
HAL Id: hal-02336643
https://hal.science/hal-02336643

Submitted on 26 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling of a wave farm export cable for
electro-thermal sizing studies

Charles-Henri Bonnard, Anne Blavette, Salvy Bourguet, Adrien Charmetant

To cite this version:
Charles-Henri Bonnard, Anne Blavette, Salvy Bourguet, Adrien Charmetant. Modeling of a wave
farm export cable for electro-thermal sizing studies. Renewable Energy, 2020, 147, pp.2387-2398.
�10.1016/j.renene.2019.09.135�. �hal-02336643�

https://hal.science/hal-02336643
https://hal.archives-ouvertes.fr


Modeling of a Wave Farm Export Cable for
Electro-Thermal Sizing Studies

Charles-Henri Bonnarda,∗, Anne Blavettea, Salvy Bourguetb, Adrien
Charmetantc
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Abstract

So far, only few studies have addressed the techno-economic optimization

of an export cable sizing in the specific case of wave energy farms. However,

in these works, the cable current rating is determined based on conservative

steady-state conditions regarding the farm current output whereas considering

dynamic conditions may be more relevant in the case of wave energy appli-

cations. However, this implies developing and using dedicated electro-thermal

models, which poses a challenge regarding the determination of the modeling

fineness level to be adopted for such studies. Hence, this paper presents seve-

ral numerical models, the most refined of which is compared with experimental

data, as well as well as preliminary cable sizing studies. Contrary to previous

works in this field, the fluctuating nature of wave energy is considered here, thus

allowing for more realistic results.

Keywords: Submarine export cable; electro-thermal model; wave energy farm

1. Introduction

Over the past decades, wave energy has been shown to have a great potential

in terms of electricity generation. Hence, it constitutes a relevant alternative to

non-renewable sources of energy. However, the levelized cost of energy (LCOE)
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is greater for wave energy than for more conventional power sources [1], [2].5

Consequently, significant cost reductions are required for wave energy to become

economically attractive and to allow its grid integration on a large-scale. Among

the potential options available to reduce the wave energy LCOE, optimizing the

electrical infrastructure of wave farms, and especially their cabling infrastruc-

ture, was identified as a relevant target in order to reduce capital expenditure.10

Based on the experience of the offshore wind energy industry [3, 4, 5], it is in-

deed interesting to note that the costs related to the electrical infrastructure,

and composed mostly of cabling and substations costs (approx. 50% each), may

represent up to 20 % of a wave farm capital expenditure. Hence, a reasonable

percentage of cost reduction in this area may lead to a significant decrease in15

terms of capital expenditure [6, 7].

However, so far, and to the best of the authors’ knowledge, only few studies

have addressed the techno-economic optimization of the cabling infrastructure

sizing in the specific case of wave energy farms [6, 7]. In both studies, the cable20

current rating is determined based on an approximation implying that a wave

farm outputs its maximum current in the form of a constant profile, thus im-

plying steady-state conditions. However, this may lead to a highly conservative

estimation of a cable current rating in the specific case of wave energy. This

power source is indeed highly fluctuating by nature and its variations are re-25

flected in the power output of a wave farm. This can be explained by the fact

that most wave energy converters (WECs) are oscillating bodies with limited

storage capacities, thus generating a fluctuating current output. Consequently,

a farm composed of such devices is also expected to output a fluctuating current

profile, which is however potentially reduced thanks to the devices aggregation30

effect. Hence, determining the current rating of a cable based on more realistic,

dynamic conditions could lead to a dramatic decrease regarding its sizing com-

pared to the case where conservative, steady-state conditions are considered, as

mentioned in preliminary works by the authors [8, 9].

In order to perform such techno-economic optimization studies focusing on35
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the thermal response of a cable to a fluctuating current profile representative of

wave energy conditions, dedicated electro-thermal models are required. How-

ever, developing such models presents challenges regarding the determination of

the modeling fineness level to be adopted for the type of applications considered

in this paper. There exist indeed several approaches to determine the thermal40

response of a cable, each of which presents different performance levels in terms

of computational burden and of error level. The less computationally intensive

approach is based on relatively simple models described in standards, such as

IEC standard 60287-1-1 [10]. In this document, the current rating is determined

based on steady-state conditions where the amplitude of the current input to45

the cable is considered as constant over time. However, as explained earlier,

using the maximum current output by the farm in such an approach is quite

conservative in the case of wave energy applications. Although a complemen-

tary standard was developed to cover the case of a cycling load [11], it may not

be relevant here. This standard includes indeed several approximations which50

do not allow to study a cable thermal response to a current profile fluctuating

at the timescale of seconds.

Alternatively, the finite element method (FEM) is a far more computationally-

intensive approach, but from which accurate results can be obtained with a user-

defined level of approximation. For instance, a cable may be modeled in two or55

three dimensions (2D or 3D), and may include either linear or non-linear ther-

mal characteristics for resistivity, specific heat and thermal conductivity. In this

paper, the results obtained from different models, presenting different levels of

modeling fineness (standard-based/FEM-based, 2D/3D and using linear/non-

linear thermal characteristics in the case of FEM-based models) will be pre-60

sented. This study is intended to provide preliminary results regarding the level

of error as a function of the level of modeling fineness. It is also important to

mention that experiments, whose protocol will be described later in the paper,

were carried out in order to validate the numerical results.

Beside providing preliminary guidance regarding the modeling fineness, this65

paper is also intended to present results on preliminary cable sizing studies

3



focusing on two aspects. The first one regards the critical design conditions

(either normal or short-circuit ones) for cable design. Both these studies are

indeed usually performed at the planning stage for more conventional types of

applications to determine which conditions constitute the critical design ones,70

therefore imposing a lower bound on the cable sizing. The second investigated

aspect regards the potential room for improvement concerning the cable sizing

when more realistic, dynamic conditions are considered, as opposed to conser-

vative steady-state conditions.

Hence, in order to combine these two objectives, i.e. assess the error level as75

a function of the modeling fineness level, and carry out preliminary studies on

cable sizing, the developed numerical models are used in two case studies which

are presented in this paper. The obtained results are used to draw conclusions

for each of the two topics considered here.

The rest of the paper is organized as follows: Section 2 presents the different80

numerical models developed as part of this study. Then, Section 3 details the

experiments carried out on a real submarine cable to be used as a benchmark

for the results obtained through numerical simulations. Following this, Sec-

tion 4 describes the two case studies (considering either normal or short-circuit

conditions) while Section 5 details the results. Finally, Section 6 concludes the85

paper.

2. Numerical models

This section presents in the first subsection the characteristics of the cable

considered here. Then, it describes the developed numerical models, which are

based either on IEC standards or on the finite element method (FEM).90

2.1. Power cable characteristics

In this paper, numerical and experimental studies were carried out based on

a real, 5.5 meter-long submarine cable sample. This sample was provided as a

courtesy of École Centrale de Nantes (ECN). It corresponds to an unused part of
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Figure 1: Map indicating the localization of SEM-REV test site. The export cable connects

the SEM-REV offshore hub to an onshore substation and to the local network belonging to

French DSO Enedis (red and dark green paths). Figure modified, courtesy of École Centrale

de Nantes [12].

the cable which ECN acquired for its SEM-REV offshore test site located off Le95

Croisic, France [12]. Twenty-four kilometers of this cable are currently installed

at the SEM-REV test site and used as an export cable buried 1.5 meter deep in

the soil. This export cable follows the green, dotted path shown in Fig. 1. The

cable connects an onshore electrical substation (managed by French distribu-

tion system operator (DSO) “ENEDIS”) to the hub of the SEM-REV test site100

where three devices (e.g. wave energy converters (WECs) and wind turbines)

can be connected simultaneously. A cross-sectional view of a small sample of

this 3-phase, 20-kV, 8-MVA cable, whose architecture is typical of static ca-

bles, is shown in Fig. 2. It is composed of 3×95 mm2 copper conductors. For

each phase, the conductor is surrounded by a semiconducting polymer screen,105

a cross-linked polyethylene (XLPE) insulation, a second semiconducting screen,

a copper screen and finally an external sheath made of polyethylene (PE). The

three phases are arranged in a twisted trefoil shape. The space between each

phase and the inner sheath, also called “filler”, is made of a combination of

bulk PE tubes, PE yarn and air. Optical fibers are also present. The armour110

constitutes the last layer and is made of galvanized steel wires sheathed with
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Figure 2: Cross-sectional view of a small cable sample. Its architecture is typical of submarine

export cables.

PE. According to the electric insulation used in this cable, the maximum opera-

ting temperature of the copper cores is equal to 90 °C. However, it is allowed to

reach 250 °C in case of a 5 s-long short-circuit, which is the longest short-circuit

duration to be considered for cable design purposes, as recommended in IEC115

standard 60949 [13]. Finally, the cable current rating IR, based on steady-state

conditions, is equal to 290 A. The following sections will present the numeri-

cal models (IEC standard-based and FEM-based) of the cable presented in the

current section.

2.2. IEC standard-based model120

IEC standard 60287-1-1 provides the following formula for calculating the

temperature rise ∆T above ambient temperature of a three-phase buried cable:

∆T = (I2R+ 0.5Wd)RT 1 + [I2R(1 + λ1) +Wd]nRT 2 (1)

+[I2R(1 + λ1 + λ2) +Wd]n(RT 3 +RT 4)

where I is the current flowing in one conductor, R is the alternating current

resistance per unit length of the conductor operating temperature, Wd is the

dielectric loss per unit length for the insulation surrounding the conductor, RT 1125
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is the thermal resistance per unit length of between one conductor and the

sheath, RT 2 is the thermal resistance per unit length of the bedding between

sheath and armour, RT 3 is the thermal resistance per unit length of the external

serving of the cable, RT 4 is the thermal resistance per unit length between the

cable surface and the surrounding medium, n is the number of load-carrying130

conductors in the cable, λ1 is the ratio of losses in the metal sheath to total

losses in all conductors, and λ2 is the ratio of losses in the armouring to total

losses in all conductors in the cable. Complementary formulae are provided

in IEC standards 60287-1-1 and 60287-2-1 [14] to calculate parameters R to

λ2, and were used for the numerical simulations presented in this paper. The135

thermal characteristics of the cable-soil system (resistivity, specific heat, and

thermal conductivity) were modeled linearly, as proposed in the two standards.

Contrary to the previous works mentioned earlier, where current I was set to

the maximum current output of a wave farm, current I is here set to the root-

mean-square (RMS) over the simulation period of the RMS AC current profile.140

For the sake of illustration, an RMS AC current profile is shown in Fig. 6: it is

the RMS value of such a profile to which current I is set here. Considering the

RMS value of the RMS current profile is envisaged to be more relevant in terms

of temperature estimation than focusing on the maximum current. Hence, the

relevance of such an approach will be investigated in the paper.145

2.3. Finite Element Method models

Contrary to the previous approach based on IEC standards, simulating a

model using the Finite Element Method (FEM) can be quite demanding in terms

of computing resources, especially for 3D models combining several coupled

physics. Hence, such 3D models are usually reduced to 2D models whenever150

possible. This strategy has been applied here, and two 2D models were develo-

ped: one includes linear thermal charateristics for the resistivity, specific heat

and conductivity, as in our previous study [9], while the other includes more

refined, non-linear characteristics. The non-linear characteristics for the second

model were found in [14][15]. These two models are presented in this section155
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and a comparative analysis with the experimental results, intended for validation

purposes, is described in Section 5.2. It is important to note that the filler is

a mix of air and PE yarn with a usually unknown mixing ratio, thus making

more difficult the prediction of its thermal behavior. Hence, simulations were

performed considering different values for the mixing ratio, from a filler solely160

made of PE to a filler composed exclusively of air.

The 2D cable models were developed using the well-known COMSOL Multi-

physics® simulation software [16]. The thermal problem was implemented

using the general heat equation, i.e.

ρmCp(T )
∂T

∂t
= ∇. (κ(T )∇T ) +QJ , (2)

where ρm is the mass density of each material, CP is the specific heat, T is the165

temperature, t is the time, κ is the thermal conductivity and QJ =
∫
V
ρeJ

2 dV

is the total Joule losses inside the cable computed from the electromagnetic part

of the model. Term J is the electric current density. The convection in free air

was modeled by means of a non-linear law of cooling, and the cooling power Qc

is defined as:170

Qc = h(Ts − Tr) · S · (Ts − Tr) , (3)

where Ts is the temperature of the cable external sheath surface, Tr is the

room temperature, S is the external sheath area, and h(Ts − Tr) is an effective

non-linear convection coefficient based on formulae given in [17] and taking into

account a long horizontal circular cylinder. The radiative heat transfer Qr has

also been considered and follows the Stefan-Boltzmann law, i.e.:175

Qr = ε · σT · S ·
(
T 4
s − T 4

r

)
, (4)

where the emissivity factor ε was selected as equal to 0.9 in this study, and

σT is the Stefan-Boltzmann constant. The electromagnetic problem has been

implemented using Maxwell’s equations, i.e.

∇×H = J , (5)
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B = ∇×A , (6)
180

E = −∂A
∂t

, (7)

J = σeE , (8)

where H is the magnetic field, B is the magnetic flux density, A is the vector

potential, E is the electric field and σe is the electrical conductivity.

3. Experimental setup and protocol185

This section presents the experimental setup used as a benchmark for the

numerical simulations carried out in this study. Then, the experimental protocol

is described.

3.1. Experimental setup

As mentioned earlier, experiments were performed using a 5.5 meters-long190

sample of the SEM-REV export cable. In order to avoid any thermal effect

from the ground during our experiments, the cable was installed in free air 1 m

above the floor as presented in Fig. 3. A voltage-controlled current source was

used to power the cable. It is designed to reach a maximum current of 900 A

in steady-state (AC or DC) in a single-phase configuration [18][19]. Using it as195

a three-phase power source limits the maximum current value to 3× 300 A.

3.2. Experimental protocol

The characteristics of the three cases considered for the experiments are

shown in Table 1. In Cases 1 and 3, the amplitude of the current profile is

constant. They were introduced to provide benchmark values for the numerical200

computation of the losses in DC and AC, as well as for the correct evaluation of

the heat transfer from the conductor to the surrounding air. On the contrary,

in Case 2, two variable, pulsed profiles, shown in Fig. 4, are used. The first

one is used to power a single phase while in the second scenario of Case 2, all
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Figure 3: Photograph of the instrumented cable installed in free air

the three phases are powered using the second profile. The profiles amplitudes205

range between approximately once and twice the cable rated current IR=290 A.

These successive phases of heating and cooling allow to verify that the transient

heat transfer phenomena were well captured in the FEM simulation model.

The measurements were obtained by means of 1) voltage and current probes

for each phase and 2) 20 type K thermocouples (TCs) positioned all around a210

cross-section of the cable. The electrical measurements allowed to evaluate the

Table 1: Characteristics of the three cases considered for the experiments

Case Current profile Amplitude
Number of

powered phases

1 Steady-state DC current 295 A 1

2 Pulsed DC current 150-600 A 1, 3

3 Steady-state AC current (50 Hz) 200 ARMS 3
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Figure 4: Pulsed DC current profiles applied in Case 2.

temperature of the powered phase(s) over time, using the temperature depen-

dance of the copper core resistivity ρe, which can be expressed as [10]:

ρe(T ) = ρ0 × [1 + α (Tc − T0)] , (9)

where ρ0 = 1.724 × 10−8 Ω.m, α = 3.93 × 10−3 K−1 is the temperature

coefficient of copper, Tc is the core temperature in K and T0 = 293.15 K is the215

reference temperature for which α is specified. The time-resistance R of the

powered phase was evaluated using a classical four-point probes method with

voltage and current measurements. The core cross-section, the twisting pitches

of both strands and phases, directly impact the real length of the copper. Thus,

using R and considering all the physical parameters that influence the core220

resistance, we were able to determine its resistivity ρe. Once the value of ρe

is calculated, we were able to get back to the conductor core temperature by

using Equation 9. It is also worth mentioning that the cable was powered

during several hours prior to the experiments so that it had reached steady-

state conditions when the monitoring phase started.225

4. Case studies description

This section details the two case studies performed in order to evaluate

which type of conditions (normal or short-circuit) constitutes the critical design
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Figure 5: Illustration of the boundary conditions

conditions regarding cable sizing, from an electro-thermal perspective, and in

order to assess the potential room for improvement regarding the cable sizing230

when dynamic (normal) conditions are considered. Both case studies are based

on numerical simulations using the most refined model presented in the study,

i.e. the 2D FEM model including non-linear thermal characteristics (sometimes

referred to as “non-linear 2D FEM model” in the rest of the paper for the sake

of brevity).235

In both case studies, and similarly to the physical installation at the SEM-

REV test site, the cable is considered as buried 1.5 m deep under the sea bed.

The boundary conditions depicted in Fig. 5 were used in the thermal problem.

The ambient temperature for both the sea and the soil was selected as equal to

12 °C. This is typical of sea temperature conditions in wave energy abundant240

northwestern Europe [20].

4.1. Case study 1: normal conditions

A sea-state with a relatively high energy level is considered, as it presents a

significant wave height Hs equal to 6 m and a peak period Tp equal to 9 s. A

wave farm composed of 15, 20 or 25 WECs (three configurations are covered) is245

considered here. Its devices are identical heaving buoys controlled passively, as

detailed in [21]. The current profile injected into the cable, when the 20 WECs
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Figure 6: Elementary sequence of the periodic current profile amplitude (RMS) for a 20 WECs

farm used for Case study 1

farm is considered, is shown in Fig. 6. It was computed based on a simulated

wave energy farm described in a previous paper [22]. The same methodology

was applied to simulate the current output profiles of the 15 WECs, and of the250

25 WECs configurations. As regards the 20 WECs farm case, retained for illus-

tration purposes, it is interesting to note that the corresponding current profile

shown in Fig. 6 fluctuates between 70 ARMS and 700 ARMS approximately, i.e.

between 25% and 240% of the cable rated RMS current IR. Such values can

temporarily lead to a significant losses increase, i.e. nearly 6 times the normal255

operating losses, thus generating a significantly high amount of heat which may

lead to the cable overheating. The current profiles were repeated sequentially to

reach a simulation time of about 28 hours, i.e. the duration necessary to reach

equilibrium conditions for the thermal problem. Note that the RMS values of

the RMS current computed over the entire profile duration (i.e. 1426 s) are260

equal to 245 ARMS (15 WECs farm case), 315 ARMS (20 WECs farm case),

and 375 ARMS (25 WECs farm case). The corresponding cable cores tempera-

tures were simulated by means of the three different numerical models presented

in Section 2.
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4.2. Case study 2: short-circuit conditions265

Short-circuit conditions must be taken into account in cable design, and in

particular regarding its sizing. Under such conditions, the core temperature

increases rapidly during a short period of time. However, it must remain below

a maximum allowed limit, e.g. 250 °C for XLPE electrical insulation [23] and

a lower thermal limit of 160 °C for the sheaths that are mainly made of PE270

and PVC [24]. In this case study, short-circuits were considered to occur once

an equilibrium state, corresponding to this of the 20 WECs scenario in Case

study 1, has been reached.

Note that the electrical grid architecture of a WEC farm may be expected to

be very similar to this of offshore windfarms equipped with Type 4 wind turbines275

using fully rated back-to-back AC/DC/AC converters [25]. Such electronic in-

terface allows to limit the fault current to a value that is barely above the rated

current [26]. Based on this observation, the contribution of the WEC farm to the

short-circuit current can be neglected. It is therefore assumed that the magni-

tude of the fault current ISC depends only on the characteristics of the upstream280

power network. The latter was modeled using a simple Thevenin equivalent cir-

cuit with a perfect voltage source, and with an impedance ZU = RU + jXU

in series, where RU is the equivalent resistance of the grid and XU is its reac-

tance. Simulations were performed for short-circuit current values ISC ranging

from ISC = 5IR to ISC = 30IR, which correspond respectively to a weak grid285

and to a strong grid [27]. The fault current ISC was calculated considering the

steady-state fault current and the DC offset current, i.e.

ISC =
EU

√
2

ZU

[
sin(ωt− φ) + sinφ · e−

RU
LU

t

]
, (10)

where EU is the phase-to-phase voltage of the electrical network, φ is the

phase shift between voltage and current such that φ = tan−1
(

XU

RU

)
. An X/R

ratio equal to 3 is representative of a weak grid whereas a ratio equal to 20290

can be considered as representative of a strong grid [27, 28]. Although 3-phase

short-circuits are usually the most critical cases, it is also important to consider
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single-phase short-circuits, as their consequences may, under certain conditions,

be worse than for the former. For instance, an internal defect in the cable may

lead the current to flow from the conductor directly to its copper screen which is295

grounded on its extremity. However, the cross-section of the core is greater than

this of its copper screen (they are equal to 95 mm2 and 16 mm2 respectively

for the cable considered in this study). Then, it is expected that the copper

screen temperature increases faster than the core temperature for a given fault

current. However, the copper screen temperature must still remain below the300

maximum allowed limit to prevent any excessive, global damage of the dielectric

insulation. Thus, in this paper, two short-circuit scenarios were considered: a

three-phase short-circuit scenario and a single-phase short-circuit scenario where

a conductor is connected directly to its copper screen, as described previously.

5. Results305

This section describes the results obtained for the two case studies performed

for normal and short-circuit conditions. Then, it describes the results related

to the modeling fineness analysis.

5.1. Case studies results

Case study 1 (i.e. considering normal conditions) was performed using the310

three different numerical models described in Section 2 while Case study 2 (i.e.

considering short-circuit conditions) was performed using only the 2D FEM

model including non-linear thermal characteristics. This model, as it will be

detailed in Section 5.2.1, presents results similar to the experimental results

and is therefore assumed as a relevant benchmark for the other two numerical315

models (i.e. IEC standard-based, and 2D FEM model including linear thermal

characteristics) for the comparative analysis on modeling fineness described in

Section 5.2.2.
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Figure 7: Core temperatures simulated with the three numerical different models and for three

different numbers of WECs

5.1.1. Case study 1: normal conditions

The results corresponding to the core temperature simulations can be seen320

in Fig. 7. In this section, only the results corresponding the non-linear 2D

FEM model (referred to as “FEM + non-linear data” in the figure) will be

discussed, and compared to the rated current IR. The results corresponding
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to the other two models will analyzed as part of the comparative analysis on

modeling fineness in Section 5.2.2.325

It can be observed that, despite the high current peaks generated by the

WEC farm (e.g. up to 2.5 times the rated current IR when the 20 WECs farm

is considered), the thermal inertia of the whole system composed by the cable

and the soil acts as a strong, natural damper which reduces the amplitude of the

cable core temperature fluctuations to 7 °C only. Besides, still in the 20 WECs330

farm case, it can be observed that the thermal constraints are still satisfied as the

core temperature does not exceed the maximum operating temperature of 90 °C.

This confirms that significant current peaks may be injected in a submarine

export cable without impacting the cable nor its environment, at least from a

thermal perspective. However, it is also important that the surrounding short-335

circuit protection system (e.g. circuit breakers) is also properly designed to

avoid any undesired shedding.

The results also show that the operating maximum temperature of 90°C is

reached for the 20 WECs farm, whose RMS current is equal to 315 ARMS , as

mentioned in Section 4.1. This means that a current profile whose RMS value340

is 9% greater than the rated current IR can be safely injected into the cable

while still satisfying the thermal constraints. This figure needs of course to be

refined through an extensive analysis, including different sea-states for instance.

However, this study confirms that a wave farm export cable may be sized to

a dramatically lower value than the maximum current output by the farm (as345

considered in other works), thus leading to potentially significant savings.

5.1.2. Case study 2: short-circuit conditions

As mentioned earlier, Case study 2 is composed of two studies: one deals

with a three-phase short-circuit while the other focuses on a single-phase short-

circuit. Both studies were performed using the non-linear 2D FEM model.350

Three-phase short-circuit. According to IEC standard 60949 [13], a fault

duration of up to 5 seconds should be considered for cable design purposes.
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During this time, the cable cores and screens temperatures must remain below

a maximum allowed limit to prevent any excessive damage of the dielectric in-

sulation. The results of this study are shown in Fig. 8. It may be observed that355

the maximum fault current that the cable is able to withstand for the specified

duration of 5 seconds is equal to 25 times the rated current IR. When the fault

current is equal to 30 times the rated current, the cable temperature increases

indeed to over 250 °C in about 3.5 seconds, thus failing to meet the requirements

established in IEC standard 60949. However, it may be important to mention360

as well that not meeting this requirement does not lead automatically to an

excessive cable damage, as it is expected that protection schemes would have

triggered the breakers in a shorter amount of time. For instance, in the case

where the short-circuit fault current is sufficiently high, the primary protec-

tion system can usually clear the corresponding fault in approximately 200 ms.365

Longer fault duration may be permitted if they are handled by the back-up pro-

tection system. According to [29], fault durations range often between 0.5 s and

1 s, which is significantly shorter than the duration of 5 s recommended in IEC

standard 60949 and which, therefore, may be considered as quite conservative.
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Figure 9: Screen temperature profiles for different single phase short-circuit levels.

Single-phase short-circuit. The results corresponding to the single-phase370

short-circuit are shown in Fig. 9. They represent the copper screen tempera-

tures, as opposed to the core temperatures which were presented in the previous

section. The curves are similar to these presented in Fig. 8, which was expected

since adiabatic conditions can almost be considered. It may be observed that,

as expected, the copper screen is the weak point of the cable under the con-375

ditions considered in this study. This stems from a lower maximum allowed

limit of 160 °C due to the neighboring sheath material (PE), and to the smaller

cross-section of the copper screen. Under these conditions, the cable is only

able to withstand single-phase fault currents of up to 6 times the rated current

for the specified duration of 5 s. This may impose single-phase short-circuits as380

the critical design conditions if this scenario is to be included in the cable sizing

requirements which, however, do not seem to be usually the case.

5.1.3. Summary

As described in Sections 5.1.1 and 5.1.2, a single-phase short-circuit between

a conductor and its copper screen would represent the critical design conditions385

for the cable sizing. However, this scenario does not seem to be usually taken
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into account in cable sizing requirements. If it is not, the results of the three-

phase short-circuit scenario showed that the cable could withstand up to 25

times its rated current IR. In terms of short-circuit level at 20 kV, this represents

approximately 250 MVA and corresponds to a medium strength grid [28]. Hence,390

the three-phase short-circuit may constitute the critical design conditions in

terms of cable sizing for regions where the grid is relatively strong (e.g. in the

WaveHub (UK) [30] and bimep (Spain) [31] test sites areas), whereas for weaker

grids (e.g. in the AMETS test site area (Ireland) [32]), the cable sizing may be

limited by the normal conditions. To conclude this section, it may, however, be395

important to mention as well that two other criteria, which were out of the scope

of the presented study, namely the voltage drop along the cable and the Joule

losses within the cable, must also be considered in the cable sizing requirements

and may also constitute the critical design conditions. Hence, further work

should be performed on the compliance to these criteria.400

5.2. Numerical modeling fineness analysis

As described in the introduction, one of the objective of this paper is to

present a quantitative assessment of the error level between the three different

numerical models presented here. This comparative analysis is detailed in the

second part of this section while the first part describes the comparative analysis405

between the non-linear 2D FEM model and the experimental results.

5.2.1. Comparison of the non-linear 2D FEM model with the experimental re-

sults

As mentioned previously, 3D FEM models are computationally-intensive,

and especially those combining different physics, as it is the case here. Hence,410

they are reduced to 2D models whenever possible. In this section, the results of a

comparative analysis between the experiments and the 2D FEM model including

non-linear thermal characteristics are detailed. This analysis was intended to

validate the relevance of using a 2D model instead of a more computationally

intensive, 3D one. It may be recalled that the mixing ratio between the filler415
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in the air being unknown, simulations had to be performed for several values of

this ratio.

Case 1: steady-state DC current. The temperature results are shown in

Table 2 (for the core temperature) and in Table 3 (minimum and maximum

temperatures for the external sheath). As expected, a filler solely made of420

PE seems to slightly underestimate the conductor core temperature while a

filler solely composed of air shows an overestimated temperature. Even if this

has to be refined with additional experiments, the temperature simulated with

the mixed filler matched with the expected results, i.e. the core temperature

is only slightly higher than the measurements. Based on this observation, a425

mixed filler was retained in the 2D FEM models (linear and non-linear), with

thermal conductivity κf (T ) = 0.5 × κPE(T ) and thermal capacity Cf (T ) =

0.5× CpPE(T ). The simulation results show nevertheless good agreement with

the experiments. The slight observed error (less than 2 °C) is assumed due to

be mainly due to the fact that the edge effects were neglected.430

Table 2: Core temperature of the powered phase for Case 1

Value (°C) Description

54.1 ∗ Temp. derived from the 4-point probes method

53.5 # Temp. with full PE filler

61.5 # Temp. with full air filler

54.8 # Temp. with mixed filler

∗ Experimental measurements.

# FEM simulation results.

The temperature distribution around the cable external sheath, where the

thermocouples are positioned, as obtained from both the experimental data

and from the numerical simulations, is presented in Fig. 10. Once again, good

agreement is observed between the experimental and the simulated results.
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Figure 10: External sheath temperature: experimental and numerical results

Table 3: Maximum and minimum temperatures of the external sheath

for Case 1

Value MIN / MAX (°C) Description

28 / 34 ∗ Temp from TCs measurements

29 / 35 # Temp. with full PE filler

29 / 36 # Temp. with full air filler

29 / 35.5 # Temp. with mixed filler

∗ Experimental measurements.

# FEM simulation results.

Case 2: pulsed DC current. The core temperature results for Case 2 are435

presented in Fig. 11 and Fig. 12. They show the results obtained with the

non-linear 2D FEM model (referred to as “FEM” in the figure) and those ob-

tained by measuring the voltage and current in the powered phase(s) (referred

to as “T from V, I measurements”). One can remark the good agreement be-

tween the experiments and the simulated temperatures, even during the most440

important variations of the current profiles. Such results show that the model

simulated accurately the losses during the heating process and that the non-

linear properties of the cable materials are properly determined, both for the

22



0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
20

30

40

50

60

70

Time (h)

T
em

p
er
at
u
re

(◦
C
)

T from V ,I measurements
FEM

6.1 6.2 6.3

50

55

2 2.1 2.2 2.3
55

60

65

70

75

Figure 11: Measured and simulated temperature profiles (Case 2, 1 powered phase)

electrical and thermal problems. Regarding passive cooling, the FEM model is

able to correctly reproduce the temperature decrease, which suggests that the445

heat transfer from the copper core to the external sheath is also well simulated.

Such observations, in addition to those already discussed, reinforce the validity

of the non-linear 2D FEM model. This observation applies to the entire range

of typical operating temperatures that should remain below 90°C under nor-

mal conditions (as opposed to short-circuit conditions). One can remark the450

slight differences which arise when the temperature reaches 80 °C. These can

be explained by the physical properties of the XLPE insulation material that

shows strong non-linearities of the thermal resistivity and of the heat capacity

between 80 °C and 120 °C [33]. However, the temperature difference does not

exceed 2.5 °C. Hence, it was not deemed necessary to adjust or to refine the ther-455

mal properties of XLPE using, for example, a differential scanning calorimeter

(DSC) and a guarded hot plate (GHP) method.

Concerning the external sheath temperature presented in Fig. 13, it can be

observed that the model seems to overestimate the temperature (up to 2 °C).

However, the overall temperature trend over time is very similar between the460

experiments and the simulations. Hence, these results suggest that the simula-

tions do not fully reflect the measurements in terms of magnitude. As already
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Figure 13: External sheath temperature. 1) Black profiles show the temperature measure-

ments with TCs, 2) Dotted cyan profiles represent the results obtained with the non-linear 2D

FEM model and 3) Green squares show the temperature for a pure thermal FEM simulation

in static conditions using measured power as a source term.

mentioned earlier, this error may stem from the fact the edge effects at each ex-

tremity of the cable were assumed negligible, thus resulting in an overestimation

24



of the computed power per unit length compared to the experiments.465

Case 3: steady-state AC current. This third study focuses on the charac-

terization of the cable under AC steady-state conditions. The main objective

of this test is to verify that the model accurately predicts the losses that, once

again, are needed to compute the correct heat flux in the cable and its tempe-

rature evolution. This approach allows to evaluate the losses simulations due to470

the skin effect, as well as the screen and armour losses. In this case study, all the

three phases were powered. Due to the rating limitations of the experimental

current source, the injected current was approximately equal to 200 ARMS per

phase. Such current level is obviously lower than the rated current IR but this

does not prevent from performing a comparative study between the FEM simu-475

lations and the experimental measurements. Table 4 shows the results obtained

with the non-linear 2D FEM model and the experimental measurements, as well

as some available manufacturer data (referred to as MD). It can be observed

that the differences between all these data types are reasonable.

Summary. Despite some inaccuracies that have been observed between the480

non-linear 2D FEM model and the experimental measurements, the results in-

dicate that considering a 2D model is sufficiently precise for performing the

electro-thermal analyses described earlier in this paper. For example, it was ob-

served that the 2D FEM model provided good results for the core temperatures

as well as for the external sheath temperature. It is worth mentioning that the485

differences between our simulations and the measurements on our short cable

are assumed to be due to the fact that edge effects were neglected in the 2D

FEM model. Note that such differences would have been drastically reduced

considering a longer cable, which would be the case in a typical WEC farm

installation, where cable lengths of few hundreds of meters to few tens of kilo-490

meters are used. Based on this assumption, we can neglect edge effects and

axial heat flows and assume that the non-linear 2D FEM model is sufficiently

accurate to estimate the cable electro-thermal behavior that could be installed

in a WEC farm. Based on these observations, the model presented in this pa-
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Table 4: Experimental measurements, FEM simulation results and manu-

facturer data (MD) (Case 3)

Parameters FEM Exp.∗ MD Description

P (W/m) 25.04 24.68 – Total power losses a

R (µΩ/m) 195 201 b 196.4 Resistance of a phase c

L (nH/m) 445 411 400 Inductance

Pcores (W/m) 24.55 – – Losses in copper cores c

Parmour (W/m) 0.07 – – Losses in the armour

Pscreens (W/m) 0.46 – – Losses in copper screens

∗ Experimental measurements in steady-state. Mean value.

a The total power was divided by the cable length.

b Total equivalent resistance of one phase of the cable, including skin

effects in the conductor cores, screens losses and armour losses.

c Resistance values given for a temperature of 20 °C

per is deemed valid, and it was considered as a benchmark for the two other495

numerical models, i.e. the IEC standard-based model and the linear 2D FEM

model. It is however important to recall that the validity domain of the model,

in terms of temperature, does not exceed 90° C: this model cannot thus be qua-

lified as experimentally validated for short-circuit studies. Further experimental

work focusing on high temperatures should therefore be carried out, which was500

however impossible to do as part of this study, due to the experimental means

limitations.

5.2.2. Comparison between the three cable numerical models

In Fig. 7, the IEC standard-based model is referred to as “IEC method”,

the linear 2D FEM model as “FEM + IEC data”, as it may be recalled that it505

includes the linear thermal characteristics provided in IEC standards 60287-1-1

and 60287-2-1, and the non-linear 2D FEM model as “FEM + non-linear data”.
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Regarding the difference between the IEC standard-based model and the

non-linear 2D FEM model, it is important to mention that the formulae pro-

posed in the IEC standards considered here were identified as leading potentially510

to a significant underestimation of the cable temperature, even in the case where

a constant current profile is considered [34]. In this paper, differences up to ap-

proximately 5°C could be observed. Hence, under the conditions considered in

our case study, underestimations may have been expected, which is confirmed

by our results. Quantitatively-speaking, the differences observed between the515

results obtained from IEC standard-based model and the average temperature

obtained from the non-linear 2D FEM model are equal to approximately 6 °C,

10 °C and 5 °C when wave farms composed of 15, 20 and 25 WECs respectively

are considered. This represents approximately 6% to 11% of the maximum ope-

rating temperature (90°C) and can therefore be qualified as very significant. In520

addition, this suggests that the margin of error identified in [34] might be fur-

ther increased when other conditions, such as the ones considered in our study,

are selected. Of course, even more important differences ranging from 9 °C to

15 °C can be observed when the maximum temperatures observed with the non-

linear 2D FEM model are considered. Hence, these results show that the IEC525

standard-based model focusing on the RMS value of the RMS current profile

generally underestimates (very) significantly the core temperature: this error

ranges between 10% and 17% of the maximum operating temperature (90°C).

Hence, such a model must be improved if it is intended to provide relevant

results for cabling studies.530

It can also be observed that the three temperature profiles show significant

differences with discrepancies of up to 15 °C. The results of the FEM simulations

show that using non-linear material properties (red dashed profile in Fig. 7)

can have a very significant impact on the calculated core temperatures. This

discrepancy may be as high as 7 °C if the targeted operating temperature lies535

in the zone where the cable thermal characteristics are highly non-linear, e.g.

between 80 °C and 120 °C in our case, which automatically reduces the heat

transfer from the core to the external sheath. Otherwise, if the target operating
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temperature is outside the highly non-linear zone, the discrepancy between the

linear and non-linear FEM models may almost become negligible and therefore,540

linear thermal characteristics may be used. It is also interesting to note that

the simulated temperatures may be either under- or overestimated by the linear

2D FEM model, as shown in Fig. 7b and Fig. 7c respectively. In addition,

compared to the IEC standard-based model, the 2D FEM models presented in

this paper returned higher temperatures for the copper cores. For example,545

considering a 20 WECs farm, the maximum temperatures are equal to 76 °C

when the IEC standard-based model is used, 84 °C when the linear 2D FEM

model is used and 90 °C when the non-linear 2D FEM model is considered. This

phenomenon may stem from the measure considered here (i.e. the RMS value

of the RMS current profile), but also from the fact that, as already mentioned550

earlier, IEC standard 60287-1-1 generally underestimates temperature (very)

significantly. In any case, adopting an approach which underestimates the core

temperature is of course to be avoided to prevent any risks of overheating. It

is therefore important to either develop an enhanced IEC model, or to use a

FEM model. However, a FEM model is by nature much more computationally555

intensive which may raise computing time issues if an optimization algorithm

requiring a large number of iterations using the electro-thermal model is selected.

Hence, further work will be undertaken regarding the level of modeling fineness

required for such optimization studies, and especially on the development of a

suitable electro-thermal cable model for computationally-intensive optimization560

studies.

6. Conclusion

This paper described preliminary cable sizing studies focusing on the electro-

thermal response of a submarine cable to be used as an export cable in a wave

energy farm. It was shown that a current profile whose RMS value is 9% greater565

than the rated current IR, and whose maximum value is equal to approximately

2.5 times this rated current, may be safely injected in the cable without violating
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the thermal constraints. Conversely, this implies that a wave farm export cable

can be safely sized to a dramatically lower value than the maximum current

of the farm, thus leading to potentially significant savings. Hence, considering570

more realistic, dynamic conditions at the wave farm planning stage is recom-

mended. It was also shown that short-circuit conditions may become the critical

design conditions for areas with a short-circuit level of at least 250 MVA which,

however, may not be the case for a large share of wave energy abundant regions

such as the west of Ireland. As for the latter, normal conditions (i.e. without575

short-circuit) constitute the critical design conditions. The paper also focused

on the level of numerical modeling fineness required for cable sizing studies.

A comparative analysis was carried out between three cable numerical models

proposed in this study, the most refined of which was validated against expe-

rimental data. It was concluded that the proposed IEC standard-based model580

led to an important temperature underestimation ranging between 10% and

17% of the maximum allowed temperature (90°C) and needed to be enhanced

to be fully relevant in wave energy applications. Hence, using a FEM-based

model, including potentially non-linear thermal characteristics (if the targeted

temperature is within the highly non-linear zone of these characteristics) seems585

to remain the safest option. However, the computational burden linked to u-

sing FEM-based models may represent an issue for certain optimization studies

where a large number of iterations is required. Investigating further this issue,

developing a suitable electro-thermal cable model, and testing its performances,

both in terms of error level and computational burden, will be the focus of fu-590

ture work. Following this, detailed techno-economic optimization studies on the

sizing of a wave farm export cable will be carried out.
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of École Centrale de Nantes that manages the SEM-REV test site and provided600

a sample of their export cable. The authors would also like to thank Thomas
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