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ABSTRACT 

Deforestation, agricultural intensification, and habitat homogenization are critical threats to 

biodiversity in Southeast Asia. Limited information is available on the trophic and 

physiological responses of tropical animals to these environmental changes. The wrinkle-

lipped free-tailed bat Chaerephon plicatus is a cave roosting species that is experiencing 

population declines across Southeast Asia, where landscapes have been drastically modified. 

In our study site in central Thailand, we tested the hypothesis that wrinkle-lipped free-tailed 

bats living in landscapes that contrast in heterogeneity and land-use differed in mercury 

contamination, trophic position and physio-immunological status. Bats from less 

heterogeneous landscapes (dominated by rice crops, absence of large forest patches) 

occupied a lower trophic position than conspecifics from more heterogeneous landscapes 

(including large forest patches). Additionally, bats from these habitats had lower 

concentrations of mercury in erythrocytes, lower body mass, higher antioxidant superoxide 

dismutase (SOD), lower antioxidant glutathione peroxidase (GPx) and lower values of the 

GPx/SOD ratio than bats from more heterogeneous landscapes. Individual bat mercury 

concentrations were positively correlated with body mass and two immune markers 

(lysozyme and immunoglobulin) but were negatively correlated with plasma non-enzymatic 

antioxidant capacity. Our results suggest various links between landscape heterogeneity, 

mercury accumulation/exposure, and health status of wildlife in Southeast Asian countries.  

 

Keywords: Agriculture, Antioxidants, Deforestation, Oxidative stress, Rice, Stable isotopes,  
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1. Introduction 

Conversion of forests to agricultural areas has been a major way through which forests have 

vanished from tropical regions between 1990 and 2015 (FAO, 2015). The Food and 

Agriculture Organization estimate that South and Southeast Asia experienced the highest loss 

of canopy cover (over 50 million ha) from 2000 to 2012 and the highest loss in carbon stock 

from 2010 to 2015 compared to other regions (FAO, 2015). In many tropical regions, 

deforestation and conversion of natural lands into agricultural lands, soil erosion, and gold 

mining have also increased exposure of wildlife and humans to mercury contamination 

(Stubner et al., 1998; Horvat et al., 2003; Meng et al., 2010, 2011; Krisnayanti et al., 2012; 

Tang et al., 2018). For example, several studies in Asia have found that rice paddy soil hosts 

bacteria that can methylate inorganic mercury, which facilitates the bioaccumulation of 

mercury along food chains (e.g., Stubner et al., 1998; Meng et al. 2010, 2011). Mercury 

contamination is a priority topic for the United Nations (Minamata Convention) because it 

represents a significant threat to biodiversity, ecosystems, and human health (Eagles-Smith 

et al., 2018; Whitney and Cristol, 2018). Mercury is neurotoxic and can impair several 

functions in organisms, including reproduction and immunity (Whitney and Cristol, 2018). 

Healthy ecosystems provide various services of economic value to humans. Bats are 

renowned for the services they provide to silviculture and agriculture (reviewed in Kunz et 

al., 2011; Ghanem and Voigt, 2012). For example, many bats are predators of pest insects in 

natural forests (Kalka et al., 2008; Böhm et al., 2011) and agricultural habitats (Williams-

Guillen et al., 2008; Maas et al., 2013). Bats may enhance crop production and economic 

benefits through a top-down reduction of herbivorous insects (Williams-Guillen et al., 2008; 
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Boyles et al., 2011; Karp and Daily, 2014). However, bats are also one of the most threatened 

taxa (Voigt and Kingston, 2016; IUCN, 2018). While bat species diversity is higher in 

tropical regions, where land-use changes and mercury contamination are widespread, little 

work has been done to understand the effects of such environmental changes on tropical 

species as compared to other regions (Struebig et al., 2008, 2009; Syaripuddin et al., 2014; 

Becker et al., 2017, 2018a; Kumar et al., 2018). It is therefore important to identify potential 

threats for bats if we are to develop evidence-based landscape planning to limit anthropogenic 

impacts on bats and other wildlife.  

In the last decade, there has been growing awareness that immunological and 

physiological techniques may allow conservation practitioners and wildlife managers to 

assess and, predict the impact of environmental changes on wildlife (Beaulieu and Costantini, 

2014; Seltmann et al., 2017; Madliger et al., 2018; Becker et al., 2019). Immune markers are 

one important component of this toolbox because the immune system provides protection 

against parasites and pathogens (Martin et al., 2011). Oxidative status markers are also 

important because the generation of molecular oxidative damage and antioxidant defenses 

can affect important fitness-related traits (Beaulieu and Costantini, 2014). Both 

immunological and oxidative status markers provide complementary information about the 

impact of anthropogenic challenges on wildlife (Beaulieu and Costantini, 2014; Whitney and 

Cristol, 2018).  

Changes in land-use also affect the amount and diversity of prey available for bats 

(Treitler et al., 2016). Measuring stable isotope ratios of nitrogen and carbon in tissues or 

body products (e.g., blood or fur, respectively) can provide information on what animals have 
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consumed, in which habitat they foraged, and their trophic position (DeNiro and Epstein, 

1978, 1981; Voigt and Kelm, 2006). This technique is based on the evidence that the isotope 

composition of an animal reflects that of its diet within a temporal window that depends on 

the isotopic incorporation rate of the analyzed tissue or body product (DeNiro and Epstein, 

1978, 1981; Voigt and Kelm, 2006).  

In this study, we tested the hypothesis that bats living in landscapes in Thailand that 

contrast in extension of forest patches and in the type of cultivated crops would differ in their 

trophic position, mercury contamination, and physio-immunological status. In particular, we 

used stable nitrogen and carbon isotope ratios in erythrocytes as a proxy for the trophic 

position and foraging behaviour of bats (Ruadreo et al., 2019). We measured mercury 

concentrations in erythrocytes because, conversely to other matrices (e.g., fur), they integrate 

mercury accumulated over the most immediate past, which is the reference period for the 

stable isotope ratios and physio-immunological parameters. Moreover, most mercury in 

blood is located in the erythrocytes (e.g., Kershaw et al., 1980; Magos, 1987; Berglund et al., 

2005). We also measured the following physio-immunological parameters to assess bat 

health: body mass, four immunological markers, and four oxidative status markers. As study 

species, we selected the wrinkle-lipped free-tailed bat, Chaerephon plicatus (see 

supplementary material for a description of the species) because it forages above agricultural 

lands, it provides significant ecosystem services to the rice industry in Thailand and is 

experiencing population declines across Southeast Asia (Leelapaibul et al., 2005; Srilopan et 

al., 2018; Ruadreo et al. 2019). To this end, we selected four cave roosts that were located in 

landscapes with different land-use intensity within a radius of 25 km (assumed foraging area 
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of the study species, Utthammachai, 2009; Wanger et al. 2014): more heterogeneous 

landscapes (mosaic of land uses, including large forest patches) and less heterogenous 

landscapes (dominated by farmlands, particularly rice crops, with only a few forest patches). 

We predicted that bats living in the less heterogenous landscapes would have a different 

trophic niche, higher erythrocyte concentrations of mercury, lower body mass, lower immune 

function, higher oxidative damage, and contrasting antioxidant defenses. We also predicted 

that bats with higher mercury concentrations would show lower immune function and higher 

oxidative stress. 

 

2. Material and Methods 

2.1. Study area and sampling 

Sampling was carried out at four caves located in two habitat types (Table 1 and Fig. 1) 

during the non-reproductive season (end of July) to avoid disturbing breeding animals. We 

collected blood samples from 104 individuals: 15 males and 33 females from two caves 

located in more heterogeneous landscapes; 22 males and 34 females from two caves located 

in less heterogeneous landscapes dominated by rice crops. The fieldwork complied with the 

current laws of Thailand and were performed as part of permit #0002/4508 granted by the 

National Research Council of Thailand (NRCT) and permit #108/59 granted by the 

Department of National Park, Wildlife and Plant Conservation (DNP). 

Upon capture (Table 1), bats were placed in individual holding bags. A blood sample 

was collected from the antebrachial vein using heparinised microvettes (Sarstedt, Nümbrecht, 

Germany) as outlined in Weise et al. (2017) within 30 minutes from capture (the order of 
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bleeding was not significantly correlated with any physiological or immunological trait). Bats 

were released as soon as possible after bleeding. Blood samples were maintained cool until 

the end of the trapping session. Tubes were spun for five minutes, plasma was separated from 

the erythrocytes, and both were stored on dry ice while in the field and at -80°C at the 

laboratory. From each bat, we identified sex and recorded body mass using a handheld spring 

balance (Pesola, Switzerland). All individuals were identified as adults because they were at 

least one year old according to the closure of the epiphyseal gap. 

 

2.2. Laboratory analyses 

2.2.1. Stable carbon isotope and nitrogen isotopes 

Details regarding sample preparation and analysis are given in Ruadreo et al. (2019). Briefly, 

we measured stable carbon isotope ratios in dried samples using an elemental analyzer (Flash 

EA 1112, Thermo Scientific, Bremen, Germany) connected in sequence via a ConFlo to a 

Delta V Advantage isotope ratio mass spectrometer (both ThermoScientific, Bremen 

Germany). Values are reported in δ13C and δ15N notation as parts per mille (‰) deviation 

from the international standard V-PDB for carbon and atmospheric nitrogen for nitrogen. For 

both elements, analytical precision was always better than 0.1‰ (one standard deviation) for 

repeated measurements of laboratory protein standards.  

 

2.2.2. Mercury  

The total concentration of mercury was quantified in freeze-dried erythrocytes using an 

atomic absorption spectrophotometer (Advanced Mercury Analyser-254, Altec) on dried 
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tissue aliquots (ranging from 0.5 to 3 mg) as described by Chouvelon et al. (2009). Prior 

work on bats has shown that the total concentration of mercury in blood is highly and 

positively correlated with the highly toxic methylated form (Yates et al., 2014). Total 

mercury in erythrocytes is also a proxy measure of methylmercury in humans (e.g., 

Skerfving, 1988; Sakamoto et al., 2002). The analytical quality (i.e., accuracy and 

reproducibility) of the mercury measurements was assessed by the analyses of blanks and 

certified reference material (CRM) TORT-2 Lobster Hepatopancreas (NRC, Canada; 

certified mercury concentration: 0.27 ± 0.06 µg/g dw). The CRM were analyzed at the 

beginning and at the end of the analytical cycle, and by running controls for every 10 samples 

(Bustamante et al., 2008). Mass of the CRM was adjusted to represent an amount of mercury 

similar to that in bat samples. Our measured values for the CRM were 0.262 ± 0.013 µg/g 

dw (n = 12) showing a recovery of 97%. Blanks were analyzed at the beginning of each set 

of samples and the quantification limit of the method was 0.05 ng. Data for mercury 

concentrations are presented as ng/g relative to the dry weight (dw).  

 

2.2.3. Immunological markers 

We selected four immune markers used in eco-immunological studies (Demas et al., 2011), 

characterizing both constitutive (bacterial killing ability [BKA], lysozyme) and induced 

innate (haptoglobin) and adaptive (immunoglobulin G [IgG]) humoral immune responses 

(Heinrich et al., 2017). All these assays require small blood volumes and have been validated 

for bats (Schneeberger et al., 2013a, 2014a; Becker et al., 2017, 2018a; Ruoss et al., 2019). 

We report a detailed description of assays in the supplementary material. 
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2.2.4. Markers of oxidative status  

We selected four markers used in ecological studies of mammalian species (e.g., Costantini 

et al., 2012, 2017; Schneeberger et al., 2013b, 2014b) characterizing biomolecules that have 

been oxidized by free radicals (reactive oxygen metabolites), antioxidant protection from 

non-enzymatic antioxidants (e.g., those derived from diet), detoxification of cells from 

accumulation of hydrogen peroxide and organic hydroperoxides (activity of the enzyme 

glutathione peroxidase), and protection against the strong pro-oxidant action of the free 

radical superoxide generated by cells (activity of superoxide dismutase). We report a detailed 

description of assays in the supplementary material. 

 

2.3. Statistical analyses 

We used general linear models to compare isotopic signature, mercury, body mass, 

immunological markers and oxidative status markers between bats from more and less 

heterogeneous environments. We also compared the GPx/SOD ratio, because prior work 

found that unbalanced activities of the two enzymes may reflect an impaired physiological 

state (Park et al., 2007; Jayawardena et al., 2017). As fixed factors, we included landscape 

type (more vs. less heterogeneous landscape), individual sex, and their interaction. When 

individuals showed high values of Cook’s distance (possible outliers; Cook, 1977) compared 

to the distribution of all Cook’s distance values, they were excluded and the models were re-

run to test whether their values were influential. Because time at which blood samples were 

taken varied among sites, we also ran unpaired t-tests to compare bats from the two caves 

(one in the more heterogeneous landscape and one in the less heterogeneous landscape) 
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sampled at the same time of the day. We performed all analyses using SPSS Statistics 23. 

Finally, we used the compute.es package (Del Re, 2013) in R (R Core Team, 2013) to 

calculate the standardized effect size Hedges’ g from test statistics. We used the forestplots 

function of the metafor package in R (Viechtbauer, 2010) to visualise values of effect size 

and 95% confidence interval. We considered the effect size estimates as small (Hedges g = 

0.2, explaining 1% of the variance), intermediate (g = 0.5, explaining 9% of the variance) or 

large (g = 0.8, explaining 25% of the variance) according to Cohen (1988). 

 

3. Results 

Bats from the more heterogeneous landscapes had higher δ13C and δ15N in erythrocytes than 

conspecifics from the less heterogeneous landscapes (P < 0.001, Supplementary Table S1, 

Fig. 2). Effect size estimates were large, and the 95% confidence intervals did not include 

zero for stable isotopes of both elements (Fig. 3). The significant interaction between 

environment and sex (P = 0.001 for δ13C, P = 0.002 for δ15N, Supplementary Table S1) 

indicated that sex differences in stable isotope ratios differed between environments. In the 

less heterogeneous landscapes, males and females had similar δ13C and δ15N values (posthoc 

test: P = 0.518 for δ13C, P = 0.899 for δ15N), whereas in the more heterogeneous landscapes 

males had higher δ13C (P < 0.001) and δ15N values (P < 0.001) than females.  

Mercury concentrations in erythrocytes ranged from 16 to 602 ng/g dry weight and 

were similar in both sexes (P = 0.13, Supplementary Table S1), but were higher in bats from 

more heterogeneous landscapes compared to conspecifics from less heterogeneous 

landscapes (P < 0.001, Supplementary Table S1, Fig. 4). Results for mercury did not vary 
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when a female (602 ng/g) from Lan Sak Dristrict cave was removed because of its high 

Cook’s distance. Effect size was large, and the 95% confidence interval did not include zero 

(Fig. 3). 

Both male and female bats living in the less heterogeneous landscapes had lower body 

mass (P = 0.023, Supplementary Table S1), higher SOD (P = 0.042, Supplementary Table 

S1), lower GPx (P = 0.048, Supplementary Table S1), and lower GPx/SOD ratios (P = 0.011, 

Supplementary Table S1) than bats from more heterogeneous landscapes. All other markers 

were similar between bats living in the two environments (all P > 0.250, Supplementary 

Table S1). Outcomes for lysozyme concentrations were unchanged when a male (6.29 μg/ml) 

from Wat Khao Wongkot cave and a female (9.46 μg/ml) from Panurangsi with high Cook’s 

distances were removed from the analyses. Males had higher OXY (P < 0.001, 

Supplementary Table S1) and plasma haptoglobin (P = 0.020, Supplementary Table S1) than 

females irrespective of landscape. The difference in haptoglobin between sexes disappeared 

when a male (1.42 mg/ml) from Tha Luang District cave, and two males (2.05 and 3.19 

mg/ml) and a female (1.22 mg/ml) from Wat Khao Wongkot cave with high Cook’s distances 

were excluded from the model (P = 0.128, Supplementary Table S1). 

The comparison of bats from the two caves (Lan Sak Dristrict and Wat Khao 

Wongkot) that were sampled at a similar time of the day provided similar results to those 

from the whole dataset (Table 2). Bats living in the less heterogeneous landscape (Wat Khao 

Wongkot) had lower body mass (P = 0.0003, Table 2; Fig. 4), higher SOD (P = 0.008, Table 

2, Fig. 5), lower GPx (P = 0.014, Table 2, Fig. 5), and lower GPx/SOD ratios (P = 0.001, 

Table 2, Fig. 5) than bats from the more heterogeneous landscape, while all other markers 
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were similar. The effect sizes for the significant differences were large, and the 95% 

confidence intervals did not overlap zero (Fig. 3). Although the effect sizes for lysozyme, 

haptoglobin, and BKA overlapped zero, they were intermediate and similar in sign, 

suggesting a potentially consistent effect of land-use on immune markers. This is more 

evident for the lysozyme, whose 95% confidence interval for Hedges g slightly included zero 

(Fig. 3). 

There were small but significant negative correlations between mercury 

concentrations and either OXY or SOD and a significant positive correlation between 

mercury concentration and IgG (Supplementary Table S2). The correlation between mercury 

and SOD became non-significant when the individual with the highest mercury concentration 

(602 ng/g) was excluded (from P = 0.042 to P = 0.236, Supplementary Table S2). The 

positive correlation between mercury and lysozyme became significant after the exclusion of 

potential outliers (from P = 0.488 to P = 0.043, Supplementary Table S2). Larger bats had 

higher mercury concentrations in erythrocytes (P < 0.001, Supplementary Table S2). 

Relationships between mercury and markers were consistent across both landscapes (the 

interaction between environment and mercury was not significant). 

 

4. Discussion 

Our work shows that the mercury contamination, foraging ecology, and immune-

physiological status of a tropical bat species may vary with habitat and sex. As expected, 

δ13C values of erythrocytes reflected the origin of the primary food sources in C3- and C4-

dominated landscapes. Bats living in the less heterogeneous landscapes dominated by 
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farmlands had lower δ13C values, indicating that the majority of consumed food sources 

originated from aquatic food webs such as rice paddies (Ruadreo et al., 2019). Food webs 

dominated by C4 plants, such as corn and cane sugar (higher δ13C values; De Niro and 

Epstein, 1978) did not largely contribute to bat diets in less heterogeneous landscapes. The 

less heterogeneous landscapes were dominated by rice crops (approximately 70% of rice 

crops in Wat Khao Wongkot; Srilopan et al., 2018; Ruadreo et al., 2019), which are planted 

during the non-reproductive season of Chaerephon plicatus (Ruadreo et al., 2019). In the less 

heterogeneous landscapes, bats also had lower δ15N, indicating that they occupy a lower 

trophic position (De Niro and Epstein, 1981). Prior work showed that wrinkle-lipped free-

tailed bats feed mainly on brown planthoppers and dipteran insects above rice fields of 

Central Thailand across the whole year (Srilopan et al., 2018; Ruadreo et al., 2019). In the 

less heterogeneous landscapes, males and females had similar isotopic composition in 

erythrocytes, which is in agreement with prior work on isotopic composition measured in 

both fur and wing tissue of bats living in the Wat Khao Wongkot bat-cave (Ruadreo et al., 

2019). In the more heterogeneous environments, the isotopic composition in erythrocytes 

suggested a difference between males and females in trophic position and foraging areas. 

This might indicate that landscape homogenization could increase trophic overlap between 

males and females, possibly increasing food competition. Tracking the flight activity of bats 

would help to elucidate the foraging areas used by males and females. 

Converse to our predictions, mercury was lower in bats living in the less 

heterogeneous landscapes. In Asia, soils of rice paddies may be sinks for mercury deposition 

and accumulation and provide an ideal environment for bacteria that methylate inorganic 
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mercury (Stubner et al., 1998; Horvat et al., 2003; Meng et al., 2010, 2011; Feng et al., 2016; 

Tang et al., 2018). One reason for the lower concentration of mercury in bats from the less 

heterogeneous landscapes might relate to their lower trophic position as compared to bats 

from the more heterogeneous landscapes, which would be consistent with the hypothesis of 

a lower bioamplification effect due to shorter and less complex food webs. Mercury 

bioaccumulates with increasing trophic level due to the biomagnification process (Eagles-

Smith et al., 2018). Several studies show that insectivorous bats can accumulate significant 

amounts of mercury because of this biomagnification effect, particularly in species connected 

to aquatic ecosystems (Syaripuddin et al., 2014; Becker et al., 2018b). However, trophic 

position does not explain why males and females from the more heterogeneous environments 

had similar mercury concentrations despite their different trophic position. Further work will 

be needed to elucidate the causes of individual bat variation in mercury exposure. 

The positive correlation between body mass and mercury also suggests that larger 

bats were probably accumulating more mercury through their diet, as previously shown for 

little brown bats Myotis lucifugus (Karouna-Renier et al., 2014). However, Kumar et al. 

(2018) found that smaller insectivorous bat species accumulated more mercury in fur than 

larger insectivorous species. In our current study, larger bats were from the more 

heterogeneous sites. Thus, the positive correlation between body mass and mercury may be 

caused by the dietary difference between sites. Further work will be needed to assess the diet 

of Chaerephon plicatus across different land-use regimes.  

Although we do not know the extent to which mercury in erythrocytes reflected that 

accumulated in other tissues, prior work on bats found a strong and positive correlation 
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between mercury in whole blood and fur (Wada et al., 2010; Karouna-Renier et al., 2014; 

Yates et al., 2014), indicating that blood concentration may provide a valuable proxy for the 

chronic accumulation of mercury. Assuming a water content of about 80% in whole blood 

(Eagles-Smith et al., 2008), values of mercury in bats living in the more heterogeneous 

landscapes would be equivalent to an average of 42.6 ng/g wet weight and a range from 3.2 

to 120 ng/g wet weight. Although the average value is similar to that found in other bat 

species living far from potential sources for contamination (Yates et al., 2014), values are 

within the range recorded in bats living near contamination sources (Wada et al., 2010; 

Karouna-Renier et al., 2014; Yates et al., 2014). For example, big brown bats Eptesicus 

fuscus from a contaminated site in the USA showed a range of mercury in blood from 50 to 

200 ng/g wet weight (Wada et al., 2010). In little brown bats from three contaminated sites 

in the USA, mercury in blood ranged from 14 to 3,800 ng/g wet weight (Karouna-Renier et 

al., 2014). We are not aware of any specific sources of mercury emission near caves located 

in the more heterogeneous landscapes. One tentative explanation might lie with the filtering 

properties of forest canopy that would favor accumulation of mercury in wetlands through 

flooding, soil erosion, and decomposition of organic matter (Barbosa et al., 2003; Driscoll et 

al., 2007). In Uthai Thani, where one of the caves was located, deforestation and conversion 

of residual forest lands into agricultural lands is a major problem (Waiyasusri et al., 2016). 

Moreover, both the cave in Uthai Thani and that in the Tha Luang District (i.e., those located 

in the more heterogeneous landscapes) were close (within a radius of 25 km from the cave) 

to two large watersheds (Huai Thap Salao Dam and Pa Sak Dam, respectively) that might 

work as sinks for mercury washed away from soil. Analyses of mercury concentration in the 
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environment and prey will be important to ascertain the routes through which wrinkle-lipped 

free-tailed bats are being exposed to mercury.   

Mercury is neurotoxic and can also cause many other potentially negative effects on 

traits like behaviour, endocrine system, immune function and cellular oxidative status and 

thus likely reproduction and survival (Tan et al., 2009; Whitney and Cristol, 2018). Bats with 

a higher concentration of mercury in erythrocytes had lower OXY in plasma and SOD in 

erythrocytes. This lower antioxidant protection might indicate that bats were exposed to 

higher cellular oxidative stress. However, we did not find any correlation between mercury 

and reactive oxygen metabolites.  Whether mercury may increase cellular oxidative damages 

in wrinkle-lipped free-tailed bats remains an open question. 

Our analyses also showed that bats with higher blood mercury had higher IgG and 

lysozyme concentrations when outliers were removed. The reasons for these correlations are 

currently unclear. Mercury may affect different aspects of immune function (Becker et al., 

2017; Whitney and Cristol, 2018).  Higher concentrations of IgG and lysozyme in bats with 

more blood mercury may also reflect higher parasite loads that stimulate the constitutive 

innate and adaptive immune responses. We observed many ectoparasites on bats in these 

sites (unpublished data), which might have stimulated constitutive innate and adaptive 

immune responses.  

None of the immune markers differed largely between bats from the less or more 

heterogeneous landscapes. The effect size estimates for lysozyme, haptoglobin, and BKA 

were similar, intermediate in size, and indicated higher values in the less heterogeneous 

landscapes. Although the 95% confidence intervals for the effect size estimates of the three 
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immune markers included zero, these estimates were similar in sign and size. This result 

stimulates further work with a larger sample size that also considers careful estimates of 

parasite burdens to clarify whether land-use affects immune function independently from 

mercury exposure. Presently, our data here suggest that some aspects of anthropogenic land 

use might have a stronger connection with oxidative status markers. Bats in the less 

heterogeneous landscapes had higher SOD and lower GPX, resulting in significant lower 

GPx/SOD ratios. However, conversely to our prediction, plasma reactive oxygen metabolites 

(marker of early derivatives of oxidative damage) did not differ between bats in the two 

environments.  

We currently do not know the reasons for such differences in GPx and SOD and if 

they have any functional consequences. We might exclude a strong role of mercury 

contamination because the correlation with SOD was small and it was not associated with 

GPx nor with GPx/SOD ratio. Thus, other factors such as foraging effort, diet quality, and 

pesticide exposure might be involved.  

 

5. Conclusions 

In conclusion, our study showed that land-use was associated with foraging ecology, mercury 

contamination, and oxidative status in a tropical insectivorous bat species. Further, our study 

also showed that mercury concentrations were correlated with individual body mass and 

immune function. We conclude that a combination of several endogenous markers can 

generate a more comprehensive picture about how land-use changes may affect wildlife. 
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Further work will be needed to ascertain the ecological relevance of the mercury 

concentrations we detected in bats. 

Finally, our study suggests a possibly useful application to landscape planning that 

might inform stakeholders and policy makers on how to develop plans for land-use in a more 

compatible way with bats’ ecological needs. As expected, our results suggested that 

environments with intensive agricultural practices might be less suitable for insectivorous 

bats than more heterogeneous environments. However, our data also showed that bottom-up 

effects of landscape composition may come through unexpected routes, such as mercury 

exposure. For example, deforestation near watersheds or other wetlands might increase 

mercury exposure as suggested by results from bats living in the province of Uthai Thani. 

This would call for a strict protection of forest patches in order to avoid soil erosion and 

washing out of mercury into watersheds. 
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Figure 1. Map and aerial photographs illustrating the locations of caves in Thailand. Circles 

show a radius of 25 km from the cave, which indicates the distance within which bats can 

forage (Utthammachai, 2009; Wanger et al. 2014). Sources of images: Google Maps and 

Google Earth Pro, ©2018 Google. 
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Figure 2. Bats living in landscapes dominated by farmlands (mostly rice crops) had lower 

carbon and nitrogen stable isotopes in erythrocytes than bats living in more heterogeneous 

environments. In agricultural landscapes, males and females had similar δ13C and δ15N, while 

in the more heterogeneous landscapes, males had higher δ13C than females. Values are shown 

as means and standard error. 
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Figure 3. Estimates of effect size (Hedges’ g) and 95% confidence intervals from the two 

caves where samples were collected at a similar time of the day. Estimates are positive or 

negative when values of a given metric were higher or lower in bats from more heterogeneous 

landscapes, respectively. 
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Figure 4. Means and standard errors for mercury concentration in erythrocytes and for body mass. * indicates a statistically 

significant difference.  
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Figure 5. Means and standard errors for all markers of oxidative status analysed in the present study. ROMs = reactive oxygen 

metabolites; OXY = plasma non-enzymatic antioxidant capacity; GPx = glutathione peroxidase; SOD = superoxide dismutase. * 

indicates a statistically significant difference.



32 

 

 

 

 

Figure 6. Means and standard errors for all immune markers analysed in the present study. 

IgG = immunoglobulin G. 
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Table 1. The fieldwork included four caves located in more or less heterogeneous landscapes. 

The more heterogeneous sites also included forest patches. The less heterogeneous sites did 

not include any forest patches and had a dominance of agricultural lands (mainly rice crops) 

according to data availability (Geo-Informatics and Space Technology Development 

Agency; Google Earth Pro; * Srilopan et al., 2018; see also Wanger et al., 2014). The distance 

among caves ranged from ca. 80 to 230 km. All the provinces where caves were located had 

experienced significant changes in land cover.  

 
Site of the cave Coordinates Landscape Method and time of capture 

Tha Luang Dristict 

(province Lop Buri) 

15.0416710°; 

101.3150630° 

Agricultural lands (corn 

and sugar cane) and 

large forest patches 

Mist-netting at dusk in front to 

the cave 

Wat Khao Wongkot bat-

cave (province Lop Buri) 

15.01814459°; 

100.54520403° 

Landscape dominated by 

agricultural lands (~ 

70% rice crops *, less 

than 5% of forest 

patches)  

Butterfly net, early in the 

morning into the cave 

Wat Khao Pha Rad, Lan 

Sak Dristrict (province 

Uthai Thani) 

15.5439650°; 

99.5510480° 

Agricultural lands (corn 

and sugar cane) and 

large forest patches 

Butterfly net, early in the 

morning into the cave 

Panurangsi Golf Club 

(province Ratchaburi) 

13.5807760°; 

99.7618250° 

Landscape dominated by 

agricultural lands (rice 

crops, oil palms; less 

than 5% of forest 

patches)   

Mist-netting at sunrise in front 

to the cave 
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Table 2. Outcomes of unpaired t-tests performed to compare bats from Lan Sak Dristrict cave 

(reference cave, more heterogeneous landscape) with those from Wat Khao Wongkot cave 

(less heterogeneous landscape, approximately 70% of rice crops) because they were sampled 

at a similar time of the day. Significant effects are shown in bold type. 

 
Variable t-value df p 

ROMs 0.824 54 0.413 

OXY 0.107 54 0.915 

GPx 2.583 54 0.014 

SOD  -2.741 54 0.008 

GPx/SOD 3.357 54 0.001 

Lysozyme -1.764 52 0.084 

IgG 0.226 53 0.822 

Haptoglobin -1.470 35 0.150 

BKA -1.075 22 0.294 

Body mass 3.864 54 0.0003 
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Study species 

The wrinkle-lipped free-tailed bat is a cave roosting species that is widespread throughout 

much of South-East Asia (Csorba et al., 2014). It occurs in large colonies that may count up 

to 3 million individuals (Leelapaibul et al., 2005). Populations generally forage close to roost 

sites (within a radius of 25 km), and have been recorded hunting above both forested areas 

and rice fields (Leelaipul et al., 2005; Ruadreo et al., 2019). This species is currently listed 

as Least Concern by IUCN (Csorba et al., 2014). The population is, however, declining 

because the habitat is being deforested for timber, firewood and conversion to agricultural 

use, disturbance in caves (guano mining, hunting), and eradication of colonies (Csorba et al., 

2014). It is unknown whether contaminants or diseases play a role in driving these population 

declines, yet it is assumed that contaminants, such as pesticide residues or mercury, might be 

involved (Voigt et al., 2018). Wrinkle-lipped free-tailed bats are expected to consume 20,000 

MT of insects per year of which many are pest insects highly detrimental for rice production 

(Leelapaibul et al., 2005). Declines of wrinkle-lipped free-tailed bat populations are 

suggested to lead to drastic decreases in crop production and consequently to large economic 

losses (Wanger et al., 2014). 

 

Immunological markers 

Lysozyme, also known as muramidase or N-acetylmuramide glycanhydrolase, is an 

antibacterial enzyme which hydrolyses the β-(1,4)-glycosidic bond between N-
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acetylmuramic acid and N-acetylglucosamine residues of bacterial peptidoglycan, causing 

rapid bacterial lysis. The enzyme is primarily active against Gram-positive bacterial species, 

but cell lysis has been described both against Gram-negative microorganisms and yeasts. To 

measure lysozyme concentration, we used the lysoplate assay, which was adapted to low 

sample volumes (Rowe et al., 2013). Briefly, we prepared 1% noble agar (Sigma Aldrich) 

with PBS at pH = 6.3 and we added the required amount of lysozyme-sensitive bacteria 

Micrococcus lysodeikticus ATCC #4698 (Sigma Aldrich) to reach a bacterial concentration 

of 50 mg/100 ml in the agar. We poured the agar in Petri dishes on a pre-heated surface 

(50°C) and horizontally leveled with a water spirit to avoid quick and uneven cooling of the 

medium. After solidification, we inoculated 1.5 µl of plasma in test holes (1.7 mm in 

diameter). We used standard dilutions of hen egg white lysozyme (0.5, 0.8, 1, 2, 4, 8, 10, 20, 

and 40 µg/ml; Sigma-Aldrich) to prepare a standard curve in each plate. We incubated the 

plates at 37°C for 20 hours. During the incubation, a zone of clearing developed in the area 

of the gel surrounding the sample inoculation site as a result of bacterial lysis. The diameters 

of the cleared zones are proportional to the log of the lysozyme concentration. We 

photographed each plate in a photobox (Imaging system; peqlab) with a ruler next to it as a 

reference scale. We measured the diameter of the cleared zone digitally three times using the 

software ImageJ (version 1.48, http://imagej.nih.gov/ij/) and we converted the mean value 

on a semilogarithmic plot into hen egg lysozyme equivalents (HEL equivalents, expressed in 

μg/ml) according to the standard curve (Giraudeau et al., 2010).  

We measured the concentration of immunoglobulin G (IgG), the most common 

antibody subtype, in plasma with a Protein G ELISA (Schneeberger et al., 2014a; Becker et 
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al., 2017, 2018a; Ruoss et al., 2019). Protein G, a streptococcal protein, binds IgG from many 

wildlife taxa including bats (Schneeberger et al., 2014a). Briefly, high-binding 96-well plates 

were coated with 100 µl diluted plasma samples (1:5000 in 50 mM NaHCO3, pH 9.5) in 

duplicates and incubated for 1 hour at 37°C. After incubation, plates were washed in Tris-

buffered saline/Tween-20 (TBS-T), blocked with 1% gelatine (Merck) solution and 

incubated for 30 min at 37°C. After washing, 100 µl of Protein G-horseradish peroxidase 

conjugate solution (Invitrogen, 1:12,000 in TBS-T, pH 7.4) was added to each well. The 

wells were washed after 30 min incubation at room temperature and submerged with 100 µl 

TMB [10% 3,3’, 5,5’-tetramethylbenzidine (SouthernBiotech) in DMSO (Sigma-Aldrich) 

diluted 1:100 in phosphate-citric buffer pH 5.0 and mixed with 30% H2O2 (Hedinger)]. The 

reaction was stopped after 3 minutes with 1 M sulphuric acid and the absorbance was read 

immediately at 450 nm (Biotek; µQuant Microplate Spectrophotometer). Antibody 

concentration is directly proportional to the absorption, thus statistical analysis was 

conducted on the mean optical density (OD) of the duplicates (Schneeberger et al., 2014a; 

Ruoss et al., 2019).  

Haptoglobin is an acute phase protein that usually occurs at low concentrations, but 

its production and secretion is increased in response to acute infections and trauma. To 

measure the concentration of haptoglobin, the standard procedure of the commercial kit 

"PHASE"TM Haptoglobin Assay (Tridelta, Ireland) was followed. After diluting the plasma 

samples (1:2) with PBS, haemoglobin was added. Haptoglobin binds to haemoglobin and 

maintains its peroxidase activity at a low pH. The measured peroxidase activity of 

haemoglobin is directly proportional to the amount of haptoglobin in the sample. 
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Haptoglobin concentrations were calculated according to the standard curve on each plate 

and were expressed as mg/ml. 

The BKA of plasma is an integrative functional measurement of the humoral part of 

the constitutive innate immunity. We performed the assay with Escherichia coli (ATCC 

8739) following the method described by French and Neumann-Lee (2012) and adapted to 

bats (Becker et al., 2017, 2018a; Ruoss et al., 2019). The killing activity against this bacterial 

strain is mediated mainly through complement proteins (Pap et al., 2010; Becker et al., 2019). 

We diluted the plasma samples 1:8 in sterile phosphate buffered saline (PBS) and challenged 

them with a 105/ml bacterial solution. We incubated the plasma-bacterial mixture for 30 

minutes at 37°C, after which we added tryptic soy broth and we measured the background 

optical density at 340 nm (Biotek; µQuant Microplate Spectrophotometer). All samples were 

run in duplicate and all plates contained both positive (without plasma) and negative controls 

(without bacteria). After an incubation of 12 hours at 37°C, we measured again the optical 

density and we calculated the BKA value as one minus mean ODsample, divided by OD positive 

control (OD = optical density; Becker et al., 2018a).  

 

Oxidative status markers 

We measured the reactive oxygen metabolites (primary products of oxidative damage) in 

plasma using the d-ROMs test (Diacron International, Grosseto, Italy). We pipetted plasma 

samples, reference standards (0.225 to 1.8 mM H2O2 equivalents), blanks and quality controls 

(4 µl) \ in duplicate in 96-well plates. Using a multichannel pipette, we added to each well 

200 µl of a solution containing acetic acid/sodium acetate buffer (0.01 M, pH 4.8) and the 
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chromogen N,N-diethyl-p-phenylenediamine (ratio 100:1). The reactive oxygen metabolites 

that occur in the plasma react with the chromogen generating a pink colour, whose intensity 

is proportional to the concentration. After an incubation at 37°C for 75 minutes, we measured 

the optical density at 505 nm. We expressed the values as mM of H2O2 equivalents. Good 

parallelism between successive dilutions of plasma samples and the standard curve of the 

assay was obtained (R2=0.99). 

We measured the plasma non-enzymatic antioxidant capacity using the OXY-

adsorbent test (Diacron International, Grosseto, Italy). This assay quantifies the in vitro 

reaction between the non-enzymatic antioxidants (e.g., protein thiols, vitamins C and E) and 

the hypochlorous acid (HOCl; pro-oxidant generated endogenously by vertebrates). All 

plasma samples, reference standard (300 mM) and quality controls were initially diluted 

1:100 with distilled water. Then, we pipetted 5 µl of each one in duplicate in 96-well plates 

and we added straightaway 200 µl of HOCl using a multichannel pipette. After an incubation 

at 37°C for 10 minutes, we added 2 µl of N,N-diethyl-p-phenylenediamine to each well using 

a multichannel pipette and mixed. The N,N-diethyl-p-phenylenediamine reacts with the 

HOCl that did not react with the plasma antioxidants, generating a pink colour. We measured 

the optical density at 505 nm and we expressed the OXY values as mM of HOCl neutralized.  

We measured the activity of the antioxidant enzyme glutathione peroxidase (GPx) in 

erythrocytes using the Ransel test (Randox Laboratories, Crumlin, UK). First, we made 

haemolysates by diluting an amount of erythrocytes into distilled water. We added 2 µl of 

haemolysate to 200 µl of a reagent (4 mM glutathione; 0.34 mM NADPH; glutathione 

reductase) diluted in buffer (phosphate buffer 0.05 M and pH 7.2; 4.3 mM of EDTA). Then, 
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we added 8 µl of cumene hydroperoxide (substrate of the enzyme) to each well and we 

measured the optical density in kinetics after 60, 120 and 180 seconds at 340 nm. The change 

in optical density per minute was taken below 0.1 in order to be in the linear range of the 

correlation between activity of GPx and optical density. We normalized the activity of GPx 

by the concentration of proteins in the haemolysate and we expressed it as units per mg of 

proteins. We used the Bradford test with albumin as reference standard (Sigma-Aldrich) to 

measure the protein concentration. 

We measured the activity of the antioxidant enzyme superoxide dismutase (SOD) in 

erythrocytes using the Ransod test (Randox Laboratories, Crumlin, UK). We added 6 µl of 

the haemolysate used for the GPx  to 200 µl of a buffer (CAPS 40 mM and pH 10.2; 0.94 

mM EDTA) containing the substrate of the enzyme (0.05 mM xanthine; 0.025 mM I.N.T.). 

Then, using a multichannel pipette, we added 30 µl of xanthine oxidase to each well and we 

measured the optical density in kinetics after 30 seconds and 210 seconds at 505 nm. The 

reaction between xanthin and xanthin oxidase generates the superoxide which reacts with 

I.N.T. generating a red colouration. The SOD present in the sample inhibits the reaction 

between the superoxide and I.N.T. We normalized the activity of SOD by the concentration 

of proteins in the haemolysate as for the GPx and we expressed it as units per mg of proteins. 

We calculated the activity of SOD using a reference standard with a known activity of the 

SOD enzyme. 
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Table S1. Outcomes of general linear models. Significant effects are shown in bold type. * 

indicates that the model was re-run after exclusion of statistical outliers. 

 
Variable Environment Sex Environment × Sex 

    

δ15N F1,100 = 35.93, p < 0.001 F1,100 = 9.60, p = 0.003 F1,100 = 10.66, p = 0.002 

δ13C F1,100 = 50.71, p < 0.001 F1,100 = 6.93, p = 0.010 F1,100 = 12.18, p = 0.001 

Mercury F1,100 = 17.81, p < 0.001 F1,100 = 2.34, p = 0.130 F1,100 = 3.38, p = 0.069 

ROMs F1,100 = 1.14, p = 0.289 F1,100 = 1.29, p = 0.258 F1,100 = 0.98, p = 0.984 

OXY F1,100 = 0.85, p = 0.848 F1,100 = 21.70, p < 0.001 F1,100 = 0.53, p = 0.47 

GPx F1,100 = 3.99, p = 0.048 F1,100 = 0.24, p = 0.627 F1,100 = 0.04, p = 0.846 

SOD F1,100 = 4.23, p = 0.042 F1,100 = 0.24, p = 0.625 F1,100 = 2.38, p = 0.126 

GPx/SOD F1,100 = 6.75, p = 0.011 F1,100 = 0.51, p = 0.476 F1,100 = 0.41, p = 0.522 

Lysozyme F1,97 < 0.01, p = 0.986 F1,97 = 0.74, p = 0.391 F1,97 = 0.03, p = 0.867 

IgG F1,99 = 0.48, p = 0.489 F1,99 = 1.24, p = 0.268 F1,99 = 2.25, p = 0.136 

Haptoglobin F1,67 = 1.29, p = 0.259 F1,67 = 5.65, p = 0.020 F1,67 = 0.24, p = 0.622 

Haptoglobin * F1,63 = 1.25, p = 0.267 F1,63= 2.37, p = 0.128 F1,63 = 0.10, p = 0.754 

BKA F1,37 = 0.17, p = 0.682 F1,37 = 0.71, p = 0.403 F1,37 = 0.03, p = 0.864 

Body mass F1,100 = 5.33, p = 0.023 F1,100 < 0.01, p = 0.996 F1,100 = 2.61, p = 0.116 
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Table S2. Pearson correlations between mercury and all the variables measured in bats. 

Significant correlations are shown in bold type. 

 

 Before outlier removal After outlier removal 

δ15N r = -0.11, p = 0.249, n = 104 r = -0.05, p = 0.588, n = 103 

δ13C r = -0.08, p = 0.449, n = 104 r = -0.001, p = 0.993, n = 103 

ROMs r = -0.07, p = 0.254, n = 104 r = -0.06, p = 0.284, n = 103 

OXY r = -0.23, p = 0.01, n = 104 r = -0.21, p = 0.015, n = 103 

GPx r = 0.04, p = 0.352, n = 104 r = 0.06, p = 0.289, n = 103 

SOD r = -0.17, p = 0.042, n = 104 r = -0.07, p = 0.236, n = 103 

GPx/SOD r = 0.10, p = 0.157, n = 104 r = 0.08, p = 0.209, n = 103 

Lysozyme r = 0.003, p = 0.488, n = 101 r = 0.21, p = 0.043, n = 98 

IgG r = 0.17, p = 0.044, n = 103 r = 0.23, p = 0.009, n = 102 

Haptoglobin r = -0.16, p = 0.089, n = 71 r = -0.21, p = 0.090, n = 66 

BKA r = -0.05, p = 0.385, n = 41 r = -0.02, p = 0.444, n = 40 

Body mass r = 0.40, p < 0.001, n = 104 r = 0.44, p < 0.001, n = 103 

 

 

  

 


