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Lot sizing problem with batch ordering under periodic

buyback contract and lost sales

Abstract

We study the deterministic single-item lot sizing problem with batch order-

ing under the buyback contract (LSP-BB) in a system with one retailer and

one supplier. We consider a �xed cost per batch replenished in addition to

the classical lot sizing costs, making the procurement cost structure stepwise.

We also consider lost sales option with a lost sales cost incurred for each unit

of demand not satis�ed. The buyback contract considered here consists in

returning unused units at the end of every w periods, with a buyback rev-

enue for each unit returned back. We study this problem under both FTL

(full truck load) cost structure and only full batch replenishment assump-

tion. We propose e�cient and exact polynomial time algorithms for di�erent

extensions of this problem which is known to be NP-hard in the general case.

To the best of our knowledge, it is the �rst time that the buyback contract

is introduced in a multi-period lot sizing problem (LSP) in the literature.

Moreover, batch ordering and lost sales issues have never been tackled in

the same LSP model before our study. Hence, this paper provides e�cient

algorithms to solve the LSP with batch ordering and lost sales under the

buyback contract not yet addressed in the literature.

Keywords: Lot sizing, buyback contract, batch delivery, piecewise cost,

polynomial algorithm, lost sales.
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1. Introduction

We are interested in a single-item lot sizing problem (LSP) where a retailer

signs a buyback contract with a supplier who provides him the quantities in

batches (e.g. pallets, containers or trucks). The classical LSP consists in

planning production (or replenishment) and storage activities at minimum

cost in order to satisfy deterministic and discrete demand over a �nite hori-

zon. The main costs are setup (or �xed ordering cost), unit production (or

procurement) cost and holding cost. LSP has several extensions in the lit-

erature : with a limited capacity, multi-item, multi-level, with lost sales, or

backlogging, etc. (see Brahimi et al. 2017). Several exact and heuristic

methods have been proposed to solve them. We study this problem integrat-

ing buyback contract, with and without lost sales option while considering

two di�erent cost patterns: FTL (with a possibility of fractional batch re-

plenishment) or OFB (only full batch) replenishment. The buyback contract

is a commitment in which the buyer has the possibility to return a certain

percentage of the unused items at the end of the selling season to the supplier

for a revenue less than or equal to the procurement cost. In the literature,

the buyback contract is mostly used in single period planning problems oc-

curring in the supply chains. According to Hou et al., (2010), there are three

factors that lead to use this type of contract: demand pattern (uncertainty,

price dependence, etc.), properties of the product (perishability, single or

multi-item patterns, etc.), and supply chain structure. In our problem, we

consider a multi-period setting and we suppose that the retailer has to return

all the unused products (called also full return) to the supplier at the end of
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every w periods. For instance, a period can represent a day, and returns can

be operated only at the end of each week (w = 7).

The buyback contract arises in many industrial contexts: any product

with a limited life due to physical decay (dairy products, baked goods, phar-

maceuticals, cosmetics) and products with a risk of obsolescence (fashion

apparel, computer hardware and software, greeting cards, magazines, news-

papers). The shorter the product lifetime and the higher the inventory costs,

the more the LSP-BB with a known w becomes interesting to solve. For

instance, McKesson, a major distributor of health and beauty products, of-

fers retailers a return program trading o� more generous return policies at

higher purchase prices (Padmanabhan and Png, 1995). The determination of

the parameter w depends on the life of the product and the cost of carrying

inventory, so it can be variant on the planning horizon. Another example

is Wahmpreneur Books which sells books to retailers and wholesalers which

may return them for full credit within a 30 days timeline (Bose and Anand,

2007).

This paper also presents two important variants of the batch replenish-

ment: the �rst one is that the ordered quantity in each period t is restricted

to a multiple of a certain batch size Vt (called only full batch - OFB) and the

other is that the replenished batch can be incomplete (stepwise cost struc-

ture, FTL cost). We consider a general form of procurement cost structure

that includes a �xed cost for each order (classical setup cost), a variable unit

purchase cost, and a �xed cost per batch replenished that re�ects stepwise

cost function composed by �at sections of size Vt (see Figures 2 and 3).

Furthermore, our study adds an important dimension where the retailer
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allows for lost sales on some periods over the horizon. Demand of such periods

can be entirely or partially lost. According to Bijvank and Vis (2011), in

case of stock-out of a speci�c product, the majority of the customers will not

wait and will rather buy a di�erent product or visit another store. Thus, in

practical settings, the original demand can be considered to be lost, even if

it is quite common to consider the backlogging of the excess demand in the

classical inventory literature. Contrary to the lost sales, backlogging aims

to satisfy the demand, but later than the initially required period. Usually,

the backlog also incurs a penalty cost, either proportional to the amount

backlogged, or to the duration of backlog (see Pochet and Wolsey, 2006).

Hence, the present paper establishes e�cient algorithms to solve an LSP

with both batch ordering and lost sales, under the buyback contract, not yet

addressed in the literature. In the rest of the paper, the reader will discover

that our buyback assumption does not make the problem di�cult, on the

contrary, it will allow us to decompose the problem into smaller subproblems.

However, the lost sales assumption can increase the overall complexity of

the problem by increasing the number of feasible production plans. See in

Table 1 di�erent cases studied in this paper with the respective computational

complexities.

The rest of this paper is organized as follows. Section 2 presents some

relevant studies related to LSP with and without batch ordering, buyback

contracts and LSP with lost sales, stating the closest ones to our studies.

Section 3 is dedicated to the description of the LSP-BB studied in this paper,

and proposes a mathematical formulation by a mixed integer linear program.

Section 4 is dedicated to LSP-BB without lost sales, under OFB or FTL
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Table 1: Complexities of all the algorithms for di�erent cases studied in this paper.
OFB: only full batch, FTL: full truck load, T : length of the planning horizon, w:

periodicity of the return periods

Hypotheses

Without lost sales With lost sales
OFB FTL OFB FTL

w=1
with
Vt

w>1
with
V

w=1
with
Vt

w>1
with
V

w=1
with
Vt

w>1
with
V

w =1
with
Vt

w>1
with
V

Complexity O(T ) O(Tw) O(T ) O(Tw3) O(T ) O(Tw3) O(T ) O(Tw3)

patterns. Exact polynomial time algorithms are proposed for the case with

w = 1, and followed by the general case with w > 1. Section 5 deals with

the LSP-BB under lost sales, and presents respective dynamic programming

(DP) algorithms for di�erent extensions. Section 6 concludes the paper and

discusses some possible perspectives of this work.

2. Literature review

In this section, we position our research within the lot sizing problem and

procurement contracts literature. We categorize the relevant literature into

four groups according to their subject areas: classical LSP, LSP with batch

ordering (including piecewise or stepwise cost functions), buyback contracts

(also more general ones), and LSP with lost sales. We begin by comparing our

work to the closest studies in the literature, to better state our contributions

before detailing the related literature.

2.1. Closest papers to our study and our contributions

Our contributions in the literature are shown in Figure 1 with vertical

lines and they will be detailed below.
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Figure 1: The contributions of this study

The �rst contribution of this article is to solve the LSP under the buyback

contract, which is, to the best of our knowledge, not yet explored in the

literature. However, there are a few papers on the LSP under the capacity

reservation contract (CRC), which consists in a general form of the buyback

contract (Atamturk and Hochbaum (2001), van Norden and van de Velde

(2005), Lee and Li (2013), Akbalik et al. (2017)).

In addition, the total procurement cost structure considered in this pa-

per is stepwise, being studied by many papers in the literature (e.g. Li et

al. (2004), Akbalik and Rapine (2018)) but without buyback contract nor

lost sales. To the best of our knowledge, the batch ordering problem has

never been addressed in the literature integrated with lost sales.
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Another contribution of this paper is on the LSP with lost sales litera-

ture. There are a few papers making lost sales assumption for LSP (Aksen

et al. (2003), Absi et al. (2011), Hwang et al. (2013)) but without batch

ordering. Thus, the third particularity of our problem is to solve this LSP

both with batch ordering and lost sales conditions.

2.2. Classical LSP

The aim of the LSP is to decide in which periods and which quantities

to produce (or to procure in our case) over a �nite horizon of T periods

in order to satisfy the demand while minimizing the production and the

inventory holding costs. The �rst work on discrete and deterministic unca-

pacitated LSP (ULSP) was developed by Wagner and Whitin (1958) propos-

ing an algorithm in O(T 2) time which has been improved by Wagelmans et

al. (1992), Federgruen and Tzur (1991), and Aggarwal and Park (1993), to

an O(T log(T )) time algorithm in the general case and to an O(T ) time algo-

rithm under the non-speculative costs. The papers of Florian et al. (1980),

and Bitran and Yanasse (1982) prove the complexity of the single-item ca-

pacitated LSP (CLSP) depending on the structure of setup, inventory and

production costs and capacities. For more details on the LSP, refer to Karimi

et al. (2003), Buschkühl et al. (2010) and Brahimi et al. (2017).

2.3. LSP with batch ordering

As mentioned by Koca et al. (2014), piecewise or stepwise procurement

cost functions can be used to represent quantity discounts, capacity acqui-

sition, subcontracting, overloading, minimum quantity requirements and ca-

pacities, as well as a combination of these latters. In our study, we consider a
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stepwise cost function, also called FTL (Akbalik and Pochet (2009), Akbalik

and Rapine (2012, 2013)) under which products are ordered at period t in

batches and the customer pays the cost at for a full batch of Vt units even

if the batch is not complete. The total procurement cost is composed of a

�xed setup cost ft, a unit purchase cost pt, and of a �xed cost at per batch

replenished. Figure 2 illustrates this stepwise cost structure for null unit

cost and Figure 3 for the additional unit procurement cost. For a complete

literature survey, the readers are referred to Akbalik and Rapine (2013). In

the same paper, the authors show that for time-dependent batch sizes, the

problem is NP-hard when one of the cost parameters is also time-dependent.

A special case of our problem is thus NP-hard.

Figure 2: Full-truckload cost
function

Figure 3: Total procurement cost function
(assumed in this study)

Li et al. (2004) study ULSP with batch ordering with setup cost, time

varying cost parameters and backlogging. In the �rst problem, they develop
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an algorithm that solves the dynamic LSP with multiple of a constant batch

size ordering in O(T 2) time improved to O(T log(T )) time through the use

of Monge matrices. An O(T 3 log(T )) time algorithm is also developed by

the same authors to solve the LSP with Truck Load discounts. Akbalik and

Rapine (2018) study the ULSP with multi-mode replenishment and batch

deliveries. They allow incomplete batches but the same �xed cost is paid

whatever the number of items in a batch. Besides, they show that this

problem is NP-hard. Thereafter, they propose an O(T 7) time algorithm for

a special case with stationary batch sizes, only 2 modes and divisible batch

sizes, and an O(T 4) time algorithm to solve the single mode problem.

2.4. Buyback contract

The best known forms of contracts in the supply chains include long-

term contracts, wholesale price contracts, sales rebate contracts, quantity

discount contracts, contracts with option and capacity reservation contracts.

This paper is concerned with a special type of capacity reservation contract:

buyback contract. In a buyback contract the buyer procures Q units for a

fee p, and receives a revenue, pb, for each unit not utilized. This is analogous

to a capacity reservation contract with a reservation and procurement of Q

units at a cost p− pb, and a procurement of Q−N units of excess quantity

for a fee, pb (N is capacity not utilized).

In several sectors, an industrial company signs a contractual agreement

with a supplier that allows for reserving a certain capacity in advance and

buying it for an advantageous price. However, if this industry requires an

amount that exceeds the reserved capacity to meet the additional demand, it

can get it at another price. The capacity reservation contract is often used for
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risk sharing between the supply chain members, in di�erent industries (Wu et

al. (2005), Hazra and Mahadevan (2009), Park and Kim (2014)). According

to Park and Kim (2014), the capacity reservation contracts can be classi�ed

into two groups: general contracts which are frequently used in retail and

manufacturing industries, and specialized contracts, which are employed in

capital intensive industries. The general contracts include quantity �exibil-

ity, backup agreement, buyback, minimum commitment, and revenue-sharing

contracts. The specialized contracts include take-or-pay, pay-to-delay, and

deductible reservation contracts. Concerning the integration of capacity

reservation contracts and lot sizing problem, see Atamturk and Hochbaum

(2001), van Norden and van de Velde (2005), Lee and Li (2013) and Akbalik

et al. (2017).

A buyback (return policies) contract involves three parameters (p, pb, ρ),

with p being the procurement cost per unit, pb being a pay back revenue (0 <

pb ≤ p), and ρ being the maximum return percentage (0 < ρ ≤ 1). Under

such a mechanism, the supplier sells x units to a buyer at a cost p per unit and

allows the customer to return a maximum of ρx at the end of the selling season

with a revenue pb per unit. The seminal work regarding buyback contracts is

performed by Pasternack (1985) for a coordination perspective by maximizing

total pro�ts of the retailer and the manufacturer. In a large number of papers

(Krihnan et al. (2004), He and Zhao (2012), Wu (2013), etc), the buyback

contract has been studied from a design and implementation point of view in

di�erent supply chain con�gurations and not for production planning. In this

paper, we will integrate the buyback contract in a multi-period production

planning problem.
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2.5. LSP with lost sales

Lost sales mean unsatis�ed demands where the retailer has to decide to

lose either the entire demand or only a portion within a period. It is possible

to serve only one part of the demand, if this is more bene�cial. Companies

having low demand for certain products with low pro�t in a certain period

can �nd it more pro�table to lose this demand. Note that, in lost sales

practice, demand cannot be backlogged (Aksen et al., 2003). In lot sizing,

the classical decision of how much and when to order is extended to the

decision of when and which quantities to lose over the horizon.

A few papers on lot sizing problems with lost sales are presented in the

literature. Sandbothe and Thompson (1990) study the ULSP including lost

sales. They propose an O(T 3) time dynamic programming (DP) algorithm

to solve it optimally. Aksen et al. (2003) improve the previous complexity

to O(T 2). Hwang et al. (2013) provide algorithms for the ULSP with up-

per bounds on stocks and lost sales, and the problem with only lost sales

considering di�erent cost structures. In Absi et al. (2011), two ULSP with

production time windows are studied. The �rst one allows to integrate lost

sales and early production, and the second problem focuses on inclusion of

backlogs and early production. They propose two DP algorithms to solve

these problems in O(T 2) time.

3. Description of the LSP-BB, hypotheses and mathematical for-

mulation in MILP

In the system we consider, a retailer is replenished by batches of a single-

item from an external supplier, where both parts sign a buyback contract.
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At the beginning of each period t, the retailer can purchase a certain amount

denoted by xt with a known demand dt over a planning horizon of T periods.

In real life applications, the batches can correspond to pallets, containers or

trucks. Hence, we introduce the variable At which represents the number of

batches ordered in period t. A batch can hold up to Vt units in period t.

The retailer accepts to pay a cost of at for each batch replenished from the

supplier in addition to a unit procurement cost pt. If there is an order in

period t, a �xed ordering cost ft is incurred. An inventory holding cost ht is

paid for each unit remaining in stock at the end of period t. We denote by st

the stock level at the end of period t. Without loss of generality, we assume

that the initial inventory at the beginning of period 1 is zero. Otherwise,

the positive quantity in stock can be retrieved from the demands of the �rst

periods, till obtaining null entering inventory.

In the buyback contract we consider, the return of unused products is

made at the end of every w periods with w ≥ 1. In classical settings of the

literature, the quantity to be returned to the supplier is at the end of the

selling season in a stochastic single-period problem. In general, under such

contracts, the supplier allows the retailer to return a maximum of ρx units,

with x being the quantity purchased at a price p per unit and ρ being the

maximum return percentage (0 ≤ ρ ≤ 1), at a certain return revenue pb with

0 ≤ pb ≤ p. If pb = p, the contract is said to be full refund, otherwise it is

called partial refund. If ρ = 1, the retailer can return all the unsold units

so the contract is said to be full return. Otherwise (ρ < 1), the retailer can

only return a limited number of unsold units to the supplier, so the contract

is said to be partial return. We assume a full return buyback contract with
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partial refund. Our buyback contract involves qt and p
b
t , with qt being the

returned quantity at the end of period t which is a decision variable and pbt

being the unit return revenue in period t which is a given parameter.

In addition to the quantities and costs mentioned above, we introduce

two notations of lost sales (Lt, lt), with Lt being the lost sales quantity in

period t and lt being the unit lost sales cost in period t. We consider the

assumption of Aksen et al. (2003) which asserts that the gross marginal pro�t

(lt−pt) is nonnegative for each t = 1, . . . , T , but at the same time we have to

take into account the batch ordering cost. Hence, we can make the following

assumption without loss of generality: ltVt ≥ ptVt + at, ∀ t = 1, . . . , T , which

means that losing an entire batch incurs a cost greater than or equal to

procuring it. If we have ltVt < ptVt + at in a period t, the retailer never

orders in that period. Table 2 summarizes the notations that are used.

In this paper, we study two main cases: LSP-BB without lost sales, which

means that demands are to be entirely satis�ed, and LSP-BB with lost sales.

Thereafter, for each of these two problems, we study the following sub-cases:

• Sub-case 1 noted by LSP-BBOFB: The supplier delivers the items only

in full batches, which means that the ordered quantity in every period

of the planning horizon should be expressed as a multiple of the batch

sizes.

• Sub-case 2 noted by LSP-BBFTL: Without any restriction on the batch

status, which means an FTL cost structure. In a period t, the batches

replenished can be fractional.

For each case and sub-case, we consider two return policies. The �rst one

13



Table 2: Notations for the general model of the LSP-BB

Parameters

T length of the horizon
w periodicity of the return periods
pt unit procurement cost (variable cost) in period t
ft �xed ordering cost (setup cost) in period t
at �xed cost per batch replenished in period t
ht inventory holding cost per unit at the end of period t
pbt unit return revenue in period t
lt unit lost sales cost in period t
dt demand in period t
Vt batch size in period t

Decision variables

xt amount of procurement in period t

yt

{
1 if a procurement takes place in period t
0 otherwise

At number of batches ordered in period t
st stock level (quantity remaining in stock) at the end of

period t
qt returned quantity of unused products at the end of pe-

riod t
Lt lost sales quantity (amount of unmet demand) in period

t

is the LSP-BB with w = 1 which means that the product return is made

at the end of each period t. For instance, in the Hungarian market, the

retailers return the unsold books (ρ = 1) at the end of each month without

any or with a small charge (Dobos and Wimmer, 2010). The second one

is the LSP-BB with w > 1, which means that the return is at the end of

every w periods with w > 1. For example, at the end of summer, Procter &

Gamble, an American manufacturer of hygiene and beauty products, refunds

its retailers the unsold inventory value of Bain-de-soleil (ρ = 1) which is a

sun care product line (Padmanabhan and Png, 1997). In total, we study 8

problems, see Table 1.
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Assumptions

The LSP-BB without and with lost sales have one general assumption as

follows:

ρ = 1 (full return), see examples in page 14.-

In addition, the LSP-BB with lost sales has the following assumption,

without loss of generality:

ltVt ≥ ptVt + at, ∀ t = 1, . . . , T , see page 13.-

Moreover, for the LSP-BB with w = 1, we consider the following assump-

tions:

Batches with time-dependent sizes (Vt).-

pbt < pt, ∀ t = 1, . . . , T , this is a criterion of the buyback contract, see

page 10.

-

In contrast, for LSP-BB with w > 1, we assume:

Constant batch size (V ), see page 8.-

pbiw < pt, ∀t ∈ {(i− 1)w + 1, . . . , iw} and ∀i ∈ {1, . . . , T
w
} with i ∈ N∗.-

Non-increasing (NI) lost sales costs are considered to �t the realistic

conditions of perishable or obsolete products.

-

Indeed, in general, the lost sales incur a cost corresponding to the lost revenue

(selling price) and another related to the loss of customer goodwill at a later

time. In our work, we assume that the lost sales cost is equal to the selling

price, as the case of most research papers because estimating the future
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impact on customers is typically hard. The reader can refer to Chen and

Zhang (2017) to see that the lost demand due to the cost of customer goodwill

has not received much attention in the academic literature.

It is well known that the obsolete product loses its value through time because

of rapid changes of technology, and this usually results in a decrease in their

selling price. For example, the mobile phone loses a part of its primary selling

price when there is an introduction of a new product. For a perishable

product, the retailer can o�er selling price discount over time (Goyal and

Giri, 2001). All those observations allow us to consider NI lost sales costs in

our assumptions.

We model LSP-BB with lost sales, FTL cost structure, and w > 1 (LSP-

BBLS,FTL with w > 1) as a mixed integer linear program (MILP) taking into

account all the features of the problem. The latter is the most general case

of our problem. The number of w-time intervals in the planning horizon 1..T

is denoted by N , with N =
⌊
T
w

⌋
and 1 ≤ N ≤ T

2
. The problem with the

fractional T
w
is solved as the one with the integer T

w
. The only di�erence with

the fractional T
w
is the last interval being smaller than the others. We consider

that at the end of each period iw with 1 ≤ i ≤ N , the retailer returns the

quantity qiw to the supplier. The total cost of the related problem depends

on the decision of when and how much quantities to order, to return to the

supplier, to lose and to store. The MILP for the LSP-BBLS,FTL with w > 1,

de�ned by (1)-(10) and denoted as PBB is given below, whose objective is

to minimize the total cost C of setup, procurement, inventory and shortage

taking into account return revenues.
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PBB



min C =
∑T

t=1(ftyt + (ptxt + atAt) + htst + ltLt − pbtqt) (1)

s.t. xt + st−1 = dt − Lt + st + qt ∀t = 1, . . . , T (2)

qt = 0 ∀t = 1, . . . , T (3)

t 6= iw with

i = 1, . . . , N

siw = 0 ∀i = 1, . . . , N (4)

s0 = 0 (5)

Lt ≤ dt ∀t = 1, . . . , T (6)

xt ≤ d
∑T

j=t dj

Vt
eVtyt ∀t = 1, . . . , T (7)

xt ≤ AtVt ∀t = 1, . . . , T (8)

xt, st, qt, Lt ∈ R+ ∀t = 1, . . . , T (9)

At ∈ N, yt ∈ {0, 1} ∀t = 1, . . . , T (10)

Constraints (2) are the balancing constraints linking inventory, ordering

quantity, returned quantity, demand and lost sales quantities for all periods.

In Constraints (3), no returns of unsold goods are permitted for the periods

di�erent from iw. In every w periods, we do not talk about stored goods

but rather about returned goods, that's why Constraints (4) ensure that the

stock levels are equal to zero for those periods. Therefore, our problem is

decomposed into N independent problems with these constraints. Constraint

(5) provides the initial inventory value as zero owing to problem simpli�ca-

tion. Constraints (6) make sure that any amount of unmet demand Lt in

period t cannot exceed the demand dt of that period. Constraints (7) ensure

the setup variable generation in which the procurement variable cannot ex-

ceed the maximum quantity purchased from that period till T . Constraints

(8) are for the batch replenishment which means that there are su�cient

pallets containing the product quantity in each period. The remaining con-

straints (9) and (10) are nonnegativity, integrality and binary constraints on

the decision variables.
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4. LSP-BB without lost sales

The unused items are returned to the supplier, without lost sales, at the

end of each period iw with i = 1, . . . , N , N = T
w
, N ∈ N and 1 ≤ w ≤ T .

If T
w
∈ R+, then this problem is solved in the same way as the one with

T
w
∈ N. Therefore, there are N independent problems to solve related to each

subproblem J(i−1)w+1, iwK ∀i = 1, . . . , N (see Figure 4). We optimize each

subproblem as J1, wK. The total cost of the initial problem is computed as

the sum of these N independent problems's costs.

Figure 4: The N intervals of our problem (illustration for w = 5)

For the return policy w = 1, the left-over items are sold to the supplier

at the end of each period t, thus, there is no remaining stock at retailer

level over the whole horizon (st = 0, t = 1, . . . , T ). Note that without any

stock linking the periods, we can no more call this problem as "lot sizing".

Indeed, there are T independent problems to solve, one separate problem for

each period t, t = 1, . . . , T to optimize. Thus, in the following, we denote

this latter as single period problem, SP-BB, instead of LSP-BB with w = 1.

Furthermore, we consider in this return policy that we have a full return

with time-dependent batch sizes, and a unit return revenue lower than a unit

procurement cost in every period.
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For the return policy w > 1, we have N independent problems to solve

with 1 ≤ N ≤ T
2
. Besides, we restrict ourselves to the case with station-

ary batch size in order to propose exact polynomial time algorithms. Note

that Akbalik and Rapine (2013) show that the uncapacitated batch lot sizing

problem with time-dependent batch sizes is NP-hard if any one of the cost

parameters (setup, �xed cost per batch, unit procurement cost or unit inven-

tory holding cost) is allowed to be time-dependent. Thus, our problem is also

NP-hard for the case with time-dependent batch sizes. Besides, in practical

cases, the batch sizes do not really vary from one period to another. In the

subproblem J1, wK, we also consider that the return revenue pbw in period w

is strictly less than all the procurement costs pt ∀t ∈ {1, . . . , w} to protect

the supplier. We also consider the full return.

We study the four sub-cases, namely: SP-BB with only full batches, LSP-

BB with only full batches and w > 1, SP-BB with FTL cost structure and

�nally LSP-BB with FTL cost structure and w > 1.

4.1. SP-BB with only full batches (SP-BBOFB)

In PBB, we set w = 1, lt = +∞,∀t = 1, . . . , T . Thus, we have to return

unused products at the end of each ordering period. Besides, we alter Con-

straints (3) by qt ≥ 0, ∀t = 1, . . . , T , Constraints (4) by st = 0,∀t = 1, . . . , T

and Constraints (8) by xt = AtVt,∀t = 1, . . . , T . Consequently, we obtain

the SP-BBOFB. We state an important dominance property of this problem.

Property 1. An optimal plan π∗ orders the positive quantity x∗t = d dt
Vt
eVt

in every period t ∈ {1, . . . , T}.

The proof of Property 1 can be found in Supplementary document.
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In the SP-BBOFB, the retailer returns the surplus qt = d dt
Vt
eVt− dt to the

supplier at the end of t. It is then easy to compute the total ordering cost

without any optimization process as follows:

C ∗
BB,OFB,w=1 =

T∑
t=1

(ftd
dt

dt + 1
e+ ptd

dt
Vt
eVt + atd

dt
Vt
e − pbt(d

dt
Vt
eVt − dt))

This cost is constant since it depends only on known cost parameters and

dt, Vt values. It is easy to see that a linear time algorithm in O(T ) solves

this planning problem to the optimality. This consists in determining x∗t by

scanning each t in {1, . . . , T} to have x∗t = d dt
Vt
eVt.

4.2. LSP-BB with only full batches and w > 1 (LSP-BBOFB with w > 1)

In PBB, we assume lt = ∞, Vt = V , ∀t = 1, . . . , T , and we modify

Constraints (8) by xt = AtV, ∀t = 1, . . . , T to obtain the LSP-BBOFB with

w > 1. Recall that the N independent problems are separately solved in

order to compute the total optimal cost of LSP-BBOFB with w > 1 by

summing up individual costs of subproblems J(i− 1)w+ 1, iwK, i = 1, . . . , N .

In what follows, we only consider how to solve the subproblem J1, wK which

can be applied to all subproblems. Li et al. (2004) study the LSP with batch

ordering, time varying cost parameters and backlogging where the production

quantity in each period is limited to a multiple of constant batch size V . The

authors propose an algorithm that runs in O(T 2) time which is then lowered

to O(T log(T )) time through Monge matrices. In LSP-BBOFB with w > 1,

the backlog is not allowed and the buyback contract is considered. Notice

that we use a solution algorithm very close to that proposed by Li et al. (2004)
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with additional return quantities.

The idea of the algorithm is to detect the replenishment periods for deter-

mining the optimal total cost of J1, wK. Between two replenishment periods

i and j, we have to satisfy the demands without backlogging nor lost sales

taking into consideration the stock levels at the beginning of period i and

at the end of period j. We de�ne the following notations, similar to Li et

al. (2004) which will be used in our approach:

Di,j: Cumulative demand from period i to period j if i ≤ j.

Di,j =


∑j

k=i dk i ≤ j ∀i, ∀j ∈ {1, . . . , w}

0 i > j

Rj: Minimum ending inventory level of period j if we order in period 1 the

minimal number of batches dD1,j

V
e to cover the demand from period 1 to

period j. For every j, we have 0 ≤ Rj ≤ V .

R0 = 0

Rj = dD1,j

V
eV −D1,j ∀j ∈ {1, . . . , w}

For j = 1, 2, . . . , w−1, the ending inventory level of period j has the following

form: sj = Rj + αV with α ∈ N.

We now cite two suitable dominance properties to this problem.

Property 2. There exists an optimal solution such that, for any replen-

ishment period j, the ending inventory value of period j− 1 is equal to Rj−1
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with sj−1 = Rj−1, ∀j = 1, . . . , T .

Property 2. is a special case of Property 2 stated in Li et al. (2004).

Property 3. In any optimal policy, the returned quantity of unused prod-

ucts at the end of period w to the supplier is qw = Rw.

The proofs of Properties 2 and 3 are in Supplementary document.

We will propose an algorithm which solves the LSP-BBOFB with w > 1

by using Properties 2 and 3. The idea is to compute the optimal cost Cj

satisfying the demand in periods 1, 2, . . . , j, given that period j + 1 is a re-

plenishment period with 1 ≤ j ≤ w − 1 (sj = Rj), and j is a return period

with j = w (sw = 0 and qw = Rw). An O(w2) time dynamic programming

algorithm is presented as follows in order to compute the optimal total cost

Cw of the subproblem J1, wK:

Recurrence relation. For j = 1, 2, . . . , w,

Cj = min
0≤i<j

{
Ci + fi+1 + (pi+1 +

ai+1

V
)(Rj +Di+1,j −Ri) +Hi+1,j+1

}

Boundary condition. C0 = 0

Objective. Cw

In this relation, the periods i+1 and j+1 are consecutive ordering periods.

The number of batches acquired between periods i + 1 and j can be easily

computed because we know the ending inventory level of period i which is

equal to Ri, and the one of period j which is maintained at Rj. We add to

the ordering cost at period i+1, the total holding cost Hi+1,j+1 from the end
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of period i+ 1 up to the beginning of period j + 1 knowing that there is no

replenishment between period i+ 2 and period j, and for 0 ≤ i < j ≤ w − 1

we have sj = Rj and sw = 0, and for j = w we have qw = Rw. All Hi+1,j+1

values can be obtained recursively in O(w2) time as follows with |Hw+1,w+1|

representing the return revenues in period w:
Hi+1,j+1 = Hi+2,j+1 + hi+1(Di+2,j +Rj) if 0 ≤ i < j ≤ w

Hj+1,j+1 = 0 if 1 ≤ j ≤ w − 1

Hw+1,w+1 = −pbwRw if j = w

Since there are T
w
independent problems, the complexity of the whole LSP-

BBOFB with w > 1 is computed in O(Tw) time with 2 ≤ w ≤ T which is less

than the O(T 2) time algorithm of Li et al. (2004) because of the integration

of buyback contract into LSP.

4.3. SP-BB with FTL cost structure (SP-BBFTL)

Compared to the SP-BBOFB, we only omit the OFB assumption. We

present an important optimality property of this problem.

Property 4. The optimal ordered quantity x∗t is exactly the demand dt

in every period t.

The proof of Property 4 can be found in Supplementary document.

In the SP-BBFTL, there is, thus, never a surplus at the end of return

periods, which means that qt = 0,∀t = 1, . . . , T . The total ordering cost of

the SP-BBFTL (C ∗
BB,FTL,w=1) is a constant, which is given as follows:
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C ∗
BB,FTL,w=1 =

T∑
t=1

(ftd
dt

dt + 1
e+ ptdt + atd

dt
Vt
e)

One can obtain the optimal plan using a linear time algorithm by assign-

ing to x∗t for each t in {1, . . . , T} the demand dt.

4.4. LSP-BB with FTL cost structure and w > 1 (LSP-BBFTL with w > 1)

The LSP-BBFTL with w > 1 is the general model of PBB with con-

stant batch size and without lost sales. We again solve each subproblem

J(i − 1)w + 1, iwK, for all i ∈ {1, . . . , N} as previously. We assume a lin-

ear full-truckload cost function with linear variable procurement costs. Li

et al. (2004) develop an O(T 3 log T ) time algorithm for the dynamic lot siz-

ing with fractional batch ordering (LSP-B) and backlogging. The authors

assume non-decreasing concave holding, backlogging, and Less-than-Truck

Load (LTL) freight cost functions and linear variable procurement costs.

Akbalik and Rapine (2018) study a similar LSP-B but without backlogging.

They suppose linear holding costs, but a LTL cost function with concave

variable costs. Thereafter, the authors propose an O(T 4) time algorithm for

LSP-B without backlogging but with concave procurement costs being more

general than in Li et al. (2004).

We decided to adapt the idea of the Akbalik and Rapines' (2018) algo-

rithm to our subproblem J1, wK with buyback contract, because it is much

simpler to implement and to understand. It will also be used in section 5.4

as one of the solutions of our problem with lost sales and batch ordering.

As de�ned in the literature, a period i is a regeneration period if it has a

null entering stock level (si−1 = 0). Furthermore, (u, v) is called a subplan if
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periods u and v are consecutive regeneration periods such that u < v and for

each period t = u, . . . , v − 2, we have st > 0. The idea of the algorithm is to

compute the optimal cost C (u, v) of each possible subplan (u, v) to satisfy

the demand in periods u, u+ 1, . . . , v − 1, such that 1 ≤ u < v ≤ w + 1 and

�nally to compute the total optimal cost using a Shortest Path (SP) algo-

rithm. De�ne Cv−1 as the optimal total cost to satisfy the demand in periods

1, 2, . . . , v − 1 given that period v is a regeneration period (1 ≤ v ≤ w + 1).

The following SP algorithm computes the total cost Cw:

For v = 2, 3, . . . , w + 1, Cv−1 = min1≤u<v {Cu−1 + C (u, v)} such that C0 = 0 (11)

The running time of the above SP algorithm is O(w2) if all the C (u, v)

values have been predetermined. Akbalik and Rapine (2018) show that �nd-

ing the minimal cost value of a subplan (u, v) is performed in time complexity

O(w2). This implies that the subproblem J1, wK is solvable in O(w4) time

and LSP-BBFTL with w > 1 in O(Tw3) time.

In each subplan (u, v), t and r are two ordering periods such that u ≤

t < r ≤ v. If there is at most one ordering period between t and r, then the

set {t, t+ 1, . . . , r − 1} is called a replenishment cycle. We denote by [t, r]u,v

such a cycle. The calculation of C (u, v) requires to decompose the subplan

(u, v) into di�erent forms of replenishment cycles [t, r]u,v. Akbalik and Rapine

(2018) (pages 9�11, Appendix A) describe how the optimal cost L [t, r]u,v

of each replenishment cycle [t, r]u,v such that t and r are full batch ordering

periods can be computed in constant time. In our paper, we explain how

to compute the following costs by presenting a numerical example in Section

4.4.4:

• The optimal cost L [u, t]u,v such that u is a fractional batch ordering
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period with 0 < xu < V , t is a full batch ordering period and u and t are

consecutive replenishment periods which means that no other ordering

period exists between u and t,

• The optimal cost L [t, r]u,v such that t is a fractional batch ordering

period with xt ≥ V , r is a full batch ordering period and t and r are

consecutive replenishment periods,

• The optimal cost C (u, v).

4.4.1. De�nitions and properties

For the LSP-BBFTL with w > 1, before de�ning the dominance proper-

ties related to batch ordering, we present the major property related to the

buyback contract.

Property 5. The quantity returned to the supplier at the end of period w

is null (q∗w = 0).

A proof for this property is stated in Supplementary document.

Property 6. (Lee et al., 2003 ) There is an optimal policy π∗, in which, there

exists at most one fractional batch ordered in any of its subplans. It means

that, for a subplan (u, v), there is at most one fractional batch replenished

among periods u, u+ 1, . . . , v − 1.

Note that Lee et al. (2003) are the pioneer having stated the same prop-

erty for their model. Property 6 can be proven by using the proof of Property

4, in Li et al. (2004). In the following, we introduce the de�nition of a large

ordering period which is proposed by Akbalik and Rapine (2018) that will

be used in Property 7.
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De�nition 1. (Akbalik and Rapine, 2018, page 9) An ordering period t

is called a large period if the retailer procures at least one full batch (i.e.

xt ≥ V ), and is called small (xt < V ) otherwise.

By Property 6 and De�nition 1, there is at most one small ordering pe-

riod over the subplan (u, v), which corresponds to the ordering of a fractional

batch. Nevertheless, the period of fractional batch ordering can be also large

if this fractional batch is ordered in addition to full batches. We have the

following property which is used to solve the LSP-B �rst stated in Akbalik

and Rapine (2018).

Property 7. (Akbalik and Rapine, 2018, page 10) Consider that the pe-

riods t and r are two consecutive ordering periods. In an optimal policy π∗,

if both periods are large, then sr−1 < V . In other words, if sr−1 ≥ V then

either the period t is large and r is small, or vice versa.

We present, in Supplementary document, a di�erent way to prove Property

7 than the one proposed by Akbalik and Rapine (2018) knowing that we

consider unit procurement costs.

Property 8. If there is a small ordering period t̄ between two large consec-

utive ordering periods t and r (t < t̄ < r), then sr−1 < 2V .

Refer to Supplementary document in order to see how Property 8 is proved.

4.4.2. How to compute L [t, r]u,v in the subplan (u, v)

In a given subplan (u, v), we need to compute the cost L [t, r]u,v to satisfy

the demands dt, dt+1, . . . , dr−1 of the replenishment cycle [t, r]u,v in di�erent

situations. Recall that, there is at most one fractional batch occurring over
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the time horizon u, . . . , v − 1, so we denote by x̄u,v the fractional quantity

ordered in the incomplete batch such that x̄u,v = Du,v−1 − bDu,v−1

V
cV and by

t̄u,v the fractional ordering period such that u ≤ t̄u,v < v. The period t̄u,v

can be a large or a small ordering period. Thereafter, we distinguish 3 cases

according to the criterion and the position of t̄u,v in (u, v). In the �rst case,

the subplan (u, v) has a small period t̄u,v such that t̄u,v > u. In the second

case, t̄u,v remains small but we have t̄u,v = u. In the last case, t̄u,v is large.

In each case, there are di�erent situations. Finally, we can have 8 possible

values of the cost L [t, r]u,v (i) with i = 1, . . . , 8 according to di�erent cases

(see Table 3).

Table 3: Costs L [t, r]
u,v

in di�erent situations

Cases of

(u, v)
Di�erent situations of [t, r]u,v

Possible

costs of

[t, r]u,v

t̄u,v is small

t̄u,v > u

t̄u,v < t < r with t and r are large and

consecutive ordering periods

su,vt−1 < V L [t, r]u,v (1)

V ≤ su,vt−1 < 2V L [t, r]u,v (2)

t < t̄u,v < r with t and r are large

consecutive ordering periods

su,vr−1 < V L [t, r]u,v (3)

V ≤ su,vr−1 < 2V L [t, r]u,v (4)

t < r < t̄u,v with t and r are large and consecutive ordering periods L [t, r]u,v (5)

t̄u,v is small

t̄u,v = u
u < t with 2 consecutive ordering periods u and t, and t is large L [u, t]u,v (6)

t and r are large and consecutive ordering periods with u < t < r L [t, r]u,v (7)

t̄u,v is large t = t̄u,v and, t and r are large and consecutive ordering periods with t < r. L [t, r]u,v (8)

All the ending inventory levels must be calculated for the periods u, u +

1, . . . , v − 2 because we have su,vu−1 = su,vv−1 = 0. The calculation details of all

the values of L [t, r]u,v (i), for 1 ≤ u ≤ t < r ≤ v ≤ w+1 and i = 1, . . . , 8, are

presented in Supplementary document, and, these values can all be computed

in O(w4) time.
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4.4.3. How to compute C (u, v)

We show the computation of C (u, v) with 1 ≤ u < v ≤ w + 1. After the

calculation of all the possible costs L [t, r]u,v (i) in the subplan (u, v) with

i = 1, . . . , 8, we can now compute 6 possible values of the cost of subplan

(u, v) according to di�erent situations (see Table 4). The calculation details

of Ci(u, v) for i = 1, . . . , 6 are given in Supplementary document.

Table 4: Costs C (u, v) in di�erent situations

Di�erent situations of (u, v)
Possible

costs of

(u, v)

t̄u,v is small

u ≤ t < t̄u,v < r, t and r are 2

large consecutive ordering

periods

t̄u,v avoids a shortage between t and r
with r ≤ v

C1(u, v)

t̄u,v ensures a part of demand for peri-

ods r and thereafter with r < v
C2(u, v)

t̄u,v = u C3(u, v)

t̄u,v is large

t̄u,v = u C4(u, v)
t̄u,v is the last ordering period in (u, v) C5(u, v)
u < t̄u,v < last ordering period in (u, v) C6(u, v)

After the calculation of all possible values of C (u, v) which can be com-

puted in O(w4), the latter is obtained as follows:

C (u, v) = min
1≤i≤6

{Ci(u, v)}

The aim is to compute the optimal cost Cw using the SP algorithm as

mentioned in Formula (11). Thus, it solves the subproblem J1, wK in O(w4)

time and the LSP-BBFTL with w > 1 in O(Tw3).

4.4.4. Numerical example for LSP-BBFTL with w > 1

We present an illustrative example of the algorithm of LSP-BBFTL with

w > 1. We consider a time horizon of 4 periods in which the demands have
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to be satis�ed in full and/or fractional batches of size V = 12. Table 5

contains the data on the demand, cost and revenue. In the buyback contract

considered in this example, we suppose that the unused items can be returned

to the supplier only at the end of period 4. However, with Property 5 there

is no return throughout the horizon.

Table 5: Demand, di�erent costs and revenue data

Period

t
dt ft pt at ht pbt

1 75 100 13 23 1 -
2 9 250 10 23 1 -
3 50 0 21 4 1 -
4 23 0 13 3 1 9

Table 6 shows the optimal plan of our example indicating that there is one

independent subproblem J1, 4K to optimize. It is interesting to note that there

are two subplans (1, 4) and (4, 5). In (1, 4), there are a large ordering period

(full) placed in period 1 and a small ordering period (fractional) situated

in period 3. Therefore, this subplan belongs to the Case 1 (especially the

Sub-case 1.2) by considering that the period 4 is a dummy large ordering

period. We have s1,4
3 = 0 < V , thus the optimal cost of the subplan (1, 4)

is L [1, 4]1,4 (3). Concerning the subplan (4, 5), there is one ordering period

placed in period 4 which is large and fractional. Hence, we take into account

the Case 3 by considering that the periods 4 and 5 are large and consecutive

ordering periods. The optimal cost of the subplan (4, 5) is L [4, 5]4,5 (1).
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Table 6: The optimal quantities of LSP-BBFTL with w > 1

Period

t
xt st qt At

1 132 57 0 11
2 0 48 0 0
3 2 0 0 1
4 23 0 0 2

5. LSP-BB with lost sales

In LSP-BB with lost sales, demands can be partially or totally lost. More

accurately, lost sales involve allowing some orders not to be delivered if the

total cost of ordering this demand is prohibitive. We also study the four

sub-cases listed in section 4 under the concept of lost sales: SP-BB with lost

sales and only full batches; LSP-BB with lost sales, only full batches and

w > 1; SP-BB with lost sales and FTL cost structure; and �nally LSP-BB

with lost sales, FTL cost structure and w > 1. For these four sub-cases, we

consider the same assumptions mentioned in section 4 and we add the lost

sales assumption wlog: ltVt ≥ ptVt + at, ∀ t = 1, . . . , T . For the return policy

w > 1, we consider non-increasing lost sales costs over time. We recall that

for w = 1, we solve T independent problems, each problem corresponding to

one period. For w > 1, there are N independent problems to address. Each

problem is expressed as J(i− 1)w + 1, iwK ∀i = 1, . . . , N .

5.1. SP-BB with lost sales and only full batches (SP-BBLS,OFB)

The SP-BBLS,OFB is a special case of PBB. We �x w to 1 and we modify

Constraints (3) by qt ≥ 0,∀t = 1, . . . , T , Constraints (4) by st = 0,∀t =

1, . . . , T and Constraints (8) by xt = AtVt,∀t = 1, . . . , T . We demonstrate
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two important dominance properties of this problem.

Property 9. There is an optimal solution such that a non-negative quantity

is returned to the supplier in period t ∈ {1..T} if and only if the lost sales

amount drops to zero in that period. In our model, it is prohibited to have

both (L∗
t = 0 and q∗t = 0 if dt mod Vt 6= 0) or both (L∗

t > 0 and q∗t > 0).

Property 10. The optimal policy π∗ orders a quantity x∗t which can take, in

every period t, one of the three following values: x
∗(1)
t = 0, or x

∗(2)
t = b dt

Vt
cVt,

or x
∗(3)
t = d dt

Vt
eVt.

For the proofs of properties 9 and 10, refer to Supplementary document.

Properties 9 and 10 permit us to develop an e�cient algorithm in order

to �nd the optimal plan for the SP-BBLS,OFB. The key idea is to divide the

time horizon into T independent stages. Each stage corresponds to a period

t, in which, by Property 10, the retailer procures either 0 or b dt
Vt
cVt or d dtVt

eVt.

Then, by Property 9 and following the constraints of our problem, we can

compute y∗t , A
∗
t , L

∗
t and q

∗
t related to each possible optimal ordered quantity

x∗t in every period t. For example, if x∗t = 0, then by using Constraints (2),

we obtain dt−L∗
t + q∗t = 0. Using Property 9, if L∗

t = 0 then q∗t = −dt which

contradicts the feasibility constraint of qt, and if q∗t = 0 then L∗
t = dt which

is trivial. After that, we calculate the total cost of each possible optimal

ordered quantity x∗t in every period t. Hence, in each period t, we have three

total costs C
(1)
t , C

(2)
t and C

(3)
t which correspond to the three possible optimal
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procurement quantities x
∗(1)
t , x

∗(2)
t and x

∗(3)
t respectively.

C
(1)
t := ltdt (16)

C
(2)
t := ft + ptb dtVt

cVt + atb dtVt
c+ lt(dt − b dtVt

cVt) (17)

C
(3)
t := ft + ptd dtVt

eVt + atd dtVt
e − pbt(d dtVt

eVt − dt) (18)

Besides, we must choose the minimum cost. We de�ne Cmin(t) as the

minimum cost among C
(1)
t , C

(2)
t and C

(3)
t in every period t.

Cmin(t) := min
{
C

(1)
t , C

(2)
t , C

(3)
t

}
(19)

C ∗ =
∑T

t=1C
min(t) (20)

We present C ∗ as the sum of Cmin(t) from period 1 to period T . Conse-

quently, C ∗ represents the optimal objective value of the SP-BBLS,OFB. C ∗

is computed by an O(T ) time algorithm.

5.2. LSP-BB with lost sales, only full batches and w > 1 (LSP-BBLS,OFB

with w > 1)

To obtain LSP-BBLS,OFB with w > 1, we substitute in PBB Constraints

(8) by xt = AtV, with Vt = V, ∀t = 1, . . . , T . In this problem, we take

into account the aspect of lost sales and we assume non-increasing lost sales

costs over time. We note that the single-item LSP with immediate lost sales

is studied by Aksen et al. (2003) which constitutes a special case of our

problem with w = T and Vt = 1. They provide a dynamic programming

algorithm with a complexity in O(T 2) time.

In our algorithm for LSP-BBLS,OFB with w > 1, we use the same de-

composition scheme into subplans (u, v) as previously. Therefore, we must
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determine the minimum costs C (u, v) of all subplans (u, v) to decide how

much of demand to satisfy and to lose for periods u, u + 1, . . . , v − 1, with

1 ≤ u < v ≤ w + 1. Then, we can obtain the total optimal cost Cw of

the subproblem J1, wK, in which each demand can be either totally satis�ed,

or partially lost, or totally lost with w + 1 being a regeneration period, by

using the same SP algorithm proposed for LSP-BBFTL with w > 1 in section

4.4. In the following, we will prove that all the C (u, v) values can be ob-

tained recursively in O(w4) for the subproblem J1, wK. Therefore, the overall

complexity of the LSP-BBLS,OFB with w > 1 algorithm is O(Tw3) time. In

section 5.2.3, we present an illustrative example for this algorithm.

The key idea behind computing the cost C (u, v) is to decompose the

subplan (u, v) into di�erent cycles. At the beginning, we can �nd the replen-

ishment cycles of type [t, r]u,v (5) such that t and r are 2 consecutive ordering

periods without lost sales for u ≤ t < r ≤ v (see Sub-case 1.3 in Supplemen-

tary document). After that, if v < w + 1, then there is what we call a loss

and replenishment cycle denoted by 〈k, v〉u,v such that k is the last ordering

period in (u, v) and v−1 is the loss period in which the amount of unmet de-

mand is strictly greater than 0, for u ≤ k < v < w+1. If v = w+1, then there

is either one loss and replenishment cycle 〈k, w + 1〉u,w+1 for u ≤ k < w + 1,

or one return and replenishment cycle denoted by ‖k, w + 1‖u,w+1 such that

k is the last ordering period in (u,w + 1) and w is the return period for

u ≤ k < w + 1.

5.2.1. Properties and corollaries

We will �rst establish some optimality properties for our subproblem

J1, wK in order to propose an O(w4) time algorithm.
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We use Property 9 which a�rms that Lwqw = 0. In other words, the retailer

cannot return and lose at the same time. We give some other properties in

the following:

Property 11. In any optimal solution, the starting inventory level sr−1

of an ordering period r is lower than V units (sr−1 < V ), for r = 1, . . . , w+1.

Property 12. In any optimal solution, for a null ordering period i (xi = 0),

if si−1 ≥ V then Li < V .

Property 13. There exists an optimal policy such that Ltst = 0 for each

t = 1, 2, . . . , w. If we decide not to satisfy a positive amount of demand in

period t, the stock level will drop to zero at the end of that period. This

also means that if we have a positive stock at the end of a period, the latter

cannot be a lost sales period.

This property implies that in each subplan (u, v), there is at most one loss pe-

riod which is v−1, because this is the only period with a null outgoing stock

level. Any possible lost sales quantity in the subplan (u, v) must be of the

form: Lu,v
v−1 = Du,v−1 −

⌊
Du,v−1

V

⌋
V + nV such that n ∈ N and n ≤

⌊
Du,v−1

V

⌋
.

The proofs of Properties 11, 12 and 13 are stated in Supplementary docu-

ment.

We have the following corollary which will be used to compute the total

optimal cost of the subplan (u, v):

Corollary 1. If v − 1 is an ordering period and there is a positive lost

35



sales quantity, then Lu,v
v−1 = Du,v−1−

⌊
Du,v−1

V

⌋
V due to the lost sales assump-

tion lv−1V ≥ pv−1V +av−1 (Section 3). In addition, if v− 1 is a non ordering

period and Lv−1 > 0, then Lu,v
v−1 = dv−1 − sv−2. Corollary 1 is a result of all

the LSP-BBLS,OFB with w > 1 properties.

5.2.2. How to compute C (u, v)

Recall that inside the subplan (u, v) such that 1 ≤ u < v ≤ w + 1, there

is at most one loss period which is the period v − 1 and for any ordering

period t, su,vt−1 = dDu,t−1

V
eV − Du,t−1, based on the fact that there is no lost

sales between the periods u and v − 2, and on Property 11. Furthermore, in

each subplan (u,w+1), the demand in period w will be partially or fully lost

if and only if the return is not made in that period, and if Du,w mod V 6= 0.

Otherwise, we have Lu,w+1
w ≥ 0 if and only if qw = 0.

To �nd the optimal cost of the subplan (u, v), we need to compute, �rst,

the minimum total cost Gu,v
r to satisfy the demands du, du+1, ..., dr−1, for

1 ≤ u < r ≤ v ≤ w + 1, such that r must be the last ordering period and/or

the loss or return period of (u, v). The dynamic programming formulation

of Gu,v
r is given in Supplementary document.

In the case where r is the last ordering period in the subplan (u, v) and v−1

is the loss period with Lu,v
v−1 < V , we have to compute, second, the total

holding cost Hu,v
r from the end of period r until the beginning of v − 1 to

satisfy the demand of periods r, r+ 1, . . . , v−2, for u ≤ r < v−1. We de�ne

the formula of Hu,v
r and the indicator functions 1a and 1

i
ai
in Supplementary

document.

After that, we can compute the possible values of C (u, v) in an O(w4)
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time. Thus, for 1 ≤ u < v ≤ w + 1:

C (u, v) = min { minu≤r≤v−1≤w { Gu,v
r +min { 1Dr,v−1−su,v

r−1≥Lu,v
v−1

fr + (pr +
ar

V )
⌊
Dr,v−1−su,v

r−1

V

⌋
V

+Hu,v
r + lv−1L

u,v
v−1 ;

1r=v−1 1dv−1−su,v
v−2≥Lu,v

v−1
lv−1

∣∣dv−1 − su,vv−2

∣∣ }} ;
1v=w+1 Gu,v

w+1 − pbw(
⌈
Du,w

V

⌉
V −Du,w) }

To see how the above relation is constructed, we consider in each subplan

(u, v) with u < v, that u is the �rst ordering period and all the demands

du, du+1, ..., dr−1 must be satis�ed with the minimum cost Gu,v
r in which the

period r can be the last ordering period and/or the loss or return period, for

1 ≤ u ≤ r ≤ v ≤ w+ 1. We have 3 situations of (u, v). In the �rst situation,

the subplan has a lost sales quantity less than the batch size V . Then, the

retailer orders in period r a quantity of
⌊
Dr,v−1−su,vr−1

V

⌋
V to satisfy the demands

dr, dr+1, ..., dv−2 and loses in v−1 a quantity of Lu,v
v−1 = Du,v−1−

⌊
Du,v−1

V

⌋
V . In

this case, the position of the period r belongs to {u, . . . , v − 1} with v−1 ≤ w.

In the second situation, the lost sales quantity in v−1 is greater than or equal

to V . Then, v− 1 is a null ordering period and there is a loss of dv−1− su,vv−2.

In this case, we have r = v−1 ≤ w. In the third situation, the subplan (u, v)

possesses a procurement surplus and a return of
⌈
Du,w

V

⌉
V −Du,w. Then, we

have r = v = w + 1.

After predetermining all the possible C (u, v) values, we can compute the

optimal total cost Cw to satisfy or to lose each demand in the subproblem

J1, wK with only full batch, expressed in Formula (11), in O(w4) time. There-

fore, the running time of the dynamic programming algorithm proposed for

LSP-BBLS,OFB with w > 1 is O(Tw3).
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5.2.3. Numerical example for LSP-BBLS,OFB with w > 1

We use the same example presented for the algorithm of LSP-BBFTL with

w > 1 (see Section 4.4.4) by adding four lost sales costs, l1 = 23.5, l2 = 22.3,

l3 = 21.8 and l4 = 21.5. In this problem, the demands can be partially or

fully satis�ed in full batches, or can be fully lost.

Table 7 shows the optimal solutions of this problem. We have the same

decomposition of subplans (1, 4) and (4, 5). In (1, 4), the period 1 is the

only ordering period which is large and full, and the period 3 is the only

loss period in which the quantity of unmet demand is lower than the batch

size 12. The optimal cost of the subplan (1, 4) is the cost of the loss and

replenishment cycle 〈1, 4〉1,4. In (4, 5), the period 4 is at the same time a

large and full ordering period and a return period. The optimal cost of this

subplan is the cost of the return and replenishment cycle ‖4, 5‖4,5.

Table 7: The optimal quantities of LSP-BBLS,OFB with w > 1

Period

t
xt st Lt qt At

1 132 57 0 0 11
2 0 48 0 0 0
3 0 0 2 0 0
4 24 0 0 1 2

5.3. SP-BB with lost sales and FTL cost structure (SP-BBLS,FTL)

Compared to the case SP-BBLS,OFB, we do not consider any speci�c as-

sumption on the batches. The ordered quantities can now be in fractional

batches. Two important dominance properties are given as follows:

38



Property 14. In any optimal solution, there is no returned quantity, i.e.

q∗t = 0,∀t = 1, . . . , T .

Property 15. The optimal plan π∗ orders either 0 or b dt
Vt
cVt or dt in every

period t. We indicate the three possible optimal ordered quantities as fol-

lows: x
∗(1)
t = 0, x

∗(2)
t = b dt

Vt
cVt and x∗(3)

t = dt.

The proofs of Properties 14 and 15 are given in Supplementary document.

We develop an e�cient algorithm for the SP-BBLS,FTL that is based on

Properties 14 and 15. The key idea of this problem is the same for the

SP-BBLS,OFB. We have the following costs: C
(1)
t , C

(2)
t , C

(3)
t , Cmin(t) and

C ∗ already de�ned in Section 5.1. We refer to Formulas (16)-(20) by just

changing the quantity x
∗(3)
t from d dt

Vt
eVt to dt and subsequently the cost C

(3)
t

from ft + ptd dtVt
eVt + atd dtVt

e − pbt(d dtVt
eVt − dt) to ft + ptdt + atd dtVt

e.

5.4. LSP-BB with lost sales, FTL cost structure and w > 1 (LSP-BBLS,FTL

with w > 1)

The LSP-BBLS,FTL with w > 1 is the most general problem with non-

increasing lost sales costs and a constant batch size. We will solve inde-

pendently, in the same way as before, the subproblems J1, wK, Jw + 1, 2wK,

..., JT − w + 1, T K to obtain LSP-BBLS,FTL with w > 1. Our problem will

be decomposed into subplans which start and end with zero stock. The

optimal cost Cw of the subproblem J1, wK with ordering of full/fractional

batches and lost sales can be computed in O(w4) by a shortest-path like

dynamic programming algorithm used in section 4.4, given that all the pos-

sible subplan costs can be obtained in O(w4) time. Thus, we can compute

the total optimal cost of LSP-BBLS,FTL with w > 1 with a complexity in

O(Tw3) time. The computation of the optimum cost of a subplan relies

39



on the decomposition of (u, v) into di�erent types of cycles. We can �nd

the di�erent forms of replenishment cycles [t, r]u,v (i) for i = 1, . . . , 8 and

1 ≤ u ≤ t < r ≤ v ≤ w + 1 (see section 4.4) and/or the loss and replenish-

ment cycle 〈k, v〉u,v for 1 ≤ u ≤ k < v ≤ w + 1 (see section 5.2).

5.4.1. Properties

The subproblem J1, wK possesses several optimality properties presented

below. Properties 5, 6, 7, 8 (see section 4.4), and 13 (see section 5.2) remain

valid for the general problem LSP-BBLS,FTL with w > 1.

Property 16. There exists an optimal solution, in which, for any sub-

plan (u, v) with 1 ≤ u < v ≤ w + 1, there is at most either one fractional

batch ordered in one of its periods, or one loss period being the period v− 1.

This property is proved in Supplementary document.

Hence, if there is a positive lost sales quantity, then all ordering periods

are large. Now, we can directly use Property 12 and Corollary 1.

5.4.2. How to compute C (u, v)

All these properties imply that the cost of the subplan (u, v) for 1 ≤ u <

v ≤ w + 1 in LSP-BBLS,FTL with w > 1 is the minimum between the cost

C (u, v) in LSP-BBFTL with w > 1, and the cost C (u, v) in LSP-BBLS,OFB

with w > 1, but without taking into account the return revenue since the

retailer can order fractional batches. Hence, the running time to compute all
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the values of C (u, v) is bounded by O(w4). They are obtained as follows:

C (u, v) = min {min1≤i≤6 {Ci(u, v)} ;

minu≤t≤v−1≤w{ Gu,v
t +min { 1Dt,v−1−su,v

t−1≥Lu,v
v−1

ft + (pt +
at

V )
⌊
Dt,v−1−su,v

t−1

V

⌋
V

+Hu,v
t + lv−1L

u,v
v−1 ;

1t=v−1 1dv−1−su,v
v−2≥Lu,v

v−1
lv−1

∣∣dv−1 − su,vv−2

∣∣ }}}
Once all these values are predetermined, the value of Cw can be obtained

in O(w4) time by using (11). Hence, the LSP-BBLS,FTL with w > 1 is solved

in O(Tw3) time.

5.4.3. Numerical example for LSP-BBLS,FTL with w > 1

We consider the same example presented for the algorithm of LSP-BBLS,OFB

with w > 1 (see Section 5.2.3) by ordering in full and/or fractional batches.

The optimal decomposition of subplans is (1, 4) and (4, 5). The optimal cost

of (1, 4) is the cost of the cycle 〈1, 4〉1,4 as in the example of Section 5.2.3. In

(4, 5), there is no return and the period 4 is a large and fractional ordering

period. Its optimal cost is the cost of the cycle L [4, 5]4,5 (1) as in the example

of Section 4.4.4.

6. Conclusion and perspectives

In this study, we considered the single-item lot sizing problem with batch

ordering under the buyback contract. In our model, we merged the buyback

contract into the LSP by considering that the retailer returns the unused

units to the supplier either at the end of each period t, denoted by w = 1

or at the end of every w periods w > 1 with full return and partial refund.

Another option we studied is the possibility to not satisfy all the demands,
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knowing that losing a batch costs more than purchasing it. Therefore, for

both LSP-BB without and with lost sales, we tackled 4 problems by assuming

di�erent hypotheses. In the �rst problem, we only consider full batches with

w = 1. The second problem is with OFB and w > 1. To obtain the two

problems that remain, we changed the OFB cost structure in the �rst two

problems to the FTL cost structure.

In the LSP-BB without lost sales, we have developed 2 algorithms of

complexity O(T ) for w = 1 that solve the single period procurement plan-

ning with time-dependent size batch ordering according to the nature of cost

structure (OFB or FTL). The key idea of these algorithms is to divide the

problem with the planning horizon 1, . . . , T into T independent subproblems.

When w > 1, we have also developed 2 algorithms that solve LSP-BB with

constant size batch ordering. The general idea of these algorithms is to divide

the problems into T
w
subproblems. For the problem with OFB, the algorithm

runs in O(Tw) time. The key idea of each subproblem which is close to the

algorithm proposed by Li et al. (2004) is to detect the replenishment periods.

For the problem with FTL costs, we have adapted the algorithm of Akbalik

and Rapine (2018) to each subproblem to obtain an O(Tw3) time algorithm.

The idea is to precompute the fractional and full quantities replenished in

each subplan.

For the LSP-BB with lost sales, we have developed 2 algorithms of com-

plexity O(T ) for w = 1, one for OFB and another for FTL cost structure. For

the return policy w > 1, we have proposed 2 algorithms that solve the LSP-

BB with constant size batch ordering and non-increasing lost sales costs. For

the OFB cost structure, we have proposed an O(Tw3) time algorithm. The
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key idea behind achieving this running time is to compute the full replen-

ishment periods and lost sales quantities in each subplan. For the problem

with FTL cost structure, we have developed an O(Tw3) time algorithm. We

compute the fractional, full and lost sales quantities in each subplan.

There are many interesting extensions of our topic to explore as perspec-

tives. Such extensions might include another form of buyback contract in

which the retailer can return products only in ordering periods with a max-

imum return percentage. For full return, we can try to propose an e�cient

algorithm, but for partial return, we can try to see if this problem is NP-

hard or not. Other interesting perspectives can be the multi-item and/or

the multi-level cases. For instance, one can consider a system with multiple

items arriving at a retailer in batches with the possibility of returns to the

supplier in every period of the planning horizon. In each period, the total

returned quantity of all the items may be limited by an amount speci�ed by

the supplier. For this problem, we can refer to two research axes: multi-item

LSP with batch ordering and big-bucket LSP with several items sharing a

common capacity for a given period. Given the increasing complexity of the

related problems and the di�culty to propose e�cient algorithms, one can try

to develop a dynamic programming algorithm which is polynomial for a �xed

number of items (Anily and Tzur, 2005), or use polyhedral approaches by

proposing valid inequalities (see Akartunali et al., 2016; Doostmohammadi

and Akartunali, 2018), relaxation or decomposition techniques (Fragkos et

al. 2016), or heuristics (Absi et al. 2013) for a large dimension of items.

Concerning the multi-level extension, one can imagine a system with serial

suppliers replenishing an item to the upstream levels in some batches, with
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di�erent levels of this chain having various buyback options. In this system,

one can also consider intermediate demands occurring in each echelon (direct

shipment to local customers), in addition to the demand of upstream levels.

We can extend the work of Zhang et al. (2012) studying the multi-echelon

LSP in series with intermediate demands, by adding the concepts of batch

replenishment and/or return policy. One can try to see if the valid inequal-

ities proposed by Zhang et al. (2012) can be adapted to our problem under

some restrictive assumptions. Another interesting study on multi-level LSP

is from van Vyve et al. (2014), which can be valuable to extend with our

assumptions of buyback option and batch ordering. The system may be com-

posed of one-warehouse facing dependent demand and multi-retailers facing

independent demands, with inventories at both levels and retailers being able

to return unused products in capacitated vehicles to the warehouse. One can

see if the extended formulations proposed by the authors can be handled to

integrate the new constraints speci�c to our problem.
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