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The present work deals with the modeling of non-ageing linear viscoelastic composite materials and quasi-
periodic microstructure. The stratified functions and the curvilinear coordinates play an important role in the
design of different geometrical shapes. The main objective focuses on the application of two-scales Asymptotic
Homogenization Method (AHM) to obtain the overall behavior of the viscoelastic composite materials. Although
the whole process is based on the analysis of laminated configurations, a multi-step homogenization scheme to
estimate the effective properties of a structure reinforced with long rectangular fibers and wavy effects is used.
The associated local problems, the homogenized problem and the analytical expressions for the effective coef-
ficients are obtained by using the correspondence principle and the Laplace-Carson transform. Also, the inter-
connection between the effective relaxation modulus and the effective creep compliance is performed. Finally,
the inversion to the original temporal space is calculated. Some comparisons between the proposed approach

and Finite Elements Method (FEM) results are displayed.

1. Introduction

Nowadays, the performance of mechanical properties as weight,
heat resistance, corrosion, among others are optimized thanks to the
use of composite materials. Besides, another advantage is the possibility
of individually controlling each component (or phase) and its corre-
sponding distribution in the microstructure (see Maghous and Creus
2003 [1]).

The modeling of composite materials requires the development of
micromechanics techniques to predict the general (or effective) prop-
erties of the heterogeneous structure from the properties, density,
proportion and arrangement of its constituents. An excellent review on
these methods can be found in Kalamkarov et al. 2009 [2] and Sevos-
tianov and Giraud 2013 [3]. On the other hand, the recent growth of
polymeric matrix composites in the aerospace, aeronautical and auto-
mobile industry, as well as in bioengineering applications, due to their
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high strength-to-weight and moduli-to-weight ratios, is an evidence of
the usefulness of viscoelastic materials in the design of durable and
sustainable structural components. Viscoelastic materials usually es-
tablish both instant (elastic) and time-dependent (viscous) behavior,
stimulating the investigations in composites and the study of creep and
relaxation characteristics.

Some authors have used different schemes to calculate the effective
properties of viscoelastic composite materials, for example, Maxwell’s
homogenization is used in Sevostianov et al. 2015 [4], self-consistent
generalized scheme is applied in Honorio et al. 2017 [5] and Mor-
i-Tanaka homogenization is studied in Schoneich et al. 2017 [6].

The two-scales Asymptotic Homogenization Method (AHM) is pro-
posed in this research. The theoretical aspects and the fact that the
solution of the heterogeneous problems converges weaker to the solu-
tion of the homogeneous problems, when the small parameter which
describes the microstructure tends to zero, are rigorously developed by


https://doi.org/10.1016/j.compstruct.2019.110927

Bensoussan et al. 1978 [7], Sanchez-Palencia 1980 [8], Pobedria 1984
[9], Bakhvalov & Panasenko 1989 [10], Oleinik et al. 1992 [11] and
Cioranescu & Donato 1999 [12]. The AHM is applied to problems with
rapidly oscillating parameters, where the structures are strongly het-
erogeneous. It is a direct method because it allows, through the solution
of the local problems, directly obtain the sought effective properties.
Many papers have exhibited their potentialities for elastic (see Ramirez-
Torres et al. 2018 [13]), thermo-elastic (see Chatzigeorgiou et al. 2012
[14]) and piezoelectric materials (see Rodriguez-Ramos et al. 2014
[15]). Moreover, it gives suitable solution in the case of fibrous vis-
coelastic composites (see Berger et al. 2018 [16] and Li et al. 2019
[17D.

Actually, the investigation of the effective properties of non-ageing
viscoelastic composites are mainly based on the correspondence prin-
ciple and the Laplace transform (see Hashin 1965 [18], 1970a [19],
1970b [20], Mandel 1966 [21], Christensen 1969 [22], Lahellec &
Suquet 2007 [23]). The procedure, see for example Pasa Dutra et al.
2010 [24] and To et al. 2017 [25], consists into the change of the
convolution constitutive law which describes the non-ageing viscoe-
lastic behavior, into a fictitious elastic one in the Laplace domain. Then,
the inversion of Laplace transform is considered to derive the effective
behavior in the time domain.

Many heterogeneous structures are characterized by more general
periodic functions (see Tsalis et al. 2012 [26], Tsalis et al. 2013 [27]).
These functions, called of stratification, describe the microstructure of
the composite material. The concept was introduced by Bensoussan
et al. 1978 [7] and developed by Briane 1993 [28]. These ideas are
related to homogenization problems of shell-type structures of widely
technological interest (nano-hulls, fibre-reinforced polymers (FRP),
civil engineering structures repair, modeling of human heart tissue).

The present work deals with the study of a non-ageing linear vis-
coelastic heterogeneous problem, which involves concepts of general-
ized periodicity and curvilinear coordinates. The proposed solutions are
based on the application of the AHM, where the formulas for the local
problems, the homogenized problem and the effective coefficients are
given analytically. The aforementioned results are obtained in the
Laplace-Carson space and a numerical algorithm is developed for
computing the effective properties of the composites into the original
temporal space. Considering the use of stratified functions, some la-
minated structures are studied and their effective properties are cal-
culated. Also, a two-steps homogenization scheme to predict the ef-
fective properties of a viscoelastic composite material reinforced with
long rectangular fibers and wavy effects is applied. An interconversion
procedure between the effective relaxation modulus and the effective
creep compliance is developed. It allows to obtain information about
both properties using the same model. A numerical algorithm using
FEM is developed and the comparisons are displayed.

2. Viscoelastic problem for curvilinear structures

A linear viscoelastic heterogeneous material which occupies a re-
gion Q in R3? and possesses a quasi-periodic microstructure is con-
sidered. The concept of quasi-periodicity or generalized periodicity has
been used by some authors such as Guinovart-Sanjuan et al. (2016) [29]
and Tsalis et al. (2012) [26]). It is equivalent to affirm that exist a

curvilinear coordinate system x(x;) and a function ¢: R?® — R3 such

that the operator o = # (s; X, @, t), which relates the stress tensor

€
o (oY) and the strain tensor ¢ (g), is regular in x and Y-periodic in y,
where y = @ and Y is the unit cell.
The equilibrium equation under the action of external force field is
written as

dive@, t) +f(x,t)=0, in QXR. (€D)]

The corresponding boundary conditions associated to (1) are

ulx,t)=u’, on X xXR, 2)

o(x,t)n=s5),, on X, XR, 3)

and the initial condition is taken as follows

u(x,t)=0, in Q x {0}, 4)

whereZ, UX, =0 and 2, N %, = @.

Here, the external force field, surface force field, displacement field
and outer unit normal to the boundary 3% of Q are denoted by f (f?),
s (sd), u® (u?) and n (n;), respectively.

Taking into account the summation convention, the equilibrium Eq.
(1) for a curvilinear coordinate system x can be written

alll; e, ) + fi(x, 1) = o (x, 1) + T (x)M (x, £) + T (x)o™ (x, 1)
+f'x 0 =0, )

where {-}||; denotes the covariant derivative, {-}; = %{} represents the
J

derivative in relation to the global curvilinear coordinate x and I}
denotes the Christoffel symbols (see Taber 2004 [30]).

The constitutive law which relates the stress and strain fields (see
Christensen 1982 [31] and Pipkin 1986 [32]) is proposed

o(x, t)= ‘/o-t R(x, @, t— ‘[): de ©

where R (R¥) represents a fourth rank tensor denominated relaxation
modulus. The following relationship is satisfied for small displacements

B e, 1) = (el 6 1)+ e Cx, ). -

The statement of the constitutive law (6) corresponds to the special
form of non-ageing linear viscoelastic materials (see Maghous and
Creus 2003 [1]). The viscoelastic problem can be transformed into an
elastic problem using the Laplace-Carson transform. This is known as
the correspondence principle.

The Laplace-Carson transform is defined by

Lelg, D1 =g p)=p [ ePgx, 0dr,

and the functions with the symbol (») depending on the parameter p
denote the Laplace-Carson space.

Applying the Laplace-Carson transform to (6) and considering the
convolution theorem (see Appendix B in Christensen 1982 [31]) the
constitutive law is written by components

Fi(x, p) = ﬁijkl(x, %x) P)Ekl(ﬁ(x’ p)- ®)

Including the symmetry properties R = Riikl = Rilk = RKY for the
relaxation modulus, Eq. (8) is transformed into

Fix, p) = E"f"l(x, @, p)ﬁk . p).

I €)

Finally, substituting (9) into (5) and using (2)—(4), the mathematical
statement for quasi-static viscoelastic heterogeneous problems in the
Laplace-Carson space is written

(R (3, 22, p) @ . ) = Ty O, 3, ) )
o

+ (F;k(x)ﬁkjm” (x, @ p) + ij(x)ﬁikm"(x, @ p))

@ X, P) = T ()T (x, p)) + F ' (x, p) = 0, 10)

with boundary conditions

@ (x, p) = ul on T; X [0, +00), 11



(E”"""(x, @, p)(ﬁm,n (x, p) = T ()T (x, p)))n,-

= sé onZX, X [0, +00), (12)
and initial conditions,
I;(x, 0) = 0in Q x {0}. (13)

Some additional remarks in order to ensure the existence of unique
weak solution of the problem (see Bakhvalov and Panasenko 1989 [10],
Persson et al. 1993 [33], Tsalis et al. 2012 [26]) are given as follows:

1. x and y are named global and local curvilinear coordinate, re-
spectively. The function ¢: Q—R3 characterizes the viscoelastic
curvilinear structure and satisfies¢ € C*(Q). The parameter € is the
fine mesh size of the unit cell structure Y C R3 and € = W&/V,h < 1,
where 14 denotes the volumen of Y and V, the volumen of Q.

2. The relaxation modulus is assumed R(x,y,t) € L®(Q X R).
Moreover, R. (x, @ t) = R(x, Yy, t) is regular in x and Y-periodic
iny.

3. R(x,y, t) is positively definite, i.e., RUKEUEK > ALUEK for all sym-
metric real valued tensors £/ and some positive constant A.

4. 3a,B,tg such that 0<a<Rx,y, t) <B<+o0 VxeQ,
Yy €eR3e — 0).

5. f(x, t) € [2(Q X R).

3. Two-scale asymptotic homogenization method

In this section, AHM is used to solve the heterogeneous problem
(10)—(13). The solution is proposed as follows,

+00 (x)
T(x, e p)= ), e @@ (x, £ ,p),

a=0 € 14
where @ (ﬁi(“)) is regular in x and Y-periodic related to the variable y
VaeN,VxeQ, Vpe|0, +o) and ﬁ(")(Jr,@,p)eCoo
(@ x [0, +0)).

The main objective is to build (14) as a formal asymptotic solution for
the problem (10)-(13) such that the approximation be of the order
O(€). This truncation is enough to ensure that the solution of the
homogenized problem converge weaker to the solution of hetero-
geneous problem when € — 0. (see Bakhvalov and Panasenko 1989
[10D).

According to the chain rule, the derivative in relation to the global
curvilinear coordinate applied on each term ﬁ(”)( . our ), p) from (14),
yields the transformation

9,;(x)
=i+ J {h 15)
where {-}; = aiyl{'} denotes the derivative related to the local curvilinear
coordinate.

Replacing (14) into (10), taking into account (15), after some sim-
plifications and grouping in powers of €, the following sequence of
problems are obtained

2, R™ (x, y, ple, , XTI, ¥, P = 0, 16)

o, )R™ (x,y, ple,, TS, (. ¥, )i

+ R (x, . p)e, , T (x, . p));

+ 0, R (x, y, I, (x. y, p)i

— ¢ R (%, y, P ()T (x, ¥, Py

+ (TR (x, y, p) + T}, )R (x, y. p))
0)

(9_«, n(x)um\c(x’ Yy, P)) =0, (17)

R"™ (x, ¥, p)e, , OISR, (. ¥, P

(. ¥, p)e,, XTI\ (x, ¥, p));
+ 9, )R (x, y, P, (X, ¥, P)
+ R (x, y, IO, (x, ¥, p));
= 0, )R (x, y, P)Th, )TV (x, ¥, P))i
- R™x, y, p)Th (T (x, ¥, p));
+ (T )R™ (x, y, p) + Th (x)R™™" (x, 3, p))
(0, TN, (¥, ¥, P) + T, (X, ., p) — T )T (x, 3, P))
+7' (e, p)=o. (18)

€ Q1 (xX)(R
+ (Rumn

Problems (16)—(18) can be solved in recursive form considering the
solvability condition reported in Bakhvalov and Panasenko 1989 [10].

Subsequently, a summary for each problem (16)-(18) is proposed.

Problem for €2

The problem (16) has the trivial solution #©® (x, y, p) = 0. Hence,
@ (x, y, p) is a solution of (16) if and only if it is constant in relation to
the variable y (see Bakhvalov and Panasenko 1989 [10], Persson et al.
1993 [33], Pobedria 1984 [9]). Thus,

i (x,y,p) =V (x, p), 19)

where V' (x, p) is a infinitely differentiable function.

Problem for !

Considering (19), it is possible to simplify significantly the problem
(17). The following terms are vanishing,

R"™ (x, y, p)g, , VT e, ¥, p)); = 0, (20)

~ikmn

(Tl )R (x, y. p) + Th )R (x, y. p))(e, ,, ®) T, (x. 3. p)) = 0.

(21)
The problem (17) becomes,
0, )R (x, 3, p)g, , VLA (x, ¥, Py
= _elj(x)(Rymn(x’ Yy, p)vm,n(x’ P))u
+ 0, C)R™™ (x, y, P, ()T (X, P 22)

Using the divergence theorem and the Y-periodicity condition of
R (x,y, p), the following result can be verified

Sijmn

<=, )R X, y, P)n (¥, PI1 + 0,V R™ (x, y, P}, 0% (¥, P>

=0.
The notation (-) defines the average over the Y-cell, i.e.,

(-) = JONH:2

meas(Y)
where meas(Y) is the Lebesgue measure of Y, g = det([gij]) and [gij] is
the metric tensor.
The existence and unique solution for the problem (22) is guaran-
teed. Applying separation of variables to (22), a general solution for
(22) can be given

7P (x, y, p) = Ny (x, y, p)¥ill (x, p) (23)

Developing the covariant derivative and grouping conveniently,
(23) can be transformed into

- ~lk ~ ~ ~
P, v, p) = Ny O, ¥, pVix (%, p) + Ny &, v, p)F, (x, p), (24)

where ﬁ(llk)m = I’V\,Z( is called the local function and ﬁ(ﬁ)m = —F{,’{ﬁ(lf)m.
Finally, substituting (24) into (22) and after some simplifications

: . . Sk PY
the local problems in relation to the local functions N(;),, and N<§)m are
obtained

. » .
8, VR (x, 3, P)e, s CINymip %, 3, D) + R, 3, )y =0 (25)



ymn

L)) =0
(26)

Q[J(x)(Rl]mn(x Yy, p)ezn(x)J\](O)mlt(x Y, P) (x’y’ p)

where N\(llk)m is Y-periodic function.

Problem for €°

The existence of unique Y-periodic solution for the problem (18) is
justified if and only if

Sijmn

(. ¥, p)e, , T (x, ¥, p));

+ ¢, )R (x, y, P, (%, ¥, P)

+ R (x, y, P, (x, ¥, P))y

= 0, R (x, y, P)Th, ()T (x, ¥, P

+ ([T @R (x, y, p) + T -k(x)R’k’""
(@, TN (x, ¥, p) + T, (X, ¥, p) —

— ®"™ %, y, P)Thy T (x, y, p))y + T (x, p)> = 0. @27

<(R

*x,y,p)
@I (x, y, p))

The functions R (x, y, p) and N (x, y, p) are Y-periodic, hence the
divergence theorem leads to the following

<o, )R (x, y, pYIL, (x. y, p))i> = 0,

<—¢; )R (x, , P)Th ()TN (x, y,p))i> = 0.

Finally, working on (27), the homogenized problem is obtained and it
can be written in the form

~ijmn

RY™ (%, PV (%, P) + Ry (%6, pIPie (%, p) + Ry (x, p¥i(x, p)
+f'@p)=0 in QxR, (28)

where the general expressions for the effective coefficients are reported,

RY" (x. p) = <R"™(x,y, p) + R™(x, 3, p)e, , ON), (x. ¥, p)>,
(29)
ﬁ(ie"; (x, p) = R(lf,_l)lf/ (x,p) + T ,,(x)R(?)lk (x, p) + Fj:h(x)ﬁ(l:l)lk x, p)
ikmn
= Thn )R ™ (x, p), (30)
Riy (. p) = —~(Th ORY™ (e, p))y
mn ~ikmn
— (T k(x)R(J (x, p) + k(x)R(e) (%, P, (). 31

The boundary conditions for the homogenized problem (28)-(31)
are rewritten replacing (14) into (11) and (12), respectively. Applying
the average operator, we obtain

i(x, p) = ulon Z; X [0, +00), (32)

ijmn

(R(e) (x, PVt (x, p) — Th,(ORQ x, pIve(x, p)ny
= sion 2, x [0, +o0). (33)
The initial condition is taken from (13)

P(x,0)=0, in Q x {0} (34)

The expressions (16)—(18), the local problems (25) and (26), the
homogenized problem (28) and the effective coefficients (29)-(31)
coincide with the reported in Cruz-Gonzalez et al. 2018 [34] when ¢(x)
is the identity function (i.e. ¢;; = &) and we are in the presence of a
Cartesian coordinate system.

4. Effective viscoelastic coefficients for stratified composites

The stratified composites are those for which a property of the
material is periodic in relation to y = £% and the parametric equation
¢(x)= constant describes the surfaces into the structure. The present
study is focused on the relaxation modulus property. Besides, the

stratified function satisfies ¢: R" — R™ with n > m (see Tsalis et al.

2012 [26]). The layered structures are an example of stratified com-
posites when stratified function are defined as ¢: R" —» R! with
n = 2, 3. Many effects can be obtained with the use of stratified func-
tions, waviness and variation of thickness are examples of them.

4.1. Curvilinear laminated composite

Now, the stratified function ¢(x;, X, X3) = x; is assumed. The axis x;
describes the periodicity of the layers and y = ? is verified. Therefore,
the relaxation modulus R(x, y, t) is regular in the variables x and per-
iodic in y. The local problem (25) is transformed as follows,

~ N X, Y,
2| Ry, y, p DB D) gy gy | =
OND (x, ¥, p)
Ei3k3 X, 7, (kP> V> 13rs ) l3rs X, )
(x,y p)iay (x,y,p) = (x, p) 36)

The average operator is applied on both sides of (36) and taking into
account the periodicity condition of I/\I\(rf)k, the following expression is
obtained

z}rs

(x, p) = <(R*®P(x, y, p))y > <®RPP(x, y, p))'R*"(x, y, p)>.

(37)
Substituting (37) into (36) and after some simplifications
FOED = RE(x, y. p) <@ (xy, p) >
C<RPP(x, y, )R (x, y, p)> — R, y, p) 'R (x, v, p).
(38)

Replacing (38) into (29), the general expression of the effective
coefficients for curvilinear laminated composites in Laplace-Carson
space is given

~ijrs

~13k3
Ry

ijrs ijk3

(x,p) = <R"(x,y, p)> + <R (x, y, PR x, y, p))'>

<RPP @, y, ) <®PP (x, y, )RV (3, y, p)>

yk3 513k3 513rs

(x, y, )R (x,y, p))'R

The relaxation modulus in time space, when the viscoelastic re-
sponse of the microstructure constituents is assumed to be isotropic, can
be expressed in the form

RM(x, y, 1) = A(x, DgT g 1) + plx, DE* M) + &' 0™ ),
(40)
where A(x, t) and u(x, t) are the relaxation functions and [gV] = [g,-j]‘l.
Consequently, if the coordinate system x is orthogonal, substituting
(40) into (39), the analytical expressions for the effective coefficients
are obtained

(x, y, p)>. (39)

~1133 5
~1111 R X, Y,
R, ) = <B oy, > < <3m(7yp>> >
(x, y, p)

< 1133 (x ¥, p)

733333

> <R (x,y, p)) >

.y, p) (41)
ReZ(x, p) = <R (x, y, p)>
1133(x ) .
+ m <R (x,y, p)y >t
< 2233(x v, p) > < 1133(x y, p)R2233(x v, p) >
53333 7B ’
(x, v, p) (x, v, p)
(42)
R (. p) = <R @y, DR, y, p)) > <@ (x, y, p)) >,
(43)



~2233 752233

R(e) (x, p) = <R 3333

R, y, p)) >,

(44)

x, ¥, PR (x, y, p))*><(R

~2222 52222

52233

(3> = < 9. p)

. < 2233(x y, p)

753333

> <R (x,y, p))>!

&,y p) (45)
Ry (x, p) = <®(x, y, p))y >, (46)
Re” @, p) = <®Px, y, p) >, 47)
BB p) = <® @,y py >, “8)
R’ (x, p) = <®(x, y, p))>. (49)

The expressions (41)-(49) when the metric tensor is [gij] = [dy]
(Cartesian coordinates system), coincide with the reported in Cruz-
Gonzélez et al. 2018 [34].

4.2. A general form of stratified functions

The main objective of this section is to provide a methodology in
order to find formulas for the effective coefficients when the stratified
function is being ¢: R? - R. Considering an orthogonal curvilinear
coordinate system x, each constituent with isotropic behavior, ¢ = ¢(x)
and using the Voigt notation, the expression of the effective coefficients
(29) becomes

~ijmn

RY" e, p) = RE (x, p) = <R¥(x, y, p) + R*' (x, y, P, )

(1)1( ,¥.D) ~a6

+R*(x, y, p)e,(x) + R®(x, y, p)e,(x)) + R, y, p)g,(x)

(1)2( ,9,P)

+R%(x, 5, p)o, () + R (x, y, p)o,(x)) + R (x, y, p)o,(x)

+ R, y, po, () + R, y,p)eg(x))M >

(50)
The local problem (25) is transformed into the following differential
equations system (8 =1, 2, ..., 6)
@R @, 3, p) + MR (x, 3, p) + (3, R (x, , p)e, (x)

<1>1( »Y:P)

+0,)R®(x, y, p)e,(x)) + (0, (R (x, y, p)g,(x)

+0,MR*(x, y, p)el(x))M) =0,

(51)

5 @ORY(x,y, p) + 0, IR¥ (x, 3, p) + (0, IR (x. . P)g, ()

(1)1( B

+0, R (x, y, p)o,(®)) + (e, (0)R®(x, y, g, (x)

+ 0, (ORP(x, y, p)ez<x>>M) o,

(52)

2@ @R (x,y, p) + 0,00R¥(x, y, p) + (8, RT(x, 3, p)e, ()
@Ry, p)w»M) =0,

(53)
The system (51)-(53) can be solved integrating each equation in
relation to the local variable and determining the constants of in-

NP
tegration. The expressions —= “)l with i =1, 2, 3, once calculated, they

can be substituted into (50) to find the effective coefficients.

4.3. Relation between effective relaxation modulus and effective creep
compliance

The mathematical relationship between effective relaxation mod-
ulus and effective creep compliance, given in the Laplace-Carson space,
is proposed in Hashin 1972 [35] as follows

& ijmn ~mnkl

Re (@M@ () =TI, (54)

where I¥ is the 4° order identity tensor.

Applying the inverse of Laplace-Carson transform on (54) and
considering the convolution theorem, it leads to the convolution
Stieltjes integral (see Hanyga and Seredyriska 2007 [36])

t
S Ro@lot-Ddr=d,  t>0. (55)

Therefore, if the effective relaxation modulus is known, there is a
way to calculate the effective creep compliance in Laplace-Carson space
using (54). Finally, applying the inversion of Laplace-Carson transform,
it returns to the temporal space. This process includes to solve a system
of 81 equations, as many times as points in time space we are con-
sidering.

The MATLAB’s functions INVLAP and GAVSTEH developed by
Hollenbeck 1998 [37] and Srigutomo 2006 [38], respectively are used
in the inversion of Laplace-Carson transform. The algorithms can
transform functions of complex variable s*, where « is a real exponent.
They can also transform functions which contain rational, irrational
and transcendent expressions. As a negative aspect, they present pro-
blems close to zero.

5. Applications to multilayered composite materials

The results of previous sections allow to calculate the effective
viscoelastic properties of composite materials with different geome-
trical shapes using the stratified functions and curvilinear coordinates.
Even if we use these two properties separately, it’s possible to analyze
from both points of view the effective behavior of a same structure. The
composite material shown in Fig. 1 b) can be modeled considering the
following schemes.

(A) Cartesian coordinates x = (X, %, Xx3) and stratified function
0,0, %) = \/xzz + xlz.

(B) Cylindrical coordinate x = (6, r,z) and stratified function
o6, r)=r.

The first one involves the resolution of the local problem (51)-(53)
and afterwards the effective coefficient (50). The second one operates
with expressions (41)-(49). In this case, is less complex to perform the
calculations using the scheme (B). The operator that appears between
the formulas (22) and (23), suitable to the cylindrical coordinates, is
used for that purpose.

(F) = sz F-rdr. 56)

Also, in certain cases, the stratified functions are better to use in-
stead of curvilinear coordinates. For example, elliptical shapes can be
describing through Cartesian coordinates x = (X, %, x3) and stratified

2 2
function g{xl, xz) = (%) + (%) . Nevertheless, it is not possible to

use with other common coordinate systems.
Therefore, interacting with these two schemes, we can get a more
general design as shown in Fig. 1 a).



Fig. 1. Examples of concentric laminated viscoelastic models. a) Wavy and b) not wavy laminated composite in cylindrical coordinates. t,, t;, t, and t; represent the

thickness for each layer.

5.1. Wavy laminated composites in cylindrical coordinates

A recent activity in cylindrical geometry structures is motivated for
engineering, structural and biomechanical applications (see Aratjo-
Cavalcante et al. 2011 [39], Guinovart-Sanjuan et al. 2016 [29]). For
example, the composite materials with carbon nanotubes, the study of
bones, the modeling of the aorta, among others. On the other hand,
wavy effects haven’t been studied enough (see Araijo-Cavalcante &
Cavalcanti-Marques 2017 [40]) but they are present in a variety of
natural biological systems (Liao and Vesely 2003 [41]) and in civil
engineering applications (see Katz et al. 2015 [42]) to name a few.

At this point, the calculation of the effective viscoelastic properties
for a laminated composite material with cylindrical geometry, wavy
effects and isotropic response is developed (see Fig. 1 a)). This parti-
cular case can be modeled with the scheme,

(C) cylindrical coordinate x = (6, r,z) and stratified function

93(9, r) =r— %sin(Z”L"e),

where H is the parameter related to the oscillation, L is the length of the
unit cell (see Tsalis et al. 2012 [26]), the amplitude-to-wavelength ratio
.OH 1 .
is 7 = - and the term n represents the number of waviness for
0 < 0 < 2x. It is really worthy to note, when n is fixed and r is suffi-
ciently biggest, waviness of Fig. 1 a) dissipate and hence, it looks like
the shape of Fig. 1 b).

Then, assuming that the relaxation functions in each layer satisfy

the following three parameters model (see Liu et al. 2004 [43])

wi () = gy + gy,
2 .
Al(t) = Ki - gﬂl(t), i=0,..,3

The respective values for the constants of the model are shown in
Table 1. In addition, are known R,=0.62cm, R;=1.02cm,
R, = 1.22 cm and the thicknesses t, = 0.4 cm, t; = 0.02 cm, t, = 0.12 cm,
t3 = 0.06 cm.

The metric tensor associated to (A) satisfies [gij] = [d;]. In relation to

Table 1

Material constants for the three parameters model.
Layers K (GPa) qo (GPa) q, (GPa) p (1/day)
Layer 0 259.65e8 1.785e8 0.69e8 0.002665
Layer 1 628.2e8 9.67e8 3.22e8 0.00658
Layer 2 108.9e8 6.1e8 1.84e8 0.00125
Layer 3 368.55e8 7.885e8 2.53e8 0.003915

(B) and (C), the metric tensor and its inverse becomes

r2 00 ) 0
lgJ=10 1 0| [g'= 0
001 1

o o W=
(=3 (=}

where det[g;] = r2. Moreover, the non-zero Christoffel symbols are
calculated,
1
My=-r, Ih=T=—
r

The geometrical shape of the Fig. 1 a) yields the next transformation
in the average operator

Rz—%sin(znne Rz—%sin(zme

a=[" (fko-';sin(M;L@)) rdr]de, (F) = é L (1;0_1,{51 (@)) F-rdr]d@.

L
(57)

The calculation of the effective viscoelastic properties is performed
using the different approaches analyzed above. The AHM with the
scheme (C) for n = 25 is applied on Fig. 1 a). The formulas (50),
(51)-(53) and (57) are used in the process. Also, AHM and FEM both
with the scheme (B) are proposed for Fig. 1 b). In this case, the AHM is
carried out using the Egs. (41)-(49). On the other hand, the finite
element method is used to solve problems (35) in order to compute the
effective coefficients using (29). For that purpose, since these problems
are one dimensional and défend on the interval [R1,R2] for x and p
fixed, piecewise linear shape functions are considered to solve the
problems on the whole interval (Equivalent Single Layer formulation).
One hundred nodes are used on [R1,R2] to discretize the problem,
because we have observed that this number of nodes are sufficient to
obtain a convergence on the effective coefficients. The expression (38),
the transformations in the Eq. (40) induced by the cylindrical co-
ordinates and the use of the average operator (56) are considered. Some
comparisons are displayed in Fig. 2 and they exhibit a good agreement
between the two approaches. Both methods are set as tools for calcu-
lating the effective viscoelastic properties. The AHM with the analytical
set of explicit formulas allows calculation with very low computational
cost and effort in a very short time. However, for more general stratified
functions in the form ¢: R3 — R3, the local problems are not solvable
analytically and the method fails. Then, the numerical approach in
connection with FEM let to solve this challenging. Also, the figures
show the influence that the design of the structure and the different
effects, such as waviness, have on the results.

5.2. Double homogenization. Wavy composite material reinforced with long
rectangular fibers

Fiber reinforced composites are widely used in high performance
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Fig. 2. Computation of the effective relaxation modulus. Comparison between MHA and FEM. The numerical values have been normalized, (a) R'! = 10'°, (b)

R* =108, (c) R°® = 10'° and (d) R* = 10'°.

structural applications due to their better mechanical properties and
high strength to weight ratio (see Saravanakumar et al. 2018 [44]). As
example, the glass-fiber reinforced composites find applications in the
industry of wind turbine’s blades and impeller elements (see Marty-
nenko and Lvov 2017 [45]). Besides, composites fabricated with brittle
epoxy matrix inherently has low fracture toughness and weak fiber/
matrix interface bond strength (see Saravanakumar et al. 2018 [44]).
On the other hand, their use requires a highly accurate knowledge of
material properties because of the apparition of internal stresses and
several imperfections like fiber waviness. These phenomena constitute
an important aspect in the manufacturing of thick composites with long
fibers (see Jochum et al. 2008 [46]).

In this section, a composite material reinforced with long rectan-
gular fibers, distributed periodically along axis x; and both, the struc-
ture and the fibers, with wavy effect is considered (see Fig. 3). Ac-
cording to geometrical configuration of the structure, the two-steps
homogenization scheme in different directions can be used to estimate
the overall effective behavior (see Otero et al. 2003 [47] and Guinovart-
Sanjuan et al. 2018 [48]). In this example, elastic fibers (glass) are
embedded in a viscoelastic matrix (epoxy). The viscoelastic material
can be modelled using normalized Prony series, based on the general-
ized Maxwell’s model

N
u(t) = #o[l -2 gn[l - e“‘“ﬂ’)],
n=1

M
K@) = Ko[l - z km(l — e(t/rm)J]’
m=1

where u(t) and k (¢) are time dependent relaxation shear and relaxation
bulk modulus; 1, and K, are instantaneous shear and bulk modulus;
8, km and 7 are parameters fitted through experimental tests (see
Zhang and Ostoja-Starzewski 2015 [49] and 2016 [50]). Mechanical
properties of materials can be found in Tables 2 and 3, respectively. For
sake of simplicity in the model, only one term in the Prony series (see
Pathan et al. 2017 [51]) is considered.

(58)

(59

The stratification function which describes the microstructure and
the wavy effect, is given as follows (see Guinovart-Sanjuén et al. 2016

[29D

Q(xl, xz] =X — Hsin(zle).

The average operator is calculated

() = Vit + Vol

(60)

(61)

where the subscripts (1), (2) are indicating the corresponding material
andV; represents the volume fractions of each constituent.
The two-steps homogenization scheme is dealt below:

1. Conveniently, the composite material is homogenized in the direc-
tion of axis x;. The structure is analyzed as a two-layered medium
with transversely isotropic properties (see Fig. 3 (a)). The calcula-
tion of the effective viscoelastic coefficients is performed using the
Egs. (41)-(49). Moreover, the subscript (e;) is added indicating the
first homogenization (see Fig. 3 (a)).

2. The resulting structure is displayed in Fig. 3 (b)). It represents a new
two-layered medium with wavy effects. The effective coefficients
are calculated using the stratified function (60) and the formulas
(50) and (51)—(53). The subscript (e;) is proposed to denote the
second homogenization (Fig. 3 (b)). Besides, the average operator
(61) is transformed into (f) = Vify,, + Vaf,); where the subscript(2)
represents the property of the viscoelastic matrix and the subscript
(e1) denotes the effective viscoelastic property obtained in the first
homogenization step (Fig. 3 (b)).

The mathematical problems for modeling rectangular-cross-section
fibrous composites can not be solved using analytical methods. The
double homogenization method here described is an alternative to offer
easy-handle analytical formulas for simulate the macroscopic behavior
of such composites. Fig. 3 (a) and (b) illustrate the general procedure
carried out in this work. Furthermore, the method can not be applied
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Fig. 3. Periodic cell for the laminated structure with wavy effect.

Table 2
Mechanical properties for the constituents of the composite material.

Young modulus (GPa) Poisson ratio

Epoxy 2.76 0.38
Glass fibre 50 0.2
Table 3
Coefficients of the Prony series.
131 k 7 (s)
Epoxy 0.6 0.6 20

when the fibers are circular or elliptical.

The outcomes in the calculation of the effective relaxation modulus
and the effective creep compliance are displayed in Fig. 4. The meth-
odology allows to estimate the effective behavior for a composite ma-
terial with long rectangular fibers and wavy effects. The process to
obtain the effective relaxation modulus was explained previously in the
two-steps homogenization scheme. On the other hand, the effective

creep compliance is found using the Eq. (54) and the performance of the
numerical inversion of Laplace-Carson transform.

6. Conclusions

In this article, previous results on the field of elastic materials are
extended to non-ageing viscoelastic ones by using the correspondence
principle and the Laplace-Carson transform. More general expressions
for the local problems, the homogenized problem and the effective
coefficients in non-ageing linear viscoelastic composite materials with
generalized periodicity are obtained. The stratified functions and the
curvilinear coordinate system are included in the analysis allowing to
study new features in the structures. The multi-step homogenization
scheme is performed to estimate the overall behavior for a viscoelastic
composite material reinforced with long rectangular fibers and wavy
effects. A numerical algorithm for computing the effective creep com-
pliance has been developed and the numerical implementation for the
calculations of the effective relaxation modulus has been established.
The comparisons with FEM display good agreements between the two
approaches. Also, the AHM shows to be a good alternative for obtaining
results with low computational cost and good accuracy by using the
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Fig. 4. (a) Computation of the effective relaxation modulus for a composite material with long rectangular fibers and wavy effects, using double homogenization. (b)
Taking into account (54), the effective creep compliance is obtained. Volume fractions ; = 0.3, V; = 0.7, amplitude-to-wavelength ratio of 0.5 and the value x; = 1

are considered.



analytical set of formula. This approach offers an effective technique for
investigating both macroscopic and microscopic properties of periodic
structures. The main disadvantage is set when the local problems are
not solvable analytically and the numerical solution of cell problems is
required.
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