of the effective coefficients are derived. Based on this result,

two times, the homogenization method is applied in different directions, according

to the geometrical configuration of the composite material for deriving the analytical
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Fig. 10.7: Effective coefficients for rectangular cross-section fibers, using double

homogenization, with Rabotnov’s kernel. Comparison with the Kelvin’s model.

The results have been normalized with respect to the first phase.
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expressions of the viscoelastic effective properties for composites with rectangular

cross-section fibers, periodically distributed along one axis. In addition, models with

different creep kernels are studied, in particular, the Rabotnov’s kernel is analyzed.

A numerical computation where the inverse of Laplace-Carson is implemented nu-

merically for the computation of the effective viscoelastic properties. An algorithm

using FEM is developed in the present work and comparisons with other approaches

are given as a validation of the present model.
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