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R. Rodríguez-Ramos · C. A. Gandarilla-Pérez ·
L. Lau-Alfonso · F. Lebon · F. J. Sabina · I. Sevostianov

Maxwell homogenization scheme for piezoelectric composites
with arbitrarily-oriented spheroidal inhomogeneities

Abstract In this work, the effective electro-elastic properties of piezoelectric composites are computed using
theMaxwell homogenizationmethod (MHM). The composites aremade by several families of spheroidal inho-
mogeneities embedded in a homogeneous infinitemedium (matrix). Each family of spheroidal inhomogeneities
is made of the same material, and all the inhomogeneities have identical size and shape and are randomly ori-
ented. The inhomogeneities and matrix materials exhibit piezoelectric transversely isotropic symmetry. It is
shown that the shape of the “effective inclusion” substantially affects the effective piezoelectric properties. A
new and simple form to calculate the aspect ratio of effective inclusion is presented. The effect on the overall
piezoelectric properties due to the orientation of the inhomogeneities and different families of piezoelectric
inhomogeneities is discussed. The MHM approach is applied in two examples, material with inhomogeneities
having scatter orientation and composites with two different families of spheroidal inhomogeneities.

1 Introduction

The Maxwell homogenization method (MHM) is a homogenization technique that is applicable to cases of
anisotropicmultiphase compositeswith a good accuracy degree. This approach can be applied in order to obtain
the effective electro-elastic properties of a composite made by a matrix material occupying the region V 0 with
properties L0 and containing spheroidal inhomogeneities with properties L1 and volume fraction θ = V 1/V 0,
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where V 1 is the volume occupied by the inhomogeneities. We will assume that there is a spheroidal region
V e of the heterogeneous medium placed into the matrix material and large enough to contain a representative
number of spheroidal inhomogeneities (see Fig. 1), called effective inclusion. This construction is subjected
to external fields acting on every inhomogeneity. (The inhomogeneities do not interact.) The asymptotic far
field of the perturbation generated by the inhomogeneities inside V e is proportional to the sum of far fields
generated by the inhomogeneities. The perturbation field induced by the inhomogeneities far from the center
of V e is equal to the field produced by the entire region V e considered as an individual inhomogeneity with
effective unknown properties L̄.

The Maxwell scheme was first proposed to calculate the effective electrical conductivity of a matrix of
conductivity k0 containing spherical inhomogeneities of conductivity k1 [1]. The authors in Ref. [2] considered
theMaxwell homogenization technique for the propagation of seismicwaves in amaterial containing randomly
oriented identical spheroidal inhomogeneities. The authors in Ref. [3] developed a similar method to the
Maxwell scheme for multiphase composites containing randomly oriented ellipsoidal inhomogeneities. When
“Maxwell’s scheme for elastic properties” was introduced for the first time [4], it was used to study the
problem of randomly localized spheres. The authors in Ref. [5] addressed the problem about the shape of the
“effective inclusion.” The authors showed that for the case of a material containing aligned identical ellipsoidal
inhomogeneities it has to match the shape of the individual inhomogeneities.

A fundamental question of the MHM is the determination of the aspect ratio δe of the effective inclusion.
In Ref. [6], the uncertainty related to the shape of the effective inclusion is discussed; however, the authors
did not provide explicit recommendations regarding the choice of the shape for the more general scenario.
Later, in Ref. [7] the hypothesis that allows to evaluate the shape of the effective inclusion in the transversely
isotropic composites was explicitly formulated. The author shows that this parameter must reflect the form
of each inhomogeneity; otherwise, the predictions of the effective properties can lose physical meaning.
This approach was very successful. The authors of Ref. [8] illustrate that this hypothesis allows to optimize
Maxwell’s scheme, and in Ref. [9], this approach was addressed to consider composites with anisotropic
constituents.

Recently, a previous work [10] has only focused on the extension of Maxwell’s homogenization scheme
for piezoelectric composites containing parallel aligned spheroidal inhomogeneities along the x3 axis of the
composite. The authors reported a simple way to obtain the effective overall electro-elastic properties of
biphasic and tri-phasic composites. In addition, numerical measurements of the electromechanical coupling
factor and the effective hydrostatic charge were performed in a tri-phasic composite made by Araldite-D
matrix containing fiber reinforcements of PZT-7A* and porous of two different geometrical shapes. However,
the dependence of the behavior of the effective moduli on the orientations of the reinforcements inside the
matrix was not analyzed. The novelty of the present work is based on the analysis of the relation between
the behavior of the effective moduli and the orientations of the reinforcements inside the matrix by means
of probability functions, which allow to examine the effective performance of composites and generalize the
approach presented in Ref. [10]. Self-consistent variational bounds are given in Ref. [11] for the effective
electro-elastic properties of heterogeneous piezoelectric solids. These bounds are based on a generalization of
the Hashin–Shtrikman variational principles. Numerical calculations were presented, and comparisons with
real measurements were made for composites with different microstructural geometries.

During the last few years, there has been a growing interest in materials with high electrical or thermal con-
ductivity and dielectric permittivity, such as graphene–polymer nanocomposites or graphite nanoplatelet/epoxy
composites due to their wide range of applications. Several theories have been proposed to estimate the effec-
tiveness and efficiency of the electromagnetic interference shielding in these composites. A method to produce
thin graphite nanoplatelet/epoxy composites with a thickness of 20–50nm is developed in Ref. [12]. The
dependence of the thermal conductivity on the volume fraction of graphite nanoplatelet and the dependence
of the dielectric constant on the frequency were studied. The behavior of the dielectric properties, the loss
factor, and the conductivity in reduced graphite oxide/polypropylene composites was studied against the fre-
quency in Ref. [13]. Additionally, the dependence of the dielectric permittivity on the volume fraction of
reduced graphene oxide was compared with experimental measurements showing a good accuracy. The tem-
perature dependence of the dielectric permittivity for different frequency values showed that for the lowest
frequency the composite gets the highest temperature value; moreover, the effective dielectric permittivity
increases as the temperature increases. A study about the electromagnetic interference shielding efficiency
and the effective dielectric permittivity of highly aligned graphene/polymer nanocomposites has been given
in Ref. [14]. A theory of the continuum, based on the effective medium method, is formulated in Ref. [15]
to calculate the electrical conductivity, dielectric permittivity, and magnetic permeability in a highly porous
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Fig. 1 Schematic diagram ofMaxwell’s homogenization method. Effective properties of a composite (a) are calculated by setting
equal the effects produced by the set of inhomogeneities embedded in the matrix material (b) and by a fictitious domain having
yet unknown effective properties (c)

graphene composite foam. This process allows to evaluate the effectiveness of the electromagnetic interference
shielding of lightweight foams. The Maxwell–Wagner–Sillars polarization mechanism was implemented, too,
and it was shown that the electrical conductivity had the strongest influence on the effectiveness of the electro-
magnetic shielding. Recently, the authors of Refs. [16,17] presented a model based on the effective medium
theory. The proposed model takes into account interface effects, electron tunneling, Maxwell–Wagner–Sillars
polarization, Dyre’s frequency-assisted electron hopping, and Debye’s dielectric relaxation. All these effects
are incorporated to estimate the effectiveness of the electromagnetic interference shielding. By the proposed
model, the calculations of the frequency-dependent effective electric conductivity and dielectric permittivity
and the frequency-independent magnetic permeability in graphene–polymer nanocomposites can be taken into
account. The authors also found that the effective conductivity increases remarkably in the high frequency
range, while the dielectric permittivity decreases. The theories presented in Refs. [12–14] were based on the
original Maxwell far-field matching framework developed in Ref. [18] and first applied to the electrical con-
ductivity of CNT and graphene–polymer nanocomposites with electron tunneling and percolation threshold
by the authors of Refs. [19,20]. A dynamical approach to the models of Mori–Tanaka (for aligned ellipsoidal
inclusions) and Ponte Castañeda–Willis (for both aligned and randomly ellipsoidal inclusions) is developed in
Ref. [18]. Even when the Mori–Tanaka moduli were not obtained for randomly aligned inclusions, the author
points out that in the case of isotropic constituents it is worthwhile, because the moduli always lie at or within
the Hashin–Shtrikman bounds. A continuum model proposed in Ref. [19] is applied to the predictions of the
electrical conductivity of carbon nanotubes as well as the study about the effect of anisotropy of the conduc-
tivity in axial and transverse directions. It is remarkable that the axial conductivity is the main property that
affects the transport process even when the transverse conductivity has the lowest value. Calculations of mag-
netoelectric coupling coefficients and voltage coefficients can be found [20] by a model based onMori–Tanaka
scheme for the perfect interface case, and then, a thin layer between the inclusion and the matrix is introduced
to study the imperfect contact scenario. Moreover, comparisons with experimental data for the magnetoelectric
voltage coefficient are made, with a good accuracy between the predictions and the experimental results.

The performance of composite materials is highly affected by the inhomogeneity’s spatial arrangement
and orientation. The work in Ref. [21] stated that the inhomogeneities are usually neither perfectly parallel,
nor perfectly randomly oriented, but have a certain orientation distribution, which is one of the primary factors
affecting the overall mechanical properties. The present paper focuses on the integration of the characteristics
of the inhomogeneity’s orientation into MHM, to consider the orientation distribution of non-spherical inho-
mogeneities in heterogeneous materials. The authors of Refs. [22,23] take into account the random orientation
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of fibers by applying an average induced strain approach to composites with 3D randomly oriented short
fibers. In Ref. [24], a theoretical scheme in which the fiber orientation distribution was allowed to be arbitrarily
specified is presented. These authors first introduced an orientation distribution function (ODF) defined over
the full Euler space. Many specific ODFs have been discussed in the literature.

In the present paper, the extension of Maxwell’s scheme to the piezoelectric composites given by authors
of Ref. [10] is used. To the best of our knowledge, a theoretical model describing the electromechanical
behavior of multiphase piezoelectric composites has not been proposed and the effect of arbitrary-oriented
inhomogeneities has not been addressed. In this work, the effective electro-elastic properties of a material
reinforced with spheroidal inhomogeneities considering the orientation distribution of the inhomogeneities
that may vary from perfectly aligned to randomly oriented ones are calculated by the MHM. In Sect. 2.2,
the equation to calculate the overall electro-elastic properties of composites with more than one type of
inhomogeneities is presented. The method is addressed to media with only one type of inhomogeneity and
whose orientation is governed by anODFas described in Sect. 3. Also, the effect of differentODFs in the overall
electro-elastic properties is discussed in Sect. 3. The numerical predictions of the MHM are presented for the
case of fiber-reinforced composites in Sect. 4, and the conclusions are presented in Sect. 5. In “Appendix A,”
the tensorial basis representation of an arbitrarily oriented inhomogeneity is developed. “Appendix B” provides
explicit tensorial expressions for the case of spheroidal inhomogeneities.

2 Basic equations of piezoelectricity and Maxwell’s approach

The aim of this Section is to give an overview on piezoelectricity, to provide the essential ideas of Maxwell’s
scheme, and to describe the numerical implementation of the effective equations of the present model.

2.1 Piezoelectric laws

Let Ci jkl be the fourth-rank stiffness tensor of an elastic composite having transversely isotropic symmetry
and satisfying the index relations Ci jkl = C jikl = Ci jlk = Ckli j . Using the two-index Voigt notation and by
the following relations:

(i j) → α|(kl) → β|(11) → 1|(22) → 2|(33) → 3|(23), (32) → 4|(13), (31) → 5|(12), (21) → 6,

the fourth-rank stiffness tensor Ci jkl can be reduced to the following 6 × 6 matrix:

Ci jkl = Cαβ =

⎛
⎜⎜⎜⎜⎜⎝

C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C66

⎞
⎟⎟⎟⎟⎟⎠

, C66 = C11 − C12

2
.

Let now ei jk and ηi j be the third-rank piezoelectric and the second-rank dielectric permittivity tensors, respec-
tively, where ei jk = eik j holds. Following the Voigt notation, the third-rank piezoelectric tensor and the
second-rank dielectric permittivity tensor can be written in matrix form as

et =
⎛
⎝

0 0 0 0 e15 0
0 0 0 e15 0 0
e31 e31 e33 0 0 0

⎞
⎠ , η =

⎛
⎝

η11 0 0
0 η11 0
0 0 η33

⎞
⎠ ,

and using now the following index relations:

(pq) → υ|(41), (14) → 7|(42), (24) → 8|(43), (34) → 9|υ = 7, 8, 9,

the electro-elastic tensor L for piezoelectric composites of 6mm class can be reduced to a matrix of 9 × 9 as
follows:

L =
(
Cαβ eipq
etpqi −ηpq

)
.
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For piezoelectric solids, the interdependence between mechanical and electrical variables implies a coupling
between the elastic and electromagnetic waves,

σi j (x) = Ci jkl(x)skl(x) − ei jk(x)Ek(x),

Di (x) = etikl(x)skl(x) + ηik(x)Ek(x),

Ek(x) = −	,k(x), skl(x) = uk,l(x) + ul,k(x)

2
,

where a, j means
∂a

∂x j
, Ek the electric field, 	 the electric potential, and σi j and skl the second-order stress

and strain tensors, respectively. uk is the displacement, Di is the electric displacement, and x = (x1, x2, x3) is
a point in the three-dimensional space. Under constant external strain s0 and electric E0 fields applied to the
medium, the stress field given by the stress tensor represents an equilibrium state with the body forces fi (x) in
the whole composite. Then, Newton’s second law for the equilibrium condition of the stress field and Gauss’s
law imply the following:

σi j, j (x) + fi (x) = 0, Di,i (x) = 0.

Finally, for an isolated solid, the body forces fi (x) = 0 are zero; therefore, the following relations must
hold:

[
Ci jkl(x)skl(x) − ei jk(x)Ek, j (x)

]
, j

= 0,
[
etikl(x)skl(x) + ηik(x)Ek(x)

]
,i

= 0.

2.2 Maxwell homogenization scheme

A heterogeneous medium is considered to be composed of a solidmatrix with properties L0, where n different
types of inhomogeneities are embedded. Each type of inhomogeneity r has properties Lr , as well as the same
form, size, and orientation. The symmetry centers x

′
are randomly distributed for each inhomogeneity. The

properties L in the composite depend on the position x, and taking the values Lr when the position x is in the
volume Vr occupied by the inhomogeneity and the values L0 if the point x is in the matrix, the following is
obtained:

L(x) = L0 +
n∑

r=1

(
Lr − L0) Vr (x), Vr (x) =

{
1, if x ∈ type r inhomogeneity
0, other case

(2.1)

where Vr (x) is the characteristic function of the volume occupied by the inhomogeneity of type r , with
r = 1, 2, 3, . . . , n. The matrixL represents the electro-elastic properties of transversely isotropic piezoelectric
materials with hexagonal symmetry, and it is a linear transformation (9 × 9 matrix) which transforms the
stress vector � = (σ ,D) = (σ11, σ22, σ33, σ23, σ13, σ12, D1, D2, D3) into the strain vector Z = (s,E) =
(s11, s22, s33, 2s23, 2s13, 2s12, E1, E2, E3),

� = LZ, L9×9 =
[
C6×6 e6×3

eT3×6 −η3×3

]
. (2.2)

Following a similar notation as that of Ref. [25], Eq. (2.2) is the matrix form of the constitutive equations of a
homogeneous piezoelectric material under isothermal conditions. The above equations couple the mechanical
properties: the strain s, the stress σ , and the elastic moduli tensor C, with the electric variables such as the
electric field E, the electric displacement field D, the piezoelectric tensor e, and the dielectric tensor η. The
superscript T denotes the transpose.
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The effective electro-elastic properties L̄ of a multiphase composite are given as a function of the matrix
properties L0, the properties of each family of inhomogeneities θr (volume fraction), δr (aspect ratio), Lr and
the effective inclusion’s aspect ratio δe,

L̄ = L0 +
⎡
⎣
(

N∑
r=1

θrN(r)

)−1

+ Q(e)

⎤
⎦

−1

, N(r) = (Lr − L0) [I + Q(r)(Lr − L0)
]−1

. (2.3)

Here, the superscript (r) indicates the type of inhomogeneity and is not an exponent. I is a unitary matrix
of rank 9, and the function Q(e) depends on the effective inclusion’s aspect ratio δe and the properties of the
matrix L0. The selection of an explicit expression for δe is discussed in Sect. 4.

2.3 Hill tensor Q for spheroidal inhomogeneities

The matrix Q(r) is expressed in terms of the second derivatives of the electro-elastic Green’s function (a
4× 4 matrix with components Gli (x), Gl4(x), G4i (x) and G44(x)), which is derived following the authors of
Refs. [26–28]:

Q(r) = −
∫
Vr

[
Gli, jk(x − x

′
) Gl4, jk(x − x

′
)

G4i, jk(x − x
′
) −G44, jk(x − x

′
)

]
dx

′ =
⎡
⎣ S(r)

x(kli j) S(r)
,x(k4i j)

M (r)
x(kl4 j) M (r)

,x(k44 j)

⎤
⎦ (2.4)

where Vr represents the spheroids, with ar and cr being the spheroid semiminor and semimajor axes, respec-
tively. The tensors S(r)

x ,M(r)
x , S(r)

,x , andM
(r)
,x are averaged over the inhomogeneity domain of the second partial

derivative of the Green’s function (a detailed discussion is given in Ref. [10]),

S(r)
x(kli j) = 1

4π

∫
|ζ |=1

d�(ζ ) ζk(�̄li (ζ ))−1ζ j

∣∣∣∣
(i j),(kl)

, (2.5)

S(r)
,x(k4i j) = 1

4π

∫
|ζ |=1

d�(ζ ) ζk
γl(ζ )(�̄li (ζ ))−1

ε(ζ )
ζ j

∣∣∣∣
(i j)

, (2.6)

M(r)
,x(k44 j) = 1

4π

∫
|ζ |=1

d�(ζ )
ζkζ j

ε(ζ ) + γi (ζ )(�il(ζ ))−1γl(ζ )
, (2.7)

and the tensor M(r)
x is the transpose of S(r)

,x . The notation (i j) represents a symmetry with respect to the pair
of indexes i, j . The integrals are calculated over the unit sphere, and ζ is a unit vector in spherical coordinates
ζ = (sin φ cosϕ, sin φ sin ϕ, cosφ), where ζ3 = cosφ = u, and the azimuthal coordinate ϕ and the latitude φ
take values between ϕ ∈ (0, 2π) and φ ∈ (−π

2 , π
2 ), respectively. �ik(ζ ), �̄ik(ζ ) are 3×3 symmetric matrices,

γk(ζ ) is a 3 × 1 vector, and ε(ζ ) is a negative scalar. �ik(ζ ), �̄ik(ζ ), γk(ζ ), and ε(ζ ) are defined by

�ik(ζ ) = C0
i jklζ jζl , γk(ζ ) = e0jklζ jζl , ε(ζ ) = ε0jlζ jζl , �̄ik(ζ ) = �ik(ζ ) + γ T

i (ζ ) γk(ζ )

ε(ζ )
. (2.8)

The components of the tensors S(r)
x , S(r)

,x , and M(r)
,x depend strongly on the type r of the inhomogeneity’s

geometry Vr , by the aspect ratio parameter δr = cr/ar . The inhomogeneity is an oblate spheroid if the fraction
δr is smaller than 1, or a prolate spheroid if δr is larger than 1. Particularly, if δr << 1 the inhomogeneities are
considered as disks, if δr >> 1 they are considered as fibers, and if δr = 1 they are spheres. The components
of the tensors S(r)

x , S(r)
,x , and M(r)

,x are given in Appendix A.
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3 Randomly oriented distributions of spheroidal inhomogeneities

3.1 Overview

During the analysis of a fiber-reinforced composite in Ref. [29], an ODF independent of the Euler angles φ,
θ , and ϕ is assumed,

P(φ, θ, ϕ) = P(φ)P(θ)P(ϕ), 0 ≤ φ ≤ π, 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ π, (3.1)

where P(φ) is a trigonometric distribution, and P(θ), P(ϕ) areGaussian distributions obtained by aquantitative
image analysis of SEM pictures,

P(φ) = 2 + cos 2φ

2π
, P(θ) =

√
2

π
exp

(−(θ − π/2)2

2

)
, P(ϕ) =

√
2

π
exp

(−(ϕ − π/2)2

2

)
. (3.2)

Moreover, in Ref. [30] the effects of misoriented inhomogeneities on the effective thermal conductivity of a
transversely isotropic composite are considered. An ODF is introduced, where the distribution is described by
a parameter λ as follows:

P(θ) = 1 − exp(λθ) (3.3)

where highly oriented inhomogeneities are described by large values of λ (λ → ∞) and a completely random
distribution of inhomogeneities is given by λ = 0. The effect of the inhomogeneity’s distribution function
on the effective thermo-mechanical properties of fiber-reinforced composites is discussed in Ref. [31]. The
following exponential ODF is assumed:

P(θ) = exp(−θ2/2λ2). (3.4)

Additionally, in Ref. [32] the following two-parameter ODF is used:

P(θ) = sin2p−1 θ cos2q−1 θ∫ θmax
θmin

sin2p−1 θ cos2q−1 θdθ
, 0 ≤ θmin ≤ θ ≤ θmax ≤ π/2 (3.5)

where p and q are shape parameters. Also, the use of the following ODF is suggested in Ref. [33]:

Pλ(ϕ) = 1

2π

[
(λ2 + 1) exp(−λϕ) + λ exp(−λπ/2)

]
, (3.6)

to calculate the effective elastic properties in composites with transversely isotropic orientation distribution of
cracks. This function was used later in Ref. [7] to discuss the way in which the aspect ratios of the effective
inclusion have to be chosen in the framework of the Maxwell scheme. Also, Eq. (3.6) was used in Ref. [34]
to calculate viscoelastic properties of short-fiber-reinforced composites, and it was also used in Ref. [35] to
calculate the effective elastic properties of polymer-fiber-reinforced concrete.

An ODF is introduced in Ref. [36], to consider the anisotropy due to all the families of pores and/or mineral
constituents in rock-like composites,

Pσ (ϕ) = 1

2π

σ cosh(σ cosϕ)

sinh σ
, (3.7)

where σ is the parameter accounting for the degree of the preferred alignment. The specific choice of an ODF
is mostly related to computational cost, because its form does not affect significantly the overall elastic and
conductive properties of a composite, as shown in Ref. [37].
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Fig. 2 Orientational distribution function Pλ at λ = 1

3.2 Random distribution of reinforcements by the present model

An oriented or anisotropic distribution of spheroidal inhomogeneities in a transversely isotropic piezoelec-
tric material can be considered by introducing an orientation distribution function (ODF) which allows to
incorporate the anisotropy due to the inhomogeneities of the system. An ODF can be denoted by P(φ, θ) and
represents a probability density function defined on the upper semi-sphere	 of unit radius and subjected to the
normalization condition. The contributions of all the families of inhomogeneities to the overall electro-elastic
properties are taken into account by integrating over the unit sphere,

∫ 2π

0
dθ
∫ π/2

0
dφP(φ, θ) sin φ = 1, (3.8)

where the two angles 0 ≤ φ ≤ π/2 and 0 ≤ θ ≤ 2π define the unit vector mi along the spheroid’s symmetry
axis, as shown in Fig. 2,

mi = (cos θ sin φ, sin θ sin φ, cosφ). (3.9)

The distribution orientation that lies between the random and the parallel distribution can be considered
by specifying the following probability density P(φ, θ) = P(φ). (Its independence on θ implies a transverse
isotropy, where x3 is the symmetry axis.) Following Refs. [7,33,36], the ODFs given by Eqs. (3.6) and (3.7)
can be considered. These equations are governed by the parameters λ ≥ 0 and σ ≥ 0, respectively.

Figure 3a shows the dependence of Pλ(φ) on φ for several values of λ, and Fig. 3b shows the function
Pσ (φ) for several values of σ . The parallel orientation statistics (φ = 0) is an extreme case and corresponds
to λ → ∞ and σ → ∞. Another extreme case is the random orientation statistics (any value of φ has
the same probability) which corresponds to λ = 0 and σ = 0. Both ODFs cover two important limiting
cases: slightly perturbed parallel orientations (large values of the parameter) and weakly expressed orientation
preference (small parameter values). Figure 3c shows the dependence of Pλ(φ) on λ for several values of φ
(the probability change for obtaining fibers with specific orientation as λ increases), and Fig. 3d shows the
dependence of Pσ (φ) on σ , for several values of φ. Notice that the orientation distribution given by Pλ(φ) and
Pσ (φ) for the same parameter value λ = σ is different. Then, the effect of changing Pλ(φ) with Pσ (φ) in the
electro-elastic effective properties is difficult to compare.

Considering identical oblate spheroidal inhomogeneities with the orientation distribution that is between
the fully random and the perfectly parallel ones (preferential orientation with scatter) and taking into account
all the inhomogeneities with different orientations, the tensor N(p) = ∑N(φ(0), θ (0)), where p = λ, σ

represents the election of Pλ(φ) or Pσ (φ), and φ(0), θ (0) are related to an inhomogeneity’s specific orientation
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Fig. 3 Plots of Pλ and Pσ against the angle φ for several values of λ (a) and σ (b). The dependence of Pλ and Pσ on the scatter
parameters λ (c) and σ (d) for several values of the angle φ is also shown

m(0)
i (φ(0), θ (0)). For computational convenience, summation over the inhomogeneities can be replaced by the

integration over orientations,

N(p) =
∫

	

Pp(φ)N(φ, θ) sin φdφdθ =
∫ π/2

0
dφPp(φ) sin φ

∫ 2π

0
dθN(φ, θ), p = λ, σ, (3.10)

where the tensor N has hexagonal symmetry and therefore can be represented by the tensorial basis described
in Ref. [38]. N(λ) as described in Eq. (3.10) has the same symmetry and can be represented in this basis, and
its components are obtained in Appendix A.

The Maxwell scheme can be applied to a composite in which one family of inhomogeneities with an
oriented distribution is embedded in a matrix material. The relation given by Eq. (2.3) has to be replaced with
the following expression:

L̄ = L0 + θ
[(
Np)−1 + θQ(e)

]−1
(3.11)

where Np has the information related to the orientation. In this case, there is no problem with the election of
the effective inclusion’s aspect ratio δe because there is only one type of inhomogeneity with aspect ratio δ,
then δe = δ.
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Table 1 Materials’ electro-elastic properties

C11 (GPa) C12 (GPa) C13 (GPa) C33 (GPa) C44 (GPa) e31 (C/m2) e33 (C/m2) e15 (C/m2) ε11/ε0 ε33/ε0

PZT-4 139 77.8 74.3 115 25.6 −5.2 15.1 12.7 730 635
PZT-5 121 75.4 75.2 111 21.1 −5.4 15.8 12.3 916 830
PZT-7A 148 76.2 74.2 131 25.4 −2.1 12.3 9.2 460 235
BaTiO3 150.4 65.63 65.94 145.5 43.86 −4.32 17.4 11.4 1705 1446
Araldite-D 8.0 4.4 4.4 8.0 1.8 0 0 0 4.2 4.2

ε0 = 8.854 ∗ 10−12 (F/m) is the free-space permittivity
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Fig. 4 Comparison between the effects of Pλ(φ) and Pσ (φ) on the electro-elastic effective coefficients for porous PZT-7A

4 Numerical results

The goal of this Section is primarily to illustrate the effective electro-elastic properties of composites withmore
than one family of inhomogeneities. Another goal is to illustrate the effect of the inhomogeneity’s orientation
on the overall properties of piezoelectric composites. The orientation of the inhomogeneities is given by the
parameter λ by (ODF) Pλ(φ). Additionally, the dependence of the effective electro-elastic moduli on the aspect
ratio δe of the effective inclusion for different scatter parameter values λ and volume fraction θ is presented.
The electro-elastic properties of the materials which are the composite constituents are given in Table 1. These
values are taken from Refs. [39–41].

This Section presents numerical results for biphasic and tri-phasic composites. The biphasic composite is
made by only one family of inhomogeneities embedded in a matrix material. Particularly, porous composites
are considered when the pores of the matrix are constituted by inhomogeneities. The tri-phasic composite is
made by two families of inhomogeneities embedded in a matrix.
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Fig. 5 Plots of the stiffness C̄33 and piezoelectric moduli ē33 against the aspect ratio δe of the effective inclusion for four porosities
θ1 in a PZT-7A ceramic. Completely random orientation of pores λ = 0 is shown in (a) and (b) and parallel distribution λ = 100
in (e) and (f)

The electro-elastic effective properties C̄44, ē15, η̄11, and η̄33 are plotted against ODF parameters in Fig. 4.
With the logarithmic scale for λ and σ , it is possible to probe the entire inhomogeneity’s orientation distribution
given by Pλ(φ) and Pσ (φ), respectively. A porous PZT-7A ceramic is considered with porosity θ1 = 0.1. The
elastic effective coefficient C̄44 and the piezoelectric effective property ē15 are shown in Fig. 4a, b. The effective
permittivities η̄11 and η̄33 are plotted in Fig. 4c, d. Notice that each effective coefficient is affected differently
by the change in orientation distribution. For example, an increment in C̄44 is obtained by raising λ − σ . A
decrease in ē15 by lowering the values of λ−σ is observed as well. Also, both ODFs have the same behavior for
the aligned and randomly oriented inhomogeneity’s limiting cases. The predictions for intermediate scenarios
(between these limit cases) are in close agreement; therefore, the choice of an ODF does not dramatically
affect the overall electro-elastic properties.

The effects of the aspect ratio δe of the effective inclusion on the effective properties of composites are
displayed in Fig. 5. The elastic stiffness C̄33 and piezoelectric coefficients ē33 are plotted against the effective
aspect ratio δe of the inhomogeneities at different values of the degree of the preferred alignment λ, by
considering four different porosities θ1 = 0.1, 0.2, 0.3, 0.4 for a PZT-7A ceramic with a porous aspect ratio
δ = 0.1.As observed inRef. [7], for elastic composites, the effective inclusion’s aspect ratio affects significantly
the effective piezoelectric coefficients. Beyond the point where λ = 100, the orientation distribution can be
considered as a parallel one; the electro-elastic properties are not observed to change for values of λ = 100.
The coefficients C̄33 and ē33 become negative (lose physical meaning) for different values of δe. The limit case
λ = 100 is most affected by the variation of δe, and the case λ = 0 has the lowest correlation with δe. This
behavior is not exclusive for these properties at those concentrations; it can be observed for all electro-elastic
properties independently of the value of λ.
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Fig. 6 Stiffness C̄33 and piezoelectric moduli ē33 as functions of the porosity θ for PZT-7A ceramic containing pores with
orientation scatter at different values of the effective inclusion’s aspect ratio δe and the scatter parameter λ. Completely random
orientation λ = 0 is shown in (a) and (b), and parallel distribution of porous λ = 100 in (e) and (f)

The stiffness C̄33 and the piezoelectric coefficients ē33 are plotted in Fig. 6, against the porosity θ1 of a
PZT-7A ceramic at different values of the preferred alignment λ and with four effective inclusion’s aspect
ratios δe. The pores have an aspect ratio of δ = 0.1. The curve for δe = δ = 0.1 is the only that has physical
meaning. The effective properties become negative with an increment of θ1, and this trend is observed to be
stronger for δe >> δ. The numerical experiments show that the effective electro-elastic properties lose physical
meaning (become negative) when δe is different from δ, independently of the inhomogeneity’s orientation λ.
The effective inclusionmust be selected as a spheroid with the same aspect ratio as the inhomogeneities δe = δ,
as observed in Refs. [7,10].

Figure 7 shows a comparison between the effective constants for different tri-phasic piezoelectric com-
posites. Each composite is made by an Araldite-D matrix in which long fibers of PZT-7A and other ceramics,
like PZT-4, PZT-5, and BaTiO3, are embedded. The volume fraction of PZT-4, PZT-5, and BaTiO3 is fixed
at θ2 = 0.3, and the volume fraction of PZT-7A varies from θPZT−7A = 0 to θPZT−7A = 0.6. The total
volume fraction is θ = θPZT−7A + θ2. The aspect ratio of the effective inclusion is δe = 1000 because the
inhomogeneities are fibers. For the anti-plane coefficients C̄44, ē15, and η̄11, the theoretical predictions are
practically the same for the three composites in the whole range of the volume fraction 0 ≤ θ ≤ 0.9, since the
observed differences are negligible.

In Fig. 8, the effective electro-elastic properties of a tri-phasic piezoelectric composite made by long fibers
(δ = 1000) of PZT-7A and disks (δ = 0.1) of PZT-4 embedded in an Araldite-D matrix are plotted against the
PZT-4 disk volumetric fraction θd for three different PZT-7Afiber volumetric fractions θ f . The total volumetric
fraction is θ = θ f + θd , and to avoid percolation, the range of θd is 0 < θd < 0.4. The aspect ratio of the
effective inclusion is δe = θ f δ f + θdδd . The anisotropy of Q(e) is the same as the anisotropy of

∑N
r=1 θrN(r)

and
∑N

r=1 θrQ(r). With this selection of δe, a condition is obtained for the physical consistence of the model.
The authors of Refs. [7,10] state that for composites with transversely isotropic microstructure, where the
symmetry axis coincides with the Ox3 axis of the Cartesian coordinate system, the effective inclusion is
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Fig. 7 Dependency of the electro-elastic coefficients on the volumetric fraction θPZT−7A in tri-phasic composites made by fibers
of PZT-7A, PZT-4, PZT-5, and BaTiO3 at θ2 = 0.3 embedded in an Araldite-D matrix
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Fig. 8 Plots of the electro-elastic coefficients as functions of the PZT-4 volume fraction θd in a tri-phasic composite made by
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an oblate spheroid with aspect ratio δe =∑N
r=1 θr N

(r)
3333/N

(r)
1111, if this fraction is smaller than 1, or a prolate

spheroidwith aspect ratio δe =∑N
r=1 θr Q

(r)
3333/Q

(r)
1111, if this fraction is larger than or equal to 1. The calculation

of δe as previously discussed is avoided because it is more computationally expensive than δe = θ f δ f + θdδd ,
even in the tri-phasic scenario.

5 Conclusions

The present paper provides an analysis of piezoelectric composites and the behavior of the static effective
properties using the Maxwell homogenization method. As a novel contribution, the electro-elastic coefficients
in composites with more than one family of inhomogeneities are obtained with the Maxwell scheme. The
results are presented for three-phase composites which are made by two types of piezoelectric reinforcements
embedded in a non-piezoelectricmatrix.MHMis extended to piezoelectric compositeswith arbitrarily-oriented
inhomogeneities whose distribution orientations are given by two different probability densities. The question
of the shape of the effective inclusion is treated. The present model poses a novel way to compute the aspect
ratio of the effective inclusion. The components of the tensorial integral functions are given in explicit form.

The Maxwell scheme is applied to composites in which the inhomogeneities of a given family have an
orientation distribution. Two different ODFs are considered, Pλ(φ) and Pσ (φ), where both reflect the transverse
isotropy with respect to the symmetry axis Ox3. Pλ(φ) and Pσ (φ) are governed by the parameters λ ≥ 0 and
σ ≥ 0, respectively. Orientations between a random λ, σ = 0 and the parallel λ, σ → ∞ were considered.
The components of the average electro-elastic properties over the inhomogeneities are given in explicit form.
The selection of Pλ(φ) and Pσ (φ) does not affect the effective properties of piezoelectric composites.

The static effective properties of piezoelectric composites are significantly affected by the geometry of the
effective inclusion. It is shown that an inappropriate choice of the aspect ratio δe of the effective inclusion may
lead to effective electro-elastic properties that have no physical meaning. δe has to be of ellipsoidal shape and
with the same aspect ratio than the inhomogeneities δe = δ for aligned inhomogeneities in biphasic composites.
Finally, the effective inclusion’s aspect ratio can be selected as δe = ∑N

i=1 θiδi for N different families of
inhomogeneities.
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Appendix A. T, U, t tensor bases representation

The electro-elastic properties of a piezoelectric transversely isotropic material can be represented in the form

C(φ, θ) = C11T1(φ, θ) + C12(T2(φ, θ) − T1(φ, θ))

+ C13(T3(φ, θ) + T4(φ, θ)) + 4C44T5(φ, θ) + C33T6(φ, θ),

e(φ, θ) = e31U1(φ, θ) + e15U2(φ, θ) + e33U3(φ, θ),

ε(φ, θ) = ε33t1(φ, θ) + ε11t2(φ, θ)

(A.1)

where C11, C12, C13, C33, C44 are five independent elastic moduli of the transversely isotropic medium, e31,
e15, e33 are three piezoelectric constants, and ε33, ε11 are two permittivities. The quantities Ti (φ, θ),Ui (φ, θ),
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ti (φ, θ) are the elements of the tensor basis defined in Ref. [38] as follows:

T 1
i jkl(φ, θ) = 1

2
(θikθl j + θilθk j ), T 2

i jkl(φ, θ) = θi jθkl ,

T 3
i jkl(φ, θ) = θi jmkml , T 4

i jkl(φ, θ) = mim jθkl ,

T 5
i jkl(φ, θ) = 1

4

(
θikmlm j + θilmkm j + θ jkmlmi + θ jlmkmi

)
,

T 6
i jkl(φ, θ) = mim jmkml ,

U 1
i jk(φ, θ) = θi jmk, U2

i jk(φ, θ) = miθ jk + m jθik, U3
i jk(φ, θ) = mim jmk,

t1i j (φ, θ) = mim j , t2i j (φ, θ) = θi j ,

θi j (φ, θ) = δi j − mi (φ, θ)m j (φ, θ)

(A.2)

where mi (φ, ϕ) = (cos θ sin φ, sin θ sin φ, cosφ) is the unit vector along the symmetry axis of the material
and is defined by Eq. (3.9).
The average electro-elastic properties of a composite in which the inhomogeneities have arbitrary orientations
are given by integrating over the different orientations,

Cp =
∫ π/2

0
dφ Pp(φ) sin φ

{∫ 2π

0
dθ
[
C11T1(φ, θ) + C12

(
T2(φ, θ) − T1(φ, θ)

)

+C13(T3(φ, θ) + T4(φ, θ)) + 4C44T5(φ, θ) + C66T6(φ, θ)
]}

,

ep =
∫ π/2

0
dφ Pp(φ) sin φ

∫ 2π

0
dθ
[
e31U1(φ, θ) + e15U2(φ, θ) + e33U3(φ, θ)

]
,

ε p =
∫ π/2

0
dφ Pp(φ) sin φ

∫ 2π

0
dθ
[
ε33t1(φ, θ) + ε11t2(φ, θ)

]
,

(A.3)

after taking into account Eqs. (A.1) and (3.10). The functions Pλ(φ) and Pσ (φ) described in Eqs. (3.6) and
(3.7), respectively, are represented by the function Pp(φ). The components of Cp, ep, and ε p are given by

C (p)
11 = g11(p)C11 + g12(p)C13 + 3

8
g6(p)C33 + 2g12(p)C44,

C (p)
12 = 1

8
g6(p)C11 + (1 − 2g1(p))C12 + g10(p)C13 + 1

8
g6(p)C33 − 1

2
g6(p)C44,

C (p)
13 = g4(p)C11 + g1(p)C12 + g5(p)C13 + g4(p)C33 − 4g4(p)C44,

C (p)
33 = g6(p)C11 + 4g4(p)C13 + g7(p)C33 + 8g4(p)C44,

C (p)
44 = g8(p)C11 − 1

2
g1(p)C12 − 2g4(p)C13 + g4(p)C33 + g9(p)C44,

e(p)
31 = (g2(p) + g3(p))e31 − 2g2(p)e15 + g2(p)e33,

e(p)
15 = −g2(p)e31 + g3(p)e15 + g2(p)e33,

e(p)
33 = 2g2(p)e31 + 4g2(p)e15 + g3(p)e33,

ε
(p)
11 = (1 − g1(p))ε11 + g1(p)ε33,

ε
(p)
33 = 2g1(p)ε11 + (1 − 2g1(p))ε33.

(A.4)

When p = λ, the functions gi (λ) are defined as
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g1(λ) = 3

9 + λ2
− λe− π

2 λ 3 + λ2

6(9 + λ2)
,

g2(λ) =
e− π

2 λ

(
40 + 24e

π
2 λ(1 + λ2) + λ(64 + λ(44 + λ(20 + λ(4 + λ))))

)

8(4 + λ2)(16 + λ2)
,

g3(λ) =
e− π

2 λ

(
24 + 4e

π
2 λ(1 + λ2)(10 + λ2) + λ(64 + λ(24 + 20λ + λ3))

)

4(4 + λ2)(16 + λ2)
,

g4(λ) = 3(5 + λ2)

(9 + λ2)(25 + λ2)
+ λe− π

2 λ 12 + (1 + λ2)(18 + λ2)

15(9 + λ2)(25 + λ2)
,

g5(λ) = 96 + (1 + λ2)(24 + λ2)

(9 + λ2)(25 + λ2)
+ λe− π

2 λ 192 + (1 + λ2)(63 + λ2)

30(9 + λ2)(25 + λ2)
,

g6(λ) = 1800

15(9 + λ2)(25 + λ2)
− λe− π

2 λ 435 + 178λ2 + 7λ4

15(9 + λ2)(25 + λ2)
,

g7(λ) = 24 + (1 + λ2)(21 + λ2)

(9 + λ2)(25 + λ2)
+ λe− π

2 λ 72 + (1 + λ2)(33 + λ2)

5(9 + λ2)(25 + λ2)
,

g8(λ) = 3(35 + 3λ2)

2(9 + λ2)(25 + λ2)
− λe− π

2 λ 192 + (1 + λ2)(63 + λ2)

60(9 + λ2)(25 + λ2)
,

g9(λ) = 10 + λ2

25 + λ2
− λe− π

2 λ −5 + λ2

10(25 + λ2)
,

g10(λ) = 6(20 + λ2)

(9 + λ2)(25 + λ2)
− λe− π

2 λ 1065 + 382λ2 + 13λ4

60(9 + λ2)(25 + λ2)
,

g11(λ) = 93 + (1 + λ2)(27 + λ2)

(9 + λ2)(25 + λ2)
+ λe− π

2 λ 1695 + 586λ2 + 19λ4

120(9 + λ2)(25 + λ2)
,

g12(λ) = 6(10 + λ2)

(9 + λ2)(25 + λ2)
+ λe− π

2 λ −195 − 26λ2 + λ4

60(9 + λ2)(25 + λ2)
.

(A.5)

For p = σ , the functions gi (σ ) are defined as follows:

g1(σ ) = σ coth σ − 1

σ 2 ,

g2(σ ) = cschσ
σ 2 + 2(3 + σ 2) cosh σ − 6σ sinh σ − 6

2σ 3 ,

g3(σ ) = 6σ + σ 3 − 3(2 + σ 2) coth σ + 6cschσ

σ 3 ,

g4(σ ) = −12 − 5σ 2 − σ(12 + σ 2) coth σ

σ 4 ,

g5(σ ) = (8 + σ 2)
3 + σ 2 − 3σ coth σ

σ 4 ,

g6(σ ) = 24 + 8σ 2 − 24σ coth σ

σ 4 , (A.6)

g7(σ ) = 24 + 12σ 2 + σ 4 − 4σ(6 + σ 2) coth σ

σ 4 ,

g8(σ ) = −24 − 11σ 2 + 3σ(8 + σ 2) coth σ

2σ 4 ,

g9(σ ) = 48 + 21σ 2 + σ 4 − σ(48 + 5σ 2) coth σ

σ 4 ,
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g10(σ ) = −6 − 4σ 2 + 2σ(3 + σ 2) coth σ

σ 4 ,

g11(σ ) = 9 + 5σ 2 + σ 4 − σ(9 + 2σ 2) coth σ

σ 4 ,

g12(σ ) = 2
−9 − 4σ 2 + σ(9 + σ 2) coth σ

σ 4 .

Taking the limit of parallel orientations p → ∞, the components of C(p), e(p), ε(p) have the following form:

lim
p→∞C (p)

11 = C11, lim
p→∞C (p)

12 = C12, lim
p→∞C (p)

13 = C13, lim
p→∞C (p)

33 = C33,

lim
p→∞C (p)

44 = C44, lim
p→∞ e(p)

31 = e31, lim
p→∞ e(p)

15 = e15, lim
p→∞ e(p)

33 = e33,

lim
p→∞ ε

(p)
11 = ε11, lim

p→∞ ε
(p)
33 = ε33,

(A.7)

after substitution of gi (λ)or gi (σ ) intoEq. (A.4). The limits inEq. (A.7) are in agreementwith the representation
of a transversely isotropic medium C(0, θ), e(0, θ), ε(0, θ) in the tensor basis given by Eq. (A.2).

Appendix B. Components of the tensors S̄(r)
x , M̄(r)

x , S̄(r)
,x , and M̄(r)

,x .

The tensor S(r)
x is given by Eq. (2.5). Due to the ϕ and u dependence in Eq. (2.5), the only non-vanishing

components of S(r)
x(kli j) are S(r)

x(1111) = S(r)
x(2222), S

(r)
x(1122) = S(r)

x(2211), S
(r)
x(3333), S

(r)
x(1133) = S(r)

x(2233) = S(r)
x(3311) =

S(r)
x(3322), S

(r)
x(2323) = S(r)

x(2332) = S(r)
x(3223) = S(r)

x(3232) = S(r)
x(1313) = S(r)

x(1331) = S(r)
x(3113) = S(r)

x(3131) and

S(r)
x(1212) = S(r)

x(1221) = S(r)
x(2112) = S(r)

x(2121). Then, using the Voigt two-index notation,

S(r)
x(11) =

∫ 1

−1
du

1 − u2

4π |�̄li |
(
�c(�a + 3�b) − �2

ac

)
, (B. 1)

S(r)
x(12) =

∫ 1

−1
du

1 − u2

4π |�̄li |
(
�2

ac − �ab�c

)
, (B. 2)

S(r)
x(13) =

∫ 1

−1
du

u
√
1 − u2

4π |�̄li |
�ac

(
�ab − �a − 3�b

)
, (B. 3)

S(r)
x(33) =

∫ 1

−1
du

u2

4π |�̄li |
(
�2

a − �2
ab + 6�a�b + �2

b

)
, (B. 4)

S(r)
x(44) =

∫ 1

−1
du

1 − u2

8π |�̄li |
(
�2

a − �2
ab + 6�a�b + �2

b

)

+
∫ 1

−1
du

u
√
1 − u2

2π |�̄li |
�ac

(
�ab − �a − 3�0

b

)

+
∫ 1

−1
du

u2

π |�̄li |
(
�c(�a + �b) − �2

ac

)
, (B. 5)

S(r)
x(66) =

∫ 1

−1
du

1 − u2

8π |�̄li |
(
�c(�a + 3�b + �ab) − 2�2

ac

)
. (B. 6)

Here, the determinant |�̄li | of �̄li is given by

|�̄li | = −�b

ε

(
2�acγaγc − �aγ

2
c + ε�2

ac − �c

(
γ 2
a + ε�a

))
(B. 7)
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where �a(ζ ), �ab(ζ ), �ac(ζ ), �c(ζ ), �a(ζ ), �b(ζ ), �c(ζ ), �ab(ζ ), �ac(ζ ), γa(ζ ), γc(ζ ), and ε(ζ ) are given
by

�a(ζ ) = �a(ζ ) + γ 2
a (ζ )

ε(ζ )
, �ab(ζ ) = �ab(ζ ) + γ 2

a (ζ )

ε(ζ )
,

�ac(ζ ) = �ac(ζ ) + γa(ζ )γc(ζ )

ε(ζ )
, �c(ζ ) = �c(ζ ) + γ 2

c (ζ )

ε(ζ )
,

�a(ζ ) = 1

a2r

(
C0
11(1 − u2) + C0

44u
2

δ2r

)
, �ab(ζ ) = C0

11 + C0
12

2a2r
(1 − u2),

�b(ζ ) = 1

a2r

(
C0
66(1 − u2) + C0

44u
2

δ2r

)
, �ac(ζ ) = C0

13 + C0
44

a2r δr
u
√
1 − u2,

�c(ζ ) = 1

a2r

(
C0
44(1 − u2) + C0

33u
2

δ2r

)
, γa(ζ ) = e031 + e015

a2r δr
u
√
1 − u2,

γc(ζ ) = 1

a2r

(
e015(1 − u2) + e033u

2

δ2r

)
, ε(ζ ) = 1

a2r

(
ε011(1 − u2) + ε033u

2

δ2r

)
.

(B. 8)

The tensor S(r)
,x is obtained fromEq. (2.6). The only nonzero components of S(r)

,x(k4i j) are S
(r)
,x(1413) = S(r)

,x(2423) =
S(r)
,x(1431) = S(r)

,x(2432), S
(r)
,x(3411) = S(r)

x(3422), and S(r)
,x(3433), due to the ϕ and u dependence in Eq. (2.6). Then, in

Voigt’s notation,

S(r)
,x(31) =

∫ 1

−1
du

u
√
1 − u2

4πε|�̄li |
(

�a − �ab + 3�b

)(
�cγa − �acγc

)
, (B. 9)

S(r)
,x(15) =

∫ 1

−1
du

u
√
1 − u2

πε|�̄li |
(

�a − �ab + 3�b

)(
�cγa − �acγc

)

+
∫ 1

−1
du

1 − u2

4πε|�̄li |
γc

(
�2

a − �2
ab + 6�a�b + �2

b

)

+
∫ 1

−1
du

1 − u2

2πε|�̄li |
�acγa

(
�ab − �a − 3�b

)
, (B. 10)

S(r)
,x(33) =

∫ 1

−1
du

u2

4πε|�̄li |
γc

(
�2

a − �2
ab + 6�a�b + �2

b

)

+
∫ 1

−1
du

u2

4πε|�̄li |
2�acγa

(
�ab − �a − 3�b

)
. (B. 11)

The tensorM(r)
,x is given by Eq. (2.7). Due to the ϕ and u dependence in Eq. (2.7), the only nonzero components

of M(r)
,x(k44 j) are M(r)

,x(1441) = M (r)
,x(2442) and M (r)

,x(3443). Then

M (r)
,x(11) =

∫ 1

−1
du

1 − u2

4

(
ε − �b

|�i j |
(
γc(2�acγa − �aγc) − �cγ

2
a

))−1

, (B. 12)

M (r)
,x(33) =

∫ 1

−1
du

u2

2

(
ε − �b

|�i j |
(
γc(2�acγa − �aγc) − �cγ

2
a

))−1

. (B. 13)

Here, the determinant |�li | of �li is written as

|�li | = −�b

(
�2
ac − �a�c

)
. (B. 14)
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