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Abstract 

A system of two equations is found that has solutions which coincide with the 

solutions of the Klein-Gordon equation in the rest frame. This system includes the 

Schrödinger equation for a free neutral spinless particle. Using the Schrödinger 

equation as an additional condition for solving the Klein-Gordon equation in the 

rest frame leads to two Helmholtz equations. Helmholtz equations can be solved by 

specifying a particle model and boundary conditions. One of the Helmholtz 

equations leads to discreteness of the rest masses of relativistic particles. 

Keywords Relativistic particle; Helmholtz equation; Principle of correspondence; 

Discreteness of the rest mass spectrum  

Introduction 

The main successes of quantum mechanics in the quantitative description of 

nonrelativistic systems are connected with the Schrödinger equation. Often this 

equation is regarded as the nonrelativistic limit of the Klein-Gordon equation [1-6]. 

When considering this limit, as a rule, in the solutions of the Klein-Gordon 

equation, the speed of light tends to infinity. In [7], the relationship of the Klein-

Gordon and Schrödinger equations is analyzed in detail and it is concluded that the 

Klein-Gordon equation cannot be reduced to the Schrödinger equation in any limit. 

We can agree with the author of [7], if we keep in mind an arbitrary reference 

frame. But it must be noted that the Klein-Gordon equation must strictly go over 

into the Schrödinger equation only at a particle velocity of zero, that is, in the 

particle’s rest frame. 

The objective of this paper is to find a solution joint to the Klein-Gordon and 

Schrödinger equations in the rest frame for a neutral spinless particle. 

The rest frame in relativistic quantum mechanics 

In classical relativistic mechanics, the particle’s rest frame is a frame of reference 

where the particle velocity v is equal to zero. In relativistic quantum mechanics, its 

own reference frame was used in [8-12]. In quantum mechanics, as in quantum 

field theory, there are problems with determining the eigenvalues of the velocity 



operator [13-15]. In various formulations of quantum theory, it is believed that the 

particle velocity has the same direction as the wave vector k. In any case, strictly 

speaking, the situation with the speed of a single particle does not satisfy the 

principle of correspondence between classical and quantum mechanics. There are 

formulations of quantum mechanics (primarily the De Broglie-Bohm approaches 

[16-19]), where the particle velocity is interpreted as the group velocity of the 

wave packet 
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When performing the relativistic dispersion relation 
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particle velocity in the relativistic version of the De Broglie-Bohm approach is 

written as 

𝐯 = 𝑐k(
𝑚2𝑐2


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    .          (3) 

Here,  is the Planck constant, c is the speed of light in vacuum, m is the rest mass 

of the particle, E = E (k) is the dispertion relation. 

That is, v → 0 in the reference frame, where k → 0. Therefore, when passing from 

an arbitrary reference frame to its own reference frame, all the characteristics of 

the particle, including the wave function, do not contain the wave vector k in their 

record. If we find the wave function in the rest frame (not containing the vector k), 

then in other reference systems this function contains the vector k in its notation, 

which allows this function to be transformed according to irreducible 

representations of the Lorentz group. Such a situation should be fulfilled in other 

approaches when fulfilling the principle of correspondence between classical and 

quantum mechanics. 

 

Joint solution of the Klein-Gordon and Schrödinger equations in the rest 

frame 

Let's look at a system of two equations 
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Here 𝜔=𝑚c
2
/ , ∇2 is the Laplace operator. 

Equation (4) is the Schrödinger equation for a free particle. By a free particle we 

mean a particle that does not interact with other particles, but interacts with a 

vacuum. Equation (5) is chosen so that when solving the system of equations (4, 5) 

by the substitution method, the Klein-Gordon equation 
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is fulfilled. Indeed, from (4) 
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Substituting (7) into (5), we obtain equation (6). Thus, the solutions of the system 

of equations (4.5) are also solutions of the equation (6) (but not vice versa). 

The solution of the system of equations (4.5) we begin with the solution of 

equation (5). Characteristic equation 

𝑝2 + 2𝑖𝜔𝑝 + 𝑝2 = 0                 (8) 

has two roots 

                                        𝑝1=-(1-√2)iω 

𝑝2=-(1+√2)iω        .                     (9) 

Therefore, the general solution of equation (5) can be written as 

ᴪ= 𝐶1(𝑟)𝑒𝑃1𝑡 + 𝐶2(𝑟)𝑒𝑃2𝑡 = 𝐶1(𝑟)𝑒−(1−√2)𝑖𝜔𝑡 + 𝐶2(𝑟)𝑒−(1+√2)𝑖𝜔𝑡   .      (10) 

The coefficients C1(r) and C2(r) are generally complex and depend on spatial 

coordinates. 

Solution (10) can also be written as 

ᴪ=𝑒−𝑖𝜔𝑡 [(𝐶1(𝑟)𝑒√2𝑖𝜔𝑡 + 𝐶2(𝑟)𝑒−√2𝑖𝜔𝑡)]   .                                (11) 



To determine C1(r) and C2(r) we substitute (10, 11) into the Schrödinger equation 

(4). Then we get 

𝐶1(𝑟)(1 − √2)𝜔𝑒−(1−√2)𝑖𝜔𝑡 + 𝐶2(𝑟)(1 + √2)𝜔𝑒−(1+√2)𝑖𝜔𝑡 = 
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This shows that (10, 11) are solutions of equation (4) under the conditions 
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Discreteness of the rest masses of relativistic spinless particles as a 

consequence of the joint solution of the Klein-Gordon and Schrödinger 

equations in the rest frame 

Thus, the solutions (10, 11) are the same for the system of two equations, which 

includes the Schrödinger equation, and for the Klein-Gordon equation in the rest 

frame when (13,14) is satisfied. Conditions (13,14) are the Helmholtz equations for 

C1(r) and C2(r). Moreover, equation (14) has discrete solutions. These solutions 

are determined by the symmetry of the function C2(r) with an appropriate choice of 

the coordinate system (for example, spherical or cylindrical) and the shape of the 

boundary conditions [20-24]. In [23, 24], the simplest polar model of a particle in 

the rest frame was considered. The Helmholtz equation similar to (14) was 

obtained under the assumption that a particle that does not interact with other 

particles can be described by the simplest wave equation. In this case, a part 

depending on spatial coordinates was allocated in the solution of the equation. In 

the polar model, it was divided into radial and azimuthal components 

     Rq .  (17) 

After the transformation q𝜌=x the equation for R(𝜌) was reduced to the Bessel 

equation for the function 



F(x)=R(x/q).        (18) 

When boundary conditions  

  ,0aR                (19) 

  R  under 0             (20) 

are met the solutions of the Bessel equation for a  xFnl
 function are linear 

combinations of the Bessel and Neumann functions  
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Here, Jn(x), Nn(x) are n-order Bessel and Neumann functions, Bnl
(N)

, Bnl
(B)

 are 

expansion coefficients. In this case, the allowed discrete values of the rest masses 

were given by the expression 

nlnl X
ca

m
1

 .  (22) 

Here, Xnl are the values of the roots of the  xFnl
 functions in (21). 

In the present paper, the Helmholtz equation (14) is a consequence of the joint 

solution of the system of two equations and the Klein-Gordon equation and differs 

from the Helmholtz equation in [23, 24] by the factor 2(1+√2). In this regard, the 

discrete values of the rest masses allowed by equation (14) in the polar model have 

the form 

𝑚𝑛𝑒 = ±
1

√2(1+√2)

∙
1
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∙
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The value of 𝑎 in (19, 22, 23), generally speaking, is arbitrary. In [23, 24], it was 

chosen so that formula (22) gives the value of the electron mass at Xnl=X01
(N)

.  If 

now in formula (23) the quantity 𝑎√2(1 + √2)  is chosen so that (23) gives the 

value of the rest mass of an electron at Xnl=X01
(N)

, then all the conclusions and 

results of [23, 24] are valid and for formula (23) in the polar model. In particular, 



the peculiarities of the values of the rest masses and lifetimes of the electron, 

proton, and neutron [23], as well as the results for the current-quark masses of the 

first generation quarks [24] are valid. At the same time, it is of interest to study the 

features of the mass spectrum of elementary particles with the direct use of formula 

(23), especially for other particle models, including the spherical model. 

Discussions and conclusion 

The system of equations (4, 5) determines the structure of the solution (10, 11) of 

the Klein-Gordon equation (6), as well as additional conditions (13-16) for the 

spatial components C1(r) and C2(r). Concretization of the solution of equation (6) 

when (13-16) are fulfilled should consist in the choice of a particle model (only the 

polar model was used in [23, 24]), as well as in the specification of boundary 

conditions of type (19, 20) when solving the Helmholtz equations (13, 14). While 

equation (14) can be considered partially investigated (it leads to discreteness of 

rest masses), equation (13) provides additional opportunities for studying the 

nature of microparticles. Thus, equations (4,5) can be considered as additional 

conditions for solving the Klein-Gordon equation in the rest frame and allow 

extracting additional information about microparticles, in particular, explaining the 

discreteness of the rest mass spectrum in the framework of relativistic quantum 

mechanics. 

Note that equation (5) along with solutions of type (10, 11) has “oscillating” 

solutions that differ from solutions of type (10.11). These solutions are not 

compatible with the Schrödinger equation (4). They can be of independent interest 

for the study of microparticles in the rest frame. It is also of interest to use the 

solutions (10, 11) when creating operators in the framework of quantum field 

theory. 
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