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RIEMANN’S NON-DIFFERENTIABLE FUNCTION IS INTERMITTENT

ALEXANDRE BORITCHEV, DANIEL ECEIZABARRENA, AND VICTOR VILAÇA DA ROCHA

Abstract. Riemann’s non-differentiable function, introduced in the middle of the 19th century as
a purely mathematical pathological object, is relevant in the study of the binormal flow, as shown
recently by De La Hoz and Vega. From this physical point of view, the function is therefore related
to turbulent phenomena.

We rigorously study the fine intermittent nature of this function on small scales. To do so, we
define the flatness, an analytic quantity measuring it, in two different ways: one in the physical
space and the other one in the Fourier space. We prove that both expressions diverge logarithmically
as the relevant scale parameter tends to 0.

The regularity of Riemann’s non-differentiable function is a classical subject, heavily linked to its
small-scale behaviour. However, our subtle asymptotics for a classical hydrodynamical quantity are
new and sharp.

1. Introduction and motivation

Riemann’s non-differentiable function

f(t) =
∞∑
n=1

sin
(
n2t
)

n2 , t ∈ [0, 2π].

is a celebrated example of a continuous but almost nowhere differentiable function. It was introduced
by the eponymous mathematician in the 1860s [35], and since then it has been widely studied from
an analytic perspective [12, 19, 20, 22, 25]. Interesting by itself as one of the first examples of an
analytically pathological function, there is evidence that it appears naturally in a physical context.
Indeed, according to [23], its complex-valued analogue

R(t) =
∞∑
n=1

e2πin
2t

n2 , t ∈ [0, 1], (1)

seems to be a fair representative of some particular temporal trajectories in the dynamics of vortex
filaments. These are described by the Vortex Filament equation, also known as the Binormal Flow
equation, a nonlinear PDE strongly linked to the nonlinear Schrödinger equation. These dynamics
are associated to turbulent phenomena, so the study of properties of R that are related to turbulence
is quite natural. The objective of our work is to give sharp quantitative estimates that measure one
of these, the intermittency of R, following the ideas of Frisch [16, Chapter 8].

In Subsections 1.1 to 1.3, we introduce the physical setting where Riemann’s non-differentiable
function appears naturally, as well as its relationship with the concept of intermittency in the
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context of turbulence. After that, in Subsection 2.1 we set notation, and in Subsection 2.2 we define
two quantities measuring intermittency. One of them is based on frequency high-pass filtering; the
other one makes use of the so-called structure functions, a popular tool in the study of turbulence.
Our main result is the following:

Theorem. Riemann’s non-differentiable function (1) is intermittent from the point of view of both
high-pass filtering and structure functions.

In Subsection 2.2, a quantitative and sharp version of this result is given in Theorem 1.
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Figure 1. The image of Riemann’s non-differentiable function R.

1.1. The Vortex Filament Equation and Riemann’s non-differentiable function. The
vortex filament equation (VFE) is

Xt =Xx ∧Xxx, (t, x) ∈ R× R, (VFE)

where X =X(t, x) ∈ R3 is a curve parametrized by arclength x and time t. Here, ∧ is the usual
cross product. Considering the Frenet-Serret frame (T ,N ,B), where T =Xx is the tangent vector,
N = T x/‖T x‖ is the normal vector and B = T ∧N is the binormal vector, the equation can be
equivalently written as

Xt = κB.
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This is why (VFE) is also called Binormal Flow equation. Here, κ(t, x) is the curvature which,
together with the torsion τ(t, x), satisfies the Frenet-Serret relations TN

B


x

=

 0 κ 0
−κ 0 τ
0 −τ 0


 TN
B

 .
The equation (VFE), first obtained by Da Rios in 1906 [11], and rederived in 1965 by Arms and
Hama [1] from the Euler equation, is an asymptotic model for the dynamics of a space curve: the
vortex filament. A remarkable result about this equation was given by Hasimoto in 1972 [21], where
he proved that the transformation

Ψ(t, x) = κ(t, x) ei
∫ x

0 τ(t,σ) dσ (2)

solves the nonlinear Schrödinger equation

iΨt + Ψxx + 1
2

(
|Ψ|2 +A(t)

)
Ψ = 0. (NLS)

Here, A is a real, time dependent function that depends on κ, τ and their derivatives (see [2]). This
way, the Hasimoto transformation defines a correspondence between (VFE), the equation of the
original problem, and the well-known nonlinear Schrödinger equation. This supplies a method to
find solutions of (VFE), since they can be produced from particular solutions to (NLS), as explained
in [2].

Self-similar solutions, studied by Gutiérrez, Rivas and Vega in [18], and later by Banica and Vega
in [2], are of the form

X(t, x) =
√
tG

(
x/
√
t
)
, t > 0, x ∈ R,

where G is a regular function defined on R, obtained from the tangent vector of X in the Frenet-
Serret system. These solutions are regular for t > 0, but they develop a singularity in the shape of
a corner at time 0, which means that X(0, x) represents the union of two non-parallel half-lines, a
V-shaped initial datum. This is the behaviour of filaments of air in a delta wing during a flight [24].
Also, a corner can be created after a reconnection of two different filaments, as can be observed in
the rear of a plane or in the study of superfluid helium [33]. In [3], Banica and Vega generalise the
results for the initial V-shaped datum to any curve which is regular except at one point where it
has a corner, and they show existence and uniqueness of solutions under suitable conditions. Later,
in [4], they analyse initial data given by polygonal lines, extending the one-corner problem to a
many-corner one, where they also prove existence and uniqueness.

We are interested in a similar generalisation, when the initial datum is given by a closed, regular and
planar M -sided polygon, studied in [23]. This means that τ(0, x) = 0, so the initial datum in (NLS)
is ψ(0, x) = κ(0, x). Through the Hasimoto transformation (2), a corner-shaped singularity for the
Vortex Filament equation (VFE) becomes a Dirac delta in the curvature, so the initial datum is
given by a periodic sum of Dirac deltas,

ΨM (0, x) =
∑
k∈Z

δ

(
x− 2π k

M

)
, x ∈ R. (3)
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In [23], the Galilean invariance of (NLS) is used to determine

ΨM (t, x) = Ψ̂M (t, 0)
∑
k∈Z

e−i(Mk)2t+iMkx.

Moreover, evaluation at scaled rational times tp,q = (2π/M2)(p/q), where p, q ∈ Z are coprime, gives

ΨM (tp,q, x) = 2π
M q

ΨM (tp,q, 0)
∑
k∈Z

q−1∑
m=0

G(−p,m, q) δ
(
x− 2πk

M
− 2πm

Mq

)
, (4)

where G stands for the generalised quadratic Gauss sums

G(a, b, c) =
c−1∑
m=0

e2πi(am
2+bm)/c, a, b ∈ Z, c ∈ N.

The solution (4) is a mathematical representation of the Talbot effect, a celebrated optical phenom-
enon discovered in 1836 [34] and rigorously described for the first time in 1881 [32]. This effect is
based on the diffraction of waves, and it happens when light crosses a diffraction grating, a plate
with uniformly distributed parallel vertical slits. Interference creates narrow copies of the grating in
every rational multiple of a fixed distance, where the pattern is reproduced exactly. Applications
have been discovered in several fields such as imaging or lithography, and accordingly, further
theoretical study has been carried out (see, for instance, [5, 31]). It is visually represented by a
Talbot carpet [6].

The structure of the Talbot effect matches the evolution of the polygonal filament if slits of the grating
and corners of the filament are identified. Indeed, since according to the Hasimoto transformation
ΨM shares support with the curvature of XM , from (4) one can deduce that the corresponding
filament XM (tp,q, x) is an Mq-sided, not necessarily planar polygon. To see this, we must recall
that the filament is first defined in (0, 2π) and then extended periodically to R. In (4), a value of k
corresponds to the interval (2πk/M, 2π(k+1)/M), and when k is fixed, the sum in m goes from 0 to
q − 1 because the value q corresponds to the interval with k + 1 and m = 0. Since (0, 2π) is covered
by the values k = 0, 1, . . . ,M − 1, and for each of them every m = 0, 1, . . . , q − 1 corresponds to a
Dirac delta, the filament has Mq corners at time tp,q. The resulting polygon is in general not planar.

Also in [23], the authors consider the temporal trajectories of the corners of the initial filament,
represented by XM (t, 2πk/M) for every fixed k ∈ Z. However, they only study XM (t, 0), since the
translation invariance of (NLS) together with the space periodicity of the initial datum (3) imply
that all of them have the same structure. Then, they show numerically that XM (t, 0) is extremely
similar to the image of the function

φ(t) =
∑
k∈Z

e−4π2ik2t − 1
−4π2k2 ,

and after a proper rescaling depending on the number of initial sides M , it seems to converge to
φ as M → ∞. Therefore, φ is intrinsically related to the evolution of vortex filaments following
the binormal flow, and its geometric importance as a representative of a physical trajectory is
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highlighted. This function is a slight modification of Riemann’s non-differentiable function (1), since

φ(t) = − i

2π2 R(−2πt) + it+ 1
12
.

This gives evidence of an intrinsic physical and geometric nature of Riemann’s non-differentiable
function.

Some geometric results were obtained in [12] and also in [10], where the box-counting dimension
of some trajectories related to R and other similar Fourier series were analysed. Further results
regarding φ were obtained by the second author in [13, 14, 15]. More precisely, in [14] the Hausdorff
dimension of the trajectory represented by its image is analysed, and in [15] it is proved that this
trajectory does not have a tangent anywhere. On the physical side, the fact that the trajectories
of vortex filaments following the binormal flow are related to turbulent phenomena justifies our
interest for the relationship between Riemann’s non-differentiable function and turbulence-related
properties, such as intermittency and multifractality.

1.2. Turbulence and intermittency. In a series of papers in 1941, Kolmogorov gave a precise
description of the properties of turbulent flows, for which the Reynolds number is large enough.
These articles, usually referred to as the K41 Theory, are seminal for the theory of turbulence. The
idea is that at small scales and away from the boundaries, the behaviour of a turbulent flow is
universal: it does not depend on the fluid under consideration, nor on the geometry of the particular
mechanisms producing the turbulence. The K41 Theory assumes that the flows are homogeneous
(statistically invariant under translations) and isotropic (statistically invariant under rotations).
Among the results of these papers, K41 hypotheses imply the self-similarity of both the high-pass
filters of the velocity and the velocity increments.

Although this theory gives remarkable results, such as the Kolmogorov four-fifths law [28], two main
issues have been pointed out: the lack of universality, emphasized by Landau in 1944 and reported
later in [29] (it was just a footnote in the first version of the book), and the lack of self-similarity
for the flows at small scales (in the dissipation range), highlighted by several experiments. The
intermittency of a flow is formally a measure of this lack of self-similarity, and several ways to define
it can be found in the literature. In [16, Sections 8.2 and 8.3], using the probabilistic description of
turbulence, Frisch gives two definitions of intermittency for random stationary functions.

The first idea is to deal with high-pass filters in the Fourier space. Let the velocity of the flow v be
a stationary random function, which can be expressed in terms of its Fourier transform

v(t) =
∫

R
eiωtv̂(ω) dω.

Deleting the low frequencies, the high-pass filtered signal v>Ω is defined by

v>Ω(t) =
∫
|ω|>Ω

eiωtv̂(ω) dω, for Ω > 0.
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This filter is used to define the flatness

F (Ω) =

〈
(v>Ω(t))4

〉
〈
(v>Ω(t))2

〉2 , (5)

a tool to measure the intermittency of a signal. Here 〈·〉 denotes an ensemble average, defined as
the mean over many realizations of the flow with different initial conditions and forcing. This could
as well be a temporal average if we assume the ergodicity of the flow, or a spatial one if we use
its homogeneity. In the study of turbulence, these three definitions are usually considered to be
equivalent. We remark that, due to the stationarity of the signal v, the flatness F does not depend
on time.

The key point in this definition is that F is constant for self-similar flows. Indeed, if v(t) has
self-similar high-pass filters with a scaling exponent h, then v>λΩ

law= λhv>Ω for any λ > 0. As a
consequence, F (λΩ) = F (Ω) for every λ > 0. Therefore, the more the flatness F grows with Ω, the
less v(t) is self-similar at small scales, and thus by definition the more the flow v(t) is intermittent.

Remark 1.1. Frisch [16, Section 8.2] suggests that, in the setting above, the inverse of the flatness
measures the time the studied signal is “on”. This remark leads to a more visual definition of
intermittency: a signal is said to be intermittent if it displays activity during only a fraction of
time, which decreases with the scale under consideration.

The second idea for a definition of intermittency is to use the structure functions, which play a
key role in the literature of turbulence (see [16, 25] and also [7, 8, 9] for rigorous results for Burgers
turbulence). Let v be the velocity of a turbulent flow. For r, l ∈ R3, we define the longitudinal
velocity increment δv(r, l) between two points separated by l by

δv(r, l) = (v(r + l)− v(r)) · l

‖l‖
,

For p ≥ 1 and ` > 0, we can now define the pth structure function Sp by

Sp(`) = 〈(δv(`))p〉 , (6)

where there is no dependence on r by homogeneity of the turbulence. Moreover, the above only
depends on ` = ‖l‖ by isotropy. Then, the flatness with respect to structure functions, which we
call G, is

G(`) = S4(`)
S2(`)2

=

〈
(δv(`))4

〉
〈(δv(`))2〉2

. (7)

Once again, the key point is that G is constant for self-similar flows. Indeed, if δv(`) is self-similar
with scaling exponent h, then δv(r, λ`) law= λhδv(r, `) for any λ > 0. We obtain thus G(λ`) = G(`)
for all λ > 0. Therefore, we have the same characterization as for the flatness F : the more G grows
while ` goes to 0, the further v is from being self-similar at small scales, and thus by definition the
more v is intermittent.
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Remark 1.2. Through the hypothesis of the self-similarity of the velocity increments, the K41
Theory gives the exponent h = 1/3 and thus

Sp(`) ∼
`→0

`
p
3 .

Several experiments, some of which are listed in [16], show that the above does not hold when p 6= 3
(in particular when p is large). The Kolmogorov four-fifths law is concerned with the special case
p = 3, treated without the hypothesis of self-similarity: assuming homogeneity, isotropy and finite
dissipation, then

S3(`) = −4
5
ε`,

where ε is the mean energy dissipation per unit mass.

We mentioned that Riemann’s non-differentiable function represents a trajectory of the filament
in several experiments related to turbulent flows. The goal of this paper is thus to analyse the
intermittency of Riemann’s function adapting the two definitions of flatness given above.

1.3. Turbulence, multifractality and Riemann’s non-differentiable function. Multifractal-
ity is a concept deeply related to fully developed turbulence in fluids. Experiments have shown
that the velocity of a turbulent fluid follows a very erratic pattern, so a classification of its analytic
regularity might offer relevant information about its evolution. Assuming the latter is described by
some function f , such a classification is offered by the so-called spectrum of singularities, which we
define in the following lines.

For α > 0, a function f is said to be locally α-Hölder regular in a point t0, which is denoted f ∈ Cα(t0),
if there exists a polynomial Pt0 of degree at most bαc such that |f(t0 + h)− Pt0(h)| ≤ C|h|α for
small enough h ∈ R. Let the Hölder exponent of f at t0 be

Hf (t0) = sup {α : f ∈ Cα(t0)} .

Then, the spectrum of singularities is defined for each α > 0 as the Hausdorff dimension of the set
of points t0 having Hölder exponent α,

d(α) = dimH{t0 : Hf (t0) = α}.

The spectrum of singularities is difficult to measure in experiments, so in an attempt to overcome
this, Frisch and Parisi [17] conjectured a formula relating it with the structure functions (6). In this
deterministic context, Jaffard [25,26] adapts the definition of structure functions as

Sp(f, `) =
∫
|f(t+ `)− f(t)|p dt. (8)

Unlike the structure functions from the K41 Theory, defined as moments of order p of a stationary
random process, this definition uses Lp norms, and thus absolute values in the integral. If one
assumes that Sp(f, `) scales like |`|ζ(p) when ` → 0, the Frisch-Parisi conjecture states that the
spectrum is the Legendre transform of ζ,

d(α) = inf
p

(αp− ζ(p) + 1) . (9)
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However, restrictions may arise in the range of validity of (9). A more general and complete version
of the conjecture was given by Jaffard [26], who showed that these restrictions can be avoided if
ζ(p) is substituted by η(p) = sup{s | f ∈ Bs/p,∞

p }, where Bs/p,∞
p stands for the usual Besov spaces.

Indeed, η(p) generalises ζ(p). There are examples when the Frisch-Parisi conjecture (9) does not
hold, but it has been proved for self-similar functions [27]. In these cases, it is said that f satisfies
the multifractal formalism. In [26], partial results were obtained for generic functions.

Multifractal analysis of Riemann’s non-differentiable function was carried out by Jaffard [25] as a
natural continuation of its regularity analysis. Indeed, after the differentiability problem was finally
solved by Gerver in [19,20] following a partial result by Hardy in [22], the next natural step was
to study the local Hölder regularity which, as explained above, is central in the determination of
the spectrum of singularities. After an important initial contribution by Duistermaat [12], Jaffard
proved that

d(α) =


4α− 2, α ∈ [1/2, 3/4],
0, α = 3/2,
−∞, otherwise,

showing that R is a multifractal function, since there is a continuum of Hölder exponents with
non-trivial Hausdorff dimension. His proof is based on wavelet theory. He also checked the validity
of the Frisch-Parisi conjecture (9), therefore proving that R satisfies the multifractal formalism.
This suggested a turbulent nature of R, as was later observed in the context of the evolution of
vortex filaments.

2. Statement of the result

2.1. Setting and notation. In this paper, we work with the circle T = R/Z, and unless otherwise
stated we consider complex-valued functions defined on T. For p ≥ 1, we denote by Lp the Lebesgue
space on the circle, Lp(T), and by `p the Lebesgue sequence space `p(Z). We work with functions
such that the corresponding Fourier series

f(t) =
∑
n∈Z

anen(t)

are absolutely convergent, where (en)n∈Z is the orthonormal basis of L2(T) defined by en(t) = e2πint

and an ∈ C are the Fourier coefficients of f . In particular, this implies that f is continuous, and
therefore f ∈ Lp(T) for every p ∈ [1,+∞].

In the case of Riemann’s non-differentiable function, we use the notation

R(t) =
∞∑
n=1

e2πin
2t

n2 =
∞∑
k=1

σk
k
e2πikt,

where σk is defined by

σk =
{

1, if k is the square of an integer,
0, otherwise.
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For two positive functions f and g, we write f . g to denote that there exists a constant C > 0
such that f ≤ Cg. We also write f ' g to denote that f . g and g . f . If the constants involved
depend on some parameter α, we write f .α g and f 'α g.

For any a, b ∈ R such that a < b, we write
∑b
n=a =

∑
n∈[a,b]∩Z and

∑b
n>a =

∑
n∈(a,b]∩Z.

2.2. Flatness and main result. In the deterministic setting of Riemann’s non-differentiable
function, definitions (5) and (7) need to be modified. The standard way to do so is to substitute
p-moments by the p-th powers of Lp norms, as was done when going from (6) to (8).

Definition 2.1. For f : T→ C and N ∈ N, we define the high-pass filter as the projection of f
on Fourier modes above N , defined by

f≥N (t) =
∑
|n|≥N

anen(t), (10)

where an are the Fourier coefficients of f . Similarly, the low-pass filter is the projection of f on
Fourier modes below N , defined by

f≤N (t) =
∑
|n|≤N

anen(t), (11)

The flatness of f in the sense of high-pass filtering is given by

Ff (N) =
‖f≥N‖4L4(T)

‖f≥N‖4L2(T)
.

We say that f is intermittent in the sense of high-pass filtering if

lim
N→+∞

Ff (N) = +∞.

Remark 2.2. The filters (10) and (11) can also be defined with strict inequalities analogously:

f>N (t) =
∑
|n|>N

anen(t), f<N (t) =
∑
|n|<N

anen(t).

Definition 2.3. Let p ≥ 1, f : T → C a bounded and measurable function and ` ∈ [0, 1]. The
structure functions of f are defined by

Sf,p(`) =
∫

T
|f(t+ `)− f(t)|p dt. (12)

The flatness of f in the sense of structure functions is

Gf (`) =
Sf,4(`)
Sf,2(`)2

.

We say that f is intermittent in the sense of structure functions if

lim
`→0

Gf (`) = +∞.

Remark 2.4. If there is no risk of confusion regarding f , we write Sp(`) instead of Sf,p(`).
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Remark 2.5. In (10), N measures small perturbations in high-frequency Fourier oscillations, while
in (12), ` measures small variations in space. Both capture the small-scale behaviour of R. The
result in Theorem 1 is consistent with this fact. Indeed, if we identify N with `−1, both FR(N) and
GR(`−1) measure the same phenomenon.

The asymptotics of both definitions of flatness are given by the following theorem:

Theorem 1. Let R be Riemann’s non-differentiable function (1). There exist N0 ∈ N and 0 < `0 < 1
such that for N > N0 and ` < `0, we have

FR(N) ' logN, GR(`) ' log(`−1).

Consequently, R is intermittent in the sense of both high-pass filtering and structure functions.

Remark 2.6. The set R([0, 1]) is not self-similar, but the asymptotic behaviour of R [12] and
also Figure 1 reveal at least the presence of some approximate self-similar structure. Therefore, if
intermittency is a measure of the lack of self-similarity, R should have weak intermittent properties,
and its flatness should show this. The logarithmic growth of both FR and GR in Theorem 1 agrees
with this interpretation.

In Section 3, we prove the high-pass filter part of Theorem 1 and in Section 4, we prove the structure
function part.

3. Intermittency in the sense of high-pass filters

To prove the part of Theorem 1 concerning high-pass filters, we will use the Littlewood-Paley
decomposition of R, as well as a result of Zalcwasser [36] on the L4 norm of the sum of square-phased
exponentials. Both results are stated in Appendices A.1 and A.2.

We estimate the L2 norm of the high-pass filter first.

Lemma 3.1. For every N ≥ 2,
‖R≥N‖L2(T) ' N−3/4.

Proof. By Plancherel’s theorem, we get

‖R≥N‖2L2(T) =
∫ 1

0

∣∣∣∣∣
∞∑
n=N

σn
n
e2πint

∣∣∣∣∣
2

dt =
∞∑
n=N

σn
n2 =

∞∑
n=
√
N

1
n4 '

∫ ∞
√
N

dt
t4

= 1
N3/2 .

�

To compute the L4-norm of the high-pass filter, one may try to use Plancherel’s theorem again,
since ‖f‖44 = ‖f2‖22 holds. However,

R2
≥N (t) =

∞∑
k=2N

(
k−N∑
n=N

σn σk−n
n (k − n)

)
e2πikt, (13)
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whose Fourier coefficients are related to
∑k−N
n=N σn σk−n, the number of ways in which k can be

written as a sum of two squares both of which are greater than N . The study of such sums is a
classical problem in number theory and can be very technical. Instead, the Fourier series of R
can be decomposed in frequency pieces that act almost independently by the Littlewood-Paley
decomposition. We use this technique to prove the following lemma.

Lemma 3.2. There exists N0 ∈ N such that
‖R≥N‖L4(T) & N

−3/4 (logN)1/4, ∀N ≥ N0.

Proof. According to Appendix A.1, the Littlewood-Paley decomposition of R≥N is

R≥N (t) =
∞∑
j=1

∆jR≥N (t), (14)

where the Littlewood-Paley pieces are

∆0R≥N (t) =
∑

1≤n<A

σn
n
e2πint and ∆jR≥N (t) =

∑
Aj≤n<Aj+1

σn
n
e2πint, ∀j ∈ N.

The value of A will be chosen later (see (21)). We define j(N) as the index corresponding to the
piece containing the N -th Fourier coefficient, the only one satisfying Aj(N) ≤ N < Aj(N)+1. Then,
∆jR≥N = 0 for every j < j(N). By the Littlewood-Paley theorem, we may write the inequality

‖R≥N‖L4(T) '

∥∥∥∥∥∥∥
 ∑
j≥j(N)

|∆jR≥N |2
1/2

∥∥∥∥∥∥∥
L4(T)

≥ ‖∆i(N)R‖L4(T), (15)

where i(N) = j(N) + 1, using that ∆i(N)R = ∆i(N)R≥N . The choice of i(N) comes from the fact
that it is the first complete Littewood-Paley piece after j(N), which is truncated as a consequence
of the high-pass filter.

Let us estimate ‖∆i(N)R‖L4(T). As in (13), we use Plancherel’s theorem to write

‖∆i(N)R‖4L4 = ‖(∆i(N)R)2‖2L2 =

∥∥∥∥∥∥∥
Ai(N)+1∑
n=Ai(N)

σn
n
e2πint

2
∥∥∥∥∥∥∥
2

L2

'
2Ai(N)+1∑
k=2Ai(N)

∣∣∣∣∣∑
n

σn σk−n
n (k − n)

∣∣∣∣∣
2

, (16)

where the index n must satisfy Ai(N) ≤ n ≤ Ai(N)+1 and Ai(N) ≤ k − n ≤ Ai(N)+1. In both cases,
n ' Ai(N) and k − n ' Ai(N). Hence, we can take the denominators outside the sum:

‖∆i(N)R‖4L4 '
1

A4i(N)

2Ai(N)+1∑
k=2Ai(N)

∣∣∣∣∣∑
n

σn σk−n

∣∣∣∣∣
2

= 1
A4i(N)

∥∥∥∥∥∥
Ai(N)+1∑
n=Ai(N)

σn e
2πint

∥∥∥∥∥∥
4

L4

. (17)

This is a sum of exponentials with squared phases, whose Lp norms were computed by Zalcwasser [36].
First, the triangle inequality gives∥∥∥∥∥∥

A(i(N)+1)/2∑
n=Ai(N)/2

e2πin
2t

∥∥∥∥∥∥
L4

.

∥∥∥∥∥∥
A(i(N)+1)/2∑

n=1
e2πin

2t

∥∥∥∥∥∥
L4

+

∥∥∥∥∥∥
Ai(N)/2∑
n=1

e2πin
2t

∥∥∥∥∥∥
L4

, (18)
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so by Zalcwasser’s theorem in Appendix A.2 we get, for large enough N ,

‖∆i(N)R‖L4 .
1

Ai(N)

((
Ai(N)+1 logA(i(N)+1)/2

)1/4
+
(
Ai(N) logAi(N)/2

)1/4
)

.
1

Ai(N)

(
Ai(N) logAi(N)/2

)1/4
. A−3i(N)/4

(
logAi(N)

)1/4
.

(19)

On the other hand, using the reverse triangle inequality in (18), we get∥∥∥∥∥∥
A(i(N)+1)/2∑
n=Ai(N)/2

e2πin
2t

∥∥∥∥∥∥
L4

&

∥∥∥∥∥∥
A(i(N)+1)/2∑

n=1
e2πin

2t

∥∥∥∥∥∥
L4

−

∥∥∥∥∥∥
Ai(N)/2∑
n=1

e2πin
2t

∥∥∥∥∥∥
L4

.

Let us denote the constants in Zalcwasser’s theorem for p = 4 by 0 < c < C. We get

‖∆i(N)R‖L4 &
1

Ai(N)

((
cAi(N)+1 logA(i(N)+1)/2

)1/4
−
(
C Ai(N) logAi(N)/2

)1/4
)

= 1
Ai(N) (Ai(N) logAi(N)/2)1/4

(
(cA(1 + i(N)−1))1/4 − C1/4

)
& A−3i(N)/4

(
logAi(N)

)1/4 (
c1/4A1/4 − C1/4

)
.

(20)

Finally, choose A so that

(cA)1/4 − C1/4 = 1. (21)

Observe that in the proof of (19) and (20) we may replace i(N) by any j ≥ i(N), so we have proved
that

‖∆jR‖L4 ' A−3j/4
(
logAj

)1/4
, ∀j ≥ i(N). (22)

Coming back to j = i(N), from (15), since Ai(N)−1 ≤ N < Ai(N), we get

‖R≥N‖L4(T) & N
−3/4 (logN)1/4 .

�

Lemma 3.2 suffices to prove that the flatness of Riemann’s non-differentiable function tends to
infinity. However, we can be more precise and show that the lower bound in the lemma is sharp.

Lemma 3.3. There exists N0 ∈ N such that

‖R≥N‖L4(T) . N
−3/4 (logN)1/4, ∀N ≥ N0.

Proof. Applying the triangle inequality in the Littlewood-Paley decomposition (14), we write

‖R≥N‖L4 ≤ ‖∆j(N)R≥N‖L4 +
∑

j≥i(N)
‖∆jR‖L4 . (23)
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Using (22) we can estimate ‖∆jR‖L4 for j ≥ i(N). To deal with the index j(N), following the
arguments in (16), (17), (18) and (19) and using Aj(N) ≤ N < Aj(N)+1, we write

‖∆j(N)R≥N‖L4 '
1
N

∥∥∥∥∥∥
Aj(N)+1∑
n=N

σn e
2πint

∥∥∥∥∥∥
L4

.
1
N

∥∥∥∥∥∥
Aj(N)+1∑
n=1

σn e
2πint

∥∥∥∥∥∥
L4

+
∥∥∥∥∥
N∑
n=1

σn e
2πint

∥∥∥∥∥
L4


.

1
N

(N logN)1/4 = N−3/4 (logN)1/4.

(24)

On the other hand, using (22), we bound∑
j≥i(N)

‖∆jR‖L4 .
∑

j≥i(N)
A−3j/4

(
logAj

)1/4
'

∑
j≥i(N)

j1/4A−3j/4. (25)

By Hölder’s inequality one can write

∑
j≥i(N)

j1/4A−3j/4 ≤

 ∑
j≥i(N)

j A−3j/4

1/4  ∑
j≥i(N)

A−3j/4

3/4

. (26)

The second sum is geometric and equals
A−3i(N)/4

1−A−3/4 ' A
−3i(N)/4.

The first one can be computed differentiating power series. Indeed, for |r| < 1 we write∑
j≥i(N)

j rj ≤
∑

j≥i(N)
(j + 1) rj = d

dr

∑
j≥i(N)

rj+1 = d

dr

ri(N)+1

1− r

= i(N) ri(N)

1− r

(
1 + 1

i(N)

(
1 + r

1− r

))
≤ 2

1− r
i(N) ri(N).

The last inequality is satisfied when i(N) > 1 + r/(1 − r), which holds when N > A1+r/(1−r).
Choosing r = A−3/4, from (25) and (26), we get∑

j≥i(N)
‖∆jR‖L4 . i(N)1/4A−3i(N)/4 ' N−3/4 (logN)1/4.

Combining this with (23) and (24), we finally obtain

‖R≥N‖L4 . N−3/4 (logN)1/4,
for large enough N . �

From Lemmas 3.1, 3.2 and 3.3, the proof of the high-pass filter part of Theorem 1 is immediate.

Proof of Theorem 1 (Part 1). For large enough N determined by Lemmas 3.2 and 3.3, we may write

FR(N) =
‖R≥N‖4L4(T)

‖R≥N‖4L2(T)
' N−3 logN

N−3 = logN,
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and therefore lim
N→∞

FR(N) = +∞. �

4. Intermittency in the sense of structure functions

We begin by observing that for t, ` ∈ [0, 1], making the elementary change of variables t 7→ t− `/2,
the structure functions Sp(`) can be described in terms of the increment function I(`, t),

I(`, t) = R(t+ `/2)−R(t− `/2) = 2 i
∑
k≥1

sin(πk`)
k

σk ek(t),

so that if we write I(`) = I(`, ·), we have
Sp(`) = ‖I(`)‖pp.

Lemma 4.1. For 0 < ` < 1/2,
S2(`) ' `3/2.

Proof. By Parseval’s theorem,

S2(`) '
∑
k≥1

sin2(πk`)
k2 σ2

k =
∑

n≤(2`)−1/2

sin2(πn2`)
n4︸ ︷︷ ︸

A2(`)

+
∑

n>(2`)−1/2

sin2(πn2`)
n4︸ ︷︷ ︸

B2(`)

.

On the one hand, since sin(t)/t ' 1 for |t| ≤ π/2,

A2(`) '
∑

n≤(2`)−1/2

(π n2 `)2

n4 ' `3/2.

On the other hand, we have the upper bound

B2(`) ≤
∑

n>(2`)−1/2

1
n4 '

∫ ∞
(2`)−1/2

dt
t4
' `3/2.

�

Lemma 4.2. There exists 0 < `0 < 1/2 such that
S4(`) ' `3 log(`−1), ∀` ∈ (0, `0).

Proof. We decompose I(`) in low and high frequencies so that by the triangle inequality we get

S
1/4
4 (`) = ‖I(`)‖4 = ‖I≤`−1/2(`) + I>`−1/2(`)‖4 ≤ ‖I≤`−1/2(`)‖4 + ‖I>`−1/2(`)‖4.

On the other hand, the Fourier coefficients of I(`) are positive for every 1 ≤ k ≤ `−1. This, together
with Parseval’s theorem, implies that

‖I≤`−1/2(`)‖44 = ‖I≤`−1/2(`)2‖22 ≤ ‖(I2)≤`−1(`)‖22 ≤ ‖I(`)2‖22 = ‖I(`)‖44 = S4(`).
In short, we have

‖I≤`−1/2(`)‖4 ≤ S
1/4
4 (`) ≤ ‖I≤`−1/2(`)‖4 + ‖I>`−1/2(`)‖4,
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so we look for both upper and lower estimates for ‖I≤`−1/2(`)‖4, but an upper bound suffices for
‖I>`−1/2(`)‖4.

By Parseval’s theorem, we have

‖I≤`−1/2(`)2‖22 =
`−1∑
k=1

b2k, bk =
∑
m

sin(πm`) sin(π(k −m)`)
m(k −m)

σmσk−m.

where the indexm satisfies 1 ≤ m ≤ `−1/2 and 1 ≤ k−m ≤ `−1/2. As above, since 1/2 ≤ sin(t)/t ≤ 1
for |t| ≤ π/2, we get

bk ' `2
∑
m

σmσk−m.

Consequently, with the same restrictions on m as above,

‖I≤`−1/2(`)2‖22 ' `4
`−1∑
k=1

(∑
m

σmσk−m

)2

= `4

∥∥∥∥∥∥∥
`−1/2∑

k=1
σkek

2∥∥∥∥∥∥∥
2

2

= `4

∥∥∥∥∥∥∥
√
`−1/2∑
k=1

ek2

∥∥∥∥∥∥∥
4

4

By Zalcwasser’s theorem in Appendix A.2, for ` small enough we get

‖I≤`−1/2(`)‖44 = ‖I≤`−1/2(`)2‖22 ' `4 `−1 log(
√
`−1) ' `3 log(`−1).

For the high frequency piece, using again Parseval’s theorem, we can write

‖I>`−1/2(`)2‖22 =
∑
k>l−1

β2
k, where βk =

∑
m, k−m>`−1/2

sin(πm`) sin(π(k −m)`)
m(k −m)

σmσk−m.

Bounding the sine trivially and using (13) with N = `−1/2, we get

‖I>`−1/2(`)2‖22 ≤
∑
k>l−1

 ∑
m, k−m>`−1/2

σmσk−m
m(k −m)

2

= ‖(R≥`−1/2)2‖22 = ‖R≥`−1/2‖44,

so by Lemma 3.3 we obtain that

‖I>`−1/2(`)‖44 . (`−1)−3 log `−1 ' `3 log(`−1).

�

Remark 4.3. The method above can be generalised to compute the asymptotic behaviour of every
S2k, k ∈ N.

Proof of Theorem 1 (Part 2). By Lemmas 4.1 and 4.2, for small enough ` we get

GR(`) ' `3 log(`−1)
(`3/2)2

= log(`−1).

�
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Appendix

A.1. The Littlewood-Paley decomposition. We recall here the following classical result [30,
Theorem 3].

Theorem 2. Let p > 1, A > 1 and f(t) =
∑
n∈Z ane

2πint a function in Lp(0, 1). Consider the
decomposition

f(t) =
∞∑
k=1

∆kf(t)

such that

∆1f(t) =
∑
|n|≤A

ane
2πint, ∆kf(t) =

∑
Ak<|n|≤Ak+1

ane
2πint, k ≥ 2.

Then, there exist constants B1, B2 > 0 depending on p such that

B1 ≤
‖
(∑∞

k=1 |∆kf |2
)1/2‖Lp

‖f‖Lp
≤ B2.

A.2. A theorem of Zalcwasser. The following result, contained in [36], is crucial to our proof.

Theorem 3. Let p > 0. Then, there exist Mp > 1 and constants Cp > cp > 0 such that for every
N > Mp,

cp ψp(N) ≤
∫ 1

0

∣∣∣∣∣
N∑
m=1

e2πim
2t

∣∣∣∣∣
p

dt ≤ Cp ψp(N)

where

ψp(N) =


Np/2, p < 4,
N2 logN, p = 4
Np−2, p > 4.
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