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Abstract: The electro-reduction of nitrate ions in artificial sea water was investigated at a gold
substrate (EAu) functionalized by silver nanoparticles (AgNPs). These AgNPs were generated in situ
on the gold substrate by the direct decomposition of the metalorganic N,N′-diisopropylacetamidinate
silver precursor [Ag(Amd)] in the liquid phase. Very small and well dispersed AgNPs were deposited
on the gold electrode and then used as working electrode (EAu/AgNPs). Square wave voltammetry
(SWV) was successfully employed to detect nitrate ions (NO3

−) with a detection limit (LOD) of
0.9 nmol·L−1 in artificial sea water (pH = 6.0) without pre-concentration or pH adjustment.

Keywords: silver metalorganic precursor; silver nanoparticles; nitrate detection; square wave
voltammetry; sea water

1. Introduction

Nitrate (NO3
−) and nitrite (NO2

−) ions are naturally present in soil, water, and food. They are
important environmental and human health analytes [1,2] and their detection and measurement
are essential.

In the oceanic environment, phytoplankton photosynthesis is in part controlled by major
macronutrient elements such as nitrogen, phosphorous, and silicon. Nitrate is moreover of particular
interest because it acts as a marker for water quality and represents the main source of nitrogen in
marine ecosystems. High resolution measurements of nitrate are essential for the understanding of
biogeochemical cycles in aquatic systems. Nitrate concentrations in natural waters range from the
subnanomolar level in the oligotrophic open ocean because of the biological uptake, to the hundred
micromolar level in rivers nearby to intensive agricultural activity. There are several procedures and
many techniques reported in the literature for nitrate determination in continental [1] or sea water [3].
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Among the analytical methods to measure the concentration of nitrates are capillary
electrophoresis, chromatography, UV absorption, and so on [4]. Some of them require chemical
reagents and/or necessitate complex and costly equipment [5]. In addition, most of them also require
pre-treatment steps which are not compatible with a direct and in situ measurement of nitrates.

Comparatively, electrochemical sensing devices represent an interesting alternative to nitrate
determination. The advantages of the electroanalytical techniques over other detection methods are
many: low cost, ease of use, low energy requirements and simple procedures, and the possibility
to build portable and miniaturized systems that are suitable either for laboratory assessments or
on-site measurements.

The electrochemical reduction of NO3
− has been performed for decades on several electrodes

(Pt, Pd, Ni, Ru, Ag, Au, etc.) and is well known to be a very complex process [6]. These results were
mainly focused to achieve high performances with high concentrations of nitrate ions in acidic or
basic aqueous media which are not suitable for real measurements in sea water conditions, that is,
subnanomolar levels and a pH range of 5.0–7.0 [5]. Moreover, the choice of the electrode is crucial
and will have a large influence on the detection of nitrates. The development of nanoscale materials
in recent years has been extensive, particularly with respect to metallic nanoparticles. Interests have
focused on their use in analytical chemistry because of their specific physicochemical properties [7,8].
These include enhanced diffusion of electroactive species based on the high effective surface area of
metallic nanoparticles improved selectivity, catalytic activity, higher signal-to-noise ratio and unique
optical properties [9].These attractive properties favor the appearance of a new kind of electrode
modification involving metallic nanoparticles [10].

Therefore, silver nanoparticles AgNPs have been used for electroanalysis applications [11,12].
They have been immobilized on electrode surfaces either through the use of previously prepared
Ag colloidal solutions obtained by chemical reduction of silver salts mainly [13,14] or by direct
electrochemical deposition on the electrodes, and so on. Several recent works have been published
on the synthesis of AgNPs for the electrode modification to detect NO3

− ions in water at neutral
pH [5,15–19]. However, very few of them are based on the in situ generation of AgNPs directly
functionalized on the electrode surfaces [19,20].

The organometallic route is a useful method employed in our team to obtain small size and
narrow dispersion nanoparticles (NPs) stabilized by ligands in organic solution [21–24]. Inspired by
the NPs synthesis technique, this work presents an innovative way for the in situ functionalization
of a gold substrate (EAu) by AgNPs using the hydrogenolysis of a silver metalorganic precursor
in liquid phase and mild conditions. We report here for the first time, the direct decomposition
of N,N’-diisopropylacetamidinate silver precursor ([Ag(Amd)]) in solution without any additional
stabilizing ligands for the functionalization of gold substrate by AgNPs (EAu/AgNPs).

In our previous work, the electroactvity of the AgNPs electrodeposited on a gold bare disk
electrode in sea water seemed even more pronounced in the presence of dissolved oxygen (O2). As a
consequence, the electroactivity of this functionalized gold substrate (EAu/AgNPs) has been studied for
oxygen reduction reaction (ORR) and the reduction of NO3

− in aerated sea water. This new electrode
has been successfully used for the nanomolar electroanalytical detection of NO3

− water by square
wave voltammetry (SWV) at pH = 6.0.

2. Materials and Methods

2.1. Chemicals

The silver nanoparticles (AgNPs) deposited on gold substrates (electrode surfaces) were obtained
by the in situ decomposition of N,N′-diisopropylacetamidinate silver precursor ([Ag(Amd)]) in toluene.
The synthesis of this silver precursor is described in Section 2.2.

Toluene and Et2O were obtained from a solvent purification system (Braun) and were further
degassed by freeze/pump cycles in a Schlenk vessel. Methyllithium, 1,3-diisopropylcarbodiimide,
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and silver chloride were supplied by Sigma Aldrich. All precursors were stored in a glove-box in order
to avoid any traces of moisture or air contamination of the chemicals. All experiments were carried out
in an argon atmosphere with the exclusion of light, using either glove-box or standard Fischer-Porter
techniques. Glassware was oven-dried at 383 K prior to use.

For electrochemical measurements, all the solutions were prepared in Milli-Q water (Millipore
Milli-Q water system, 18.2 MΩcm). Standard artificial sea water was prepared from sodium
chloride solution (NaCl, EMSURE, supplied by Merck) at 34.5 g·L−1 (0.6 mol·L−1). This sodium
chloride solution was used as a supporting electrolyte. Sulphuric acid solution at 0.5 mol·L−1 was
used to clean the surfaces of the gold substrates (“bare” gold electrode) and was prepared from
H2SO4 95% (normapur grade) supplied by VWR Prolabo. A standard nitrate stock solution of
(1.01 ± 0.01) × 10−6 mol·L−1 was prepared by dilution of (1.02 ± 0.01) × 10−3 mol·L−1 in artificial
sea water solution and then used as it for further dilution. The (1.02 ± 0.01) × 10−3 mol·L−1 nitrate
solution was prepared from a suprapure sodium nitrate Na(NO3).

2.2. Synthesis of N,N′-Diisopropylacetamidinate Silver Precursor ([Ag(Amd)])

The silver amidinate precursor was prepared according to the method described by R. Gordon [25].
A solution of methyllithium (1.6 M in Et2O, 41 mL, 0.065 mol, 1.2 eq.) in Et2O was added dropwise to a
solution of 1,3-diisopropylcarbodiimide (6.9 g, 0.055 mol) in 100 mL of Et2O at 243 K. The mixture was
warmed to room temperature and stirred for 4 h. This colorless solution was then added to a solution
of silver chloride (7.74 g, 0.054 mol) in 50 mL of Et2O. The reaction mixture stirred during 12 h with
the exclusion of light resulted in a black solution. Volatiles solvents were then removed in a vacuum,
and the resulting solid is extracted with pentane (100 mL). The pentane extract was filtered through a
glass frit (porosity n◦3) to result in a pale yellow solution. A concentration of the filtrate followed by
cooling to 243 K afforded colorless crystals (75%).

2.3. Gold Substrates (EAu): Gold Electrodes Fabrication

Gold based working electrodes (WE) were fabricated on silicon substrate using metal deposition
layers by PVD (Physical Vapour Deposition) at the Laboratoire d’Analyse et d’Architecture des
Systèmes (LAAS) facilities. Starting from a conductive boron doped silicon wafer Si (P++),
three different metal layers were deposited in a row under secondary vacuum conditions. First,
a 20 nm thick titanium underlayer was deposited to ensure the adhesion of the next layer on the
substrate. Then, an intermediate 200 nm thick platinum layer was used as a barrier layer for titanium
atoms. Finally, a 400 nm thick gold layer or silver layer was deposited to achieve the WE layer.
The wafers were finally diced in 8 mm × 8 mm squares that are directly introduced in a specific
electrode holder with an electrical connection on the back-side of the Si (P++) silicon substrate.

2.4. In Situ Functionalization of Gold Substrate by AgNPs (EAu/AgNPs) and Characterization of EAu/AgNPs

The deposition of AgNPs on gold substrate (EAu) was prepared by an adaptation of an original
method recently developed in our group [25]. In this pioneering work, a copper amidinate precursor
solution was decomposed in H2 to yield metastable colloidal Cu NPs that undergo a condensation
mechanism and eventually form a continuous metallic film on every immersed surface (reactor walls,
substrate) [26]. For the Ag NPs deposition process developed in this work, we took advantage of
the formation step of colloidal NPs and we use two major parameters to control the condensation of
Ag NPs: (1) a low concentration of silver precursor [Ag(Amd)] and (2) a short reaction time to avoid
the aggregation of silver on the substrate. No additional stabilizing agent was employed and the silver
precursor is directly decomposed in the presence of the working electrode (EAu) placed inside the glass
reactor. The key parameter of this process was the contact duration of the substrate with the precursor
solution during the hydrogenolysis reaction. The optimized functionalization conditions correspond
to a silver precursor concentration of 0.04 mol·L−1, and a hydrogenolysis duration of 1 min (Figure 1).
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The AgNPs surface density on gold electrode was directly controlled by the hydrogenolysis time on
the substrate.
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Figure 1. Scheme of the in situ deposition of AgNPs by the direct decomposition of [Ag(Amd)] in
solution in the presence of the Si(Ti/Pt)Au substrate.

The EAu/AgNPs electrodes were then carefully rinsed using milliQ water before electrochemical
reduction of NO3

− ions and their activation in an artificial sea water (NaCl, pH = 6.0) by running
ca. 20 scans between 0.00 V and −1.40 V.

The EAu and EAu/AgNPs electrodes were characterized by field emission gun scanning electron
microscopy (FEG-SEM).

2.5. Characterization of Gold Electrode Modified by Silver Nanoparticles (EAu/AgNPs)

The FEG-SEM analysis was performed using JEOL JSM-7800F prime equipment with an
accelerating voltage of 5 kV and a working distance between 3 and 8 mm depending on the sample.
Image analysis was carried out using Image Tool software for the estimation of the average diameter
of the silver nanoparticles counting at least a minimum of 100 nanoparticles per image.

2.6. Electrochemical Measurements

All the electrochemical measurements were carried out using a Metrohm potentiostat
(PGSTAT 128 N) (Metrohm, Villebon-sur-Yvette, France) interfaced to a laptop computer and
controlled with General Purpose Electrochemical System (GPES 4.9) software package (Metrohm).
The experiments were carried out at room temperature in a conventional three-electrode cell (Metrohm),
with a radiometer saturated calomel reference electrode (SCE) attached to a Luggin capillary and a
carbon electrode as counter electrode. Sodium chloride solution at 34.5 g·L−1 (0.6 mol·L−1) was used
as artificial sea water and then as supporting electrolyte. The working electrode EAu or EAu/AgNPs
(8 mm × 8 mm) was placed into a radiometer Teflon holder with an effective diameter of 5 mm (area
A = 19.6 × 10−2 cm2). The electrochemical cell was maintained in a Faraday cage in order to minimize
the electrical interferences.

The oxygen reduction reaction (ORR) was performed by cyclic voltmmetry (CV) in the potential
range −1.3 ≤ E (V) ≤ −0.10. In order to test and optimize the response of EAu/AgNPs electrodes
towards low nitrate ions detection, a series of experiments was performed by CV with different AgNPs
deposits (not shown). The optimized functionalization conditions correspond to a silver precursor
concentration of 0.04 mol·L−1 and a hydrogenolysis duration of 1 min. Further experiments of the
electro reduction of nitrate ions was investigated either by square wave voltammetry (SWV) in the
potential range −1.3 ≤ E (V) ≤ −0.10. This electrochemical method is more sensitive than cyclic
voltammetry thanks to short-term square shape potential pulses combined with staircase potential
ramp and current sampling allowing a decrease in the contribution of capacitive current. This pulse
technique is attractive for quantitative analysis since it leads to better resolved peaks (Gaussian
shape) and less distorted by the capacitive current. Indeed, in order to obtain the highest sensitivity
(corresponding to the electron (s) transfer), it is important to reduce the effect of the capacitive current



Chemosensors 2018, 6, 50 5 of 12

and only measure the contribution of the faradic current. The current (i) is therefore sampled at the
end of each potential pulse (forward pulse and backward pulse) as the faradic current decreases slower
than the capacitive current with time ∆i = ipulse forward − ipulse backward [27,28].

The SWV parameters have been chosen in order to obtain the least noisy signal possible using the
classical frequency of f = 100 Hz, an amplitude of ESW = 50 mV and a staircase potential Estep = 5 mV.
All potentials were reported with respect to the reference electrode (SCE).

3. Results and Discussion

3.1. Characterization of the Gold Electrode Functionalized by Silver Nanoparticles (EAu/AgNPs)

Figure 2 shows a typical FEG-SEM image of the deposit of AgNPs obtained by the direct
hydrogenolysis of the [Ag(Amd)] organometallic precursor on the gold electrode in liquid phase.
The deposit of AgNPs is homogeneous with very well dispersed AgNPs on the gold grains of the
electrode which is not totally covered by AgNPs. The AgNPs are very small with an average size of
4 nm. Figure S1 shows a typical FEG-SEM image of a pure gold substrate without AgNPs.
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Figure 2. Field emission gun scanning electron microscopy (FEG-SEM) image of the gold electrode
functionalized by silver nanoparticles (EAu/AgNPs). The functionalization conditions correspond to a
silver precursor concentration of 0.04 mol·L−1, and a hydrogenolysis duration of 1 min. The image
shows small white dots which represent the very small AgNPs and the Au grains (average size ca.
150 nm) of the gold electrode (EAu).

3.2. Cyclic Voltammetry for the Oxygen Reduction Reaction ORR and the Electroreduction of NO3
− Ions

The importance of H2O2 species in the catalytic process of the NO3
− electro reduction at a bare

gold electrode modified by electrodeposited AgNPs has been shown in a previous work [19]. So,
it has been important to observe first the behavior of the modified gold electrode by AgNPs obtained
by the hydrogenolysis of [Ag(Amd)] precursor decomposition on ORR without any nitrate ions
in the solution (Figure 3A). The ORR on EAu/AgNPs occurs in two steps at −0.4 V (first step) and
−0.6 V (second step). However, even if the ORR occurs in two steps at −0.4 V (first step) and −0.6 V
(second step), the number of electrons involved in the first step in unusual as it is near three. Indeed,
it is well admitted that ORR follows two consecutive reactions through two-electron processes on
EAu according to reactions (1) and (2) [29,30], whereas it is consistent with a four-electron transfer on
AgNPs according to reaction (3) [13,31]:

O2 + 2H+ + 2e− → H2O2 (1)
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H2O2 + 2H+ + 2e− → 2H2O (2)

O2 + 4H+ + 4e− → 2H2O (3)

In consequence, the shape of the CVs obtained on EAu/AgNPs (Figure 3A) results probably from
the combination of the two mechanisms. Prior studies have shown that Ag surfaces display a better
catalytic activity for ORR than a gold one because of its stronger oxygen binding energy. The ORR
activity was further enhanced when both Ag and Au surfaces were exposed and accessible due to
synergetic interactions between the two metals, certainly by a charge transfer from Au to Ag that
inhibits the formation of silver oxide inactive for ORR in the pH conditions [32–34].

In this study, the peak at −0.6 V (ipc) observed during the forward scan on EAu/AgNPs and the
absence of peak during the backward scan reveal the irreversibility of the ORR system. These results
are predicted by Equation (4) [28]:

ipc = 2.99 × 105α1/2AD1/2υ1/2C* (4)

where α cathodic transfer coefficient, A: electrode area (cm2), D: diffusion coefficient (cm2·s−1),
C*: concentration of oxygen in the solution (mol·cm−3). D was already estimated to be
9.0 × 10−6 cm2·s−1 [18], the oxygen solubility (SO2 = 2.06 × 10−4 mol·L−1) in sea water (Patm.) [30].

The comparison of the results obtained with electrodeposited AgNPs [19] and the present work
indicates that there is a change in the ORR mechanism. Moreover, the current densities calculated
for the same experimental conditions (oxygen concentration, sweep rate) is 75 times higher with
AgNPs obtained by the metalorganic deposition. This electrocatalytic effect is mainly due to the
increase of the surface resulting from small and well dispersed AgNPs on the gold substrate (EAu).
The nanostructuration of gold substrate with AgNPs strongly influences the electrode surface and then
the electroactivity of nitrate ions.
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Figure 3. Cyclic voltammograms of aerated artificial sea water on functionalized gold electrode by
AgNPs obtained by metalorganic deposition (EAu/AgNPs) without nitrate (A) and with nitrate [NO3

−]
= 10−4 mol·L−1 (B). Start potential −0.10 V and end potential −1.3 V. Artificial sea water, [NaCl] ~0.6
mol·L−1; pH = 6.0, scan rate: 0.100 V·s−1. Vsolution = 10 mL.

The Figure 3B represents the CV on EAu/AgNPs after the addition of 10 −4 mol·L−1 of NO3
−

ions into the sea water electrolyte. The presence of NO3
− hinders the ORR in the potential range

−0.6 < E (V) < −0.3 V and leads to a reduction peak of NO3
− at −0.85 V (Figure 3B). This potential

is about 250 mV higher than in the case of electrodeposited Ag, i.e., −1.1 V. This indicates the
remarkable electro catalytic properties of the metalorganic-based AgNPs deposited on the gold
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electrode (EAu/AgNPs). Adsorption times for NO3
− depends of the size of the nanoparticles, of the

diffusion coefficient and of the concentration. The analytical model developed by Compton indicates
that for small NPs (<10 nm) a surface coverage with NO3

− higher than 30% may be reached in less
than a second for very low concentrations (<50 nM) [35]. Consequently, when the CV experiment
begins it is assumed that NO3

− species are already adsorbed on the electrode surface. DFT calculations
of the absorption energy of NO3

− on various surfaces allowing on foresee the surface presenting the
highest electro catalytic activity for their reduction. These theoretical calculations were experimentally
verified by sub-monolayers amounts of Ag deposited on polycrystalline gold electrode [36].

The following detection mechanism based on a mono electronic reduction of NO3
− followed by a

disproportionation on Ag clusters according to the reaction (5) was proposed [19]:

H2O + 2NO2 → NO3
− + NO2

− + 2H+ (5)

This electro catalytic reaction occurs simultaneously with the oxidation of NO2
− and H2O2

resulting of the bi electronic transfer for ORR on EAu (see reactions (1) and (2), respectively):

H2O2 + NO2
− → NO3

− + H2O (6)

The ratio of the density currents peaks for the NO3
− reduction by CVs is about 750 times higher

when metalorganic-based AgNPs are used instead of electrodeposited AgNPs (not shown). This result
confirms the efficiency of the organometallic approach for the grafting of small (<10 nm) and high
surface/volume ratio AgNPs on gold surface. The high ratio of the peak currents suggests that the
surface of AgNPs is very favorable to the electro reduction of NO3

− by cyclic voltammetry (Figure 3B
and Figure S2). This is due to the catalytic activity of the electrode both for ORR and nitrate reduction.
As a matter of fact, the rate of the reaction (6) is increased because of the good performance of the
electrode for the ORR reaction and a higher H2O2 concentration. However, it has not been possible
to achieve the detection of NO3

− at a level lower than 10−6 mol·L−1 (Figure S2) by CV in these
conditions [37]. In order to improve the limit of detection (LOD) of the device, we have set up the
square wave voltammetry (SWV) to the following experiments.

3.3. Analytical Performances towards Nitrate Ions NO3
− Concentration by Square Wave Voltammetry (SWV)

SWV is an electrochemical method with a short time response, high sensitivity, and high
selectivity [27,28]. The better sensitivity results from the minimization of the capacitive current
compared with the faradaic current; such a rejection of the background current enables the method
to be competitive with other pulse voltammetries. Figure 4 shows the voltammograms obtained
with EAu/AgNPs electrode. Successive amounts of NO3

− ions (1.0 × 10−9 mol·L−1) were added to
the sea water solution (34.5 g·L−1 NaCl) for NO3

− ions concentrations and the corresponding SWV
were recorded. A first peak at −0.5 V is observed. When a very low nitrate concentration is added
this peak current slightly decreases and a second one, centered at −0.8 V, appears. The first peak at
−0.5 V is correlated to the ORR and the second one to the NO3

− reduction in good agreement with
the previously suggested mechanism [19]. Importantly, the peak at −0.8 V increases with the nitrate
concentration key point for the analytic application. This confirms the remarkable electro catalytic
properties of the metalorganic-based AgNPs deposited on the gold electrode (EAu/AgNPs). Moreover,
the square wave voltammograms on EAu electrode in aerated artificial seawater with and without
nitrate ions are reported on Figure S3. It clearly shows that the “bare” Au electrode (EAu) is not
responsible of the electroreduction of NO3 ions as there is no peak in the range −0.60–1.20 V. However,
there is an electrochemical response corresponding to the oxygen reduction which occurs in two steps
at −0.4 V (first step) and −0.6 V (second) as it has been already observed previously [19].

Under the optimized experimental conditions (see SWSV parameters as described in Section 2.6),
the calibration curve obtained on the EAu/AgNPs electrode exhibits a good linearity in the range
10.0–1.0 nM (10 standard concentrations) with a correlation coefficient R2 of 0.9931. From the slope of
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the calibration plot, the sensitivity of the EAu/AgNPs electrode was found to be 12 µA(mmol·L−1)−1

(Figure 4, inset). The resulting limit of detection (LOD) is of 0.9 nmol·L−1. To the best of our knowledge,
such a performance is the best obtained for electrochemical NO3

− ions determination in “sea water”.
The performance using different Ag based electrochemical NO3

− sensors reported in the literature is
compared to our results is shown in Table 1.

Start potential −0.10 V and end potential −1.3 V with a scan frequency of 100 Hz, an amplitude of
ESW = 50 mV and a staircase potential Estep = 5 mV, [NaCl] ~0.6 mol·L−1; pH = 6.0. Vsolution = 10 mL.
From top to bottom: 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 and 10.0 nmol·L−1 NO3

−, respectively.
This bibliographic survey highlights that these results are mainly obtained by electrodeposition

of silver salt precursors. In this case, the best limit of quantification (LOQ) which has been obtained is
0.39 µmol·L−1 in a chloride solution in the concentration range (0.39–50 µmol·L−1) with a Au electrode
with an optimal charge for AgNPs electrodeposition [5]. Evident is the remarkable increase of the
analytical performance of several orders of magnitude due to the combination of the gold electrode
modified by AgNPs generated in situ by the direct hydrogenolysis of 0.04 mol·L−1 [Ag(Amd)] with a
duration of 1 min. The combination of EAu and AgNPs is the optimized combination for the electro
reduction of NO3

− ions at very low concentration in artificial sea water. The morphology, size, and
surface repartition of these metalorganic-based AgNPs are key parameters for a very performant
detection of NO3

− at very low concentration. Their dispersion and properties on the gold electrode
are certainly favorable to the adsorption of NO3

− ions close enough to hydrogen peroxide production
to ensure an optimal chemical reaction.Chemosensors 2018, 6, x 8 of 11 
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Table 1. Comparison of electrochemical sensors based on silver nanostructure for nitrate determination.

Nanostructure Preparation Electrolyte pH Method Linear Range (µM) Sensitivity
(µA·mM−1·cm−2) LOD LOQ (µM) References

3D Ag Array Electrodeposition 0.5M NaCl 7.0 SWV 2–1000 28.2 2 [15]
Ag NPs/C Electrodeposition 0.1M Na2SO4 6.5 Amp. 4–1000 Not indicated 3.2 [16]

Ag NPs/Graphite sheets Electrodeposition Phosphate buffer 6.7 Amp. 20–5000 1700 10 [17]
Ag NPs/GC Electrodeposition Phosphate buffer 6.7 Amp. 10–5000 3400 4 [17]
Ag NPs/Au Electrodeposition 0.6M NaCl 6.0 CV 10–1000 3000 10 [19]

Ag NP/polypyrrole/GC Electrodeposition 0.1M KCl 7.0 DPV 1–10000 2500 2 [18]
Ag NPs/Iron oxide Chemical Phosphate buffer 7.0 Amp. 0–1000 660 30 [19]

Ag NPs/Au Electrodeposition 0.6M NaCl 6.0 SWV 0.39–50 Not indicated 0.39 [5]
Ag NPs/Au Metalorganic 0.6M NaCl 6.0 SWV 0.9 × 10−3–1000 5000 0.9 × 10−3 This work

GC: glassy carbon; SWV: square wave voltammetry; Amp.: amperometry; CV: cyclic voltammetry; DPV: differential pulse voltammetry.
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4. Conclusions

In this work we have presented the very first silver nanoparticles based sensor able to detect
NO3

− in artificial sea water, by square wave voltammetry, at a level as low as 0.9 nmol·L−1.
This performance results from two different chemical reactions coupled to the electron transfer during
the electro-reduction of NO3

−. On one hand, we observe the disproportion of nitrogen dioxide radicals
on Ag NPs deposited on a gold electrode. On the other hand, the spontaneous reaction between
hydrogen peroxide produced on a gold surface with nitrite, coming from the reduction of NO3

−

on AgNPs, is responsible for the exaltation of the electro-catalytic current. Besides the analytical
application, such electro-catalytic properties of the presented AgNPs-modified Au electrode, could be
exploited in a future research work both for NO3

− reduction and ORR in neutral media (continental
waters or health applications).

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-9040/6/4/50/s1,
Figure S1: FEG-SEM image of the gold substrate without silver nanoparticles (EAu) and with silver nanparticles
obtained with of [Ag(amd)] = 0.04 mol·L−1, duration of [Ag(amd)] decomposition = 1 min. Figure S2:
Cyclic voltammograms of aerated artificial sea water on functionalized gold electrode by AgNPs obtained
by metalorganic deposition with the optimized conditions, without nitrate ions (A) and with nitrate ions with
successive amounts of 10−1 mol·L−1 in artificial sea water. The concentration range of [NO3

−] is comprised 106 ≤
[NO3

−] ≤ 10−4 mol·L−1 (B). Start potential −0.10 V and end potential −1.3 V. Artificial sea water, [NaCl] ~0.6
mol·L−1; pH = 6.0, scan rate: 0.100 V·s−1. Figure S3: Square wave voltammograms of aerated artificial sea water
on bare gold electrode wihtout nitrate ions (A) and with nitrate ions, [NO3

−] = 10−3 mol·L−1 (B). Start potential
−0.10 V and end potential−1.3 V. Artificial sea water, [NaCl] ~0.6 mol·L−1; pH 6.0, scan rate: 0.100 V·s−1.
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