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2 P. FOULON, B. HASSELBLATT & A. VAUGON

Résumé. — Notre étude, à l’intersection des systèmes dynamiques et la géométrie de
contact, porte sur les effets de la construction d’une chirurgie de contact adaptée à l’étude des
champs de Reeb et sur les effets de l’invariance de l’homologie de contact.
Nous montrons que cette chirurgie de contact produit une complexité dynamique accrue

pour tous les flots de Reeb compatibles avec la nouvelle structure de contact. Nous étudions
des champs de Reeb Anosov sur des 3-variétés fermées qui ne sont topologiquement orbite-
équivalents à aucun flot algébrique, ce qui inclut de nombreux exemples sur des 3-variétés
hyperboliques. Notre étude comprend également des résultats de croissance exponentielle dans
des cas où, ni le flot obtenu par chirurgie, ni la variété construite ne sont hyperboliques ainsi
que des résultats quand le flot d’origine est périodique. Ce travail démontre pleinement, dans
ce cadre, la pertinence de l’homologie contact pour analyser la dynamique des champs de Reeb.
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1. Introduction

This paper is a sequel of [34] in which the authors decribed a surgery construction
adapted to Reeb flows (“contact flows” to dynamicists; see Subsection 2.2). This
construction was originally conceived as a source of uniformly hyperbolic Reeb flows.
However it turns out that the surgered flows exhibit more noteworthy dynamical
properties than orginally observed and that interesting consequences of the surgery
arise even when the initial or resulting flow are not hyperbolic. (This surgery was
developed to modify geodesic flows, but here we also apply it to the (periodic!) fiber
flow or vertical flow in a unit tangent bundle.) Thus the primary interest in this
contact surgery may be as a rich source of Reeb flows exhibiting new phenomena
from both dynamical and contact points of view.
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Orbit growth from contact surgery 3

The starting point of our surgery is the unit tangent bundle M of a surface
of negative and (mainly, but not always necessarily) constant curvature equipped
with its natural contact structures. This surgery is known to contact-symplectic
topologists as a Weinstein surgery, and its description in [34] makes it easier to study
dynamical properties (as opposed to, for instance, topological properties).
Our purpose is to expand the understanding of the dynamical effects achieved by

the contact surgery from [34] in three main directions:

• we show that the complexity of the surgered flow exceeds that of the flow on
which the surgery is performed (Theorems 3.1, 3.3, 3.9, and 3.14),
• we show that much of the complexity of the resulting flow is reflected in
the cylindrical contact homology and is therefore realized in any Reeb flow
associated to the contact structure resulting from the surgery (Theorems 3.9,
3.13, and 3.14), and
• we do this beyond the context of hyperbolic flows in more than one way: we
obtain positivity of entropy even when the surgered flow is not hyperbolic
(Theorem 3.13), and we produce nontrivial orbit growth by surgery on the
strictly periodic fiber flow (Theorem 3.14).

Taken together, this reveals a much richer field of inquiry at the interface between
contact geometry and dynamical systems than was apparent when the surgery con-
struction was conceived.
Contact homology and its growth rate are relevant tools to describe dynamical

properties of all Reeb flows associated to a given contact structure. Even if it is not
always explicit in the statements, they play a crucial role in the proofs of Theorems
3.9, 3.13, and 3.14. A goal of this paper is to demonstrate to dynamicists the use of
these powerful tools from contact geometry.
In addition to the dynamical point of view, our study is also motivated by contact

geometry as we want to investigate connections between growth properties in Reeb
dynamics (generally characterized by the growth rate of contact homology) and the
geometry of the underlying manifold. The simplest model of such a connection is
Colin and Honda’s conjecture [21, Conjecture 2.10], and some surgeries under study
give examples supporting it. Colin and Honda speculate that the number of Reeb-
periodic orbits of universally tight(1) contact structures on hyperbolic manifolds
grows at least exponentially with the period. More generally, one may look for
sources of exponential or polynomial behavior of contact homology. Our starting
point, the unit tangent bundle of an hyperbolic surface, is a transitional example
as it carries two special contact structures, one with an exponential growth rate
for contact homology and one with a polynomial growth rate. We prove (Theorems
3.13 and 3.14) that some surgeries lead to two coexisting contact forms on the
surgered manifold with exponential and polynomial growth rates and therefore give
new examples of transitional manifolds with respect to growth rate. Note that these
examples do not include hyperbolic manifolds (and are therefore compatible with
Colin and Honda’s conjecture).

(1) see Definition 2.3.
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4 P. FOULON, B. HASSELBLATT & A. VAUGON

Colin, Dehornoy and Rechtman announced a major breakthrough after the com-
pletion of this paper: any nondegenerate Reeb flow on a closed irreducible oriented
3-manifold that is not a graph manifold has positive topological entropy [19].

Structure of the paper

Section 2 gives some background, including Section 2.3, which presents and elabo-
rates our earlier results [34]. Section 3 contains our main results. First, Section 3.1
introduces the resulting complexity increase of the surgered geodesic flow. Section 3.2
describes how cylindrical contact homology forces complexity of Reeb flows with the
same contact structure, introduces our surgery on the fiber flow, and discusses the
relation of our results to other works on contact surgery and Reeb dynamics.
The construction of contact surgery is recalled in Section 4, which also contains

some preliminary results on the dynamics of the surgered flow and the proof of
Theorem 3.1 on the complexity increase of the surgered geodesic flow.
In Section 5 we define contact homology and its growth rate. This enables us to

show how cylindrical contact homology forces complexity of Reeb flows. We prove
Theorem 3.9 in Section 6, Theorem 3.13 in Section 7 and Theorem 3.14 in Section 8.

Acknowledgements

The principal results in this article were obtained in 2014 while Hasselblatt held
the Chaire Jean Morlet at the Centre International de Rencontres Mathématiques in
Luminy, and we are deeply indebted to CIRM for providing excellent opportunities
for this collaboration. We integrate these results with work by others that was done
contemporaneously [1, 2, 3]. We thank Marcelo Alves, Frédéric Bourgeois, Patrick
Massot and Samuel Tapie for useful discussions and helpful advice. Boris Hasselblatt
is also grateful for the support and hospitality of the Eidgenössische Technische
Hochschule, which was important as we finalized this work. With respect to the
latter, we also greatly owe the referees for insightful comments that led to significant
improvements of this paper.

2. Background

This section provides some terminology, discusses the relationship between contact
flows and Reeb flows, and recapitulates the surgery construction on which we build.

2.1. Definitions and notations

A manifold is said to be closed if it is compact and has no boundary.
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Orbit growth from contact surgery 5

Definition 2.1. — A C∞ 1-form α on a 3-manifoldM is called a contact form if
α∧dα is a volume form. The associated plane field ξ :=kerα is a (cooriented) contact
structure, and (M, ξ) is called a contact manifold (the geometric object under study
in contact geometry is the contact structure as opposed to the contact form). A
curve tangent to ξ is said to be Legendrian.

For a given contact structure ξ = ker(α) the contact forms with kernel ξ are exactly
the forms fα where f ∈ C∞(M,Rr {0}). Additionally, if α ∧ dα is a volume form
then fα ∧ d(fα) is also a volume form for any f ∈ C∞(M,Rr {0}).

Definition 2.2 (Reeb flow). — The Reeb vector field associated to a contact
form α is the vector field Rα such that ιRαα ≡ 1 and ιRαdα ≡ 0. Its flow is called
the Reeb flow (and it preserves α because LRαα = ιRαdα+ dιRαα = 0). A Reeb field
on a contact manifold (M, ξ) is the Reeb field of any contact form α with ξ = kerα.
A Reeb vector field (or the associated contact form) is said to be nondegenerate

if all periodic orbits are nondegenerate ( i.e., transverse: 1 is not an eigenvalue of
the differential of the Poincaré map; one can always perturb a contact form into a
nondegenerate contact form, this is a well-know fact, a proof can be found in [21,
Lemma 7.1]).

Note that the Reeb vector field is associated to a contact form α: if we consider
another contact form α′ = fα where f ∈ C∞(M,Rr {0}), then dα′ = df ∧ α+ fdα,
so the condition ιRα′dα

′ = 0 implies that Rα and Rα′ are not collinear unless f is
constant.
Contact structures on 3-manifolds can be divided into two classes: tight contact

structures and overtwisted contact structures. This fundamental distinction is due to
Eliashberg [24] following Bennequin [11]; see [28, 35] for a discussion. Tight contact
structures are the contact structures that reflect the geometry of the manifolds and
this article focuses on them.

Definition 2.3 (Tight contact structure). — A contact structure ξ is said to be
overtwisted if there exists an embedded disk tangent to ξ on its boundary. Otherwise
ξ is said to be tight. Universally tight contact structures are those with a tight lift
to the universal cover. A Reeb vector field (or the associated contact form) is said
to be hypertight if there is no contractible periodic Reeb orbit. A contact structure
is said to be hypertight if it admits a hypertight contact form.

Remark 2.4. — Universally tight and hypertight [38] contact structures are
always tight. All the contact structures considered in this paper are hypertight and
therefore tight.

We recall from [34] a contact surgery on a Legendrian curve γ ∈ SΣ derived from
a closed geodesic c on a hyperbolic surface Σ. This corresponds to a (1,−q) Dehn-
surgery and results in a new manifold MS with a contact form αA. The construction
is presented in Section 4. The Reeb flow RαA is Anosov if q is positive—and only
then (Proposition 4.3).

Definition 2.5 (Contact Anosov flow [43]). — Let M be a closed manifold and
ϕ : R × M → M a smooth flow with nowhere vanishing generating vector field

TOME 1 (-1)



6 P. FOULON, B. HASSELBLATT & A. VAUGON

X. Then ϕ (and also X) is said to be an Anosov flow if the tangent bundle TM
(necessarily invariantly) splits as TM = RX ⊕ E+ ⊕ E− (the flow, strong-unstable
and strong-stable directions, respectively), in such a way that there are constants
C > 0 and η > 1 > λ > 0 for which
(2.1)

∥∥∥Dϕ−t � E+
∥∥∥ 6 Cη−t and

∥∥∥Dϕt � E−∥∥∥ 6 Cλt

for t > 0. The weak-unstable and weak-stable bundles are RX ⊕E+ and RX ⊕E−,
respectively. (E± are then tangent to continuous foliations W± with smooth leaves.)
An flow on a 3-manifold (3-flow for short) with the Anosov property is said to be

of algebraic type if it is finitely covered by the geodesic flow of a surface of constant
negative curvature or the suspension of a diffeomorphism of the 2-torus.
An Anosov flow is called a contact Anosov flow if it is a Reeb flow, in which case

E+ ⊕ E− is the contact structure, and the associated contact form α is said to be
Anosov as well.
Geodesic flows of Riemannian manifolds with negative sectional curvature are

contact Anosov flows with the canonical contact form. For surfaces of constant
negative curvature it is easy to verify the defining property directly, and we do so
at the start of Section 3.3.
In this paper, we show that the complexity of the flow resulting from our surgery ex-

ceeds that of the flow on which the surgery is performed. We measure the complexity
of the flow of X via its orbit growth, entropy and cohomological pressure.
Definition 2.6. — For a contact form α, a free homotopy class ρ of loops and

T > 0, we denote by Nρ
T (α) the number of Rα-periodic orbits in ρ with period

smaller than T , and by NT (α) the total number of Rα-periodic orbits with period
smaller than T . The orbit growth of Rα (or the associated flow) is the asymptotic
behavior of NT (α).
For Anosov flows the exponential growth rate of NT (α) is the topological entropy

[31, Remark 8.3.13]. This is useful when we use entropy bounds to deduce periodic
orbit growth for the Anosov flows we produce by surgery. Likewise, cohomological
pressure drives orbit growth in a given homology class (Section 3.1.2).
We summarize the needed notions and facts in Section 3.1.1.

2.2. Contact flows versus Reeb flows

Since we hope that this work will be of interest to dynamicists as well as con-
tact geometers, let us clarify the notion “contact flow” as used by dynamicists in
comparison with “Reeb flow” (Definition 2.2), and the connection in our context.
Dynamicists usually define a contact flow to be a flow that preserves a contact form.
(Contact geometers may instead think of flows that preserve a contact structure ξ;
this is called an infinitesimal automorphism of ξ or contact vector field, while a flow
that preserves a contact form α is called an infinitesimal automorphism of α or a
strict contact vector field [35, Definition 1.5.7], [36, Definition 2.1].) The flows we
construct in this paper are Reeb flows. Hence our choice of terminology in Defini-
tion 2.5—so, except for “contact Anosov flow,” we will mainly use the term “Reeb
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Orbit growth from contact surgery 7

flow” henceforth. However, it seems opportune to establish in the following results
(Propositions 2.7, 2.9, 2.10, and 2.14) that Anosov flows preserving a contact form
or structure are Reeb flows. Most of the following results hold in arbitrary (odd)
dimension; for pertinent definitions in that generality, see [35].
The Anosov property implies that a flow commutes with no other flows [31, Corol-

lary 9.1.4], so Proposition 2.8 below implies (in any dimension):
Proposition 2.7. — An Anosov flow that preserves a contact form is its Reeb

flow, up to constant rescaling.(2)

Proposition 2.8. — A flow with trivial flow-centralizer that preserves a contact
form is up to constant scaling the Reeb flow of that contact form.
Proof. — A flow that preserves a contact form α also preserves its Reeb vector

field Rα, so its generating vector field commutes with Rα and is hence a constant
multiple of Rα. �
We now establish that more generally, a vector field X which preserves a contact

structure ξ is a Reeb field of ξ if X is transverse to ξ (Proposition 2.9) or if it is
nowhere zero and generates a flow which is either topologically transitive (Proposition
2.10) or an expansive 3-flow (Proposition 2.14).
Libermann’s Theorem [44] on contact Hamiltonians (see for instance [35, Theorem

2.3.1]) implies the following simple and well-known observation.
Proposition 2.9. — If the flow of X preserves the contact structure ξ = ker(β)

and X is transverse to ξ, then X is the Reeb field of the contact form α := β
β(X) .

Proof. — By assumption, β(X) 6= 0 everywhere, so α := β
β(X) is a well-defined

contact form (with ιXα = α(X) ≡ 1). By [35, Lemma 1.5.8(b)], invariance of
ξ = kerα gives a function f with
(2.2) f · α = LXα = ιXdα + dιXα.

Since dιXα ≡ 0, contraction with X gives f ≡ 0, and ιXdα ≡ 0, as required. �

Proposition 2.10. — Consider a vector field X on M whose flow preserves a
contact structure ξ. If there is an x ∈M with 0 6= X(x) ∈ ξ(x), then the flow is not
topologically transitive.

Proof. — Write ξ = kerα. If x ∈ N :=
{
x ∈M | X(x) ∈ ξ(x)

}
is a critical point of

ιXα, then X(x) = 0 as follows: ιXα(x) = 0, and ιXdα(x) = 0 on ξ(x) by (2.2). Now,
dα being nondegenerate on ξ (this is the contact condition) implies that X(x) = 0.
By assumption, N =

{
x ∈ M | ιXα(x) = 0

}
thus contains a regular point of

ιXα and hence invariantly separates M into the nonempty open sets A± :=
{
x |

±ιXα(x) > 0
}
, so X is not topologically transitive. �

(2)An alternative argument for this is that an invariant 1-form for an Anosov flow must have kernel
E+ ⊕ E− and be constant on the generating vector field. For volume-preserving Anosov 3-flows,
the canonical 1-form defined by these constraints is C1 only when the flow is a suspension or the
form is a contact form and the flow its Reeb flow [33]. We note that for 3-flows the Anosov property
itself can be characterized in contact terms [39, 51]; see also [5].

TOME 1 (-1)



8 P. FOULON, B. HASSELBLATT & A. VAUGON

Remark 2.11. — The preceding leaves open what happens for flows with X ≡ 0
on N 6= ∅, i.e., for which transversality fails, but only at fixed points.

Remark 2.12 (Characteristic hypersurface). — Let X be a vector field whose
flow preserves a contact structure ξ = ker(α) on M . The set N of points where X
is tangent to ξ is a fundamental object in contact topology, called the characteristic
hypersurface. It plays a crucial role in Giroux’s seminal work [36] on convexity in
contact topology. In this paper, Giroux proves that it is a smooth surface if X has
nondegenerate singularities [36, Exemple 2.6]. The proof is elementary: when X
has no singularities, then the contraposition of the first paragraph in the proof of
Proposition 2.10 shows that N is a regular level set of the smooth function ιXα and
hence a smooth hypersurface. Each connected component supports the nonvanishing
vector fieldX and hence has Euler characteristic 0 [43, Poincaré–Hopf Index Theorem
8.6.6].
Remark 2.13. — By contraposition, a topologically transitive flow that preserves

a contact structure fails to be transverse only at fixed points, and it is thus a Reeb
flow for the contact structure if there are no fixed points. This applies in particular
to volume-preserving Anosov flows, which have no fixed points and are transitive by
ergodicity of volume.

Proposition 2.14. — An Anosov 3-flow (in fact, an expansive 3-flow without
fixed points) that preserves a contact structure is a Reeb flow for it (so it preserves
volume and almost every point has a dense semiorbit).

Proof. — If the generating vector field is transverse to the contact structure, we
are done by Proposition 2.9. Otherwise, each connected component of N 6= ∅ is a 2-
torus (Remark 2.12), and the flow on it is a special flow over a circle diffeomorphism
[43, Corollary 14.2.3], hence not expansive. So the flow is not expansive and hence
also not an Anosov flow. �

Remark 2.15. — Proposition 2.14 implies that Anosov 3-flows that preserve a
contact structure are topologically transitive, so, for instance, the Franks–Williams
Anosov flow [31, §8.3] preserves no contact structure because it is not topologically
transitive.

2.3. New Reeb flows

We state a special case of the main result of the surgery construction from [34]
in a way that points to the broader perspective of the present work and make a
few initial observations that go further. We recall from [34] that this surgery per se
(without “contact” or “Reeb”) originated with Handel and Thurston [37] and has
since proved flexible enough to produce infinitely many distinct (i.e., not mutually
orbit-equivalent) Anosov flows on the same 3-manifold [16, 18]. The new feature of
the surgery from [34] is that it produces Reeb flows from Reeb flows.
Theorem 2.16 ([34, Theorems 1.6, 1.9]). — On the unit tangent bundle M of a

negatively curved surface, there is a family of smooth Dehn surgeries, including the

ANNALES HENRI LEBESGUE
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Handel–Thurston surgery [37], that produce new Reeb flows from the geodesic flow.
The geodesic flow has the following properties:

(1) It acts on a manifold that is not a unit tangent bundle.
(2) If it is Anosov, it is not orbit-equivalent to an algebraic Anosov flow.
(3) If it is Anosov, then its topological and volume entropies differ, or, equivalently,

the measure of maximal entropy is always singular [32].
(4) If it is Anosov and if the surgered manifold is hyperbolic, then each nonempty

free homotopy class ρ of closed orbits is infinite, and it is an isotopy class,(3)

moreover, there exist a1, c1, a2, c2 > 0 such that
1
a2

ln(T )− c2 6 Nρ
T (αA) 6 a1 ln(T ) + c1

for all T > 0, where αA is the contact form defined on the surgered manifold.
[30, Theorem A], [8, Remark 5.1.16, Theorem 5.3.3], [9], [10, Theorem F].

That these surgeries produce Reeb flows on hyperbolic manifolds is a corollary of
the two following theorems.

Theorem 2.17 (Thurston [59, Theorem 5.8.2], [60], Petronio and Porti [55]). —
For all but finitely many slopes, Dehn filling a hyperbolic 3-manifold gives rise to a
hyperbolic manifold.

Theorem 2.18 (Folklore [34, Theorem 1.12]). — Suppose Σ is a hyperbolic
surface, π : M → Σ its unit tangent bundle, γ : S1 → M continuous such that
c := π ◦ γ is a closed geodesic that is not the same geodesic traversed more than
once and such that ` ∩ c 6= ∅ whenever ` is a noncontractible closed curve. Then
M r (γ(S1)) is a hyperbolic manifold.

Nonetheless, there exist infinitely many closed orientable hyperbolic manifolds of
dimension 3 which do not support an Anosov flow [57, Theorem A]. Additionally,
Anosov Reeb flows arise from contact forms that are tight as they are hypertight
([56], [6, p. 18]), and there are only finitely many homotopy classes of tight contact
structures on a given 3-manifold [20, Théorème 1].(4) On hyperbolic 3-manifolds the
same goes for isotopy classes [20, Théorème 2]. We do not know if the surgery from
Theorem 2.16 can produce different contact structures on the same manifold, but
this seems likely: this surgery can produce pairs of nonequivalent contact Anosov
flows on the same hyperbolic manifold [16].

Remark 2.19. — The dynamical properties of the flow after surgery differ from
the properties of Anosov algebraic flows. Indeed, for algebraic flows, free homotopy
classes of closed orbits are finite. For geodesic flows no two (parametrized) orbits are
homotopic, though rotating the tangent vector through π isotopes each to its flip,
which has the same image as another orbit (the same geodesic run backwards), and

(3)That is to say, each pair of freely homotopic closed orbits is actually related by isotopy, so in
particular the pair is the boundary of an immersed cylinder. We note that, however, each closed
orbit is related to at most finitely many others by the pair being the boundary of an embedded
cylinder [9]. (This latter relation is neither transitive nor reflexive.)
(4)So there are only finitely many homotopy classes of Anosov vector fields on a 3-manifold [28].

TOME 1 (-1)



10 P. FOULON, B. HASSELBLATT & A. VAUGON

only in suspensions are all free homotopy classes of images of orbits singletons [10,
Corollary 4.3].
Our surgery corresponds to a (1,−q)-Dehn surgery and produces Anosov Reeb

flows for q > 0. As part of our study focuses on the q < 0-case, it is important to
note the following.
Proposition 2.20. — Some surgeries from Theorem 2.16 produce flows that are

not Anosov (Proposition 4.3).

In the case q = 1, this surgery is the standard Weinstein surgery as defined by
Weinstein [62] in 1991 simplifying Eliashberg’s work [25] of 1990 (see [35, Chapter 6]
for more details). The surgery (1, q) for any q can be deduced from this construction.
A direct construction for any q using Giroux theory of convex surfaces can be found
in [22].
In answer to a question of Serge Troubetzkoy we here note:
Proposition 2.21. — There are analytic Anosov flows with the properties in

Theorem 2.16.

Proof. — The contact form is smooth and can hence be approximated by analytic
ones. The contact property of the form and the Anosov property of its Reeb flow
are open. �

Remark 2.22. — Another take on the connection with the Handel–Thurston con-
struction is that our result implies in particular that the Handel–Thurston examples
are topologically orbit-equivalent to Reeb flows.

Remark 2.23. — For context we recall here that contact Anosov flows have
the Bernoulli property [17, 42, 53] and exponential decay of correlations [45]. The
Bernoulli property and the Ornstein Isomorphism Theorem [52] imply that the flows
we obtain from our surgery are measure-theoretically isomorphic to the original
contact Anosov flow up to a constant rescaling of time, the constant being the ratio
of the Liouville entropies. (This answers a question of Vershik.)

3. Main results

3.1. Production of closed orbits for contact Anosov flows

3.1.1. Impact on entropy

We continue with new results about the features of the contact Anosov flows from
[34] to the effect that the surgery of Theorem 2.16 produces “exponentially many”
closed orbits. We preface these statements by a brief summary of the needed notions
and facts pertinent to entropy.

(1) The topological entropy of an Anosov flow (or of the vector field that generates
it) equals the exponential growth rate of the number of periodic orbits; in
our case this means that htop(Rα) = limT→∞

1
T

logNT (α).
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(2) The entropy hµ(ϕt) of a flow ϕt with respect to an invariant Borel probability
measure µ (also referred to as the entropy of µ with respect to ϕt) does not
exceed the topological entropy of ϕt.(5)

(3) If a flow-invariant Borel probability measure µ is absolutely continuous with
respect to a smooth volume, then we say that it is a Liouville measure and
write hLiouville := hµ.

(4) For the geodesic flow gt of a surface we have hLiouville(gt) = htop(gt) if (and,
for genus larger than 1, only if [32, 40, 41]) the curvature is constant.

(5) Time-scaling: if s ∈ (0,∞), then hLiouville(sX) = shLiouville(X) and htop(sX) =
shtop(X).

(6) More generally, there is Abramov’s formula: the entropy of a time-change gX
of a nonzero vector field X with respect to a gX-invariant probability measure
µg canonically associated with an X-invariant Borel probability measure µ is

(3.1) hµg(gX) = hµ(X)
∫
gdµ.

This means that comparisons of the intrinsic dynamical complexity of these
vector fields are meaningful only when

∫
g = 1.

(7) Pesin entropy formula [7, Theorems 10.4.1, 10.4.1]: For a volume-preserving
flow ϕt with 1-dimensional expanding direction, hLiouville(ϕt) equals the posi-
tive Lyapunov exponent of the flow [7], [43, Definition S.2.5], which is (a.e.)
defined as the exponential growth rate of unstable vectors under the flow and
as a function of time.

Theorem 3.1. — If ψt is a contact Anosov flow obtained from the geodesic flow
gt of a compact oriented surface of constant negative curvature by the surgery in
Theorem 2.16 (generated by the vector field in (4.3)), then its topological entropy is
strictly larger. Indeed, htop(ψt) > hLiouville(ψt) > hLiouville(gt) = htop(gt).
Since htop measures the exponential growth rate of periodic orbits of a hyperbolic

dynamical system (item 1 above), the number NT (ψt) of ψt-periodic orbits of period
t 6 T (of up to a given length) grows at a larger exponential rate than NT (gt).

Remark 3.2. — The strict inequality in Theorem 3.1 is obtained by contrapo-
sition of a rigidity result [32], so we do not know by how much the topological
entropy increases through our surgery. Bishop, Hughes, Vinhage and Yang suggested
to provide lower bounds for this entropy-increase by using cutting sequences in the
spirit of Series.

3.1.2. Growth in homology classes

In a self-contained digression, we can give rather more detailed information about
orbit growth in homology classes.

(5) Indeed, the topological entropy is the supremum of the entropies of invariant Borel probability
measures (Variational Principle).
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12 P. FOULON, B. HASSELBLATT & A. VAUGON

Theorem 3.3. — If ψt is a contact Anosov flow obtained from the geodesic flow
gt of a compact oriented surface of constant negative curvature by the surgery in
Theorem 2.16 (generated by the vector field in (4.3)), then

N ζ
T (ψt)

/
Nη
T (gt) exponentially−−−−−−−→

T→∞
∞

for any homology classes ζ for ψt and η for gt (where N ζ
T (ψt) and Nη

T (gt) count the
number of periodic orbits orbit with period 6 T in the homology classes ζ and η).

The proof (equation (3.3) below) uses the notion of cohomological pressure.

Definition 3.4 ([58, Theorem 1(iii), p. 398]). — The cohomological pressure of
ϕt is

P (ϕt) := inf
[b]∈H1(M,R)

{
sup

µ∈M(ϕt)

{
hµ(ϕt) +

∫
b(X)dµ

}
the usual pressure of the function b(X)

}
,

whereM(ϕt) is the set of ϕt-invariant Borel probability measures.

Remark 3.5. — To see that this is well-defined, note that the pressure of b(X)
depends only on the cohomology class [b] for the following reason. [b] ∈ H1(M,R),
the first de Rham cohomology group, and the defining integral is the Schwartzman
winding cycle, which is well-defined for a closed 1-form when µ is ϕt-invariant.
Moreover, the supremum is unaffected by addition of an exact form to b.

Proof of Theorem 3.3. — Contact Anosov flows satisfy
(3.2) htop(ϕt) > P (ϕt) > hLiouville(ϕt) [29, Corollary 1].

Theorem 3.6 ([29, Theorem 5.3]). — P (ϕt) > hLiouville(ϕt) in the context of
Theorem 3.1.

Thus, the conclusion of Theorem 3.1 is strengthened to

htop(ϕt) > P (ϕt) > hLiouville(ϕt) > hLiouville(gt) = htop(gt) (3.2)= P (gt).
Thus, P (ϕt) > P (gt), and Theorem 3.3 follows because contact Anosov flows are ho-
mologically full(6) [29, Proposition 1], and, for homologically full flows, cohomological
pressure drives orbit growth in a given homology class ζ [58, Theorem 1]:

(3.3) N ζ
T (ϕt) ∼ C(ζ)e

TP (ϕt)

T 1+ b1
2

as T →∞,

where b1 is the first Betti number of the underlying manifold. �

3.2. Production of closed orbits for any Reeb flow

We now broaden the scope far beyond hyperbolic dynamics by beginning to involve
contact geometry in a serious fashion. Specifically, the existence of well-understood
Reeb flows, such as those in Theorem 2.16, allows us to control all the other Reeb
(6) I.e., every homology class contains a closed orbit
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flows associated to the same contact structure in terms of entropy or orbit growth. We
transcend hyperbolicity because we describe here our results concerning dynamical
properties of Reeb flows associated to all (or a subclass of) contact forms after a
contact surgery. These flows need not be hyperbolic even if the contact structure
arises from an Anosov flow.

3.2.1. Orbit growth from Anosov Reeb flows

This section presents an archetype of theorem deriving properties for all Reeb flows
from stronger properties for one Reeb flow. Our results described in Section 3.2.2
can be seen as extension of this theorem. It can be applied to some of the Reeb flows
described in Theorem 2.16.
The existence of Anosov Reeb flows is a source of exponential orbit growth for all

Reeb flows as proved by Alves or Macarini and Paternain [46, Theorem 2.12.].
Theorem 3.7 (Alves [3, Corollary 3]). — If one Reeb flow for a compact contact

3-manifold (M, ξ) is Anosov, then every Reeb flow on (M, ξ) has positive topological
entropy. Indeed, if Rα is Anosov, then h(Rfα) > h(Rα)/max(f) for any f > 0.
Remark 3.8. — These estimates can not be obtained by the Abramov formula,

which determines the measure-theoretic entropy of a time-change because different
Reeb fields for a contact structure need not be collinear.

The standard contact structure on the unit tangent bundle of a hyperbolic surface
has an Anosov Reeb flow and therefore, by Theorem 3.7, all its other Reeb flows
have positive entropy and their orbit growth is at least exponential. In particular,
Theorem 3.7 applies to the contact structures obtained in Theorem 2.16 on hyperbolic
manifolds: these are examples satisfying the Colin–Honda conjecture, and on non-
hyperbolic manifolds, for instance, when the surgery is associated to a simple geodesic.
We give a slightly different proof of this result in Section 5.

3.2.2. Orbit growth from contact homology

We now present our results and extend Theorem 3.7 in two different settings
(1) when the Reeb flow after surgery is Anosov, we study orbit growth in free

homotopy classes;
(2) when the Legendrian knot associated to the surgery projects to a simple geo-

desic, we prove positivity of entropy for any contact form (and any surgery).
Let us describe our results in the first setting. The following result can be seen as a

corollary of the invariance of contact homology and the Barthelmé–Fenley estimates
from [10, Theorem F] in the nondegenerate case, and of Alves’ proof of [3, Theorem 1]
and the Barthelmé–Fenley estimates from [10, Theorem F] in the degenerate case.
Theorem 3.9. — Let (MS, ξS = ker(αA)) be a contact manifold obtained after a

nontrivial contact surgery such that αA is Anosov. Let ρ be a primitive free homotopy
class containing at least one RαA-periodic orbit. Then for all contact forms α on
(MS, ξS), ρ contains infinitely many Rα-periodic orbits. Additionally,
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14 P. FOULON, B. HASSELBLATT & A. VAUGON

(1) if α is nondegenerate, there exist a > 0 and b ∈ R such that Nρ
T (λ) >

a ln(T ) + b for all T > 0,
(2) if α is degenerate and MS is hyperbolic, there exist a > 0 and b ∈ R such

that Nρ
T (λ) > a ln(ln(T )) + b for all T > 0.

Remark 3.10. — In fact, for nondegenerate α we will prove Nρ
T (α) > Nρ

CT (αA)
for some C > 0 and for all T > 0 and use the Barthelmé–Fenley result. Therefore
better control of Nρ

T (αA) in some free homotopy classes will lead to better estimates.

Remark 3.11. — There is no hope to obtain an upper bound on Nρ
T (αA) for

all contact forms as the number of Reeb-periodic orbits can always be increased by
creating many periodic orbits in a neighborhood of a preexisting periodic orbit.

Remark 3.12. — If the manifold is not hyperbolic in the second part of Theorem
3.9, the Barthelmé and Fenley estimates are weaker as the upper bound is linear.
The proof of Theorem 3.9 can be adapted to this situation but leads to weak control
of the growth of periodic orbits in a given homotopy class for degenerate contact
forms.

We now turn to our second setting and assume that the Legendrian knot associated
to the surgery projects to a simple geodesic. Note that we do not assume that the
Reeb flow is Anosov and therefore consider any (1, q)-Dehn surgery. Additionally,
note that MS is never a hyperbolic manifold in this setting. Our main theorem is
the following.
Theorem 3.13. — If (MS, αA) is a contact manifold obtained from contact

surgery along a Legendrian knot that projects to a simple geodesic, then any Reeb
flow of (MS, ker(αA)) has positive topological entropy and the number of periodic
orbits grows at least exponentially with respect to the period.

The proof of this theorem is based on Alves’ work [1]. In the same paper, Alves
obtains the same result when the associated geodesic is separating [1, Section 4 and
Theorem 2]. Our strategy of proof is similar to that of Alves.
Floer type homology and especially contact homology are the main tools to control

Reeb-periodic orbits of all contact forms associated to a contact structure. The
contact homology of a “nice” contact form α0 is the homology of a complex generated
by Rα0-periodic orbits and therefore encodes dynamical properties of the Reeb vector
field (contact homology is described in Section 5).

3.3. Coexistence of diverse Reeb flows

The growth rate of contact homology makes it possible define the polynomial
behavior of a contact structure. We now focus on examples obtained by surgery
exhibiting polynomial growth.
We first introduce the three Reeb flows that naturally appear on the unit tangent

bundle of a constantly curved surface of higher genus. This is elementary but not
commonly presented [31, Chapter 2]. On the unit tangent bundle of an oriented
hyperbolic surface, there is a canonical framing consisting of X, the vector field on
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SΣ that generates the geodesic flow, of V , the vertical vector field (pointing in the
fiber direction and defined uniquely by a choice of orientation), and of H := [V,X].
It satisfies the classical structure equations
(3.4) [V,X] = H, [H,X] = V, [H, V ] = X.

One can check these by using that in the PSL(2,R)-representation of SΣ̃, these
vector fields are given by

X ∼
(

1/2 0
0 −1/2

)
, H ∼

(
0 1/2

1/2 0

)
, V ∼

(
0 −1/2

1/2 0

)
.

The structure equations imply that e± := V ±H satisfies [X, V ±H] = ∓e±, so if
a vector field f · e± along an orbit of X is invariant under the geodesic flow, then
0 = [X, fe±] = (ḟ ∓ f)e±, where ḟ is the derivative along the orbit. This means
that ḟ = ±f , so f(t) = const e±t. Thus, the differential of the geodesic flow expands
and contracts, respectively, the directions e±; this is the Anosov property and E± is
spanned by the vector e± = V ±H.
Of course, in the PSL(2,R)-representation of SΣ̃, these three flows are given by

X  exp
((1/2 0

0 −1/2

)
t
)

=
(
et/2 0
0 e−t/2

)
,

H  exp
(( 0 1/2

1/2 0

)
t
)

=
(

cosh t/2 sinh t/2

sinh t/2 cosh t/2

)
,

V  exp
(( 0 −1/2

1/2 0

)
t
)

=
(

cos t/2 − sin t/2

sin t/2 cos t/2

)
To see in these terms that X is a Reeb field, define a 1-form α0 by α0(X) = 1 and
α0(V ) = 0 = α0(H). For Z ∈ {V,H} we have

dα0(X,Z) = LX
≡0

α0(Z)
=0

−LZ
≡1

α0(X)
=0

+α0(
∈{V,H}

[Z,X])
=0

= 0,

so ιXdα0 ≡ 0. Additionally α0 ∧ dα0(X, V,H) = α0(X)dα0(V,H) = 1 because

dα0(V,H) = LV
≡0

α0(H)
=0

−LH
≡0

α0(V )
=0

+α0(
=X

[H,V ])
=1

= 1.

Thus, α0 ∧ dα0 is a volume form; in fact a volume particularly well adapted to this
canonical framing, and α0 is a contact form with X = Rα0 .
Likewise, one can check that the 1-forms β = −dα0(H, ·) and γ = dα0(V, ·) defined

by β(V ) = 1 and β(X) = 0 = β(H), and γ(H) = 1 and γ(X) = 0 = γ(V ) are contact
forms with Reeb vector fields Rβ = V and Rγ = H. Note that the orientation given
by β ∧ dβ is the opposite of the orientation given by α0 ∧ dα0; therefore α0 and
β define different contact structures. By contrast, α0 and γ define isotopic contact
structures. Indeed, let ψt be the flow of V . Then,

(ψt)∗X = cos t/2 X + sin t/2 H and
(ψt)∗H = cos t/2 H − sin t/2 X,
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thus
(ψt)∗α0 = cos t/2 α0 + sin t/2 γ

as the two contact forms coincide on (ψt)∗X, (ψt)∗H and (ψt)∗V = V . So it suffices
to study the geodesic flow as the leading representative of this S1-family of contact
Anosov flows. Geometrically, this family of flows can be described as: rotate a vector
by an angle, carry it along the geodesic it now defines, and rotate back by the same
angle. In other words, it is parallel transport for a fixed angle.
Dynamically Rα0 and Rβ are polar opposites: the geodesic flow is hyperbolic and

the fiber flow is periodic. The surgery increases the complexity of both, and for the
fiber flow this is the case whether or not the twist goes in the correct direction to
produce hyperbolicity from the geodesic flow:

Theorem 3.14. — Let (MS, ker(βS)) be a contact manifold obtained from the
contact form β = −dα0(H, ·) for the fiber flow after a nontrivial contact surgery
along a Legendrian knot that projects to a simple geodesic. Then the growth rate of
contact homology for (MS, ker(βS)) is quadratic. In particular, any nondegenerate
Reeb flow of (MS, ker(βS)) has at least quadratic orbit growth.(7)

Remark 3.15. — The growth rate of contact homology appears quite difficult to
handle when a surgery as in Theorem 3.14 is performed along a Legendrian knot that
projects to a geodesic which is not simple. However, the dynamics of the resulting
flow will be hyperbolic: Curtis Heberle (in preparation) establishes that this produces
a flow with a horseshoe, i.e., a uniformly hyperbolic Cantor set, and Aritro Pathak
(in preparation) shows that the restriction of the surgered flow to the set of orbits
that meet the surgery annulus is nonuniformly hyperbolic and ergodic (plus the
attendant higher mixing properties).

3.4. Relation to other works on contact surgery and Reeb dynamics

Weinstein surgery/handle attachment is an elementary building block and funda-
mental operation in contact/symplectic topology and has been largely studied from
the topological point of view (for instance it can be used to construct specific or
tight or fillable contact manifolds). We only mention here works focusing on the
Reeb dynamics.
A description of contact surgery with control of the Reeb vector field can be

found in [27], where Etnyre and Ghrist construct tight contact structures and prove
tightness using dynamical properties of the Reeb vector field (their desciption is
different from ours as they consider a surgery on a transverse knot and focus on the
description of this surgery via tori).
In [14], Bourgeois, Ekholm and Eliashberg describe the effect of a Weinstein surgery

on Reeb dynamics and contact homology. More precisely, they prove the existence
of an exact triangle in any dimension connecting contact homologies of the initial
(7)This means that for any nondegenerate contact form β′ such that ker(β′) = ker(βS) the number
NT (β′) of Rβ′ -periodic orbits with period smaller than T satisfies NT (β′) > aT 2 for some positive
real number a.
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manifold and the surgered manifold and a third term associated to the attaching
sphere and called Legendrian contact homology. However, explicit computations
are delicate even for our explicit examples, for instance as the Lengendrian contact
homology is the homology of a huge complex. In contrast, our results give precise
estimates in Reeb dynamics but for specific examples.
Our work is largely inspired by Alves’ work on Reeb dynamics as explained above,

note that he himself applied his methods to contact sugery. The study of Reeb
flows with positive entropy comes from Macarini and Schlenk [47] who studied
spherizations in the cotangent bundle. This has been developed by Macarini and
Paternain [46], Alves [1, 2, 3] and others. In [4], Alves, Colin and Honda relate
topological entropy of Reeb flows to the monodromy of an associated open book
decomposition.

4. Surgery and production of closed orbits

The surgery in [34] on which this work is based came with some infelicitous
conventions and an immaterial sign error, so we recapitulate some of the steps
here with more explicit details. This is necessary also as a base for the proof of
Theorem 3.1, and for a supplementary result (Proposition 4.4) that is needed later.
Our surgery can be performed in a neighborhood of any Legendrian knot in a contact
3-manifold. We start with a description of the surgery in adapted coordinates near a
Legendrian knot and then explain how to obtain such coordinates in the unit tangent
bundle of a hyperbolic surface and how they are linked to the stable and unstable
bundles.

4.1. The surgery from the contact viewpoint

Let (M, ξ = ker(α) ) be a contact manifold of dimension 3 and let γ be a Legendrian
knot in M . Then there exist coordinates

(t, s, w) ∈ Ω := (−η, η)× S1 × (−ε,+ε),
with 0 < ε < η/2π on a neighborhood of γ in which α = dt + w ds and γ =
{0}×S1×{0}. The surgery annulus is {0}×S1× (−ε,+ε) (and we may occasionally
conflate S1 ' R/2πZ with its universal cover R). Note that in these coordinates
α ∧ dα = dt ∧ dw ∧ ds and Rα = ∂

∂t
, so Ω is a flow-box chart. The surgeries split

this chart into two one-sided flow-box neighborhoods of the surgery annulus, and
while the initial transition map between these on {0}× S1× (−ε,+ε) is the identity,
the surgered manifold MS is defined by imposing the desired twist (or shear) as the
transition map on this annulus:
(4.1) F : S1 × (−ε, ε)→ S1 × (−ε, ε), (s, w) 7→ (s+ f(w), w)
with f : [−ε, ε] → S1 ' R/2πZ, w 7→ qg(w/ε), q ∈ Z, g : R → [0, 2π] nondecreasing
smooth, 0 6 g′ 6 4 even, and g((−∞,−1]) = {0}, g([1,∞)) = {2π}. We specify that
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the transition map from {t < 0} to {t > 0} is used to identify points (0−, x) with
(0+, F (x)). With this choice one sees that F ∗α = α + wf ′(w) dw and hence that

F ∗dα = dα and F ∗(α ∧ dα) = α ∧ dα,
so α ∧ dα is a well-defined volume on MS. The vector field Rα on M induces the
Handel–Thurston vector field XHT on MS. Its flow preserves the Liouville volume
defined by α ∧ dα [34, Corollary 3.3], and the total volume of the manifold is not
changed by the surgery.
However, we have not yet produced a contact flow: F ∗α = α + wf ′(w)dw, so α

does not induce a contact form on MS. A deformation yields a well-defined contact
form α∓h = α∓ dh for ±t > 0, where

h(t, w) :=


1
2λ(t)
λ : R→[0,1] is a smooth bump function supported in (−η,η) with λ=1 near 0

∫ w

−ε
xf ′(x) dx on (−η, η)× (−ε, ε)

0 outside.
satisfies dh = 1

2wf
′(w)dw on the surgery annulus and h ≡ 0 for t near ±η. Hence

F ∗(α+
h ) = α−h , and α±h induces a contact form αA on MS. Its Reeb field is a time-

change

(4.2) RαA := XHT

1± dh(XHT )
of XHT [34, Theorem 4.2], which is well-defined because |dh(XHT)| < 1 if 0 <
ε < η/2π [34, Lemma 4.1].(8) For small enough ε, one can impose the condition
|dh(XHT )| < 1/2, and we will do so in Section 8.
The time-change that defines RαA is a slow-down near the surgery annulus, which

confounds comparisons of dynamical complexity because of the extra factor in
Abramov’s formula (3.1), so we study the vector field
(4.3) Xh := cRαA = RαA/c,

where c ∈ R is such that
∫ c

1± dh(XHT )α ∧ dα = 1, to compare entropies.

4.2. Surgery on the unit tangent bundle and Anosov flows

We now explain how to perform a contact surgery on the unit tangent bundle of a
hyperbolic surface Σ. Select a closed geodesic c : S1 → Σ, s 7→ c(s) and consider the
Legendrian knot γ obtained by rotating the unit vector field along c by the angle
θ = π/2. This knot is Legendrain as H is tangent to γ (see Figure 4.1). Standard
coordinates for αA near γ are obtained by flowing along the vertical field V and then
along the geodesic vector field X [34, Lemma 5.1]: the surgery annulus is contained in
the torus T above c (see Figure 4.2); it consists of vectors that are almost orthogonal
to a chosen geodesic in a surface. Along γ, E+ is spanned by a vector V +H in the
first quadrant.
(8)We note that time-changes of contact flows are sometimes surprisingly flexible [49].
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To prove that the surgered flow is Anosov, [34] uses Lyapunov–Lorentz metrics
[34, Claim 4.5 and Appendix A].
Definition 4.1. — The continuous Lorentz metrics Q+ and Q− on M are a pair

of Lyapunov–Lorentz metrics for the flow ϕt generated by X if there exists constants
a, b, c, T > 0 such that

(1) C+ ∩ C− = ∅ where C± is the Q±-positive cone;
(2) Q±(X) = −c;
(3) for any x ∈M , v ∈ C±(x) and t > T , Q±(Dxϕ

±t(v)) > aebtQ±(v)
(4) for any x ∈M Dxϕ

±T
(
C±(x)

)
r {0} ⊂ C±

(
ϕ±T (x)

)
Proposition 4.2. — [34, Claim 4.5 and Appendix A] A smooth flow ϕt is Anosov

if and only if it admits a pair of Lyapunov–Lorentz metrics Q− and Q+. The unstable
foliation of the flow is then contained in the positive cone Q+ and the stable foliation
in the positive cone of Q−

For the geodesic flow, one can choose Q± = ±dwds − cdt2 in the coordinates
(t, s, w). Understanding how the surgery affects the positive cones of Q± is crucial
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to understanding why the condition q > 0 is essential to obtaining an Anosov flow
after surgery. We restrict attention to the trace of these cones in the sw-plane and
consider the geometry of the action of F by differentiating (4.1) to see the twist
(shear) in (s, w)-coordinates:

DF =
(

1 f ′(w)
0 1

)
.

Therefore, if q > 0, the image of the first and third quadrant (i.e., the trace of

e+

C+

DF (C+)

e+

C+

DF (C+)

Figure 4.3. Action of a positive and negative twist (shear) on the first quadrant

C+) is a subcone of the first and third quadrant that shares the horizontal axis (see
Figure 4.3). Roughly speaking, this implies that the cone field C+ is preserved by
the surgery and one can define a new cone field on the surgered manifold by

Q±0 = ±dwds− cdt2, if t < 0,

Q±1 = ±
(
dwds− b(t)f ′(w)dw2

)
− cdt2, if t > 0,

where b : R → R+ smooth with b((−∞, 0]) = {1}, b([η,∞)) = {0} and b′ < 0 on
(−η, η). Then for t = 0, F ∗Q1 = Q0 and Q±0 and Q±1 induces a pair of Lyapunov–
Lorentz metrics on MS. If q < 0, the cones are not preserved and the flow is not
necessarily Anosov:
Proposition 4.3. — The (1, q)-Dehn surgery defined by F in (4.1) does not

produce an Anosov flow if −q/ε is large enough, i.e., if either q < 0 is fixed and ε is
small enough or if ε > 0 is fixed and q < 0 with |q| big enough.
Proof. — There is a lower bound on the return time to the surgery region, so there

is a K > 0 such that the half-cone a 6 −Kb 6 0 is mapped into the half-cone
0 > a > Kb by the differential of the return map (see Figure 4.4). Here, we use
coordinates (a, b) in the (s, w)-plane. Now suppose that q/ε < −2K and that the
function g in the definition of f (after (4.1)) is chosen with monotone derivative
on (0,∞). Then f ′(0) < q/ε, so f ′(w) < q/ε for small w. This has the effect that
for such w, the half-cone around e+ given by 0 6 a 6 Kb is mapped by DF into
the half-cone a 6 −Kb 6 0, which is on the other side of e−. The return map then
sends it into the half-cone 0 > a > Kb, which is the other half of the cone in which
we started. This is incompatible with the existence of a continuous invariant cone
field that extends to points that miss the surgery region, and hence with the Anosov
property. �
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shear−−−→

e+

e−

a = Kb

0 6 a 6 Kb
return
map−−−−→

e+

e−

a6−Kb60
a = −Kb

e+

e−

a = Kb

0 > a > Kb

Figure 4.4. The cones in the proof of Proposition 4.3

Note that one can perform a positive surgery on an Anosov flow (and therefore
obtain another Anosov flow) then undo it by performing a negative surgery and obtain
again an Anosov flow. This is compatible with the satement of Proposition 4.3, as q
and ε are fixed in the negative surgery (and thus Proposition 4.3 does not apply).
Returning to the case of positive q, we note from the preceding:
Proposition 4.4. — The stable and unstable foliations of (MS, αA) as described

in Theorem 2.16 are orientable.
Proof. — The strong stable foliation is contained in the positive cone of Q− and

the strong unstable foliation in the positive cone of Q+, so the stable foliation is
orientable if and only if the positive cone of Q− is orientable (an orientation of
the positive cone is a choice of a connected component of this cone). The stable
and unstable foliations of the unit tangent bundle over a hyperbolic surface are
orientable. Additionally, Q−

(
∂
∂s
, ∂
∂s

)
= 0 and F ∗ ∂

∂s
= ∂

∂s
, so the surgery preserves

the orientation of Q−, and Q− is orientable. This implies that Q+ is orientable. �

4.3. Impact on entropy

The nature of the surgery map implies:
Proposition 4.5. — If q > 0, then hLiouville(XHT ) > hLiouville(X).
Proof. — By the Pesin entropy formula it suffices to show that the positive Lya-

punov exponent of XHT is no less than that of X. Volume-preserving Anosov 3-flows
are ergodic [43, Theorem 20.4.1], so the positive Lyapunov exponent, being a flow-
invariant bounded measurable function, is a.e. constant. The earlier observation that
for the geodesic flow on a hyperbolic surface the expanding vector is of the form
ete+ means that the Lyapunov exponent of (the normalized) Liouville measure is
1. Therefore, we will show that the positive Lyapunov exponent of XHT is at least
1. To that end we verify that the differential of its time-1 map expands unstable
vectors by at least a factor of e with respect to a suitable norm.
For the geodesic flow the Sasaki metric induces a natural norm, and this norm

is what is called an adapted or Lyapunov norm: for unstable vectors, it grows by
exactly et under the flow, and on each tangent space it is a product norm. Our
argument involves only vectors in unstable cones, so we pass to a norm ‖ · ‖+ that
is (uniformly) equivalent when restricted to such vectors: the norm of the unstable
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component. Geometrically, this means that at each point we project tangent vectors
to E+ along E− ⊕ RX and take the length of this unstable projection as the norm
of the vector. Thus, ‖Dgt(v)‖+ = et‖v‖+ for t > 0.
The proof of hyperbolicity of XHT shows that the cone field defined by the

Lyapunov–Lorentz functions is well-defined on the surgered manifold and invari-
ant under XHT . Thus, this adapted norm for the geodesic flow defines a (bounded,
though discontinuous) norm ‖ ·‖+ on unstable vectors for the flow ϕt defined byXHT .
We now show that ‖Dϕ1(v)‖+ > e‖v‖+ for any v in an unstable cone. This is clear
(with equality) when the underlying orbit segment does not meet the surgery an-
nulus because the action is that of the geodesic flow. If there is an encounter with
the surgery annulus at time t ∈ (0, 1], then v′ := Dϕt(v) satisfies ‖v′‖+ = et‖v‖+,
and we will check that v′′ := DF (v′) satisfies ‖v′′‖+ > ‖v′‖, which implies that
‖Dϕ1(v)‖+ = ‖Dϕ1−t(v′′)‖+ = e1−t‖v′′‖+ > e1−t‖v′‖+ = e1−tet‖v‖+ = e‖v‖+, as
required.
That ‖DF (v′)‖+ > ‖v′‖ follows from the same argument as hyperbolicity of XHT

as suggested by Figure 4.5, which superimposes the tangent spaces at some x and
F (x) in the surgery annulus (using the identification from the canonical isometries
between these tangent spaces). DF is a positive shear, and in the H-V -frame in the
figure the addition of a multiple of the projection of ∂

∂s
(which is close to H) by a

positive shear results in an increase in the projection to E+, which is spanned by
e+ = V +H. �

e −
=
V
−
H

e
+ =

V
+
H

V

H

v′

e
+ -in

cre
men

t

v
′′ = DF

(v′ )

Figure 4.5. DF increases the unstable component

Remark 4.6. — Alternatively, let z be a point on the surgery annulus such
that its orbit under the flow Xs crosses the surgery region infinitely often. In local
coordinates, z is the identification of p = (t, s, w) with F (p) = (t, s + f(w), w).
Consider a vector v = ae+(F (p)) + be−(F (p)) in the preserved cone at F (p) given by
a > 0, 0 6 b 6 a. Consider the first return, at time t. Let q = ϕt(F (p)) = (0, st, wt).
The image of v by the flow diffential at t before the identification between q and F (q)
is v′ = aete+(q) + be−te−(q). To compute its image v′′ = DF (v′) after identification
we need to consider the change of coordinate between the basis

(e+(q), e−(q), X(q)) and
(
∂

∂s
(q), ∂

∂w
(q), X(q)

)
.
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Let
∂

∂s
(q) = a0e

+(q) + b0e
−(q) + c0X(q) and ∂

∂w
(q) = a1e

+(q) + b1e
−(q) + c1X(q).

If the surgery is performed in a small annulus then e+(q) is arbitrarily close to
∂
∂s

(q) + ∂
∂w

(q) and e−(q) is arbitrarily close to − ∂
∂s

(q) + ∂
∂w

(q). We obtain

v′′ = a′e+(q) + b′e−(q) + c′X(q)
with

a′ = aet + df

dw
(wt)a0

aa0e
t − ba1e

−t

a0b1 − a1b0
.

As t is bounded below, we obtain a′ > aet for a surgery performed in a small annulus.
This gives the desired inequality for the projected norm.

Remark 4.7. — We emphasize that the entropy-increase is manifested for XHT
and thus results from the surgery and not from the time-change that makes the flow
contact.

We are now ready to pursue the growth of periodic orbits.
Proof of Theorem 3.1. — Abramov’s formula (3.1) with g := c

1± dh(XHT ) and
µg the normalized volume defined by αA gives

hLiouville(Xh) = hLiouville(XHT )
∫ c

1± dh(XHT )α ∧ dα = hLiouville(XHT ).

Combined with our previous result, this gives
(4.4) hLiouville(ϕt) = hLiouville(Xh) = hLiouville(XHT ) > hLiouville(X)

Proposition 4.5

= hLiouville(gt).

This in turn yields a comparison of topological entropies:

constant curvature

htop(gt) =
(4.4)

hLiouville(gt) 6 hLiouville(ϕt) < htop(ϕt)
Theorem 2.16.3

. �

Proof of Theorem 3.3. — By (3.3), increased cohomological pressure suffices:
(3.2)

hLiouville(gt) 6 P (gt) 6 htop(gt) =
(4.4)

hLiouville(gt)
constant curvature

6 hLiouville(ϕt) < P (ϕt)
Theorem 3.6

.

Of course, applying (3.2) on the right-hand side reproves Theorem 3.1. �

5. Cylindrical contact homology and its growth rate

Contact homology is an invariant of the contact structure computed through a Reeb
vector field and introduced in the vein of Morse and Floer homology by Eliashberg,
Givental and Hofer in 2000 [26]. The definition of contact homology is subtle and
complicated. In this paper, we will consider it as a black box and only use the
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properties of contact homology described in Theorem 5.1.(9) We use the simplest
version of contact homology: cylindrical contact homology.
Roughly speaking, contact homology is the homology of a complex generated by

Reeb-periodic orbits of a (nice) contact form. Yet the homology does not depend on
the choice of a contact form (but it depends on the underlying contact structure).
Therefore a Reeb vector field provides us with information on contact homology and
vice-versa. The differential of this complex “counts” rigid holomorphic cylinders in
the symplectization M × R of our contact manifold (this is the technical part of
the definition). These cylinders are asymptotic to Reeb-periodic orbits when the
R-coordinate of the cylinder tends to ±∞. Roughly speaking, in the cases used in
this paper, if a rigid cylinder is asymptotic to γ± at ±∞, then it contributes ±1 to
the coefficient of γ− in the differential of γ+. This can be seen as a generalization
of the differential of Morse Homology where we “count” rigid gradient trajectories
asymptotic to critical points of a Morse function. In particular, this implies that the
differential of a periodic orbit only involves periodic orbits in the same free homotopy
class and with smaller period. Moreover, the complex is graded and the differential
decreases the degree by 1 (here we will only use the parity of this grading). Computing
this differential is usually out of reach without strong control of homotopic periodic
Reeb orbits.
Variants of contact homology can be defined by considering periodic orbits in

specific free homotopy classes or periodic orbits with period bounded by a given
positive real number T (this operation is called a filtration). In the latter situation,
the limit T → ∞ recovers the original homology. This procees is fundamental to
gathering information on the growth rate of Reeb-periodic orbits.
We recall that if γ is a nondegenerate T -periodic orbit of the Reeb flow ϕt of

(M, ξ = ker(α)) and p is a point on γ, the orbit γ is said to be even if the symplec-
tomorphism dϕT (p) : (ξp, dα) → (ξp, dα) has two real positive eigenvalues, and odd
otherwise.

Theorem 5.1 (Fundamental properties of cylindrical contact homology). — Let
(M, ξ) be a closed hypertight contact 3-manifold, α0 a nondegenerate contact form
on (M, ξ) and Λ a set of free homotopy classes of M ,

(1) Cylindrical contact homology CHΛ
cyl(α0) is a Q-vector space. It can be of

finite or infinite dimension. It is the homology of a complex generated by
Rα0-periodic orbits in Λ.

(2) The differential of an odd (resp. even) orbit contains only even (resp. odd)
orbits.

(3) If α is another nondegenerate contact form on (M, ξ), then CHΛ
cyl(α0) and

CHΛ
cyl(α) are isomorphic.

(4) There exists a filtered version CHΛ
6T (α0) (for T > 0) of contact homology:

the associated complex is generated only by periodic orbits in Λ with period

(9)Plus, for Proposition 8.3 we also use (and elaborate in the proof) an elementary and standard
application of the computation of contact homology in the Morse–Bott setting.
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6 T . Therefore, CHΛ
6T (α0) is a Q-vector space of finite dimension and

dim
(
CHΛ

6T (α0)
)
6 ] {Rα0-periodic orbits in Λ with period 6 T}=:NΛ

T (α0)

(5) (CHΛ
6T (α))T is a directed system and its direct limit is the cylindrical contact

homology. Having a directed system means that for all T 6 T ′, there exists a
morphism ϕT,T ′ : CHΛ

6T (α0) −→ CHΛ
6T ′(α0) and

• ϕT,T = Id
• if T0 6 T1 6 T2, then ϕT0,T2 = ϕT1,T2 ◦ ϕT0,T1 .

As limT→∞CHΛ
6T (α0) = CHΛ(α0), there exist morphisms

ϕT : CHΛ
6T (α0) −→ CHΛ(α0)

such that the following diagram commutes for T 6 T ′:

CHΛ
6T (α0)

CHΛ(α0)

CHΛ
6T ′(α0)

ϕT,T ′

ϕT ϕT ′

(6) Let α = fα0 be another nondegenerate contact form. Assume f > 0, and let
B be such that 1/B 6 f(m) 6 B for all m ∈M . There exist C = C(B) and
morphisms ψT : CHΛ

6T (α0) −→ CHΛ
6CT (α) such that the following diagram

commutes:

CHΛ
6T (α0) CHΛ

6CT (α)

CHΛ
6T ′(α0) CHΛ

6CT ′(α)

ϕT,T ′(α0)

ψT

ψT ′

ϕCT,CT ′(α)

This defines a morphism of directed system.

Contact homology was introduced by Eliashberg, Givental and Hofer [26]. The
filtration properties come from [21]. The description in terms of directed systems
takes its inspiration from [50] and is presented in [61, Section 4]. Though commonly
accepted, existence and invariance of contact homology remain unproven in general.
This has been studied by many people using different techniques. This paper uses
only proved results and follows the approaches of Dragnev and Pardon [23, 54]. If α
is hypertight and Λ contains only primitive free homotopy classes, the properties of
contact homology described in Theorem 5.1 derive from [23] (see [61, Section 2.3]). In
the general case, Theorem 5.1 can be derived from [54]. Cylindrical contact homology
for hypertight contact forms (and possibly nonprimitive homotopy classes) and the
action filtration are described in [54, Section 1.8]. The case of a not hypertight
contact form when there exists an hypertight contact form derives from the contact
homology of contractible orbits [54, Section 1.8] and our invariant corresponds to
CHΛ

• . Note that when computed through a hypertight contact form, CHcontr
• is

trivial and CHΛ
• is the cylindrical contact homology. In the not hypertight case, our

TOME 1 (-1)



26 P. FOULON, B. HASSELBLATT & A. VAUGON

invariants can be interpreted geometrically using augmentations. This viewpoint is
described in [61, Section 2.4 and Section 4].
Combining the two commutative diagrams from Theorem 3.9 and the invariance

of contact homology we obtain the following inequality.
Proposition 5.2. — Let α0 and α = fα0 be two nondegenerate contact forms

on (M, ξ), where M is a closed, 3-dimensional manifold and ξ is hypertight. Assume
f > 0, and let B such that 1/B 6 f(m) 6 B for all m ∈M . Then

NΛ
L (α) > rank(ϕL(α)) > rank(ϕL/C(B)(α0))

for all L > 0.
If CHΛ(α0) is well-understood, one can get an easier estimate.
Corollary 5.3. — Let α0 and α = fα0 be two nondegenerate contact forms

on (M, ξ) where M is a closed, 3-dimensional manifold and ξ is hypertight. Assume
f > 0, and let B such that 1/B 6 f(m) 6 B for all m ∈M . If

CHΛ(α0) =
⊕

Rα0 -Reeb-periodic orbit γ in Λ
Qγ

then, NΛ
L (α) > NΛ

L/C(B)(α0) for all L > 0.
In fact, one can derive another invariant of contact structures from these properties

of contact homology. Two nondecreasing functions f : R+ → R+ and g : R+ → R+
have the same growth rate type if there exists C > 0 such that

f
(
x

C

)
6 g(x) 6 f(Cx)

for all x ∈ R+ (for instance, a function grows exponentially is it is in the equivalence
class of the exponential). The growth rate type of contact homology is the growth
rate of T 7→ rank(ϕT ). Two nondegenerate contact forms associated to the same
contact structure have the same growth rate type (by Proposition 5.2) and therefore,
the growth rate type of contact homology is an invariant of the contact structure.
The growth rate of contact homology was introduced in [13]. It “describes” the
asymptotic behavior with respect to T of the number of Reeb-periodic orbits with
period smaller than T that contribute to contact homology. For a more detailed
presentation one can refer to [61].
Colin and Honda’s conjecture [21, Conjecture 2.10] (see Section 1) for the contact

structures from Theorem 2.16, and Theorem 3.9 for nondegenerate contact forms
follow from
Proposition 5.4. — Let (M, ξ) be a compact contact 3-manifold and assume

there exists a contact form α0 on (M, ξ) whose Reeb flow is Anosov with orientable
stable and unstable foliations. Then any Rα0-periodic orbit is even and hyperbolic.
Indeed, by Proposition 4.4, one can apply Proposition 5.4 to (MS, αA), which is

hypertight as the Reeb flow is Anosov. Therefore, the differential in contact homology
is trivial (Theorem 5.1.2.) and for any set Λ of free homotopy classes,

CHΛ
cyl(αA) =

⊕
RαA -Reeb-periodic orbit γ in Λ

Qγ.
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Let α = fαA be nondegenerate with f > 0 and let B be such that 1/B 6 f(m) 6 B
for all m ∈ M . Applying Corollary 5.3 for Λ = {ρ}, we get NΛ

L (α) > NΛ
L/C(B)(αA)

for any L > 0. Using the Barthelmé–Fenley estimates from [10, Theorem F] we
obtain the desired logarithmic growth. This finishes the proof of Theorem 3.9 in
the nondegenerate case. Additionally, the number of periodic orbits of an Anosov
flow in primitive homotopy classes grows exponentially with the period. Applying
Corollay 5.3 for Λ the set of all primitive free homotopy classes in MS proves the
Colin–Honda conjecture for contact structures from Theorem 2.16 and nondegenerate
contact forms.
Proof of Proposition 5.4. — By definition of stable and unstable foliations, DϕT|ξ(p)

has real eigenvalues µ and 1
µ
and the associated eigenspaces are E+ and E−. As the

strong stable foliation is orientable, the eigenvalues are positive. Thus γ is even and
hyperbolic �

6. Orbit growth in a free homotopy
class for degenerate contact forms

We now prove Theorem 3.9 for degenerate contact form (the nondegenerate case is
explained in the previous section). The proof derives from the proof of [3, Theorem 1].
Yet Alves’ goal was to obtain one orbit with bounded period in some free homotopy
class and not control the number of orbits in this class, and the following result is
not explicit in [3].
Corollary 6.1. — Let (M, ξ) be a closed manifold and α0 an Anosov contact

form on (M, ξ). Let ρ be a primitive free homotopy class of M such that
CHρ

cyl(α0) =
⊕

Rα0 -periodic orbit γ in ρ

Qγ 6= {0}.

Then, for any contact form α = fαα0 on (M, ξ) and for any Rα0-periodic orbit of
period T , there exists an Rα-periodic orbit in ρ of period T ′ with e := min |fα| 6
T ′/T 6 E := max |fα|.
Proof of Corollary 6.1. — Fix 0 < ε < e. Without loss of generality, we may

assume fα > 0. We follow Alves’ proof of [3, Theorem 1] and consider α = fαα0
on (M, ξ) nondegenerate. For any R > 0, Alves constructs (Step 1) a symplectic
cobordism R × MS between (E + ε)α0 and (e − ε)α0 which corresponds to the
symplectization of α on [−R,R]×MS, and a map

ΨR : CHρ
cyl((E + ε)α0) −→ CHρ

cyl((e− ε)α0)
by counting holomorphic cylinders in the symplectic cobordism. As CHρ

cyl(Cα0) is
canonically isomorphic to CHρ

cyl(α0) for any C > 0, ΨR induces an endomorphism
of CHρ

cyl(α0) and Alves proves that this endomorphism is, in fact, the identity.
Let γ be a Rα0-periodic orbit of period T . For any C > 0, it induces a RCα0-periodic

orbit γC of period CT . As
CHρ

cyl(α0) =
⊕

Rα0 -Reeb-periodic orbit γ in ρ

Qγ,
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ΨR(γE+ε) = γe−ε and therefore, there exists a holomorphic cylinder between γE+ε
and γe−ε. Now as R tends to infinity (Step 2), SFT compactness (see [3]) shows that
our family of cylinders breaks and an Rα-periodic orbit γε of period Tε appears in
an intermediate level. By construction, (e− ε)T 6 Tε 6 (E + ε)T . Now, let ε tend to
0 and use the Arzelà-Ascoli Theorem to obtain an Rα-periodic orbit γ′ with period
T ′ such that eT 6 T ′ 6 ET .
If α is degenerate (Step 4), there exists a sequence (αn)n∈N of nondegenerate

contact forms converging to α and the Arzelà-Ascoli Theorem can again be applied
to obtain the desired periodic orbit. �

Proof of Theorem 3.9 for degenerate contact forms. — As MS is hyperbolic, there
are positive real numbers a1, b1, a2, b2 > 0 such that

1
a2

ln(T )− c2 6 Nρ
T (αA) 6 a1 ln(T ) + c1

for all T > 0 [10, Theorem F]. Let (γn)n∈N be a sequence of RαA-periodic orbits in
ρ of periods (Tn)n∈N such that

• γ0 is a RαA-periodic orbit in ρ with minimal period;
• for all n > 0, γn+1 is a RαA-periodic orbit in ρ with period Tn+1 >

E
e
Tn and

such that there exists no periodic orbit in ρ with period in
(
E
e
Tn, Tn+1

)
By Corollary 6.1, for any n > 0, there exists a Rα-periodic orbit γ′n of period T ′n
such that eTn 6 T ′n 6 ETn. Therefore, T ′n 6 ETn < eTn+1 6 T ′n+1 for all n > 0 and
all the orbits γ′n are distinct. Thus, Nρ

T ′
n
(α) > n+ 1 for all n > 0.

To control Nρ
T (α), we now estimate the growth of (Tn)n∈N. By definition, for all

n > 0,
Tn+1 = min

{
T | Nρ

T (αA) > Nρ
E/eTn

(αA) + 1
}
.

Therefore, if T is such that
1
a2

ln(T )− c2 = a1 ln(E/eTn) + c1 + 1

then Tn+1 6 T and
Tn+1 6

(
E

e
Tn

)a1a2

e(1+c1+c2)a2 .

Therefore, there exist a3, c3 > 1 such that Tn+1 6 (c3Tn)a3 for all n > 0. Thus, there
exists c4 > 0 such that

ln(Tn+1) 6 c4a
n+1
3

for all n > 0 and there exists c5 ∈ R such that
ln(ln(Tn+1)) 6 ln(a3)(n+ 1) + c5

for all n > 0. Now, if eTn−1 6 T ′n−1 6 T 6 T ′n 6 ETn, then

Nρ
T (α) > n >

1
ln(a3) ln(ln(Tn))− c5 >

1
ln(a3) ln(ln(T ))− c6

for some c6 ∈ R. This proves Theorem 3.9. �

Remark 6.2. — If a1a2 = 1, one can get better estimates and obtain the same
growth as in the nondegenerate case.
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7. Exponential orbit growth after
surgery on a simple closed geodesic

We now prove Theorem 3.13 using the following result by Alves about the expo-
nential homotopical growth of cylindrical contact homology.

Definition 7.1 (Exponential homotopical growth [1]). — Let (M, ξ) be a closed
contact manifold and α0 a hypertight contact form on (M, ξ). For T > 0, let N cyl

T (α0)
be the number of free homotopy classes ρ of M such that

• all the Rα0-periodic orbits in ρ are simply-covered, nondegenerate and have
period smaller than T ;
• CHρ

cyl(α0) 6= 0.
We say that the cylindrical contact homology of (M,α0) has exponential homotopical
growth if there exist T0 > 0, a > 0 and b ∈ R such that, for all T > T0,

N cyl
T (α0) > eaT+b.

Theorem 7.2 (Alves [1, Theorem 2]). — Let α0 be a hypertight contact form on
a closed contact manifold (M, ξ) and assume that the cylindrical contact homology
has exponential homotopical growth. Then every Reeb flow on (M, ξ) has positive
topological entropy.

If ρ is a free homotopy class containing only one Rα0-periodic orbit and if this orbit
is simply-covered and nondegenerate, it is a direct consequence of the definition of
contact homology that CHρ

cyl(α0) = Q. Therefore, to prove Theorem 3.13, it suffices
to prove the following propositions.

Proposition 7.3. — The contact form αA is hypertight in MS.

Proposition 7.4. — Let (MS, αA) be a contact manifold obtained after a contact
surgery along a Legendrian projecting to a simple closed geodesic and N ′T (αA) the
number of free homotopy classes ρ that contain only one RαA-periodic orbit and this
orbit is simply-covered, nondegenerate and of period smaller than T . Then there
exist T0 > 0, a > 0 and b ∈ R such that, for all T > T0, N ′T (αA) > eaT+b.

Indeed, the exponential growth of N ′T (αA) with respect to T induces the exponen-
tial homotopical growth of (MS, αA) and we can apply Theorem 7.2.
We now turn to the proofs of Proposition 7.3 and Proposition 7.4. In SΣ, T = π−1(c)

is a torus, and our surgery preserves this torus. Let TS denote the associated torus
in MS. Van Kampen’s Theorem tells us that TS is π1-injective.
To prove Proposition 7.4, we want to find free homotopy classes with only one

periodic Reeb orbit. We will consider free homotopy classes containing a periodic
orbit disjoint from TS and prove there are enough of such classes. First, we describe
Reeb-periodic orbits and study the properties of free homotopies between them.

Claim 7.5. — There are three types of RαA-periodic orbits:
(1) periodic orbits contained in TS, the only periodic orbits of this kind are c, −c

(c with the reverse orientation) and their covers,
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(2) periodic orbits disjoint from TS, these orbits correspond to closed geodesics
in Σ disjoint from π(c) (this includes multiply-covered geodesics),

(3) periodic orbits intersecting TS transversely.
Therefore, a free homotopy between two RαA-periodic orbits can always be per-

turbed to be transverse to TS.
Proposition 7.6. — Let δ0, δ1 be two smooth loops in MS and H : [0, 1]×S1 →

MS be a free homotopy between δ0 and δ1 transverse to TS. N := H−1(TS) is a
smooth manifold of dimension 1 properly embedded in [0, 1]× S1. Therefore,

(1) one can modify H so that N does not contain contractible circles,
(2) if δ0 is a RαA-periodic orbit transverse to TS, N does not contain a segment

with both end-points on {0} × S1.
Proof. — Consider an innermost contractible circle c0 in N ⊂ [0, 1]×S1, c0 bounds

a disk D0 in [0, 1]× S1. The image of c0 is contractible in TS as TS is π1-injective.
Therefore, there exists a continuous G : D0 → TS such that H|c0 = G|c0 and one can
replace H|D0 by G to obtain a new homotopy (still denoted by H ) between δ0 and
δ1. Now, consider a neighborhood [−ν, ν]× TS of TS in MS (with TS ' {0} × TS)
and a disk D1 containing D0 such that H(D1) ⊂ [0, ν] × TS and H(D1 r D0) ⊂
(0, ν]× TS. One can perturb H in int(D1) so that H(D1) ⊂ (0, ν]× TS. Performing
this inductively on the contractible circles proves 1.
We now assume δ0 is an RαA-periodic orbit transverse to TS. By contradiction,

consider an innermost segment c0 in N with end-points on {0}×S1. The end-points
of c0 correspond to consecutive intersection points of δ0 with TS. Let c1 be the
segment in {0} × S1 joining these two end-points points and homotopic (relative to
end-points) to c0. By construction, there exists a homotopy (ηt)t∈[0,1] : [0, 1] → MS

(relative to end-points) between η0 = H(c0) et η1 = H(c1) such that ηt(s) ∈ TS if
and only if t = 1 or s = 0, 1. Let M ′ be the manifold with boundary obtained by
cuttingMS along TS. Note thatM ′ can also be obtained by cutting SΣ along T. The
projection M ′ →MS is injective in the interior of M ′, therefore ηt(s) is well-defined
in M ′ if t 6= 0 and s 6= 0, 1. Thus, there exists a homotopy η′t in M ′ lifting ηt. This
homotopy induces a homotopy in SΣ and, as a result, a homotopy in Σ between a
geodesic arc contained in π(c) and a geodesic arc with end-points on π(c). As Σ is
hyperbolic, this can only happen if our second geodesic arc is also contained in π(c),
a contradiction. �
Proof of Proposition 7.3. — By contradiction, assume there exists a free homotopy

H between δ, a RαA-periodic orbit, and a point p /∈ TS. As TS is π1-injective, δ
cannot be contained in TS. Without loss of generality we may assume that H is
transverse to TS and apply Proposition 7.6.
If δ is disjoint from TS, then N ⊂ [0, 1]×S1 (see Proposition 7.6) can only contain

circles parallel to the boundary. We will now prove that we can modify H so that
N is empty. Let c0 be the circle in N closest to {0} × S1 and let C be the closure of
the connected component of ([0, 1]×S1)r c0 containing {1}×S1. Then H(c0) is an
immersed circle contractible in TS and there exists a continuous map G : C → TS
such that G|c0 = H and G{1}×S1 is constant. We replace H|C with G to obtain a
new homotopy H. Now, consider a neighborhood [−ν, ν] × TS of TS in MS and a
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neighborhood C1 of C such that H(C1) is contained in [0, ν]×TS. We can perturb H
so that H(C1) is contained in (0, ν]×TS. Therefore we may assume that N is empty
and H is an homotopy in MS r TS. It induces an homotopy in SΣ, a contradiction
as the periodic orbits are not contractible in SΣ.
Finally, we consider the case of δ transverse to TS. In this case, N has boundary

points on {0} × TS but not on {1} × TS. This contradicts Proposition 7.6. �

Proposition 7.7. — If δ is a RαA-periodic orbit disjoint from TS, then the free
homotopy class of δ contains exactly one RαA-periodic orbit.

Proof. — By contradiction, consider a free homotopy H from δ to δ1, a distinct
RαA-periodic orbit. Without loss of generality, we may assume that H is transverse
to TS (apply Proposition 7.6).
If δ1 is disjoint from TS, then N can only contain circles parallel to the boundary.

If N is empty, H induces a homotopy in SΣ and therefore in Σ. Yet, two closed
geodesics on a hyperbolic surface are not homotopic. This proves that N 6= ∅. Let c0
be the circle in N closest to {0}×S1 andM ′ be the manifold with boundary obtained
by cutting MS along TS. The homotopy H induces a homotopy G between δ and
H(c0) ⊂ TS. The homotopy G lifts to M ′ and therefore induces a free homotopy in
SΣ and, as a result, a free homotopy in Σ between a closed geodesics and a loop
contained in the geodesic π(c). This can happen only if our first geodesic is a cover
of π(c). Yet this implies δ ⊂ TS, a contradiction.
If δ1 is transverse to TS, the manifold N is not empty and has end-points on
{1} × S1 but cannot have end-points on {0} × S1. This contradicts Proposition 7.6.
Finally, the case δ1 contained in TS is similar to the case δ1 disjoint from TS. In

this case, N contains only circles parallel to the boundary and {1}×S1 is in N . �
Proof of Proposition 7.4. — If π(c) is nonseparating, by cutting Σ along π(c) we

obtain a surface of genus at least 1 with two boundary components. Let `1 and `2 be
two loops in Σ r c, homotopically independent and with the same base-point. Then,
any nontrivial word in `1 and `2 defines a nontrivial free homotopy class for Σ and
there exists a closed geodesic on Σ representing this class. This RαA-periodic orbit
is always nondegenerate. Additionally, we may assume that the orbits associated
to `1 and `2 are simply-covered. If a word is not the repetition a smaller word, the
associated orbit is therefore simply covered. As `1 and `2 are independent, all these
geodesics are disjoint and their number grows exponentially with the period. Finally,
these geodesics do not intersect c as geodesics always minimize the intersection
number.
If π(c) is separating, then by cutting Σ along π(c), we obtain two surfaces of genus

at least 1 with one boundary component. The proof is similar. �

8. Surgery on a periodic Reeb flow

We now consider the coexistence of diverse Reeb flows and prove Theorem 3.14.
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8.1. Dynamical properties of the periodic Reeb flow after surgery

We next apply the general construction of contact surgery along a Legendrian
curve described in Section 4.1 to the contact structure with contact form β and
periodic Reeb flow described in Section 3.3. Select a closed geodesic on a hyperbolic
surface Σ and consider its lift c : S1 = R/Z→M to the unit tanent bundle M of Σ.
Consider the Legendrian knot γ in (M, ker(β)) obtained by rotating the unit vector
field along c by the angle θ = π/2. Note that the Legendrian knot γ is the same as in
Section 4.2 (and is tangent to H). To obtain standard coordinates in a neighborhood
of γ we first consider an annulus A in SΣ transverse to the fibers with coordinates
(s, w) ∈ S1× (−2ε, 2ε) such that β|A = wds and then flow along the Reeb vector field
Rβ to obtain coordinates (t, s, w) ∈ S1 ×A = N such that β = dt+ wds (to remain
coherent with previous conventions our circles have different lengths, more precisely
t ∈ R/2πZ and s ∈ R/Z).(10) Note that N can be interpreted as the suspension of
the annulus A by the identity map.
Our nontrivial surgery is defined by a twist (shear) F along A. We denote by MS

the manifold SΣ after surgery and by NS ⊂ MS the manifold (with boundary) N
after surgery. Let βS be the contact form onMS as described in Section 4.1. Note that
β and βS coincide outside N and NS respectively. The manifold NS is the suspension
of the annulus A by the shear map F . Moreover, the map pS : NS → (−2ε, 2ε) given
by the w-coordinate is well-defined and is a trivial torus-bundle. For w ∈ (−2ε, 2ε),
the torus p−1

S (w) is foliated by closed Reeb orbits if and only if

f (w) = 2πpw
qw
∈ 2πQ

where pw and qw are coprime. In this situation the orbits of ∂
∂t

on p−1
S (w) are periodic

of period qw. The Reeb vector field is a renormalization of ∂
∂t

(see (4.2)). Finally, let
T = S1 × S1 × {0} in N and TS be its image in MS. By van Kampen’s theorem,
this torus is incompressible. Therefore the contact form βS is hypertight. Note that
if f(w) ∈ 2πQ and f(w′) ∈ 2πQ but f(w) 6= f(w′), the associated periodic orbits
are not freely homotopic.

8.2. Proof of Theorem 3.14

The contact form βS is degenerate and the renormalization from the surgery makes
the direct study a bit harder. So, to estimate the growth rate of its contact homology,
we will standardize and perturb our contact form.
(10)These coordinates along γ are different from the coordinates defined for the surgery associated
to the contact form α as, for instance, the surgery annulus is different. It is possible to derive a
contact form from β on the surgered manifold using the coordinates and surgery associated to
α: write β in local coordinates, compute F ∗β and interpolate using bump and cut-off functions.
Unfortunately, this construction yields a complicated Reeb vector field. Note that the contact
structure obtained this way is isotopic to ker(βS). This can be proved as follows. First the two
surgeries result in the same manifold. Moreover, a surgery can be described as the gluing of a solid
torus on an excavated manifold. Therefore we just need to prove that the contact structures on
the glued tori are the same. This derives from the classification of contact structures on D3 by
Eliashberg. See [48] for an application to the torus.
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For any w ∈ (−2ε, 2ε), the vector fields ∂
∂t

+ f(w)
2π

∂
∂s

and ∂
∂s

generate circles in
the torus p−1

S (w). These circles induce a trivialisation of NS. Let (τ, σ, w) be the
coordinates on NS associated to this trivialisation. Without loss of generality, we may
assume that the map f defining the twist (shear) F is constant on (−2ε,−ε)∪ (ε, 2ε),
that f ′(w) 6= 0 for any w ∈ (−ε, ε) and that f is invariant under reflection with
respect to the point (0, q/2). Therefore, for w in [−2ε,−ε],

βS = dτ + wdσ

and for w in [ε, 2ε],
βS =

(
1 + qw

2π

)
dτ + wdσ.

Lemma 8.1. — There exist smooth maps h0, k0 : (−2ε, 2ε)→ R such that
β0 = h0(w)dτ + k0(w)dσ

is a contact form such that β0 = βS for w close to ±2ε and Rβ0 and RβS are positively
collinear on NS. Therefore, β0 and βS are isotopic (through contact forms).

Proof. — Let h0 and k0 be the maps defined by k0(w) = w and

h0(w) = 1 +
∫ w

−2ε
f(u)/2πdu

for w ∈ (−2ε, 2ε). As
∫ ε
−ε f(u)du = qε, β0 = βS for w ∈ (ε, 2ε). Moreover, the contact

condition is
1 +

∫ w

−2ε
f(u)/2πdu− wf(w)/2π > 0

and this condition is always satisfied for ε small enough. Additionally, the Reeb
vector field is positively collinear to (k′0(w),−h′0(w)) = (1,−f(w)/2π). Finally, as
Rβ0 and RβS are positively collinear, (uβS + (1−u)β0)u∈[0,1] is a contact isotopy. �
The contact form β0 is degenerate. To estimate the growth rate of its contact

homology, we have to perturb it. Our perturbation draws its inspiration from Morse–
Bott techniques. To describe our perturbation, we need to fix some notations. The
manifold SΣ r p−1((−ε, ε)) is a trivial circle bundle. Let S ′ be a surface (with
boundary) transverse to the fibers and intersecting each fiber once: S ′ provides us
with a trivialisation S ′ × S1 of SΣ r p−1((−ε, ε)). The surface S ′ has two boundary
components. Let ϕ : S ′ → R be a Morse function such that ϕ = 0 on the boundary of
S ′ and, if q > 0 (resp. q < 0), the connected component of ∂S ′ corresponding to w =
−ε is a maximum (resp. a minimum) and the connected component corresponding to
w = ε a minimum (resp. a maximum). For any w such that f(w) = 2πp(w)/q(w) ∈
2πQ, we denote by P (w) the period of the Rβ0-periodic orbits foliating p−1

S (w). Note
that there exists CP > 0 such that q(w)/CP 6 P (w) 6 CP q(w), this implies that
the number of torus with w ∈ (−ε, ε) foliated by Reeb-periodic orbits with period
smaller than L grows quadratically in L.
For a contact form α, let σ(α) denote the action spectrum: the set of periods of

the periodic orbits of Rα.

Proposition 8.2. — Let T > 0, T /∈ σ(β0). There exists β′ = lβ0 with l : MS →
R+ arbitrarily close to 1 such that
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• β′ is hypertight and nondegenerate
• the periodic orbits of Rβ′ with period 6 T are exactly:

(1) the fibers associated to the critical points of ϕ and their multiple of
multiplicity 6

⌊
T
2π

⌋
(2) for all w ∈ (−ε, ε) such that P (w) < T , two orbits in p−1

S (w) and their
multiple with multiplicity 6

⌊
T

P (w)

⌋
• if δ is a Rβ′-periodic orbit of period 6 T then all the Rβ′-periodic orbit in
the free homotopy class of δ are periodic orbits of period 6 T .

Proposition 8.3. — If δ is a simply-covered Rβ′-periodic orbit of period 6 T
of the second type in Proposition 8.2, then

CH[δ]
cyl(M, ker(β0)) = Q2.

Proof of Proposition 8.2. — There exists ν > 0 such that for any w ∈ (−ε,−ε+
ν] ∪ [ε− ν, ε), if f(w) = 2πp(w)/q(w) ∈ 2πQ then q(w) > CPT . Let

N ′S = p−1
S ((−ε,−ε+ ν] ∪ [ε− ν, ε)).

Let S ′′ be a smooth surface in MS with boundary obtained by adding to S ′ two
annuli in NS, transverse to Rβ0 and projecting to [−ε,−ε + ν] ∪ [ε − ν, ε]. We can
therefore endow S ′′ r S ′ with coordinates (s′, w′) such that w′ lifts w. We now
perturb ϕ and extend it to S ′′ so that ϕ(s′, w′) = ϕ(w′) on S ′′ r S ′, ϕ′(w′) 6= 0
for all w′ ∈ [−ε,−ε + ν) ∪ (ε − ν, ε], ϕ is flat (all its derivative are equal to 0) for
w = ±(ε− ν) and the critical points of ϕ are unaltered. Finally, we extend ϕ to MS

to obtain a smooth function, Rβ0-invariant and such that ϕ ≡ 0 in NS rN ′S.
Let βλ = (1 +λϕ)β0. This is a standard Morse–Bott perturbation (see [12, Lemma

2.3]) in MS r p−1
S ((−ε, ε)), therefore, for λ � 1, the periodic orbits in this area

correspond to the critical points of k.
In the coordinates (τ, σ, w), we have

βλ = (1 + λϕ(w))(h0(w)dτ + k0(w)dσ).
Therefore, in these coordinates, the Reeb vector field is positively collinear to

((1 + λϕ(w))k′0(w) + λϕ′(w)k0(w)) ∂

∂τ
− ((1 + λϕ(w))h′0(w) + λϕ′(w)h0(w)) ∂

∂σ
.

The σ-coordinate is nonzero as ϕ and h have the same monotonicity. For λ � 1,
the σ-coordinate is close to −h′0(w), the τ -coordinate to k′0(w) and Rβλ is close to
Rβ0 . Therefore, for λ� 1, if there is a Rβλ-periodic orbit in N ′S, this orbit has slope
2πp′(w)/q′(w) ∈ 2πQ with q′(w) > CPT . Thus there are no periodic orbit with
period smaller than T in N ′S and the periodic orbits with period bigger than T are
not in the free homotopy classes of orbits with period smaller than T as described
in Proposition 8.2.
In p−1

S ([−ε + ν, ε− ν]), the periodic orbits with period 6 T are contained in tori
p−1
S (w) such that P (w) 6 T . These tori are foliated by periodic orbits. Morse–Bott
techniques apply here and give the second type of periodic Reeb orbits: for any
such w we perturb β in a neighborhood of p−1

S (w) with a function derived from a
Morse function ϕw defined on p−1

S (w)/Reeb flow = S1 and the periodic orbits after
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perturbation correspond to the critical points of ϕw. For a given w we obtain two
orbits (one associated to the maximum of ϕw and one associated to the minimum of
ϕw), their covers and some orbits with period bigger than T and in the free homotopy
class of arbitrarily large covers of our two simple orbits. This perturbation derives
from [12, Lemma 2.3] and is described for tori in [61, Section 3.1].
Lastly, standard perturbation techniques prove there exists an arbitrarily small

perturbation of βλ with the following properties:
• it gives rise to a nondegenerate contact form,
• it does not change the periodic orbits with period smaller than T ,
• it does not create periodic orbits of period bigger than T in the free homotopy
classes of orbits of period smaller than T . �

Proof of Proposition 8.3. — Let δ ∈ p−1
S (w) be a Rβ′-periodic orbit of period 6 T

of the second type in Proposition 8.2. Then the Rβ0-periodic orbits in the class [δ] are
exactly the orbits in p−1

S (w) (and all these orbits have the same period). As δ is simply-
covered, Dragnev’s [23] results can be applied. Additionally, standard perturbations
do not create contractible periodic Reeb orbits. Therefore, the differential for contact
homology can be described using “cascades” from Bourgeois’ work [12]. The case of a
unique torus of orbits is explained in [12, Section 9.4]. The cascades used to describe
the differential in this degenerate setting mix holomorphic cylinders between orbits
and gradient lines for ϕw in p−1

S (w)/Reeb flow = S1 (for some generic metric). As all
periodic orbits in this class have the same period, there is no homolorphic cylinder
in the cascade and the differential coincides with the Morse–Witten differential for
ϕw (ie the differential associated to Morse homology). Therefore, cylindrical contact
homology in the free homotopy class ρ is 2-dimensional. The cascades of Morse–Bott
homology are explicitly described in [15] (in a slightly different setting). �

Proof of Proposition 3.14. — Let β′ = fβ be a nondegenerate hypertight contact
form and B be such that 1/B < f < B. Let (Ti)i∈N be an increasing sequence such
that limi→+∞ Ti = +∞ and Ti /∈ σ(β0). For all i ∈ N, let βi = fiβ be the contact
form given by Proposition 8.2 for T = Ti. We may assume,

1
B
<
fi
f
< B

as fi is arbitrarily close to 1. By Proposition 8.2,

dim (CHTi(αi)) 6
⌊
Ti
2π

⌋
C + 2

∑
w,P (w)6Ti

⌊
Ti

P (w)

⌋

where C is the number of critical points of k and

∑
w,P (w)6T

⌊
T

P (w)

⌋
= O(T 2

i ).

In addition, we have the following commutative diagram (see Theorem 5.1),

TOME 1 (-1)



36 P. FOULON, B. HASSELBLATT & A. VAUGON

CH6Ti/C(B)(β′) CH6Ti(βi)

CH(β′) CH(βi)

ϕTi/C(B)(β′) ϕTi(βi)

thus
rk(ϕTi/C(B)(β′)) 6 rk(ϕTi(βi)) 6 dim (CHTi(βi)) 6 a1(T 2

i ).
A symmetric commutative diagram implies

rk(ϕTi/C(B)(βi)) 6 rk(ϕTi(β′))
Propositions 8.2 and 8.3 prove that ϕTi/C(B) is injective on the class of simply-covered
periodic orbits of the second type (as defined in Proposition 8.2). Therefore, we have
rk(ϕTi/C(B)(βi)) > a0T

2
i and the growth rate of contact homology is quadratic. �

BIBLIOGRAPHY

[1] Marcelo Ribeiro de Resende Alves: Cylindrical contact homology and topological entropy. Ge-
ometry & Topology 20 (2016), no. 6, 3519–3569. ↑4, 14, 17, 29

[2] Marcelo Ribeiro de Resende Alves: Legendrian contact homology and topological entropy.
arXiv:1410.3381 ↑4, 17

[3] Marcelo Ribeiro de Resende Alves: Positive topological entropy for Reeb flows on 3-dimensional
Anosov contact manifolds. Journal of Modern Dynamics 10 (2016), 497–509. ↑4, 13, 17, 27, 28

[4] Marcelo Ribeiro de Resende Alves, Vincent Colin, and Ko Honda: Topological entropy for Reeb
vector fields in dimension three via open book decompositions. Journal de l’École polytechnique
— Mathématiques 6 (2019), 119–148. ↑17

[5] Thierry Barbot: Caractérisation des flots d’Anosov en dimension 3 par leurs feuilletages faibles.
Ergodic Theory Dynam. Systems 15 (1995), no. 2, 247–270. ↑7

[6] Thierry Barbot: De l’hyperbolique au globalement hyperbolique, Habilitation à diriger des
recherches, Université Claude Bernard de Lyon.
http://www.univ-avignon.fr/fileadmin/documents/Users/Fiches_X_P/memoireCRY.pdf ↑9

[7] Luis Barreira, Yakov Pesin: Nonuniform hyperbolicity. Dynamics of systems with nonzero
Lyapunov exponents. Encyclopedia of Mathematics and its Applications, 115. Cambridge
University Press, Cambridge, 2007. ↑11

[8] Thomas Barthelmé: A new Laplace operator in Finsler geometry and periodic orbits of Anosov
flows. Doctoral thesis, Université de Strasbourg, 2012, arXiv:1204.0879 ↑9

[9] Thomas Barthelmé, Sérgio Fenley: Knot theory of R-covered Anosov flows: homotopy versus
isotopy of closed orbits, Journal of Topology, 7 (2014), no. 3, 677–696. ↑9

[10] Thomas Barthelmé, Sérgio Fenley: Counting periodic orbits of Anosov flows in free homotopy
classes, Commentarii Mathematici Helvetici (2017). ↑9, 10, 13, 27, 28

[11] Daniel Bennequin, Entrelacement et équations de Pfaff, from: “IIIe Rencontre de Géométrie
du Schnepfenried”, Astérisque 1 (1983) 87–161 ↑5

[12] Frédéric Bourgeois: A Morse–Bott approach to Contact Homology, PhD Thesis, Stanford
University, 2002. ↑34, 35

[13] Frédéric Bourgeois, Vincent Colin: Homologie de contact des variétés toroïdales. Geometry
and Topology, 9, (2005), 299–313. ↑26

[14] Frédéric Bourgeois, Tobias Ekholm, Yakov Eliashberg: Effect of Legendrian Surgery. Geometry
and Topology, 16, (2012), 301–389. ↑16

ANNALES HENRI LEBESGUE

https://arxiv.org/abs/1410.3381
http://www.univ-avignon.fr/fileadmin/documents/Users/Fiches_X_P/memoireCRY.pdf
https://arxiv.org/abs/1204.0879


Orbit growth from contact surgery 37

[15] Frédéric Bourgeois, Alexandru Oancea: Symplectic Homology, autonomous Hamiltonians, and
Morse–Bott moduli spaces. Duke Mathematical Journal 146, (2009) no. 1, 71–174. ↑35

[16] Jonathan Bowden, Kathryn Mann: C0 stability of boundary actions and inequivalent Anosov
flows arXiv:1909.02324v1 ↑8, 9

[17] Nikolai Chernov and Cymra Haskell: Nonuniformly hyperbolic K-systems are Bernoulli. Ergodic
Theory Dynam. Systems 16, (1996), no. 1, 19–44. ↑10

[18] Adam Clay and Tali Pinsky: Three manifolds that admit infinitely many Anosov flows.
arXiv:2006.09101v1 ↑8

[19] Vincent Colin, Pierre Dehornoy, Ana Rechtman On the existence of supporting broken book
decompositions for contact forms in dimension 3. arXiv:2001.01448 ↑4

[20] Vincent Colin, Emmanuel Giroux, Ko Honda: Finitude homotopique et isotopique des structures
de contact tendues, Publ. Math. Inst. Hautes Études Sci., 109 (2009), 245–293. ↑9

[21] Vincent Colin, Ko Honda: Reeb vector fields and open book decompositions. J. Eur. Math. Soc.
(JEMS) 15 (2013), no. 2, 443–507. ↑3, 5, 25, 26

[22] Fan Ding, Hansjörg Geiges: Fillability of tight contact structures Algebr. Geom. Topol. 1
(2001), 153–172. ↑10

[23] Dragomir Dragnev, Fredholm theory and transversality for noncompact pseudoholomorphic
curves in symplectisations. Comm. Pure Appl. Math. 57 (2004) 726–763. ↑25, 35

[24] Yakov Eliashberg, Classification of overtwisted contact structures on 3-manifolds, Inventiones
Mathematicae 98 (1989) 623–637. ↑5

[25] Yakov Eliashberg, Topological characterization of Stein manifolds of dimension > 2, Internat.
J. Math. 1 (1990) 29–46. ↑10

[26] Yakov Eliashberg, Alexander Givental, and Helmut Hofer: Introduction to symplectic field
theory. Geometric and Functional Analysis (GAFA), Special volume, Part II, (2000), 560–673.
↑23, 25

[27] John Etnyre, and Robert Ghrist: Tight contact structures via dynamics. Proceedings of the
American Mathematical Society 127 (1999) no. 12 3697–3706. ↑16

[28] John Etnyre, and Robert Ghrist: Tight contact structures and Anosov flows. Proceedings of
the 1999 Georgia Topology Conference (Athens, GA), Topology and its Applications 124,
(2002) no. 2 211–219 ↑5, 9

[29] Yong Fang: Thermodynamic invariants of Anosov flows and rigidity. Discrete Contin. Dyn.
Syst. 24 (2009), no. 4, 1185–1204. ↑12

[30] Sérgio Fenley: Anosov flows in 3-manifolds. Ann. of Math. (2) 139 (1994), no. 1, 79–115. ↑9
[31] Todd Fisher and Boris Hasselblatt: Hyperbolic flows, Zürich Lectures in Advanced Mathematics,

European Mathematical Society (EMS), Zürich, 2020. ↑6, 7, 8, 14
[32] Patrick Foulon: Entropy rigidity of Anosov flows in dimension three. Ergodic Theory Dynam.

Systems 21 (2001), no. 4, 1101–1112. ↑9, 11
[33] Patrick Foulon and Boris Hasselblatt: Zygmund Strong Foliations. Israel Journal of Mathemat-

ics 138 (2003), 157–188 ↑7
[34] Patrick Foulon and Boris Hasselblatt: Contact Anosov Flows on Hyperbolic 3–Manifolds. Ge-

ometry and Topology 17, no. 2 (2013), 1225–1252. ↑2, 3, 4, 5, 8, 9, 10, 17, 18, 19
[35] Hansjörg Geiges: An Introduction to Contact Topology. Vol. 109. Cambridge Studies in Ad-

vanced Mathematics. Cambridge: Cambridge University Press, 2008. ↑5, 6, 7, 10
[36] Emmanuel Giroux: Convexité en topologie de contact. Commentarii mathematici Helvetici 66

(1991), 637–677. ↑6, 8
[37] Michael Handel, William P. Thurston: Anosov flows on new three manifolds. Invent. Math. 59

(1980), no. 2, 95–103. ↑8, 9

TOME 1 (-1)

https://arxiv.org/abs/1909.02324v1
https://arxiv.org/abs/2006.09101v1
https://arxiv.org/abs/2001.01448


38 P. FOULON, B. HASSELBLATT & A. VAUGON

[38] Helmut Hofer: Pseudoholomorphic curves in symplectizations with applications to the Weinstein
conjecture in dimension three. Invent. Math. 114 (1993), no. 3, 515–563. ↑5

[39] Surena Hozoori: Symplectic Geometry of Anosov Flows in Dimension 3 and Bi-Contact Topol-
ogy. arXiv:2009.02768 ↑7

[40] Anatole Katok: Entropy and closed geodesics. Ergodic Theory and Dynamical Systems, 2(3–
4):339–365 (1983), 1982. ↑11

[41] Anatole Katok: Four applications of conformal equivalence to geometry and dynamics. Ergodic
Theory and Dynamical Systems, 8∗(Charles Conley Memorial Issue):139–152, 1988. ↑11

[42] Anatole Katok and Keith Burns: Infinitesimal Lyapunov functions, invariant cone families and
stochastic properties of smooth dynamical systems. Ergodic Theory and Dynamical Systems
14, no. 4, (2008), 757–785. ↑10

[43] Anatole Katok, Boris Hasselblatt: Introduction to the modern theory of dynamical systems,
Encyclopedia of Mathematics and its Applications 54, Cambridge University Press, 1995. ↑5,
8, 11, 21

[44] Paulette Libermann: Sur les automorphismes infinitésimaux des structures symplectiques et
des structures de contact, Colloque Géométrie Différentielle Globale (Bruxelles, 1958), Centre
Belge Rech. Math., Louvain, (1959) 37—59. ↑7

[45] Carlangelo Liverani: On contact Anosov flows. Ann. of Math. (2) 159 (2004), no. 3, 1275–1312.
↑10

[46] Leonardo Macarini and Gabriel P. Paternain: Equivariant symplectic homology of Anosov
contact structures, Bulletin of the Brazilian Mathematical Society 43, no. 4 (2012), 513–527.
↑13, 17

[47] Leonardo Macarini and Felix Schlenk: Positive topological entropy of Reeb flows on spheriza-
tions Mathematical Proceedings of the Cambridge Philosophical Society, 151 (2011), 103–128.
↑17

[48] Sergei Makar-Limanov: Tight contact structures on solid tori. Transactions of the American
Mathematical Society 350, no. 4 (1998), 1013–1044. ↑32

[49] Shigenori Matsumoto: The space of (contact) Anosov flows on 3-manifolds. J. Math. Sci. Univ.
Tokyo 20 (2013), no. 3, 445–460 ↑18

[50] Mark McLean:The growth rate of symplectic homology and affine varieties. Geometric and
Functional Analysis (GAFA) 22 (2012), no. 2, 369–442. ↑25

[51] Yoshihiko Mitsumatsu: Anosov flows and non-Stein symplectic manifolds. Annales de l’Institut
Fourier 45 (1995), no. 5, 1407–1421. ↑7

[52] Donald S. Ornstein: Ergodic theory, randomness and dynamical systems. Yale University Press,
New Haven, 1974. ↑10

[53] Donald Ornstein and Benjamin Weiss: On the Bernoulli nature of systems with some hyperbolic
structure. Ergodic Theory and Dynamical Systems 18, no. 2, (1998), 441–456. ↑10

[54] John Pardon: Contact homology and virtual fundamental cycles. Journal of the American
Mathematical Society 32 (2019), 825–919. ↑25

[55] Carlo Petronio, Joan Porti: Negatively oriented ideal triangulations and a proof of Thurston’s
hyperbolic Dehn filling theorem. Expo. Math. 18 (2000), no. 1, 1–35. ↑9

[56] Joseph Plante, William P. Thurston: Anosov flows and the fundamental group. Topology 11
(1972), 147–150. ↑9

[57] Rachel Roberts, John Shareshian, and Melanie Stein: Infinitely many hyperbolic 3-manifolds
which contain no Reebless foliation. Journal of the American Mathematical Society 16 no. 3,
(2003), 639–679. ↑9

[58] Richard Sharp: Closed orbits in homology classes for Anosov flows, Ergodic Theory and
Dynamical Systems 13 (1993), 387–408. ↑12

ANNALES HENRI LEBESGUE

https://arxiv.org/abs/2009.02768


Orbit growth from contact surgery 39

[59] William P. Thurston: The geometry and topology of 3-manifolds.
http://www.msri.org/publications/books/gt3m ↑9

[60] William P. Thurston: Three-dimensional manifolds, Kleinian groups and hyperbolic geometry.
Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 357–381. ↑9

[61] Anne Vaugon: On growth rate and contact homology. Algebr. Geom. Topol. 15 (2015), no. 2,
623–666. ↑25, 26, 35

[62] Alan Weinstein: Contact surgeries and symplectic handlebodies. Hokkaido Math. J. 20 (1991),
241–251. ↑10

Manuscript received on 27th June 2019,
revised on 20th October 2020,
accepted on 4th November 2020.

Recommended by Editor S. Gouëzel.
Published under license CC BY 4.0.

This journal is a member of Centre Mersenne.

Patrick FOULON
Aix-Marseille Université, CNRS, Centrale Marseille,
I2M, UMR 7373, 13453 Marseille, France
foulon@cirm-math.fr
Boris HASSELBLATT
Department of Mathematics, Tufts University, Medford,
MA 02155, USA
Boris.Hasselblatt@tufts.edu
Anne VAUGON
Université Paris-Saclay, CNRS, Laboratoire de
mathématiques d’Orsay, 91405, Orsay, France
anne.vaugon@universite-paris-saclay.fr

TOME 1 (-1)

http://www.msri.org/publications/books/gt3m
https://creativecommons.org/licenses/by/4.0/
http://www.centre-mersenne.org/
http://ahl.centre-mersenne.org/item/AHL_-1__1_0_0_0
mailto:foulon@cirm-math.fr
mailto:Boris.Hasselblatt@tufts.edu
mailto:anne.vaugon@universite-paris-saclay.fr

	1. Introduction
	Structure of the paper
	Acknowledgements

	2. Background
	2.1. Definitions and notations
	2.2. Contact flows versus Reeb flows
	2.3. New Reeb flows

	3. Main results
	3.1. Production of closed orbits for contact Anosov flows
	3.2. Production of closed orbits for any Reeb flow
	3.3. Coexistence of diverse Reeb flows
	3.4. Relation to other works on contact surgery and Reeb dynamics

	4. Surgery and production of closed orbits
	4.1. The surgery from the contact viewpoint
	4.2. Surgery on the unit tangent bundle and Anosov flows
	4.3. Impact on entropy

	5. Cylindrical contact homology and its growth rate
	6. =0pt plus4em ==0pt =.3333em =.5em =9999 =9999 =0pt =9999 =9999 Orbit growth in a free homotopy class for degenerate contact forms
	7. =0pt plus4em ==0pt =.3333em =.5em =9999 =9999 =0pt =9999 =9999 Exponential orbit growth after surgery on a simple closed geodesic
	8. Surgery on a periodic Reeb flow
	8.1. Dynamical properties of the periodic Reeb flow after surgery
	8.2. Proof of thcourbesimplepolynom

	Bibliography

