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Original geometrical stopping criteria associated to multilevel
adaptive mesh refinement for problems with local singularities

Isabelle Ramière1 · Hao Liu1 · Frédéric Lebon2

Abstract
This paper introduces a local multilevel mesh refinement strategy that automatically stops relating to a user-defined tolerance
even in case of local singular solutions. Refinement levels are automatically generated thanks to a criterion based on the
direct comparison of the a posteriori error estimate with the local prescribed error. Singular solutions locally increase with
the mesh step (e.g. load discontinuities, point load or geometric induced singularities) and are hence characterized by locally
large element-wise error whatever the mesh refinement. Then, the refinement criterion may not be self-sufficient to stop the
refinement process. Additional stopping criteria are required if no physical-designed estimator wants to be used. Two original
geometry-based stopping criteria are proposed that consist in automatically determining the critical region for which the mesh
refinement becomes inefficient. Numerical examples show the efficiency of the methodology for stress tensor approximation
in L2-relative or L∞-absolute norms.

Keywords Adaptive mesh refinement · Local Defect Correction method · A posteriori error estimator · Stopping criteria ·
Local singular solution · Elastostatics

1 Introduction

Since the 80’s, adaptivemesh refinement techniques are com-
monly used to locally improve the solutions of ordinary
or partial differential equations, see for example [5,7–9,15,
20,25,42] and the references therein. Such locally refined
meshes are generally obtained thanks to an iterative process
based on a posteriori error estimators [3,39,43]. Either quan-
titative or qualitative use of the error estimator is generally
made. In the first category, a direct comparison of the error
estimator with the user prescribed accuracy (e.g. [14,17])
is conducted. In the second category, the detected zone is
usually defined as the union of the elements for which the
error estimator is greater than a proportion of the maximal
estimated error (e.g. [16,21]). The second methodology has
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the main drawback to be not related to the user prescribed
accuracy. Moreover it has been shown in [4] that the opti-
mal proportion seems to depend on the problem. While the
refinement criteria are generally well analyzed in the litera-
ture, stopping criteria are poorly studied although they play
an important role in the obtained results.

Again, the way to stop the refinement process is non-
unique. Themost used approach seems to consist in checking
at each refinement iteration if the estimated error is less than
the prescribed accuracy (e.g. [14,17]). This stopping criterion
approach is strongly related to the convergence of the error
estimator [22,31], as confirm the numerical examples pro-
vided in [28]. Other classical techniques consist in stopping
the refinement process thanks to a priori given parameters
independent of the prescribed error : number of iterations
(e.g. [2,21]), minimal number of elements to refined [4], etc.
Various stopping criteria are often combined in order to opti-
mize the refinement strategy, see for example [13,32].

A singular solution can be defined as a solution field
that does not converge towards a specific value at a point
(or edge) of the domain, named singularity. Hence, while
locally refining the mesh, the absolute value of the solution
at this singularity keeps increasing. According to the Saint
Venant’s Principle [6], the Finite Element approximation is
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fine at some distance away from the singularity but is pol-
luted near the singularity. In many industrial software, it is
recommended to ignore the singularities if the user is only
interested by the solution far away from any singularities or
by integrals of the solutions over the singularity region. On
the contrary, the meshmust be locally refined in order to cap-
ture the singularity effect. In this latter case, only stopping
criteria based on a priori given parameters or on the global
error will lead to the automatic shutdown of the refinement
procedure unless defining new a posteriori error estimators
dedicated to local singularities [24,29,36].

In this paper,we propose geometry-based stopping criteria
that enable to automatically turn off the refinement process
in case of local singularities in the solution and indepen-
dently of the considered physical problem. These criteria,
independent of the prescribed error, aim to determine the
critical region for which the mesh refinement becomes inef-
ficient while respecting the prescribed local accuracy on the
remaining part of the domain. Following the idea of the The-
ory of the Critical Distances in fracture mechanics [40], this
critical region can be viewed a discrete volume approxima-
tion of the singularity. We provide hence a cheap and easy to
implement automatic mesh characterization of the singular-
ity. In the proposed numerical examples, a special attention
will be paid on the verification of the prescribed error on the
refined mesh.

Multilevel adaptive mesh refinement methods are well
designed to deal with local refinement. They consist in
sequentially adding local finer meshes in regions of interest.
This kind of methodology is cheap because only additional
little size problems are solved. Error estimators can be eas-
ily coupled to such methods in order to automatically detect
the region of interest [5,32]. As the multilevel process is
inherently iterative, no density function is required: a fixed
refinement ratio can be applied on the detected zones.

Without loss of generality, we will focus in the sequel
on linear elastostatics problems with a singular solution due
to discontinuous loadings. We will compare the two origi-
nal refinement automatic geometry-based stopping criteria
proposed in this paper with the one based on a minimal num-
ber of elements. For this end, the chosen multilevel adaptive
mesh refinement method will be the Local Defect Correc-
tion (LDC)method [26], well designed for partial differential
equations, coupled with a quantitative use of the a posteriori
ZZ error estimator [46] on the stress field.

Section 2 is devoted to a brief recall of the multilevel LDC
method. The LDC algorithm is written in the case of linear
problems. In Sect. 3, the use of a posteriori error estimators in
refinement processes is discussed. In this section, two origi-
nal geometry-based stopping criteria dedicated to automatic
mesh refinement in presence of singularities are introduced.
Numerical results on examples derived from nuclear engi-
neering are provided in Sect. 4. The ZZ error estimator is

used for the automatic refinement process. The efficiency of
the proposed strategy is analyzed through the respect of the
stress tensor user prescribed tolerances, either in L2-relative
or in L∞-absolute norm. These results enable to appreci-
ate the performance of the a posteriori-based, fully adaptive
multilevel mesh refinement algorithm with automatic stop-
ping criteria in case of singular solutions.

2 Local Defect Correctionmethod for linear
problems

The Local Defect Correction method (LDC) [26] is a pow-
erful multilevel adaptive mesh refinement method which is
well adapted to finite element discretization of partial dif-
ferential equations. Local multilevel methods [11] consist
in correcting the solution to a problem defined on an initial
mesh thanks to an iterative process based on additional local
fine meshes resolutions, see Fig. 1. The transfer between the
meshes level is based on prolongation and restriction opera-
tors as in classical multigrid methods [11,18,27].

The prolongation operator is generic to all the local multi-
level adaptive techniques [1,12,26,33]. This operator aims to
define Dirichlet boundary conditions on fictive internal fine
mesh boundaries from the next coarser mesh, see Fig. 2. The
restriction operator, which enables to correct the solution
at each level from the next finer mesh, discriminates these
various techniques. With the definition of the prolongation
operator, energy conservation is ensured and then, unlike the
standard multigrid restriction operator, the local multigrid
restriction operator has not to be the transpose of the prolon-
gation operator, see [26] for more details.

In the LDC method, the restriction operator is based on
the truncation error and consists in defining a defect from the
coarse operator applied on the restricted next finer solution.

By extension of the results of [19], the order of the inter-
polation operators has to be at least the expected order of
mesh convergence.

For linear problems, theLDCprocess involves the iterative
resolution of problems (Pk

l ), at iteration k on level l (0 ≤ l ≤
l�), written in matrix form (after discretization) in Eq.(1).

{ [Kl ][Uk
l ] = [Fk

l ] + [Nl ]
[Hl ][Uk

l ] = [Uk
l,p] + [Ul,D] (1)

where [Kl ] is the stiffness matrix calculated on grid Gl of
level l, [Fk

l ] is the volume external forces matrix (updated by
the restriction operator), [Nl ] is the surface external forces
matrix (natural Neumann BCs), [Hl ] is the Dirichlet bound-
ary conditions discretization matrix, [Uk

l,p] is the Dirichlet
values derived from the prolongation operation and [Ul,D] is
the natural Dirichlet BCs values.
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Fig. 1 Local multilevel meshes (left) and process (right)

Fig. 2 BCs prolongation in local multilevel processes

Algorithm 1 describes the LDC method for this type
of problem. For the sake of simplicity, we denote by ∂Gl

the boundary of the domain associated to the grid Gl . The
restriction operator slightly differs from the one proposed by
Hackbusch [26]. Indeed the subset Al (and consequently Ål )
has been enlarged in order to take into account the contri-
bution of the natural BCs on the next finer grid, see [32] for
more details.

One can remark that on the initial grid (k = 0), only
volume forces [Fk

0 ] are updated during the LDC iterations.
Hence, on this grid all boundaries have natural BCs.

One of the main advantage of the LDC method is that
it is non-intrusive, only pre- and post-processing operations
are made. Existing (industrial) software can hence be used.
Moreover, the LDC method is very generic: the solver, the
refinement ratio and even the model can change between lev-
els of refinement. This method is very powerful as only low
degrees of freedomby level are considered, uniformgrids can

be used, and stiffness matrix factorizations can be conserved
during iterations.

However, prolongation and restriction operators have to be
carefully chosen. Their orders have to be in agreement with
the expected discretization order. In practice, interpolation
operators are used (see Sect. 4.3.2).

This method has been initially introduced and applied for
computational fluids problems andhas been recently success-
fully extended to solids mechanics: elastostatics problems in
[4], elastostatics problems with frictional contact in [32] and
Norton-type material behaviour in [5].

3 On the use of error estimators

In this section,wedonot describe error estimators themselves
(the reader can refer to [39,42] and the references therein),
but their use to detect the zones to be refined. The description
of “optimal” mesh design strategies leaning on error estima-
tors is behind the scope of this article (see for example [17]
and the reference therein for h-adaptive strategies, especially
[14] for mesh design in case of local singularities or stress
concentrations).

3.1 Detection of themesh zones to refine

Assaid in introduction, the detectionof the zones to be refined
can be automatically done thanks to an a posteriori error esti-
mator, which gives local estimations ‖eK ‖ on mesh elements
K , with a chosen norm ‖ · ‖. Doing this, either a quantita-
tive or a qualitative use of the local error estimator can be
proceeded.
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Algorithm 1: Multilevel LDC algorithm applied to linear discrete problems

Input: kmax : maximal number of iterations, l∗ : number of levels of refinement, tol: given
tolerance for convergence, Gl : grid at level l, [Kl ], [Hl ], [Nl ], [Ul,D ]:
non-iteration-dependent matrices of the discretized linear problem at level l, [F0l ]:
initial problem volume forces at level l, [Pll−1]: prolongation operator from grid

Gl−1 to grid Gl (l = 1, ..., l∗), [Rll+1]: restriction operator from grid Gl+1 to grid

Gl (l = l∗ − 1, ..., 0)
Output: [Ul ] for l = 0, ..., l∗
Initialization: Computation of the initial problem solution [U0

0 ] on G0

⎧⎨
⎩

[K0][U0
0 ] = [F00 ] + [N0]

[H0][U0
0 ] = [U0,D ]

Iterations: Actualization of [Uk
l ]

for k=1 to kmax do
[Uk

0 ] = [Uk−1
0 ]

//Prolongation step//
for l = 1 to l∗ do

Prolongated Dirichlet BCs on Γ
f
l = ∂Gl \∂G0

[Uk
l,p ] = [Pll−1][Uk

l−1]

Computation of [Uk
l ]

⎧⎪⎨
⎪⎩

[Kl ][Uk
l ] = [Fk−1

l ] + [Nl ]
[Hl ][Uk

l ] = [Uk
l,p ] + [Ul,D ]

end
//Restriction step//
for l = l∗ − 1 to 0 do

Restriction of the fine grid solution [Uk
l+1] on

Al = {x ∈ (Gl+1\Γ f
l+1) ∩ (Gl \Γ f

l )}

[Ũk
l ] = [Rll+1][Uk

l+1] on Al

Computation of local residual on
Ål = {x ∈ Al ; [Kl ][U1

l ] involves only y ∈ Al }

[Dk
l ] = [Kl ][Ũk

l ] − [F0l ] on Ål

Right-hand side update

[Fkl ] = [F0l ] + χ
Ål

[Dk
l ]

with χ
Ål

the characteristic function of Ål : χ Ål
(x) =

{
1 if x ∈ Ål
0 elsewhere

Computation of [Uk
l ] solving

⎧⎨
⎩

[Kl ][Uk
l ] = [Fkl ] + [Nl ]

[Hl ][Uk
l ] = [Uk

l,p ] + [Ul,D ]

end

if
‖[Uk

0 ] − [Uk−1
0 ]‖

‖[Uk−1
0 ]‖

< tol then

end the algorithm
end

end

The quantitative use simply consists in comparing ‖eK ‖
to a local user-prescribed tolerance ε and to define the zone
Ωr to be refined as

Ωr = {∪K̄ ; K such that ‖eK ‖ > ε} (2)

with K̄ the adherence of K .
If the user tolerance ε is global, the definition of the local

error ‖eK ‖ may lead to multiply the tolerance ε by a (local)

coefficient in order to be used for the refined zone detec-
tion (2). This coefficient depends on the relation between the
local and the global error, see for example [17].

Quantitative approach rests on the reliability of the a pos-
teriori error control, or at least the real error overestimation.

On the other hand, the qualitative use of the error estimator
is based on a intra-comparison of the local error estimate
values. Generally speaking, the refined zone is defined as

Ωr = {∪K̄ ; K such that ‖eK ‖ > αmax
L

‖eL‖, α ∈ [0, 1]}
(3)

This qualitative detection is less related to the properties of
the error estimator. However, the parameter α is not easy to
chose and seems to depend to the problem under study. No
simple correlation between the optimumα and expected error
levels was found to exist, see [4]. Moreover this estimator
needs to be coupled to a stopping criterion in order to avoid
an infinite refinement process.

3.2 On the stopping of the refinement process

In this section, we place ourselves in the case of generic error
estimators [41], no physically dedicated to singular prob-
lems.

When a quantitative estimator is used for refinement zone
detection, see Eq. (2), a natural stopping criterion is

Ωr = ∅ (4)

This stopping criterion is strongly related to the convergence
of the local error estimator. In case of singular solutions,
defined as solutions that do not converge towards a specific
value at a point of the domain (singularity), this stopping
criterion can not be used for fine error levels as the usual
local error estimator is still growing at the singularity.

In this latter case, additional stopping criteria have to be
used. Thank to the Saint Venant’s Principle [6], the integral of
the solution (even over the singularity region) is not affected
by the singularity effect. A global error stopping criterion is
then often exploited

‖e‖ < ε (5)

with e a global error estimate and ε a global user-prescribed
tolerance. Here again, this criterion strongly depends on the
reliability of the global estimator. The local zone where the
user-prescribed error is not respected is often not controlled.
This stopping criterion leads to a global optimal mesh (in
term of respect of prescribed global accuracy versus minimal
number of elements), see [14,31] for example.

A priori stopping criteria can also be used as when quali-
tative zone detection, see Eq. (3), is employed. Indeed, with a
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qualitative detection,Ωr is never empty. In the literature, one
can mainly find the two following a priori stopping criteria:

– Fixed number of mesh refinement iterations (see for
example [2,5,14,21])

– Minimal number of elements to be refined (see for exam-
ple [4])

NbElt(Ωr ) ≤ NbMin (6)

where NbElt(Ωr ) denotes the number of elements of the
detected zone Ωr and NbMin the prescribed minimal
number of elements.

In the first case, no local error is guaranteed. The global
real error is generally a posteriori checked and the number of
iterations adjusted to reach adesiredvalue for a certain typeof
problem. If the minimal elements number stopping criterion
is combined with a quantitative zone detection, then the local
error is controlled outside the stopping region. However, the
size of the stopping region may vary with the initial mesh.

3.3 Geometry-based stopping criteria for local
singular solution

In this paper, we propose geometry-based a priori stopping
criteria that may be useful in case of local adaptive mesh
refinement for singular solutions. It relies on the fact that if
Ωr is too small compared to the computation domain Ω , the
improvement brought by the new refined mesh will be of low
interest. Two geometry-based criteria are proposed here and
studied in Sect. 4:

– ratio of mesh measure:

|Ωr | < min
L∈G0

|L| (7)

where | · | denotes the measure and G0 the initial mesh of
Ω . Eq. (7) means that the refinement process is stopped
when the measure of the detected refinement zone Ωr is
less than themeasure of the smallest element of the initial
mesh of Ω . The size of the stopping zone is correlated
with the initial grid G0.
Eventually, this criterion could be extended to n times
the measure of any element of G0.

– ratio of domain measure:

|Ωr | < β|Ω| (8)

with β < 1.
This criterion expresses that the refinement is turned off
when the measure of the zone to be refined is less than

a proportion of the computation domain measure. This
criterion is independent of the initial grid G0.

These geometry-based criteria are independent of the pre-
scribed error but they aim to determine the critical region
for which the local mesh refinement becomes inefficient. If
combined with a quantitative refinement zone detection, the
prescribed local accuracy can be respected on the remaining
part of the domain as for the minimal number of element
criterion. By the way, an automatic mesh characterization of
the singularity is provided.

3.4 Combining LDC and error estimators

The genericity of the LDC method (see Sect. 2) enables us
to easily combined this method with any error estimator.
Hence, the grids Gl are no more inputs of the algorithm, see
Algorithm 1, but fully adaptively build during the refinement
process.

At each refinement level of the first prolongation step,
the error estimator is first applied on the next coarser grid
solution in order to detect to potential zone Ωr to be refined.
Then, a stopping criterion is evaluated to decide if Ωr will
give rise to the next local finer grid (with a finer mesh step).
If not, the latest refinement level l� is reached.

Any choice detection and stopping criteria can be done
with the LDC method. In Sect. 4, the three a priori stopping
criteria offering a discrete approximation of the singularity
(minimal number of elements, ratio of mesh measure and
ratio of domainmeasure) combinedwith a quantitative detec-
tion criterion are compared when being used during the fully
adaptive multilevel LDC algorithm.

4 Numerics

4.1 Two numerical examples derived from nuclear
engineering studies

In this section, in order to evaluate the strategy presented
above, two simplified 2D examples issued from mechani-
cal Pellet-Cladding Interaction (PCI) in nuclear engineering
are studied. Even if the singularity is not really strong (see
Sect. 4.3.1), these examples are representative of cases where
local adaptive mesh refinement won’t stop. Moreover, the
problem of PCI is essential in this field because the cladding
is the first safety enclosure in a pressured water reactor. The
contact is very complex due to the various non-linearities
involved in the problem: pellet cracking, cladding creep, etc.
The aim of this paper is not to analyze PCI in detail but to
show the behaviour and effectiveness of the mesh refinement
stopping criteria proposed above on simplified PCI models
catching the local effects of the pellet-cladding contact. That
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Fig. 3 Axisymmetric test case

(a) (b)

is why only the static response of the cladding is studied.
The cladding is supposed to be linearly elastic and isotropic
with Young’s modulus E = 100 GPa and Poisson’s ratio
ν = 0, 3. The contact between the pellet and the cladding is
modelled by a discontinuous pressure on the internal radius
of the cladding. It is obvious that the considered problem
lead in elastostatics to a linear system of the form of Eq.
(1).

Two 2D tests are represented here (2D axisymmetric and
2D plane strain) in order to study separately two phenomena
which are characteristic of the PCI: the hourglass and the
fragmentation of the pellet. These test cases have already
been proposed in [4].

The hourglass phenomenon is schematically represented
by a axisymmetric test case (see Fig. 3). The contact is mod-
elled by a peak of pressure on 600 µm length over the
inter-pellet plane. For symmetry reasons, only the half of
the pellet is modelled. In order to allow an overall normal
displacement of the cladding, a normal (a priori unknown)
translation condition is imposed at the mid-pellet plane. In
the following, without any analytical solution, comparisons
will bemadewith a very fine reference finite element solution
obtained with an uniform mesh step of 2 µm and 1, 053, 801
nodes.

The effect of the pellet cracking on the cladding is repre-
sented by a plane strain test case (see Fig. 4). Considering
the regularity of the cracks and due to symmetry conditions,
only 1/16th of the cladding is considered (see Fig. 4b). The
crack opening is supposed to be equal to 8µmon the internal
radius of the cladding. The discontinuous contact betwwen
the pellet and the cladding is thenmodelled by a pressure dis-

continuity on the cladding. The geometry and the boundary
condition are given in Fig. 4b. As for the previous test case,
a reference finite element solution, obtained with a quasi-
uniform mesh step of 1 µm and 260, 365 nodes, is used for
validation purposes.

4.2 An example of error estimate: the
Zienkiewicz-Zhu error estimate

There exists a large class of a posteriori error estimates which
have been developed for numerous problems: Stokes [34],
Maxwell [37], Cracks [10,24,35], Contact [32,44], Coulomb
friction [28,30,32], Plasticity [23], Thermalmultiphase flows
[16], etc. In this paper, we use the first Zienkiewicz and Zhu
(ZZ) a posteriori error estimator [45] which is a particular
recovery-based error estimator, where a smoothed version
of the gradient of displacement or the Cauchy stress tensor
is obtained by projection on the base related to the inter-
polation functions of the discretization method. Then, the
ZZ error indicator is given by the difference, in a chosen
norm, between the gradient of the approximation (or the
Cauchy stress) and the smoothed gradient. In most indus-
trial computational softwares (Abaqus, Aster, etc.), ZZ error
estimator family [45–47] had been chosen for its implemen-
tation simplicity and its good ratio precision over cost. In
the following numerical results, the first ZZ estimator will
be coupled with the LDC algorithm without any loss of gen-
erality.
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(a) (b)

Fig. 4 Plane strain test case

4.3 Numerical choices

4.3.1 Finite elements and refinement

In the following section (Sect. 4.4), the two examples pre-
sented above (axisymmetric test case and plane strain test
case) are discretized using bilinear finite elements (Q1 quad-
rangular elements). The initial mesh is build to be uniform
(or quasi-uniform for the plane strain test case). Hence the
position of the pressure discontinuity is approximated by the
mesh, i.e. on the nearest mesh node. As already shown and
studied in [4,38], the convergence rate of the discretization
error is of order one in the L2-norm for the displacement and
of order 1/2 for the gradient (here the stress).

The local fine meshes are obtained by dividing each quad-
rangular element to refine in four quadrangular sub-elements
(ratio r = 2). It has been shown in [5] that other choices
(r > 2) are possible.

All the discretized systems take the form of Eq. (1).

4.3.2 Prolongation and restriction operators

The LDC algorithm presented in Sect. 2 needs the use of two
operators, one of prolongation and one of restriction, which
permit to pass from a level to other one.

To solve the linear problem on grid Gl , it is necessary to
define Dirichlet boundary conditions on Γ

f
l (internal fictive

boundary) by a prolongation operator. The values of these
boundary conditions are obtained by a simple linear interpo-
lation applied to the solution on the closer coarse levelUk

l−1.
Note, as mentioned in Sect. 2, that the local fine grid has to be
enlarged. In our computations the local level is enlarged and
structured adding elements in order to obtain quadrangular
local grids.

Solution Uk
l is corrected via a residual obtained from the

solution on the next finer level Uk
l+1. The restriction used

here is the canonic one i.e. the value of the displacement on
the coarse grid is equal to the value of the displacement on
the fine one, for a node common to the two levels. Note that
this restriction concerns only the set of nodes not connected
with nodes on Γ

f
l in the discretization scheme.

This choice of operators is in agreement with the expected
first-order accuracy in displacement of the method.

4.3.3 Error norms

In Sect. 3, it is mentioned that the detection of zones to be
refined is linked to a norm that has to be chosen. The relative
error in energy norm for the element K can take the following
form:

‖eK ‖E =
(∫

K (σ ∗ − σh) : (ε∗ − εh) dK∫
K σ ∗ : ε∗ dK

)1/2

(9)

where σh is the stress tensor obtained by the finite elements
method, σ ∗ the ZZ smoothed stress tensor, C fourth order
elasticity tensor and εh = C−1σh, ε

∗ = C−1σ ∗. In order
to avoid a zero in the denominator, the following modified
energy norm will be preferred

‖eK ‖E =
( ∫

K (σ ∗ − σh) : (ε∗ − εh) dK∫
K σh : εh dK + ∫

K (σ ∗ − σh) : (ε∗ − εh) dK

)1/2

(10)

Lemma 1 We denote by ‖eΩ‖E the error on the composite
mesh (sub-level union). Let ε > 0 be given.

If ‖eK ‖E ≤ ε then ‖eΩ‖E ≤ ε.

This lemma shows that if the sub-level generation is
stopped by ‖eK ‖E ≤ ε with ε given, then ‖eΩ‖E ≤ ε.
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Proof

‖eK ‖E =
( ∫

K (σ ∗ − σh) : (ε∗ − εh) dK∫
K σh : εh dK + ∫

K σ ∗ : ε∗ dK

)1/2

≤ ε

⇐⇒
∫
K (σ ∗ − σh) : (ε∗ − εh) dK∫

K σh : εh dK + ∫
K σ ∗ : ε∗ dK

≤ ε2

⇐⇒
∫
K
(σ ∗ − σh) : (ε∗ − εh) dK

≤ ε2(

∫
K

σh : εh dK +
∫
K

σ ∗ : ε∗ dK )

By a sum on the composite grid:

�⇒
l∗+1∑
l=1

∑
K⊂Ωl−1\Ωl

∫
K
(σ ∗−σh) : (ε∗ − εh) dK

≤ ε2
l∗+1∑
l=1

∑
K⊂Ωl−1\Ωl

(

∫
K

σh : εh dK +
∫
K

σ ∗ : ε∗ dK )

(11)

with Ωl∗+1 = ∅.
Thus

‖eΩ‖E =

⎛
⎜⎜⎜⎜⎜⎝

l∗+1∑
l=1

∑
K⊂Ωl−1\Ωl

∫
K

(σ ∗ − σh) : (ε∗ − εh) dK

l∗+1∑
l=1

∑
K⊂Ωl−1\Ωl

(∫
K

σh : εh dK +
∫
K

σ ∗ : ε∗ dK

)

⎞
⎟⎟⎟⎟⎟⎠

1/2

≤ ε

(12)

��
In many mechanical problems, the quantity of interest is

the well known Von Mises stress. Indeed, this quantity is

often required to define the constitutive equations (plasticity,
viscoplasticity, etc.). If σ D denotes the deviatoric part of the
stress tensor σ , the Von Mises stress is given by σ V M =√

3
2σ

D : σ D . In the following, we consider the absolute error
in the infinity norm of the Von Mises stress i.e.

∣∣∣∣∣∣eV M
∣∣∣∣∣∣∞ =sup{

∣∣∣σ ∗V M−σ V M
h

∣∣∣
K

; K ∈
l∗⋃
l=1

(Ω1−1\Ωl)}.

(13)

Note that in the results presented thereafter this error is com-
puted without taking into account the last level, this could
permit to respect the user prescribed tolerance whatever the
size of the omitted zone (last level). The geometric criteria
permits to this zone to be small and not to depend on the
prescribed tolerance in the presence of singularity.

In the sequel, the ZZ estimated errors will be compared
to the so-called reference errors, which are equivalent to the
real errors where the analytical solution is replaced by the
reference solution (defined on a very fine mesh).

4.4 Numerical results

In this section, we perform the multilevel LDC refinement
algorithm with a quantitative detection criterion [see Eq. (2)]
based on the ZZ estimator, either using the local relative
error in energy norm (10) or the local absolute error of the
Von Mises stress in infinity norm (13). The two test cases
introduced in Sect. 4.1 are used. As these test cases present
a local singularity around the point of internal pressure dis-

Fig. 5 Axisymmetric test
case—Orthoradial stress along
the line z � 600µm (defined by
the mesh) - h0 = 328 µm

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  1  2  3  4  5  6

σ z
z 

( 
X

10
2  M

P
a)

r( X10-4m)

Mesh-step      h0
Mesh-step   h0/2
Mesh-step   h0/4
Mesh-step   h0/8
Mesh-step h0/16
Mesh-step h0/32
Mesh-step h0/64

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

 0  0.2  0.4  0.6  0.8  1

8



Fig. 6 Axisymmetric test case—example of grid levels obtained for an initial mesh step of 164 µm and ε = 1% - ZZ estimator for the relative
error in energy norm - Stopping criterion: minimal number of elements (=10)

continuity, see Fig. 5 for example, a stopping criteria for the
refinement process is required.

We compare the results obtained for three a priori local
stopping criteria:minimal number of elements (Eq. (6)), ratio
of mesh measure (Eq. (7)) or ratio of domain measure (Eq.
(8)).

The optimal minimal number of elements depends on the
test case and will be precised for each of them.

The standard definition of the ratio of mesh measure cri-
terion is used (size of one element of the initial mesh).
Preliminary computations indicate that the optimal value of
β for the ratio of domain measure criterion is 0.5% indepen-
dently of the test case. This value is used in the sequel.

4.4.1 Relative error in energy norm

The user-prescribed tolerance ε is a threshold of the relative
error in energy norm. Then, the detection criterion writes

‖eK ‖E > ε

with ‖eK ‖E defined by Eq. (10).

Axisymmetric test case For this test case, the optimal min-
imal number of element for criterion (Eq. (6)) seems to be
10. An example of the obtained grid levels for this stopping
criterion is given in Fig. 6.

As expected, the obtained meshes are automatically more
and more localized around the pressure discontinuity. The
number of DoFs of the finest level is very small (number
of DoFs = 247) as can be seen in Table 1. The problems

solved by the LDC algorithm at each level have limited size,
which lead to an efficient adaptive refinement method. As
already mentioned in the literature, we observe than the ZZ
estimator underestimates the real error (represented here by
the reference error), see Fig. 7.

Tables 1 and 2 enable us to compare the three stopping
criteria for two different initial meshes and three user-
prescribed thresholds. Complementary results can be found
in “Appendix A”.

The first conclusion to be drawn is that the refinement
process ends whatever the stopping criterion. Secondly, the
global user-prescribed tolerance is always reached. This may
be due to our local zone detection criterion that is a sufficient
but not a necessary condition to respect the global threshold,
see Lemma 1. Here, this local detection criterion returns to
compensate the ZZ underestimation.

One can obviously conclude that the LDC algorithm is
very robust and efficient. The accuracy of the obtained results
is directly related to the chosen error estimator and refinement
criteria.

Analyzing the two tables, the ratio of domain measure
seems the most reliable stopping criterion. The two others
criteria have a tendency to over-refine the mesh. Moreover,
for the same threshold, the finest refined zone obtained with
the ratio of mesh measure criterion is no more coherent as it
depends on the initial mesh.

Plane strain test case In this test case, the stress concentra-
tions aremore localized, as can be seen in Fig. 8. Theminimal
number of elements to be refined of criterion (6) had to be
changed to 7. Smallest values lead to an infinite refinement
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Table 1 Axisymmetric test case—comparison of different stopping criteria for various relative error in energy norm thresholds and an initial mesh
step of 164 µm

User-prescribed tolerance ε = 5% ε = 2% ε = 1%

Stopping criterion

Minimal number of elements (NbMin=10) l� (number of sub-levels generated) 0 1 3

Number of nodes per grid level 441 441/697 441/1105/2343/247

Reference relative error 4.20% 2.01% 0.653%

Ratio of mesh measure l� 0 1 2

Number of nodes per grid level 441 441/697 441/1105/2343

Reference relative error 4.20% 2.01% 0.899%

Ratio of domain measure (β = 0.5%) l� 0 1 2

Number of nodes per grid level 441 441/697 441/1105/2343

Reference relative error 4.20% 2.01% 0.899%

Fig. 7 Axisymmetric test case—comparison between the relative error
in energy norm estimated by ZZ (left) and the reference error (right)—
legends scaled between 0.1 and 9%—Mesh step 164 µm

process while biggest one turn to no refinement, as confirmed
by Fig. 8. This is a main drawback of the minimal number
of elements stopping criterion. It had to be filled to each test
case.

Tables 3 and 4 summarize some results obtained for the
three stopping criteria. Two initial meshes and three user-
prescribes tolerances are considered. Complementary results
can be found in “Appendix B”.

Contrary to the previous test case, the prescribed tolerance
is not always reached. This seems to be due to a worst under-
estimation of the ZZ estimator in this case where the stress
discontinuity is very localized, see Fig 8. The local detec-
tion criterion is hence not sufficient to compensate this large
underestimation. The ratio of mesh measure stopping crite-
rion leads to refinement levels that enable to always respect
the prescribed tolerance.However, toomuch levels are gener-
ated, see for example Table 4. The two other stopping criteria
lead to slightly exceed the user-given threshold but the refined
mesh are coherent whatever the initial mesh. These criteria
may be optimal with a more efficient a posteriori error esti-
mator.

Partial conclusion Thanks to the previous results, one can
conclude that the LDC algorithm is a efficient adaptive mesh
refinement process even in case of local singularity.

The most efficient stopping criterion seems to be the ratio
of domain measure (with β = 0.5%). It enables to obtain
coherent results whatever the initial mesh step. Moreover, it
may not depend on the test case and leads to globally respect
the prescribed tolerance.

With this stopping criterion, the zonewhere the prescribed
threshold is not locally verified is very small and can be
controlled.

4.4.2 Absolute error in infinite norm of the VonMises stress

In this case, the user-prescribed tolerance ε is a threshold of
the absolute VonMises stress error in the absolute norm. The
detection criterion is then

∣∣∣eV M
K

∣∣∣ =
∣∣∣σ ∗V M − σ V M

h

∣∣∣
K

> ε (14)

Axisymmetric test case First, we compare on Fig. 9 the
estimated and reference absolute errors for the Von Mises
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Table 2 Axisymmetric test case—comparison of different stopping criteria for various relative error in energy norm thresholds and an initial mesh
step of 82 µm

User-prescribed tolerance ε = 5% ε = 2% ε = 1%

Stopping criterion

Minimal number of elements (NbMin=10) l� (number of sub-levels generated) 0 0 2

Number of nodes per grid level 1649 1649 1649/2343/247

Reference relative error 1.92% 1.92% 0.550%

Ratio of mesh measure l� 0 1 2

Number of nodes per grid level 1649 1649/117 1649/2343/247

Reference relative error 1.92% 1.01% 0.550%

Ratio of domain measure (β = 0.5%) l� 0 0 1

Number of nodes per grid level 1649 1649 1649/2343

Reference relative error 1.92% 1.92% 0.83%

Fig. 8 Plane strain test case—example of grid levels obtained for an initial mesh step of 54.5 µm and ε = 1%—ZZ estimator for the relative error
in energy norm—stopping criterion: minimal number of elements (=7)

Table 3 Plane strain test case—comparison of different stopping criteria for various relative error in energy norm thresholds and an initial mesh
step of 54.5 µm

User-prescribed tolerance ε = 5% ε = 2% ε = 1%

Stopping criterion

Minimal number of elements (NbMin=7) l�(number of sub-levels generated) 0 0 1

Number of nodes per grid level 861 861 861/121

Reference relative error 3.19% 3.19% 1.27%

Ratio of mesh measure l� 0 1 2

Number of nodes per grid level 861 861/81 861/121/121

Reference relative error 3.19% 1.27% 0.462%

Ratio of domain measure (β = 0.5%) l� 0 0 1

Number of nodes per grid level 861 861 861/121

Reference relative error 3.19% 3.19% 1.27%

stress. We can conclude that the ZZ estimator well approxi-
mates the Von Mises stress with still a little underestimation
of large errors. In Table 5, we report various calculations

made for different thresholds and initial meshes. The refer-
ence absolute error is also mentioned. The first conclusion
to be drawn is that the user-prescribed tolerance is glob-
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Table 4 Plane strain test case—comparison of different stopping criteria for various relative error in energy norm thresholds and an initial mesh
step of 27.25 µm

User-prescribed tolerance ε = 5% ε = 2% ε = 1%

Stopping criterion

Minimal number of elements (NbMin=7) l�(number of sub-levels generated) 0 0 0

Number of nodes per grid level 3321 3321 3321

Reference relative error 1.22% 1.22% 1.22%

Ratio of mesh measure l� 0 1 2

Number of nodes per grid level 3321 3321/81 3321/121/121

Reference relative error 1.22% 0.294% 0.289%

Ratio of domain measure (β = 0.5%) l� 0 0 0

Number of nodes per grid level 3321 3321 3321

Reference relative error 1.22% 1.22% 1.22%

Fig. 9 Axisymmetric test case—comparison between the Von Mises
stress absolute error in infinite norm estimated by ZZ (left) and the
reference error (right)—legend scaled between 1 106 and 9 106—mesh
step 164 µm

ally well respected. This confirms that the multilevel LDC
algorithm is very efficient and robust whatever the kind of
prescribed error (relative or absolute) and that the accuracy
of the obtained results is only related to the error estima-
tor used. The underestimation of the ZZ estimator tends to
a little excess of the fine user-prescribed tolerances (see for
example the row ε = 2 MPa). As for the relative error test

cases, the number and the size of refinement levels automat-
ically generated by the LDC algorithm are coherent between
different initial mesh steps (see rows of Table 5). More-
over, the more the user-prescribed threshold is little, the
more the number and the size of the refined levels are big
(see lines of Table 5). Finally, thanks to the ratio of domain
measure stopping criterion, the finest grid zone where the
absolute error threshold is not respected remains small and
localized.

Plane strain test case For this second test case, the pro-
posed strategy has also been applied to respect an absolute
error tolerance. The results are reported in Table 6. The user-
prescribed thresholds are well respected. It is interesting to
remark that in this case, in order to reach finer thresholds (see
lines of Table 6), the proposed algorithm tends to enlarge the
refined zones instead to add additional levels. However, it
seems that for the largest threshold (ε = 10 MPa), too much
sub-levels are generated.

We then reported in Table 7, the reference absolute errors
when the number of sub-levels are a priori fixed. We can
conclude that the number of automatically generated sub-
levels (see Table 6) is congruent with the desired threshold.
However, one level less of refinement would still lead to sat-
isfactory results. For example, in a case of an initial mesh of
109 µm, 2 levels of refinement lead to an error of 10.63 MPa
which is greater but very close to the desired threshold of
10 MPa.

Partial conclusion The LDC algorithm combined with the
proposed stopping criteria based on a ratio of the domain
measure turns out to be a really efficient adaptive mesh
refinement algorithm even for absolute errors in infinite norm
thresholds. This kind of thresholds are rarely (maybe never)
studied in the literature. However, as already mentioned in
Sect. 4.3.3 the infinite norm of the Von Mises stress absolute
error is of great interest for engineering studies.
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Table 5 Axisymmetric test case—absolute Von Mises stress error in infinite norm thresholds—stopping criteria: ratio of domain measure (β = 0.5
%)

User-prescribed tolerance ε = 10MPa ε = 5MPa ε = 2MPa

Initial mesh step

328 µm l� (number of sub-levels generated) 4 5 6

Number of nodes per grid level 125/297/697/891/285 125/441/1071/2541/2925/621 125/441/1649/4653/11895/12513/38293

Reference absolute error 8.34 MPa 5.00 MPa 2.25 MPa

164 µm l� 3 4 5

Number of nodes per grid level 441/697/891/285 441/1071/2541/2925/621 441/1649/4653/11895/12513/38239

Reference absolute error 8.32 MPa 5.00 MPa 2.25 MPa

82 µm l� 2 3 4

Number of nodes per grid level 1649/891/315 1649/2541/2925/621 1649/4653/11895/12513/38239

Reference absolute error 8.28 MPa 4.99 MPa 2.25 MPa

41 µm l� 1 2 3

Number of nodes per grid level 6369/315 6369/2925/621 6369/11895/12513/38239

Reference absolute error 8.29 MPa 4.99 MPa 2.25 MPa

Table 6 Plane strain test case—absolute Von Mises stress reference error in infinite norm thresholds—stopping criteria: ratio of domain measure
(β = 0.5%)

User-prescribed tolerance ε = 10MPa ε = 5MPa ε = 2MPa

Initial mesh step

109 µm l� (number of sub-levels generated) 3 3 3

Number of nodes per grid level 231/99/99/99 231/861/143/169 231/861/3321/289

Reference absolute error 4.45 MPa 3.35 MPa 2.06 MPa

54.5 µm l� 2 2 2

Number of nodes per grid level 861/99/99 861/143/169 861/3321/289

Reference absolute error 2.97 MPa 2.80 MPa 2.06 MPa

27.25 µm l� 1 1 1

Number of nodes per grid level 3321/99 3321/143 3321/289

Reference absolute error 3.04 MPa 2.62 MPa 2.06 MPa

Table 7 Plane strain test
case—absolute Von Mises stress
errors in infinite norm for
ε = 10 MPa and various number
of sub-levels—stopping criteria:
ratio of domain measure (β =
0.5%)

l� (maximal number of sub-levels) 1 2 3

Initial mesh step

109 µm 25.73 MPa 10.63 MPa 4.45 MPa

54.5 µm 10.44 MPa 2.97 MPa

27.25 µm 3.04 MPa

5 Conclusions and perspectives

In this paper, we have introduced two new geometry-based
stopping criteria in the context of automatic adaptive mesh
refinement. These criteria are especially useful in case of
singular solutions to avoid an infinite refinement process.
They consist in automatically determining a discrete volume
approximation of the singularity where the local refinement
is inefficient. Even if in this zone the local error is no more
controlled, the global accuracy is still respected. The first

criterion is based on a ratio of a mesh measure between the
initial mesh of the computation domain and the detected zone
to be refined. This criterion works well but as it depends
on the initial mesh, it can lead to over-refine the mesh. The
second criterion is more mesh-independent and consists in a
domain measure ratio between the computation domain and
the detected zone to be refined. With these two criteria, we
can a priori control the zone where the local user-prescribed
tolerance is unreached.
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These two stopping criteria have been combined with
an efficient multilevel algorithm (Local Defect Correction
method) through a classical a posteriori error estimator
(Zienkiewicz and Zhu). The proposed strategy turns out to
give very satisfactory results compared to a more basic stop-
ping criterion based on a minimal number of elements. In
particular, the proposed ratio of domain stopping criterion
automatically determines the critical region where the refine-
ment becomes inefficient. Our strategy succeeds to reach
user-prescribed tolerance for relative error in energy norm
as well as for absolute Von Mises error in infinite norm. The
latter case, poorly studied in the literature, is of great interest
for engineering applications.

Further works will concern the use of these new stopping
criteria in the framework of others adaptive mesh refinement
techniques such as the well-known h-adaptive refinement

methods. Then,we could compare the efficiency of the differ-
ent mesh-step refinement strategies (multilevel or recursive
h-methods) to deal with singular solutions.
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A Extended results for the axisymmetric test
case

See Tables 8, 9 and 10.

Table 8 Axisymmetric test case—relative error in energy norm thresholds—stopping criteria: minimal number of elements (NbMin = 10)

User-prescribed tolerance ε = 5% ε = 2% ε = 1%

Initial mesh step

328 µm l� (number of sub-levels generated) 1 2 4

Number of nodes per grid level 125/99 125/315/697 125/441/1105/2343/247

Reference relative error 4.84% 2.11% 0.653%

164 µm l� 0 1 3

Number of nodes per grid level 441 441/697 441/1105/2343/247

Reference relative error 4.20% 2.01% 0.653%

82 µm l� 0 0 2

Number of nodes per grid level 1649 1649 1649/2343/247

Reference relative error 1.92% 1.92% 0.550%

41 µm l� 0 0 1

Number of nodes per grid level 6369 6369 6369/247

Reference relative error 0.757% 0.757% 0.443%

Table 9 Axisymmetric test case—relative error in energy norm thresholds—stopping criteria: ratio of mesh measure

User-prescribed tolerance ε = 5% ε = 2% ε = 1%

Initial mesh step

328 µm l� (number of sub-levels generated) 1 2 3

Number of nodes per grid level 125/99 125/315/697 125/441/1105/2343

Reference relative error 4.84% 2.11% 0.899%

164 µm l� 0 1 2

Number of nodes per grid level 441 441/697 441/1105/2343

Reference relative error 4.20% 2.01% 0.899%

82 µm l� 0 1 2

Number of nodes per grid level 1649 1649/117 1649/2343/247

Reference relative error 1.92% 1.01% 0.550%

41 µm l� 0 0 2

Number of nodes per grid level 6369 6369 6369/247/187

Reference relative error 0.757% 0.757% 0.440%
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Table 10 Axisymmetric test case—relative error in energy norm thresholds—stopping criteria: ratio of domain measure (β = 0.5%)

User-prescribed tolerance ε = 5% ε = 2% ε = 1%

Initial mesh step

328 µm l� (number of sub-levels generated) 1 2 3

Number of nodes per grid level 125/99 125/315/697 125/441/1105/2343

Reference relative error 4.84% 2.11% 0.899%

164 µm l� 0 1 2

Number of nodes per grid level 441 441/697 441/1105/2343

Reference relative error 4.20% 2.01% 0.899%

82 µm l� 0 0 1

Number of nodes per grid level 1649 1649 1649/2343

Reference relative error 1.92% 1.92% 0.83%

41 µm l� 0 0 0

Number of nodes per grid level 6369 6369 6369

Reference relative error 0.757% 0.757% 0.757%

B Extended results for the plane strain test
case

See Tables 11, 12 and 13.

Table 11 Plane strain test
case—relative error in energy
norm thresholds—stopping
criteria: minimal number of
elements (NbMin = 7)

User-prescribed tolerance ε = 5% ε = 2% ε = 1%

Initial mesh step

109 µm l� (number of sub-levels generated) 0 0 2

Number of nodes per grid level 231 231 231/861/121

Reference relative error 7.05% 7.05% 1.27%

54.5 µm l� 0 0 1

Number of nodes per grid level 861 861 861/121

Reference relative error 3.19% 3.19% 1.27%

27.25 µm l� 0 0 0

Number of nodes per grid level 3321 3321 3321

Reference relative error 1.22% 1.22% 1.22%

Table 12 Plane strain test
case—relative error in energy
norm thresholds—stopping
criteria: ratio of mesh measure

User-prescribed tolerance ε = 5% ε = 2% ε = 1%

Initial mesh step

109 µm l� (number of sub-levels generated) 0 1 2

Number of nodes per grid level 231 231/99 231/861/121

Reference relative error 7.05% 3.28% 1.27%

54.5 µm l� 0 1 2

Number of nodes per grid level 861 861/81 861/121/121

Reference relative error 3.19% 1.27% 0.462%

27.25 µm l� 0 1 2

Number of nodes per grid level 3321 3321/81 3321/121/121

Reference relative error 1.22% 0.294% 0.289%
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Table 13 Plane strain test
case—relative error in energy
norm thresholds—stopping
criteria: ratio of domain measure
(β = 0.5%)

User-prescribed tolerance ε = 5% ε = 2% ε = 1%

Initial mesh step

109 µm l� (number of sub-levels generated) 0 1 2

Number of nodes per grid level 231 231/99 231/861/121

Reference relative error 7.05% 3.28% 1.27%

54.5 µm l� 0 0 1

Number of nodes per grid level 861 861 861/121

Reference relative error 3.19% 3.19% 1.27%

27.25 µm l� 0 0 0

Number of nodes per grid level 3321 3321 3321

Reference relative error 1.22% 1.22% 1.22%
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