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Lot sizing problem with batch ordering under periodic buyback contract and lost sales

Introduction

We are interested in a single-item lot sizing problem (LSP) where a retailer signs a buyback contract with a supplier who provides him the quantities in batches (e.g. pallets, containers or trucks). The classical LSP consists in planning production (or replenishment) and storage activities at minimum cost in order to satisfy deterministic and discrete demand over a nite horizon. The main costs are setup (or xed ordering cost), unit production (or procurement) cost and holding cost. LSP has several extensions in the literature : with a limited capacity, multi-item, multi-level, with lost sales, or backlogging, etc. (see [START_REF] Brahimi | Single-item dynamic lot-sizing problems: An updated survey[END_REF]. Several exact and heuristic methods have been proposed to solve them. We study this problem integrating buyback contract, with and without lost sales option while considering two dierent cost patterns: FTL (with a possibility of fractional batch replenishment) or OFB (only full batch) replenishment. The buyback contract is a commitment in which the buyer has the possibility to return a certain percentage of the unused items at the end of the selling season to the supplier for a revenue less than or equal to the procurement cost. In the literature, the buyback contract is mostly used in single period planning problems occurring in the supply chains. According to Hou et al., (2010), there are three factors that lead to use this type of contract: demand pattern (uncertainty, price dependence, etc.), properties of the product (perishability, single or multi-item patterns, etc.), and supply chain structure. In our problem, we consider a multi-period setting and we suppose that the retailer has to return all the unused products (called also full return) to the supplier at the end of every w periods. For instance, a period can represent a day, and returns can be operated only at the end of each week (w = 7).

The buyback contract arises in many industrial contexts: any product with a limited life due to physical decay (dairy products, baked goods, pharmaceuticals, cosmetics) and products with a risk of obsolescence (fashion apparel, computer hardware and software, greeting cards, magazines, newspapers). The shorter the product lifetime and the higher the inventory costs, the more the LSP-BB with a known w becomes interesting to solve. For instance, McKesson, a major distributor of health and beauty products, offers retailers a return program trading o more generous return policies at higher purchase prices [START_REF] Padmanabhan | Returns Policies: Make Money by Making Good[END_REF]. The determination of the parameter w depends on the life of the product and the cost of carrying inventory, so it can be variant on the planning horizon. Another example is Wahmpreneur Books which sells books to retailers and wholesalers which may return them for full credit within a 30 days timeline [START_REF] Bose | On returns policies with exogenous price[END_REF]. This paper also presents two important variants of the batch replenishment: the rst one is that the ordered quantity in each period t is restricted to a multiple of a certain batch size V t (called only full batch -OFB) and the other is that the replenished batch can be incomplete (stepwise cost structure, FTL cost). We consider a general form of procurement cost structure that includes a xed cost for each order (classical setup cost), a variable unit purchase cost, and a xed cost per batch replenished that reects stepwise cost function composed by at sections of size V t (see Figures 2 and3). Furthermore, our study adds an important dimension where the retailer allows for lost sales on some periods over the horizon. Demand of such periods can be entirely or partially lost. According to [START_REF] Bijvank | Lost-sales inventory theory: A review[END_REF], in case of stock-out of a specic product, the majority of the customers will not wait and will rather buy a dierent product or visit another store. Thus, in practical settings, the original demand can be considered to be lost, even if it is quite common to consider the backlogging of the excess demand in the classical inventory literature. Contrary to the lost sales, backlogging aims to satisfy the demand, but later than the initially required period. Usually, the backlog also incurs a penalty cost, either proportional to the amount backlogged, or to the duration of backlog (see [START_REF] Pochet | Production planning by mixed integer programming[END_REF].

Hence, the present paper establishes ecient algorithms to solve an LSP with both batch ordering and lost sales, under the buyback contract, not yet addressed in the literature. In the rest of the paper, the reader will discover that our buyback assumption does not make the problem dicult, on the contrary, it will allow us to decompose the problem into smaller subproblems.

However, the lost sales assumption can increase the overall complexity of the problem by increasing the number of feasible production plans. See in Table 1 dierent cases studied in this paper with the respective computational complexities.

The rest of this paper is organized as follows. Section 2 presents some relevant studies related to LSP with and without batch ordering, buyback contracts and LSP with lost sales, stating the closest ones to our studies. Section 3 is dedicated to the description of the LSP-BB studied in this paper, and proposes a mathematical formulation by a mixed integer linear program. Section 4 is dedicated to LSP-BB without lost sales, under OFB or FTL with

V t w>1 with V Complexity O(T ) O(T w) O(T ) O(T w 3 ) O(T ) O(T w 3 ) O(T ) O(T w 3 )
patterns. Exact polynomial time algorithms are proposed for the case with w = 1, and followed by the general case with w > 1. Section 5 deals with the LSP-BB under lost sales, and presents respective dynamic programming (DP) algorithms for dierent extensions. Section 6 concludes the paper and discusses some possible perspectives of this work.

Literature review

In this section, we position our research within the lot sizing problem and procurement contracts literature. We categorize the relevant literature into four groups according to their subject areas: classical LSP, LSP with batch ordering (including piecewise or stepwise cost functions), buyback contracts (also more general ones), and LSP with lost sales. We begin by comparing our work to the closest studies in the literature, to better state our contributions before detailing the related literature.

Closest papers to our study and our contributions

Our contributions in the literature are shown in Figure 1 with vertical lines and they will be detailed below. ordering. Thus, the third particularity of our problem is to solve this LSP both with batch ordering and lost sales conditions.

Classical LSP

The aim of the LSP is to decide in which periods and which quantities to produce (or to procure in our case) over a nite horizon of T periods in order to satisfy the demand while minimizing the production and the 3 for the additional unit procurement cost. For a complete literature survey, the readers are referred to Akbalik and Rapine (2013). In the same paper, the authors show that for time-dependent batch sizes, the problem is NP-hard when one of the cost parameters is also time-dependent.

LSP with batch ordering

A special case of our problem is thus NP-hard. 

Buyback contract

The best known forms of contracts in the supply chains include longterm contracts, wholesale price contracts, sales rebate contracts, quantity discount contracts, contracts with option and capacity reservation contracts.

This paper is concerned with a special type of capacity reservation contract: buyback contract. In a buyback contract the buyer procures Q units for a fee p, and receives a revenue, p b , for each unit not utilized. This is analogous to a capacity reservation contract with a reservation and procurement of Q units at a cost p -p b , and a procurement of Q -N units of excess quantity for a fee, p b (N is capacity not utilized).

In A buyback (return policies) contract involves three parameters (p, p b , ρ), with p being the procurement cost per unit, p b being a pay back revenue (0 < p b ≤ p), and ρ being the maximum return percentage (0 < ρ ≤ 1). Under such a mechanism, the supplier sells x units to a buyer at a cost p per unit and allows the customer to return a maximum of ρx at the end of the selling season with a revenue p b per unit. The seminal work regarding buyback contracts is performed by [START_REF] Pasternack | Optimal pricing and returns policies for perishable commodities[END_REF] for a coordination perspective by maximizing total prots of the retailer and the manufacturer. In a large number of papers (Krihnan et al. ( 2004), He and Zhao (2012), Wu (2013), etc), the buyback contract has been studied from a design and implementation point of view in dierent supply chain congurations and not for production planning. In this paper, we will integrate the buyback contract in a multi-period production planning problem.

LSP with lost sales

Lost sales mean unsatised demands where the retailer has to decide to lose either the entire demand or only a portion within a period. It is possible to serve only one part of the demand, if this is more benecial. Companies having low demand for certain products with low prot in a certain period can nd it more protable to lose this demand. Note that, in lost sales practice, demand cannot be backlogged [START_REF] Aksen | The single-item lot-sizing problem with immediate lost sales[END_REF]. In lot sizing, the classical decision of how much and when to order is extended to the decision of when and which quantities to lose over the horizon.

A few papers on lot sizing problems with lost sales are presented in the literature. [START_REF] Sandbothe | A forward algorithm for the capacitated lot size model with stockouts[END_REF] 

Description of the LSP-BB, hypotheses and mathematical formulation in MILP

In the system we consider, a retailer is replenished by batches of a singleitem from an external supplier, where both parts sign a buyback contract.

At the beginning of each period t, the retailer can purchase a certain amount denoted by x t with a known demand d t over a planning horizon of T periods.

In real life applications, the batches can correspond to pallets, containers or trucks. Hence, we introduce the variable A t which represents the number of batches ordered in period t. A batch can hold up to V t units in period t.

The retailer accepts to pay a cost of a t for each batch replenished from the supplier in addition to a unit procurement cost p t . If there is an order in period t, a xed ordering cost f t is incurred. An inventory holding cost h t is paid for each unit remaining in stock at the end of period t. We denote by s t the stock level at the end of period t. Without loss of generality, we assume that the initial inventory at the beginning of period 1 is zero. Otherwise, the positive quantity in stock can be retrieved from the demands of the rst periods, till obtaining null entering inventory.

In the buyback contract we consider, the return of unused products is made at the end of every w periods with w ≥ 1. In classical settings of the literature, the quantity to be returned to the supplier is at the end of the selling season in a stochastic single-period problem. In general, under such contracts, the supplier allows the retailer to return a maximum of ρx units, with x being the quantity purchased at a price p per unit and ρ being the maximum return percentage (0 ≤ ρ ≤ 1), at a certain return revenue p b with 0 ≤ p b ≤ p. If p b = p, the contract is said to be full refund, otherwise it is called partial refund. If ρ = 1, the retailer can return all the unsold units so the contract is said to be full return. Otherwise (ρ < 1), the retailer can only return a limited number of unsold units to the supplier, so the contract is said to be partial return. We assume a full return buyback contract with partial refund. Our buyback contract involves q t and p b t , with q t being the returned quantity at the end of period t which is a decision variable and p b t being the unit return revenue in period t which is a given parameter.

In addition to the quantities and costs mentioned above, we introduce two notations of lost sales (L t , l t ), with L t being the lost sales quantity in period t and l t being the unit lost sales cost in period t. We consider the assumption of Aksen et al. (2003) which asserts that the gross marginal prot (l t -p t ) is nonnegative for each t = 1, . . . , T , but at the same time we have to take into account the batch ordering cost. Hence, we can make the following assumption without loss of generality: l t V t ≥ p t V t + a t , ∀ t = 1, . . . , T , which means that losing an entire batch incurs a cost greater than or equal to procuring it. If we have l t V t < p t V t + a t in a period t, the retailer never orders in that period. Table 2 summarizes the notations that are used.

In this paper, we study two main cases: LSP-BB without lost sales, which means that demands are to be entirely satised, and LSP-BB with lost sales.

Thereafter, for each of these two problems, we study the following sub-cases:

• Sub-case 1 noted by LSP-BB OF B : The supplier delivers the items only in full batches, which means that the ordered quantity in every period of the planning horizon should be expressed as a multiple of the batch sizes.

• Sub-case 2 noted by LSP-BB F T L : Without any restriction on the batch status, which means an FTL cost structure. In a period t, the batches replenished can be fractional.

For each case and sub-case, we consider two return policies. The rst one is the LSP-BB with w = 1 which means that the product return is made at the end of each period t. For instance, in the Hungarian market, the retailers return the unsold books (ρ = 1) at the end of each month without any or with a small charge (Dobos and Wimmer, 2010). The second one is the LSP-BB with w > 1, which means that the return is at the end of every w periods with w > 1. For example, at the end of summer, Procter & Gamble, an American manufacturer of hygiene and beauty products, refunds its retailers the unsold inventory value of Bain-de-soleil (ρ = 1) which is a sun care product line [START_REF] Padmanabhan | Manufacturer's Returns Policies and Retail Competition[END_REF]. In total, we study 8 problems, see Table 1.

Assumptions

The LSP-BB without and with lost sales have one general assumption as follows:

ρ = 1 (full return), see examples in page 14. -In addition, the LSP-BB with lost sales has the following assumption, without loss of generality: -Indeed, in general, the lost sales incur a cost corresponding to the lost revenue (selling price) and another related to the loss of customer goodwill at a later time. In our work, we assume that the lost sales cost is equal to the selling price, as the case of most research papers because estimating the future impact on customers is typically hard. The reader can refer to Chen and Zhang (2017) to see that the lost demand due to the cost of customer goodwill has not received much attention in the academic literature.

l t V t ≥ p t V t + a t , ∀ t = 1, . . . ,
It is well known that the obsolete product loses its value through time because of rapid changes of technology, and this usually results in a decrease in their selling price. For example, the mobile phone loses a part of its primary selling price when there is an introduction of a new product. For a perishable product, the retailer can oer selling price discount over time [START_REF] Goyal | Recent trends in modeling of deteriorating inventory[END_REF]. All those observations allow us to consider NI lost sales costs in our assumptions.

We model LSP-BB with lost sales, FTL cost structure, and w > 1 (LSP-BB LS,F T L with w > 1) as a mixed integer linear program (MILP) taking into account all the features of the problem. The latter is the most general case of our problem. The number of w-time intervals in the planning horizon 1..T is denoted by N , with N = T w and 1 ≤ N ≤ T 2 . The problem with the fractional T w is solved as the one with the integer T w . The only dierence with the fractional T w is the last interval being smaller than the others. We consider that at the end of each period iw with 1 ≤ i ≤ N , the retailer returns the quantity q iw to the supplier. The total cost of the related problem depends on the decision of when and how much quantities to order, to return to the supplier, to lose and to store. The MILP for the LSP-BB LS,F T L with w > 1, dened by (1)-( 10) and denoted as P BB is given below, whose objective is to minimize the total cost C of setup, procurement, inventory and shortage taking into account return revenues.

P BB                                                  min C = T t=1 (f t y t + (p t x t + a t A t ) + h t s t + l t L t -p b t q t ) (1) s.t. x t + s t-1 = d t -L t + s t + q t ∀t = 1, . . . , T (2) 
q t = 0 ∀t = 1, . . . , T (3) t = iw with i = 1, . . . , N s iw = 0 ∀i = 1, . . . , N (4) 
s 0 = 0 (5) L t ≤ d t ∀t = 1, . . . , T (6) 
x t ≤ T j=t dj Vt V t y t ∀t = 1, . . . , T (7) x t ≤ A t V t ∀t = 1, . . . , T (8) x t , s t , q t , L t ∈ R + ∀t = 1, . . . , T (9) A t ∈ N, y t ∈ {0, 1} ∀t = 1, . . . , T (10) 
Constraints ( 2) are the balancing constraints linking inventory, ordering quantity, returned quantity, demand and lost sales quantities for all periods.

In Constraints (3), no returns of unsold goods are permitted for the periods dierent from iw. In every w periods, we do not talk about stored goods but rather about returned goods, that's why Constraints (4) ensure that the stock levels are equal to zero for those periods. Therefore, our problem is decomposed into N independent problems with these constraints. Constraint

(5) provides the initial inventory value as zero owing to problem simplication. Constraints (6) make sure that any amount of unmet demand L t in period t cannot exceed the demand d t of that period. Constraints [START_REF] Akbalik | The single item uncapacitated lot-sizing problem with time-dependent batch sizes: NP-hard and polynomial cases[END_REF] ensure the setup variable generation in which the procurement variable cannot exceed the maximum quantity purchased from that period till T . Constraints (8) are for the batch replenishment which means that there are sucient pallets containing the product quantity in each period. The remaining constraints ( 9) and ( 10) are nonnegativity, integrality and binary constraints on the decision variables.

LSP-BB without lost sales

The unused items are returned to the supplier, without lost sales, at the end of each period iw with i = 1, . . . , N , N = T w , N ∈ N and 1 ≤ w ≤ T . If T w ∈ R + , then this problem is solved in the same way as the one with T w ∈ N. Therefore, there are N independent problems to solve related to each subproblem (i -1)w + 1, iw ∀i = 1, . . . , N (see Figure 4). We optimize each subproblem as 1, w . The total cost of the initial problem is computed as the sum of these N independent problems's costs. For the return policy w = 1, the left-over items are sold to the supplier at the end of each period t, thus, there is no remaining stock at retailer level over the whole horizon (s t = 0, t = 1, . . . , T ). Note that without any stock linking the periods, we can no more call this problem as "lot sizing".

Indeed, there are T independent problems to solve, one separate problem for each period t, t = 1, . . . , T to optimize. Thus, in the following, we denote this latter as single period problem, SP-BB, instead of LSP-BB with w = 1.

Furthermore, we consider in this return policy that we have a full return with time-dependent batch sizes, and a unit return revenue lower than a unit procurement cost in every period.

For the return policy w > 1, we have N independent problems to solve with 1 ≤ N ≤ T 2 . Besides, we restrict ourselves to the case with stationary batch size in order to propose exact polynomial time algorithms. Note that [START_REF] Akbalik | The single item uncapacitated lot-sizing problem with time-dependent batch sizes: NP-hard and polynomial cases[END_REF] show that the uncapacitated batch lot sizing problem with time-dependent batch sizes is NP-hard if any one of the cost parameters (setup, xed cost per batch, unit procurement cost or unit inventory holding cost) is allowed to be time-dependent. Thus, our problem is also NP-hard for the case with time-dependent batch sizes. Besides, in practical cases, the batch sizes do not really vary from one period to another. In the subproblem 1, w , we also consider that the return revenue p b w in period w is strictly less than all the procurement costs p t ∀t ∈ {1, . . . , w} to protect the supplier. We also consider the full return.

We study the four sub-cases, namely: SP-BB with only full batches, LSP-BB with only full batches and w > 1, SP-BB with FTL cost structure and nally LSP-BB with FTL cost structure and w > 1.

SP-BB with only full batches (SP-BB OF B )

In P BB , we set w = 1, l t = +∞, ∀t = 1, . . . , T . Thus, we have to return unused products at the end of each ordering period. Besides, we alter Constraints (3) by q t ≥ 0, ∀t = 1, . . . , T , Constraints (4) by s t = 0, ∀t = 1, . . . , T and Constraints (8) by x t = A t V t , ∀t = 1, . . . , T . Consequently, we obtain the SP-BB OF B . We state an important dominance property of this problem. Property 1. An optimal plan π * orders the positive quantity x * t = dt Vt V t in every period t ∈ {1, . . . , T }.

The proof of Property 1 can be found in Supplementary document.

In the SP-BB OF B , the retailer returns the surplus q t = dt Vt V t -d t to the supplier at the end of t. It is then easy to compute the total ordering cost without any optimization process as follows:

C * BB,OF B,w=1 = T t=1 (f t d t d t + 1 + p t d t V t V t + a t d t V t -p b t ( d t V t V t -d t ))
This cost is constant since it depends only on known cost parameters and 

d t , V t values

LSP-BB with only full batches and w > 1 (LSP-BB OF B with w > 1)

In P BB , we assume l t = ∞, V t = V , ∀t = 1, . . . , T , and we modify Constraints (8) by x t = A t V, ∀t = 1, . . . , T to obtain the LSP-BB OF B with w > 1. Recall that the N independent problems are separately solved in order to compute the total optimal cost of LSP-BB OF B with w > 1 by summing up individual costs of subproblems (i -1)w + 1, iw , i = 1, . . . , N .

In what follows, we only consider how to solve the subproblem 1, w which can be applied to all subproblems. Li et al. with additional return quantities.

The idea of the algorithm is to detect the replenishment periods for determining the optimal total cost of 1, w . Between two replenishment periods i and j, we have to satisfy the demands without backlogging nor lost sales taking into consideration the stock levels at the beginning of period i and at the end of period j. We dene the following notations, similar to Li et al. ( 2004) which will be used in our approach: D i,j : Cumulative demand from period i to period j if i ≤ j.

D i,j =    j k=i d k i ≤ j ∀i, ∀j ∈ {1, . . . , w} 0 i > j R j :
Minimum ending inventory level of period j if we order in period 1 the minimal number of batches

D 1,j V
to cover the demand from period 1 to period j. For every j, we have 0 ≤ R j ≤ V .

R 0 = 0 R j = D 1,j V V -D 1,j ∀j ∈ {1, . . .

, w}

For j = 1, 2, . . . , w-1, the ending inventory level of period j has the following form: s j = R j + αV with α ∈ N.

We now cite two suitable dominance properties to this problem.

Property 2. There exists an optimal solution such that, for any replenishment period j, the ending inventory value of period j -1 is equal to R j-1 with s j-1 = R j-1 , ∀j = 1, . . . , T .

Property 2. is a special case of Property 2 stated in [START_REF] Li | Dynamic Lot Sizing with Batch Ordering and Truckload Discounts[END_REF].

Property 3. In any optimal policy, the returned quantity of unused products at the end of period w to the supplier is q w = R w .

The proofs of Properties 2 and 3 are in Supplementary document.

We will propose an algorithm which solves the LSP-BB OF B with w > 1 by using Properties 2 and 3. The idea is to compute the optimal cost C j satisfying the demand in periods 1, 2, . . . , j, given that period j + 1 is a replenishment period with 1 ≤ j ≤ w -1 (s j = R j ), and j is a return period with j = w (s w = 0 and q w = R w ). An O(w 2 ) time dynamic programming algorithm is presented as follows in order to compute the optimal total cost C w of the subproblem 1, w :

Recurrence relation. For j = 1, 2, . . . , w,

C j = min 0≤i<j C i + f i+1 + (p i+1 + a i+1 V )(R j + D i+1,j -R i ) + H i+1,j+1
Boundary condition.

C 0 = 0 Objective. C w
In this relation, the periods i+1 and j+1 are consecutive ordering periods.

The number of batches acquired between periods i + 1 and j can be easily computed because we know the ending inventory level of period i which is equal to R i , and the one of period j which is maintained at R j . We add to the ordering cost at period i + 1, the total holding cost H i+1,j+1 from the end of period i + 1 up to the beginning of period j + 1 knowing that there is no replenishment between period i + 2 and period j, and for 0 ≤ i < j ≤ w -1

we have s j = R j and s w = 0, and for j = w we have

q w = R w . All H i+1,j+1
values can be obtained recursively in O(w 2 ) time as follows with |H w+1,w+1 | representing the return revenues in period w:

         H i+1,j+1 = H i+2,j+1 + h i+1 (D i+2,j + R j ) if 0 ≤ i < j ≤ w H j+1,j+1 = 0 if 1 ≤ j ≤ w -1 H w+1,w+1 = -p b w R w if j = w
Since there are T w independent problems, the complexity of the whole LSP-BB OF B with w > 1 is computed in O(T w) time with 2 ≤ w ≤ T which is less than the O(T 2 ) time algorithm of Li et al. ( 2004) because of the integration of buyback contract into LSP.

SP-BB with FTL cost structure (SP-BB F T L )

Compared to the SP-BB OF B , we only omit the OFB assumption. We present an important optimality property of this problem. Property 4. The optimal ordered quantity x * t is exactly the demand d t in every period t.

The proof of Property 4 can be found in Supplementary document.

In the SP-BB F T L , there is, thus, never a surplus at the end of return periods, which means that q t = 0, ∀t = 1, . . . , T . The total ordering cost of the SP-BB F T L (C * BB,F T L,w=1 ) is a constant, which is given as follows:

C * BB,F T L,w=1 = T t=1 (f t d t d t + 1 + p t d t + a t d t V t )
One can obtain the optimal plan using a linear time algorithm by assigning to x * t for each t in {1, . . . , T } the demand d t .

4.4. LSP-BB with FTL cost structure and w > 1 (LSP-BB F T L with w > 1)

The LSP-BB F T L with w > 1 is the general model of P BB with constant batch size and without lost sales. We again solve each subproblem (i -1)w + 1, iw , for all i ∈ {1, . . . , N } as previously. We assume a linear full-truckload cost function with linear variable procurement costs. Li We decided to adapt the idea of the Akbalik and Rapines' (2018) algorithm to our subproblem 1, w with buyback contract, because it is much simpler to implement and to understand. It will also be used in section 5.4

as one of the solutions of our problem with lost sales and batch ordering.

As dened in the literature, a period i is a regeneration period if it has a null entering stock level (s i-1 = 0). Furthermore, (u, v) is called a subplan if periods u and v are consecutive regeneration periods such that u < v and for each period t = u, . . . , v -2, we have s t > 0. The idea of the algorithm is to compute the optimal cost C (u, v) of each possible subplan (u, v) to satisfy the demand in periods u, u + 1, . . . , v -1, such that 1 ≤ u < v ≤ w + 1 and nally to compute the total optimal cost using a Shortest Path (SP) algorithm. Dene C v-1 as the optimal total cost to satisfy the demand in periods 1, 2, . . . , v -1 given that period v is a regeneration period (1 ≤ v ≤ w + 1).

The following SP algorithm computes the total cost C w :

For v = 2, 3, . . . , w + 1, C v-1 = min 1≤u<v {C u-1 + C (u, v)} such that C 0 = 0 (11)
The running time of the above SP algorithm is O(w 2 ) if all the C (u, v)

values have been predetermined. [START_REF] Akbalik | Lot sizing problem with multi-mode replenishment and batch delivery[END_REF] show that nding the minimal cost value of a subplan (u, v) is performed in time complexity O(w 2 ). This implies that the subproblem 1, w is solvable in O(w 4 ) time and LSP-BB F T L with w > 1 in O(T w 3 ) time.

In each subplan (u, v), t and r are two ordering periods such that u ≤ t < r ≤ v. If there is at most one ordering period between t and r, then the set {t, t + 1, . . . , r -1} is called a replenishment cycle. We denote by [t, r] u,v such a cycle. The calculation of C (u, v) requires to decompose the subplan

(u, v) into dierent forms of replenishment cycles [t, r] u,v . Akbalik and Rapine (2018) (pages 911, Appendix A) describe how the optimal cost L [t, r] u,v
of each replenishment cycle [t, r] u,v such that t and r are full batch ordering periods can be computed in constant time. In our paper, we explain how to compute the following costs by presenting a numerical example in Section 4.4.4:

• The optimal cost L [u, t] u,v such that u is a fractional batch ordering period with 0 < x u < V , t is a full batch ordering period and u and t are consecutive replenishment periods which means that no other ordering period exists between u and t,

• The optimal cost L [t, r] u,v such that t is a fractional batch ordering period with x t ≥ V , r is a full batch ordering period and t and r are consecutive replenishment periods,

• The optimal cost C (u, v).

Denitions and properties

For the LSP-BB F T L with w > 1, before dening the dominance properties related to batch ordering, we present the major property related to the buyback contract.

Property 5. The quantity returned to the supplier at the end of period w is null (q * w = 0). A proof for this property is stated in Supplementary document. Property 6. [START_REF] Lee | A dynamic model for inventory lot-sizing and outbound shipment scheduling at a third party warehouse[END_REF] There is an optimal policy π * , in which, there exists at most one fractional batch ordered in any of its subplans. It means that, for a subplan (u, v), there is at most one fractional batch replenished among periods u, u + 1, . . . , v -1.

Note that Lee et al. (2003) are the pioneer having stated the same property for their model. Property 6 can be proven by using the proof of Property 4, in Li et al. (2004). In the following, we introduce the denition of a large ordering period which is proposed by Akbalik and Rapine (2018) that will be used in Property 7.

the time horizon u, . . . , v -1, so we denote by xu,v the fractional quantity ordered in the incomplete batch such that xu,v = D u,v-1 -D u,v-1 V V and by tu,v the fractional ordering period such that u ≤ tu,v < v. The period tu,v can be a large or a small ordering period. Thereafter, we distinguish 3 cases according to the criterion and the position of tu,v in (u, v). In the rst case, the subplan (u, v) has a small period tu,v such that tu,v > u. In the second case, tu,v remains small but we have tu,v = u. In the last case, tu,v is large.

In each case, there are dierent situations. Finally, we can have 8 possible values of the cost L [t, r] u,v (i) with i = 1, . . . , 8 according to dierent cases (see Table 3).

Table 3: Costs

L [t, r] u,v in dierent situations Cases of (u, v) Dierent situations of [t, r] u,v Possible costs of [t, r] u,v
tu,v is small tu,v > u tu,v < t < r with t and r are large and consecutive ordering periods

s u,v t-1 < V L [t, r] u,v (1) V ≤ s u,v t-1 < 2V L [t, r] u,v (2 
) t < tu,v < r with t and r are large consecutive ordering periods

s u,v r-1 < V L [t, r] u,v (3) V ≤ s u,v r-1 < 2V L [t, r] u,v (4 
) t < r < tu,v with t and r are large and consecutive ordering periods L [t, r] u,v (5) tu,v is small tu,v = u u < t with 2 consecutive ordering periods u and t, and t is large L [u, t] u,v (6) t and r are large and consecutive ordering periods with u < t < r L [t, r] u,v (7) tu,v is large t = tu,v and, t and r are large and consecutive ordering periods with t < r.

L [t, r] u,v (8) 
All the ending inventory levels must be calculated for the periods u, u + 1, . . . , v -2 because we have

s u,v u-1 = s u,v v-1 = 0. The calculation details of all the values of L [t, r] u,v (i) , for 1 ≤ u ≤ t < r ≤ v ≤ w +1 and i = 1, . . . , 8, are
presented in Supplementary document, and, these values can all be computed in O(w 4 ) time.

How to compute C (u, v)

We show the computation of C (u, v) with 1 ≤ u < v ≤ w + 1. After the calculation of all the possible costs L [t, r] u,v (i) in the subplan (u, v) with i = 1, . . . , 8, we can now compute 6 possible values of the cost of subplan (u, v) according to dierent situations (see Table 4). The calculation details of C i (u, v) for i = 1, . . . , 6 are given in Supplementary document. 

Table 4: Costs C (u, v) in dierent situations Dierent situations of (u, v) Possible costs of (u, v) tu,v is small u ≤ t < tu,v < r,
r ≤ v C 1 (u, v)
tu,v ensures a part of demand for peri- ods r and thereafter with r < v

C 2 (u, v) tu,v = u C 3 (u, v) tu,v is large tu,v = u C 4 (u, v) tu,v is the last ordering period in (u, v) C 5 (u, v) u < tu,v < last ordering period in (u, v) C 6 (u, v)
After the calculation of all possible values of C (u, v) which can be computed in O(w 4 ), the latter is obtained as follows:

C (u, v) = min 1≤i≤6 {C i (u, v)}
The aim is to compute the optimal cost C w using the SP algorithm as mentioned in Formula [START_REF] Anily | Shipping Multiple Items by Capacitated Vehicles: An Optimal Dynamic Programming Approach[END_REF]. Thus, it solves the subproblem 1, w in O(w 4 ) time and the LSP-BB F T L with w > 1 in O(T w 3 ).

Numerical example for LSP-BB F T L with w > 1

We present an illustrative example of the algorithm of LSP-BB F T L with w > 1. We consider a time horizon of 4 periods in which the demands have to be satised in full and/or fractional batches of size V = 12. Table 5 contains the data on the demand, cost and revenue. In the buyback contract considered in this example, we suppose that the unused items can be returned to the supplier only at the end of period 4. However, with Property 5 there is no return throughout the horizon. Table 6 shows the optimal plan of our example indicating that there is one independent subproblem 1, 4 to optimize. It is interesting to note that there are two subplans (1, 4) and (4, 5). In (1, 4), there are a large ordering period (full) placed in period 1 and a small ordering period (fractional) situated in period 3. Therefore, this subplan belongs to the Case 1 (especially the Sub-case 1.2) by considering that the period 4 is a dummy large ordering period. We have s 1,4 3 = 0 < V , thus the optimal cost of the subplan (1, 4) is L [1, 4] 1,4 (3) . Concerning the subplan (4, 5), there is one ordering period placed in period 4 which is large and fractional. Hence, we take into account the Case 3 by considering that the periods 4 and 5 are large and consecutive ordering periods. The optimal cost of the subplan (4, 5) is L [4, 5] 4,5 (1) . 

LSP-BB with lost sales

In LSP-BB with lost sales, demands can be partially or totally lost. More accurately, lost sales involve allowing some orders not to be delivered if the total cost of ordering this demand is prohibitive. We also study the four sub-cases listed in section 4 under the concept of lost sales: SP-BB with lost sales and only full batches; LSP-BB with lost sales, only full batches and w > 1; SP-BB with lost sales and FTL cost structure; and nally LSP-BB with lost sales, FTL cost structure and w > 1. For these four sub-cases, we consider the same assumptions mentioned in section 4 and we add the lost sales assumption wlog: l t V t ≥ p t V t + a t , ∀ t = 1, . . . , T . For the return policy w > 1, we consider non-increasing lost sales costs over time. We recall that for w = 1, we solve T independent problems, each problem corresponding to one period. For w > 1, there are N independent problems to address. Each problem is expressed as (i -1)w + 1, iw ∀i = 1, . . . , N .

SP-BB with lost sales and only full batches (SP-BB LS,OF B )

The SP-BB LS,OF B is a special case of P BB . We x w to 1 and we modify Constraints (3) by q t ≥ 0, ∀t = 1, . . . , T , Constraints (4) by s t = 0, ∀t = 1, . . . , T and Constraints (8) by x t = A t V t , ∀t = 1, . . . , T . We demonstrate two important dominance properties of this problem.

Property 9. There is an optimal solution such that a non-negative quantity is returned to the supplier in period t ∈ {1..T } if and only if the lost sales amount drops to zero in that period. In our model, it is prohibited to have both (L * t = 0 and q * t = 0 if d t mod V t = 0) or both (L * t > 0 and q * t > 0).

Property 10. The optimal policy π * orders a quantity x * t which can take, in every period t, one of the three following values:

x * (1) t = 0, or x * (2) t = dt Vt V t , or x * (3) t = dt Vt V t .
For the proofs of properties 9 and 10, refer to Supplementary document. Properties 9 and 10 permit us to develop an ecient algorithm in order to nd the optimal plan for the SP-BB LS,OF B . The key idea is to divide the time horizon into T independent stages. Each stage corresponds to a period t, in which, by Property 10, the retailer procures either 0 or dt Vt V t or dt Vt V t . Then, by Property 9 and following the constraints of our problem, we can compute y * t , A * t , L * t and q * t related to each possible optimal ordered quantity x * t in every period t. For example, if x * t = 0, then by using Constraints (2), we obtain d t -L * t + q * t = 0. Using Property 9, if L * t = 0 then q * t = -d t which contradicts the feasibility constraint of q t , and if q * t = 0 then L * t = d t which is trivial. After that, we calculate the total cost of each possible optimal ordered quantity x * t in every period t. Hence, in each period t, we have three total costs C (1) t , C

(2) t and C

(3) t which correspond to the three possible optimal determine the minimum costs C (u, v) of all subplans (u, v) to decide how much of demand to satisfy and to lose for periods u, u + 1, . . . , v -1, with 1 ≤ u < v ≤ w + 1. Then, we can obtain the total optimal cost C w of the subproblem 1, w , in which each demand can be either totally satised, or partially lost, or totally lost with w + 1 being a regeneration period, by using the same SP algorithm proposed for LSP-BB F T L with w > 1 in section 4.4. In the following, we will prove that all the C (u, v) values can be obtained recursively in O(w 4 ) for the subproblem 1, w . Therefore, the overall complexity of the LSP-BB LS,OF B with w > 1 algorithm is O(T w 3 ) time. In section 5.2.3, we present an illustrative example for this algorithm.

The key idea behind computing the cost C (u, v) is to decompose the subplan (u, v) into dierent cycles. At the beginning, we can nd the replenishment cycles of type [t, r] u,v (5) such that t and r are 2 consecutive ordering periods without lost sales for u ≤ t < r ≤ v (see Sub-case 1.3 in Supplementary document). After that, if v < w + 1, then there is what we call a loss and replenishment cycle denoted by k, v u,v such that k is the last ordering period in (u, v) and v -1 is the loss period in which the amount of unmet demand is strictly greater than 0, for u ≤ k < v < w+1. If v = w+1, then there is either one loss and replenishment cycle k, w + 1 u,w+1 for u ≤ k < w + 1, or one return and replenishment cycle denoted by k, w + 1 u,w+1 such that k is the last ordering period in (u, w + 1) and w is the return period for u ≤ k < w + 1.

Properties and corollaries

We will rst establish some optimality properties for our subproblem 1, w in order to propose an O(w 4 ) time algorithm. We use Property 9 which arms that L w q w = 0. In other words, the retailer cannot return and lose at the same time. We give some other properties in the following: Property 11. In any optimal solution, the starting inventory level s r-1 of an ordering period r is lower than V units (s r-1 < V ), for r = 1, . . . , w + 1.

Property 12. In any optimal solution, for a null ordering period i (x i = 0),

if s i-1 ≥ V then L i < V .
Property 13. There exists an optimal policy such that L t s t = 0 for each t = 1, 2, . . . , w. If we decide not to satisfy a positive amount of demand in period t, the stock level will drop to zero at the end of that period. This also means that if we have a positive stock at the end of a period, the latter cannot be a lost sales period. This property implies that in each subplan (u, v), there is at most one loss period which is v -1, because this is the only period with a null outgoing stock level. Any possible lost sales quantity in the subplan (u, v) must be of the form:

L u,v v-1 = D u,v-1 -D u,v-1 V V + nV such that n ∈ N and n ≤ D u,v-1 V .
The proofs of Properties 11, 12 and 13 are stated in Supplementary document.

We have the following corollary which will be used to compute the total optimal cost of the subplan (u, v):

Corollary 1. If v -1 is an ordering period and there is a positive lost Table 7 shows the optimal solutions of this problem. We have the same decomposition of subplans (1, 4) and (4, 5). In (1, 4), the period 1 is the only ordering period which is large and full, and the period 3 is the only loss period in which the quantity of unmet demand is lower than the batch size 12. The optimal cost of the subplan (1, 4) is the cost of the loss and replenishment cycle 1, 4 1,4 . In (4, 5), the period 4 is at the same time a large and full ordering period and a return period. The optimal cost of this subplan is the cost of the return and replenishment cycle 4, 5 4,5 . Compared to the case SP-BB LS,OF B , we do not consider any specic assumption on the batches. The ordered quantities can now be in fractional batches. Two important dominance properties are given as follows:

on the decomposition of (u, v) into dierent types of cycles. We can nd the dierent forms of replenishment cycles [t, r] u,v (i) for i = 1, . . . , 8 and 1 ≤ u ≤ t < r ≤ v ≤ w + 1 (see section 4.4) and/or the loss and replenishment cycle k, v u,v for 1 ≤ u ≤ k < v ≤ w + 1 (see section 5.2).

Properties

The subproblem 1, w possesses several optimality properties presented below. Properties 5, 6, 7, 8 (see section 4.4), and 13 (see section 5.2) remain valid for the general problem LSP-BB LS,F T L with w > 1.

Property 16. There exists an optimal solution, in which, for any subplan (u, v) with 1 ≤ u < v ≤ w + 1, there is at most either one fractional batch ordered in one of its periods, or one loss period being the period v -1.

This property is proved in Supplementary document.

Hence, if there is a positive lost sales quantity, then all ordering periods are large. Now, we can directly use Property 12 and Corollary 1.

How to compute C (u, v)

All these properties imply that the cost of the subplan (u, v) for 1 ≤ u < v ≤ w + 1 in LSP-BB LS,F T L with w > 1 is the minimum between the cost C (u, v) in LSP-BB F T L with w > 1, and the cost C (u, v) in LSP-BB LS,OF B with w > 1, but without taking into account the return revenue since the retailer can order fractional batches. Hence, the running time to compute all key idea behind achieving this running time is to compute the full replenishment periods and lost sales quantities in each subplan. For the problem with FTL cost structure, we have developed an O(T w 3 ) time algorithm. We compute the fractional, full and lost sales quantities in each subplan.

There are many interesting extensions of our topic to explore as perspectives. Such extensions might include another form of buyback contract in which the retailer can return products only in ordering periods with a maximum return percentage. For full return, we can try to propose an ecient algorithm, but for partial return, we can try to see if this problem is NPhard or not. Other interesting perspectives can be the multi-item and/or the multi-level cases. For instance, one can consider a system with multiple items arriving at a retailer in batches with the possibility of returns to the supplier in every period of the planning horizon. In each period, the total returned quantity of all the items may be limited by an amount specied by the supplier. For this problem, we can refer to two research axes: multi-item LSP with batch ordering and big-bucket LSP with several items sharing a common capacity for a given period. Given the increasing complexity of the Concerning the multi-level extension, one can imagine a system with serial suppliers replenishing an item to the upstream levels in some batches, with dierent levels of this chain having various buyback options. In this system, one can also consider intermediate demands occurring in each echelon (direct shipment to local customers), in addition to the demand of upstream levels.

We 

Figure 1 :

 1 Figure 1: The contributions of this study

  inventory holding costs. The rst work on discrete and deterministic uncapacitated LSP (ULSP) was developed by Wagner and Whitin (1958) proposing an algorithm in O(T 2 ) time which has been improved by Wagelmans et al. (1992), Federgruen and Tzur (1991), and Aggarwal and Park (1993), to an O(T log(T )) time algorithm in the general case and to an O(T ) time algorithm under the non-speculative costs. The papers of Florian et al. (1980), and Bitran and Yanasse (1982) prove the complexity of the single-item capacitated LSP (CLSP) depending on the structure of setup, inventory and production costs and capacities. For more details on the LSP, refer to Karimi et al. (2003), Buschkühl et al. (2010) and Brahimi et al. (2017).

Figure 2 :

 2 Figure 2: Full-truckload cost function

Figure 3 :

 3 Figure 3: Total procurement cost function (assumed in this study)

  study the ULSP including lost sales. They propose an O(T 3 ) time dynamic programming (DP) algorithm to solve it optimally. Aksen et al. (2003) improve the previous complexity to O(T 2 ). Hwang et al. (2013) provide algorithms for the ULSP with upper bounds on stocks and lost sales, and the problem with only lost sales considering dierent cost structures. In Absi et al. (2011), two ULSP with production time windows are studied. The rst one allows to integrate lost sales and early production, and the second problem focuses on inclusion of backlogs and early production. They propose two DP algorithms to solve these problems in O(T 2 ) time.

Figure 4 :

 4 Figure 4: The N intervals of our problem (illustration for w = 5)

  (2004) study the LSP with batch ordering, time varying cost parameters and backlogging where the production quantity in each period is limited to a multiple of constant batch size V . The authors propose an algorithm that runs in O(T 2 ) time which is then lowered to O(T log(T )) time through Monge matrices. In LSP-BB OF B with w > 1, the backlog is not allowed and the buyback contract is considered. Notice that we use a solution algorithm very close to that proposed by[START_REF] Li | Dynamic Lot Sizing with Batch Ordering and Truckload Discounts[END_REF] 

  et al. (2004) develop an O(T 3 log T ) time algorithm for the dynamic lot sizing with fractional batch ordering (LSP-B) and backlogging. The authors assume non-decreasing concave holding, backlogging, and Less-than-Truck Load (LTL) freight cost functions and linear variable procurement costs. Akbalik and Rapine (2018) study a similar LSP-B but without backlogging. They suppose linear holding costs, but a LTL cost function with concave variable costs. Thereafter, the authors propose an O(T 4 ) time algorithm for LSP-B without backlogging but with concave procurement costs being more general than in Li et al. (2004).

5. 2 . 3 .

 23 Numerical example for LSP-BB LS,OF B with w > 1 We use the same example presented for the algorithm of LSP-BB F T L with w > 1 (see Section 4.4.4) by adding four lost sales costs, l 1 = 23.5, l 2 = 22.3, l 3 = 21.8 and l 4 = 21.5. In this problem, the demands can be partially or fully satised in full batches, or can be fully lost.

  related problems and the diculty to propose ecient algorithms, one can try to develop a dynamic programming algorithm which is polynomial for a xed number of items (Anily and Tzur, 2005), or use polyhedral approaches by proposing valid inequalities (see Akartunali et al., 2016; Doostmohammadi and Akartunali, 2018), relaxation or decomposition techniques (Fragkos et al. 2016), or heuristics (Absi et al. 2013) for a large dimension of items.

Table 1 :

 1 Complexities of all the algorithms for dierent cases studied in this paper. OFB: only full batch, FTL: full truck load, T : length of the planning horizon, w:

			periodicity of the return periods	
	Hypotheses	Without lost sales OFB FTL	With lost sales OFB FTL
	w=1	w>1	w=1	w>1	w=1	w>1	w =1
	with		with	with	with	with	with
	V t		V	V t	V	V t	V

Table 2 :

 2 Notations for the general model of the LSP-BB

	Parameters	
	T	length of the horizon
	w	periodicity of the return periods
	p t	unit procurement cost (variable cost) in period t
	f t	xed ordering cost (setup cost) in period t
	a t	xed cost per batch replenished in period t
	h t	inventory holding cost per unit at the end of period t
	p b t l t	unit return revenue in period t unit lost sales cost in period t
	d t	demand in period t
	V t	batch size in period t
	Decision variables	
	x t	amount of procurement in period t
	y t	1 if a procurement takes place in period t 0 otherwise
	A t	number of batches ordered in period t
	s t	stock level (quantity remaining in stock) at the end of
		period t
	q t	returned quantity of unused products at the end of pe-
		riod t
	L	

t lost sales quantity (amount of unmet demand) in period t

  T , see page 13. -Moreover, for the LSP-BB with w = 1, we consider the following assump-

	tions:	
	-	Batches with time-dependent sizes (V t ).
	p b t < p -
		Non-increasing (NI) lost sales costs are considered to t the realistic
		conditions of perishable or obsolete products.

t , ∀ t = 1, . . . , T , this is a criterion of the buyback contract, see page 10.

-In contrast, for LSP-BB with w > 1, we assume: Constant batch size (V ), see page 8. p b iw < p t , ∀t ∈ {(i -1)w + 1, . . . , iw} and ∀i ∈ {1, . . . , T w } with i ∈ N * .

Table 5 :

 5 Demand, dierent costs and revenue data

	Period	d t	f t	p t a t h t p b t
	t					
	1	75	100	13 23 1	-
	2	9	250	10 23 1	-
	3	50	0	21 4	1	-
	4	23	0	13 3	1	9

Table 6 :

 6 The optimal quantities of LSP-BB F T L with w > 1

	Period	x t s t	q t A t
	t				
	1	132 57	0	11
	2	0	48	0	0
	3	2	0	0	1
	4	23 0	0	2

Table 7 :

 7 The optimal quantities of LSP-BB LS,OF B with w > 1 SP-BB with lost sales and FTL cost structure (SP-BB LS,F T L )

	Period	x t s t	L t q t A t
	t					
	1	132 57	0	0	11
	2	0	48	0	0	0
	3	0	0	2	0	0
	4	24 0	0	1	2
	5.3.					

  can extend the work of Zhang et al. (2012) studying the multi-echelon LSP in series with intermediate demands, by adding the concepts of batch replenishment and/or return policy. One can try to see if the valid inequalities proposed by Zhang et al. (2012) can be adapted to our problem under some restrictive assumptions. Another interesting study on multi-level LSP is from van Vyve et al. (2014), which can be valuable to extend with our assumptions of buyback option and batch ordering. The system may be composed of one-warehouse facing dependent demand and multi-retailers facing independent demands, with inventories at both levels and retailers being able to return unused products in capacitated vehicles to the warehouse. One can see if the extended formulations proposed by the authors can be handled to integrate the new constraints specic to our problem.
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Denition 1. (Akbalik and Rapine, 2018, page 9) An ordering period t is called a large period if the retailer procures at least one full batch (i.e.

x t ≥ V ), and is called small (x t < V ) otherwise.

By Property 6 and Denition 1, there is at most one small ordering period over the subplan (u, v), which corresponds to the ordering of a fractional batch. Nevertheless, the period of fractional batch ordering can be also large if this fractional batch is ordered in addition to full batches. We have the following property which is used to solve the LSP-B rst stated in Akbalik and Rapine (2018). Property 7. (Akbalik and Rapine, 2018, page 10) Consider that the periods t and r are two consecutive ordering periods. In an optimal policy π * , if both periods are large, then s r-1 < V . In other words, if s r-1 ≥ V then either the period t is large and r is small, or vice versa.

We present, in Supplementary document, a dierent way to prove Property 7 than the one proposed by Akbalik and Rapine (2018) knowing that we consider unit procurement costs. Property 8. If there is a small ordering period t between two large consecutive ordering periods t and r (t < t < r), then s r-1 < 2V .

Refer to Supplementary document in order to see how Property 8 is proved.

How to compute

In a given subplan (u, v), we need to compute the cost L [t, r] u,v to satisfy the demands d t , d t+1 , . . . , d r-1 of the replenishment cycle [t, r] u,v in dierent situations. Recall that, there is at most one fractional batch occurring over procurement quantities x * (1) t , x * (2) t and x * (3) t respectively.

C

(1) t

C

(2) t

Besides, we must choose the minimum cost. We dene C min (t) as the minimum cost among C

(1)

(3) t in every period t.

C min (t) := min C

(1)

t , C

We present C * as the sum of C min (t) from period 1 to period In our algorithm for LSP-BB LS,OF B with w > 1, we use the same decomposition scheme into subplans (u, v) as previously. Therefore, we must sales quantity, then

Corollary 1 is a result of all the LSP-BB LS,OF B with w > 1 properties.

How to compute C (u, v)

Recall that inside the subplan (u, v) such that 1 ≤ u < v ≤ w + 1, there is at most one loss period which is the period v -1 and for any ordering

, based on the fact that there is no lost sales between the periods u and v -2, and on Property 11. Furthermore, in each subplan (u, w + 1), the demand in period w will be partially or fully lost if and only if the return is not made in that period, and if D u,w mod V = 0.

Otherwise, we have L u,w+1 w ≥ 0 if and only if q w = 0.

To nd the optimal cost of the subplan (u, v), we need to compute, rst, the minimum total cost G u,v r to satisfy the demands d u , d u+1 , ..., d r-1 , for 1 ≤ u < r ≤ v ≤ w + 1, such that r must be the last ordering period and/or the loss or return period of (u, v). The dynamic programming formulation of G u,v r is given in Supplementary document.

In the case where r is the last ordering period in the subplan (u, v) and v -1 is the loss period with L u,v v-1 < V , we have to compute, second, the total holding cost H u,v r from the end of period r until the beginning of v -1 to satisfy the demand of periods r, r + 1, . . . , v -2, for u ≤ r < v -1. We dene the formula of H u,v r and the indicator functions 1 a and 1 i a i in Supplementary document.

After that, we can compute the possible values of C (u, v) in an O(w 4 ) time. Thus, for 1 ≤ u < v ≤ w + 1:

To see how the above relation is constructed, we consider in each subplan (u, v) with u < v, that u is the rst ordering period and all the demands d u , d u+1 , ..., d r-1 must be satised with the minimum cost G u,v r in which the period r can be the last ordering period and/or the loss or return period, for

We have 3 situations of (u, v). In the rst situation, the subplan has a lost sales quantity less than the batch size V . Then, the retailer orders in period r a quantity of

In this case, the position of the period r belongs to {u, . . . , v -1} with v-1 ≤ w.

In the second situation, the lost sales quantity in v-1 is greater than or equal to V . Then, v -1 is a null ordering period and there is a loss of d v-1 -s u,v v-2 . In this case, we have r = v -1 ≤ w. In the third situation, the subplan (u, v) possesses a procurement surplus and a return of

After predetermining all the possible C (u, v) values, we can compute the optimal total cost C w to satisfy or to lose each demand in the subproblem 1, w with only full batch, expressed in Formula (11), in O(w 4 ) time. Therefore, the running time of the dynamic programming algorithm proposed for LSP-BB LS,OF B with w > 1 is O(T w 3 ).

Property 14. In any optimal solution, there is no returned quantity, i.e.

q * t = 0, ∀t = 1, . . . , T .

Property 15. The optimal plan π * orders either 0 or dt Vt V t or d t in every period t. We indicate the three possible optimal ordered quantities as follows:

The proofs of Properties 14 and 15 are given in Supplementary document.

We develop an ecient algorithm for the SP-BB LS,F T L that is based on Properties 14 and 15. The key idea of this problem is the same for the SP-BB LS,OF B . We have the following costs: C

(1)

t , C

t , C min (t) and C * already dened in Section 5.1. We refer to Formulas ( 16)-( 20) by just changing the quantity x * (3) t from dt Vt V t to d t and subsequently the cost

5.4. LSP-BB with lost sales, FTL cost structure and w > 1 (LSP-BB LS,F T L with w > 1)

The LSP-BB LS,F T L with w > 1 is the most general problem with nonincreasing lost sales costs and a constant batch size. We will solve independently, in the same way as before, the subproblems 1, w , w + 1, 2w , ..., T -w + 1, T to obtain LSP-BB LS,F T L with w > 1. Our problem will be decomposed into subplans which start and end with zero stock. The optimal cost C w of the subproblem 1, w with ordering of full/fractional batches and lost sales can be computed in O(w 4 ) by a shortest-path like dynamic programming algorithm used in section 4.4, given that all the possible subplan costs can be obtained in O(w 4 ) time. Thus, we can compute the total optimal cost of LSP-BB LS,F T L with w > 1 with a complexity in O(T w 3 ) time. The computation of the optimum cost of a subplan relies the values of C (u, v) is bounded by O(w 4 ). They are obtained as follows:

Once all these values are predetermined, the value of C w can be obtained in O(w 4 ) time by using [START_REF] Anily | Shipping Multiple Items by Capacitated Vehicles: An Optimal Dynamic Programming Approach[END_REF]. Hence, the LSP-BB LS,F T L with w > 1 is solved in O(T w 3 ) time. The optimal decomposition of subplans is (1, 4) and [START_REF] Akartunali | Local cuts and two-period convex hull closures for big-bucket lot-sizing problems[END_REF][START_REF] Akbalik | Valid inequalities for the single-item capacitated lot sizing problem with stepwise costs[END_REF]. The optimal cost of (1, 4) is the cost of the cycle 1, 4 1,4 as in the example of Section 5.2.3. In [START_REF] Akartunali | Local cuts and two-period convex hull closures for big-bucket lot-sizing problems[END_REF][START_REF] Akbalik | Valid inequalities for the single-item capacitated lot sizing problem with stepwise costs[END_REF], there is no return and the period 4 is a large and fractional ordering period. Its optimal cost is the cost of the cycle L [4, 5] 4,5 (1) as in the example of Section 4.4.4.

Conclusion and perspectives

In this study, we considered the single-item lot sizing problem with batch ordering under the buyback contract. In our model, we merged the buyback contract into the LSP by considering that the retailer returns the unused units to the supplier either at the end of each period t, denoted by w = 1

or at the end of every w periods w > 1 with full return and partial refund.

Another option we studied is the possibility to not satisfy all the demands, knowing that losing a batch costs more than purchasing it. Therefore, for both LSP-BB without and with lost sales, we tackled 4 problems by assuming dierent hypotheses. In the rst problem, we only consider full batches with w = 1. The second problem is with OFB and w > 1. To obtain the two problems that remain, we changed the OFB cost structure in the rst two problems to the FTL cost structure.

In the LSP-BB without lost sales, we have developed 2 algorithms of complexity O(T ) for w = 1 that solve the single period procurement planning with time-dependent size batch ordering according to the nature of cost structure (OFB or FTL). The key idea of these algorithms is to divide the problem with the planning horizon 1, . . . , T into T independent subproblems.

When w > 1, we have also developed 2 algorithms that solve LSP-BB with constant size batch ordering. The general idea of these algorithms is to divide the problems into T w subproblems. For the problem with OFB, the algorithm runs in O(T w) time. The key idea of each subproblem which is close to the algorithm proposed by Li et al. ( 2004) is to detect the replenishment periods.

For the problem with FTL costs, we have adapted the algorithm of Akbalik and Rapine (2018) to each subproblem to obtain an O(T w 3 ) time algorithm.

The idea is to precompute the fractional and full quantities replenished in each subplan.

For the LSP-BB with lost sales, we have developed 2 algorithms of complexity O(T ) for w = 1, one for OFB and another for FTL cost structure. For the return policy w > 1, we have proposed 2 algorithms that solve the LSP-BB with constant size batch ordering and non-increasing lost sales costs. For the OFB cost structure, we have proposed an O(T w 3 ) time algorithm. The