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Abstract

We consider a class of hyperbolic-parabolic systems with small diffusion terms and stiff
sources. Existence of solutions to the Cauchy problem with ill prepared initial data is estab-
lished by using composite expansions including initial-layer correctors and a convergence-stability
lemma. New multitime expansions are introduced and lead to second-order error estimates be-
tween the composite expansions and the solution. Reduced equilibrium systems of second-order
accuracy are also investigated as well as initial-layers of Chapman-Enskog expansions.

1 Introduction

Relaxation is an ubiquitous phenomenon of natural sciences typically modeled by systems of partial
differential equations with stiff damping sources. This is a strong motivation for investigating the
mathematical properties of these systems as well as the zero relaxation limit. Such systems of
balance laws have notably been investigated mathematically in a hyperbolic framework as well as in
a hyperbolic-parabolic framework [28, 39, 3, 31, 40, 42, 6, 43, 27, 25, 8, 36]. We study in this work
existence of solutions and asymptotic expansions for hyperbolic-parabolic systems with small diffusion
terms and stiff sources with ill prepared initial data.
We consider a nonlinear second-order system of partial differential equations in the form

(1.1) U+ > OF(v) —e Y 0i(Bi;(0)d;v) = @’

€
jeD i,j€D

where U denotes the state vector of basic physical variables, ¢ the time, 0; the derivative operator in
the ith spatial direction, D = {1, ..., d} the indexing set of spatial directions, d the spatial dimension,
¢ a small positive relaxation parameter, F; = F;(U), j € D, the convective fluxes, B;; = B;;(U),
i,j € D, the diffusion matrices, and @ = Q(U) the source term. It is assumed that the convective
fluxes, the source term, and the diffusion matrices are smooth functions of U € O, where Oy is an
open convex set of R™. The parameter ¢ is typically the ratio of a characteristic relaxation time
and a characteristic convective-diffusive time. The source term @ is assumed to be in quasilinear
form and there exists a fixed linear space E of R™ of dimension n. termed the slow manifold or the
equilibrium manifold such that Q(u) € £+. Denoting by Il the matrix formed by column vectors of
a basis of £, the projection v = ITI{U is then the natural conservative slow variable. Such systems of
partial differential equations (1.1) notably arise from various applications like nonequilibrium two-
temperature gases with fast relaxation of translational and internal temperatures [18, 19], radiation
hydrodynamics [44], or reactive mixtures with fast chemistry [20, 15]. Existence results with uniform
a priori estimates have been obtained for such system with stiff sources for well prepared initial data
[18, 19]. Denoting by U. the solution to the Cauchy problem for the system (1.1) and U, its initial
value, well prepared initial data are such that Q(U.) = 0. The method of proof has been based on
direct a priori estimates that couple standard hyperbolic-parabolic estimates with new contributions
arising from stiff sources [19, 20].



Our aim in this paper is to extend such previous existence results for hyperbolic-parabolic systems
to the case of ill prepared initial data where Q(U.) # 0. In this situation, the source terms are initially
O(1/¢) in (1.1) and this introduces a microscopic O(e) scale in time, absent for well prepared inital
data. This microscopic time scale naturally lead to inital layers involving the fast time 7 = t/e. The
structure and exponential decrease O(exp(chT)) for some § > 0 of such initial layers are then key
issues for the relaxation dynamics. Denoting by 7 a mathematical entropy for (1.1), the quasinormal
variable is defined by w = (u, ¢)" where U is assumed to be in the form U = (u,v)" and ¢ = (9,n)".
The transformation U — w is a smooth diffeomorphism, the quasinormal variable w is well suited
to the source term ) and the slow manifold £, and we define w. = w(U.). An Hilbert formal
asymptotic expansion of w. is built as € goes to zero by considering outer as well as inner expansions
with initial-layer correctors [39, 40, 43]. Using this formal expansion, an existence proof for the
nonlinear system (1.1) is established as well as rigorous error estimates for ill prepared inital data.
Key tools are a convergence-stability lemma for hyperbolic-parabolic systems which guarantee that
the maximum existence time interval for system (1.1) remains bounded away from zero as ¢ — 0, the
existence and properties of formal expansions, the exponential decrease of initial layers correctors,
and the existence of a standard normal form. The accuracy of the composite expansion is shown to
be O(e?) and is improved from a former O(£%/2) estimate [39]. Such an error estimate is obtained
by using new modified expansions including outer second-order fast-component correctors and does
not require extra regularity assumptions.

The nonequilibrium system (1.1) further admits a second-order accurate reduced or equilibrium
system governing the slow variable u in the form

(1.2) Opue + Y 0;f5(ue) —e Y 0i(Bfj(ue)djuc) =0,

jeD i,j€D

where w is the equilibrium solution, f§ = f£(ue) the equilibrium convective fluxes and Bf; = B, (ue)
the equilibrium diffusion matrices. These fluxes and diffusion matrices are defined for u. € O,,, where
O, is a convex open domain. Such a reduced system (1.2) may either be derived by using a two-
term Chapman-Enskog expansion [18] or equivalently the Maxwellian iteration method that generally
yields similar results at second-order [35]. The resulting diffusion coefficients at equilibrium Bf; have
contributions either directly inherited from the diffusion terms B;; out of equilibrium or arising from
perturbed convective terms. This yields in particular the viscous tensor in a one-temperature fluid
with the shear viscosity inherited from the non-equilibrium model and the volume viscosity coefficient
associated with the relaxation of internal energy [18]. Denoting by U.(z,t) the nonequilibrium
solution of (1.1), u. = ITLU. the corresponding slow variable out of equilibrium, wue(x, ) the local
equilibrium solution of (1.2), it has been established that for well prepared initial data [18, 19], when
the relaxation parameter ¢ is small, the error estimate is in the form u.(z,t) — ue(z,t) = O(g?). In
this work, for the more general situation of ill prepared initial data, we establish that the out of
equilibrium solution is such that

(1.3) ue(2,t) — (ue(z,t) + cu'(z,t/e)) = O(e?),

where u'!(z,t/¢) is an dnitial-layer corrector that decays exponentially to zero as t/e goes to infin-
ity. This estimate is also improved from a former (9(53/ 2) accuracy by using the estimates out of
equilibrium obtained with the new formal expansions.

The assumptions on system (1.1) as well as the local equilibrium approximation (1.2) are presented
in Section 2. The formal asymptotic construction is presented in Section 3 and the mathematical
justifications are presented in Section 4.

2 A class of hyperbolic-parabolic systems

The mathematical assumptions on the system of partial differential equations (1.1) are presented in
this section and the second-order reduced system (1.2) is investigated.



2.1 Quasinormal variable

We denote by 1 a mathematical entropy defined on Oy, an open convex set of R™. The entropy
n = n(v), the fluxes F; = F};(U), the diffusion matrices B;; = B;;(U), and the source term Q = Q(VU)
are assumed to be C'°° over the open convex set Oy and the Jacobian matrices of convective fluxes
are denoted by A; = OyF;. The unit sphere in d dimension is denoted by ¥9~! and (x,y) is the
Euclidean product between vectors x and y. The system (1.1) is assumed to satisfy the following
properties.

(U1) The Hessian matriz 92n is positive definite over O .

(U2) The products Aj(0?n)~"t, j € D, are symmetric over Oy.

(us) We have (Bij([?gn)*l)t = B;i(0?n)71, 4,5 € D, and for any & € 471 the matriz E(U,g) =
> ijep Bij (02n)1¢:&; is positive semi-definite over Oy.

(Usg) The source term reads Q = —L (Oyn)t where L is a matriz of size n and there exists a partition
R"™ = R" xR™ with n = ne + ny and L and Q in the form

- 00 - 00 +
where S is a symmetric positive definite matriz of size ny and U~ S(U) is C* over Oy .

The assumptions (Uy )—(Usz) associated with convective transport have been adapted from [21, 13],
the assumption (Us) associated with diffusion terms from [22, 23, 24] and the assumption (Us) con-
cerning the source term from [44]. A more general form for the source term @ introduced in [44] may
also be rewritten as in (U4) by using a linear transform. The conditions (Uy)(U2)(U4) have recently
been used as a criterion to construct constitutive equations in non-equilibrium thermodynamics [45].
The C*° smoothness assumptions on the system coefficients may also easily be weakened [20].

An entropy balance equation may further be obtained by multiplying the natural system (1.1)
by the classical entropic variable v = (9,n)!. The corresponding time derivative term is such that
0,n OU = O whereas the convective terms read 0,nA4;0;U = 0,5; where (; are the entropy fluxes
with 9,nA; = 9,0;. The existence of such entropy fluxes is classically obtained from (Usz) and
Poincaré Lemma, using that the image O, of Oy under the map U — v is simply connected. The
resulting balance equation for 7 is in the form

1
(2.2) Om+ > 0:Bi—e > 0;(0mBi;0;U) +e > (92nBi;0;U,0;U) — ~0mQ =0,

i€D i,j€D i,j€D

where the diffusion terms have been integrated by part and we have used that d;v = (821)0;,U. In
particular, the physical entropy production rate due to the source term reads —dyn @Q/e and that
due to gradients is related in Fourier space to the positive semi-definite diffusion matrix E(U, &) =
>ijep Bii(0in) 716

From Property (Uy), the equilibrium manifold or slow manifold is given by £ = R" x{0} and
ny = n — n, is the dimension of the fast manifold £+. The superscript or subscript e will generally
be associated with the equilibrium or slow manifold and r associated with the fast or rapid manifold.
The manifold £ is naturally termed the equilibrium manifold since (@Q,x) = 0 when x € £ so that
the variable (U, x) is governed by a standard time dynamics and £+ = {0} x R™ is naturally termed
the fast manifold. We denote the block structure of convective fluxes and diffusion matrices as

e sze Biezr
(2.3 ORI F A B HOR
7 B By
and Il = [eq,...,ey,] is the natural projection operator over the equilibrium space £ with e; ..., e,

denoting the basis vectors of R™. We also denote by u € R™ and v € R™ the slow and fast
components of the basic physical variable U = (u,v)* and by ¢ = (9,n)" the column vector associated
with the partial derivative of entropy with respect to the variable v.



Using the block structure induced by the partition R™ = R™ x R™ in (U4), we may introduce
the quasinormal variable

24) w= m = [(afmt]'

This variable w is termed quasinormal since it shares similarities with standard normal variables. The
variable w is naturally suited to the source term ) and thus especially convenient for investigating
the asymptotic equilibrium limit e — 0. It is easily established that the map U — w is a C*
diffeomorphism from the open set Oy onto an open set O, of R™. It is indeed one to one thanks to
the strict convexity (U1) of 7 and the jacobian matrix

(2.5) 0 I 0
. w = B
" d2,m 92

where I, denotes the unit matrix of order k, is invertible since the matrix 927 is positive definite.
We will denote for short by f; = fj(w) and g; = g;(w) the slow and fast convective fluxes in the
jth direction as functions of the quasinormal variable w

f](“’) = F]-e(U(u})), gj(w) = Fjl'r (U(w))

These fluxes f; and g; are C*° function of w since F°, and F*, are C* as well as w — U. Similarly,
the coefficients of the Hessian matrix 021 as functions of w are denoted for short by

lnuu(u’) M () ] _

0 W= ) ()

We will sometimes commit the abuse of notation of denoting by the same letter functions of U or
w but the context will always be clear. A balance equation for w is now established from (1.1) by
using a change of variable.

Proposition 2.1. The quasinormal variable satisfies the system of partial differential equations

(2.7) w+ Y A(w)djw —e Y 0i(Bij(w)0jw) = éQ(w) +ed (w,d,w),

jeD i,j€D

where the matrices 4; = Ovw Aj 0, U, Bij = Ovw B;j 0,U, the source term Q = Ovw @, and the
quadratic residual d = — 0i(Ovw) Bij 0,U 0;w have the following properties.

i,j€D
(w1) The matriz Ay = (0,U)10?1 0, U is symmetric positive-definite block-diagonal.

(wa) The matrices ﬂlj/‘?lo_l, j € D, are symmetric over O,,.

(w3) We have (@ijﬁlo*l)t = ﬂjiﬂgl, i,j € D, and for any & € X1 the diffusion matriz B =
Zi,jeD @Z—jﬂloflfifj is positive semi-definite over Q.

(wy) The source term Q = (0,Q,)! is in the form Q = —L(w)w where Q, = —n,,Sq¢ = —L""q.

(ws) The slow components of the quadratic residual d vanishes: dy =0 over Q.

The matrices Ay, 4j, Bij, L, and the source term Q have regularity C*° and the quadratic residual
may be written

(2.8) 4= My(w)dwd;w,

i,J€D



where the third order tensors Mi;(w) also have regularity C*°. Moreover, using the partitioning
induced by the decomposition R"™ = R" x R"*, the matrices 4y, A;, Bij and L are given by

r —1
| Nuw = MuwMow Mo 0
(29) _ﬂo - 0 7717711 :| )
I Duf; 0afi
(2.10) ;= ’ o :
L nvuaufj + quaugj nvuaqu + nvvaqgj
r e,e e;r 1
(2 11) B — Bij _Bij Now Mo
' v B — B ) + Moo (BES = B n 0y,
L nvu( ij i Tov Thu Nyw \Bij ij v Thu
By,
NouBi7 Mo+ 00 Bij it |
~ _fo0o] [0 o
(2.12) L =4, [OS =10 n,5|"

Proof. Letting U = U(w) in (1.1) and multiplying on the left by dyw first yields the system (2.7).
From 4, = (9,,U)'92n0,,U and (U1) we deduce that 4y is symmetric positive definite and the block-
diagonal expression (2.9) is obtained by a direct calculation using (2.5) and (2.6). This yields (w1)
and the blocks 7,,} and 1,,, — Mo Mo are both positive definite.

We have 2; 4, = dywA; (921) "' (yw)! and this matrix is symmetric from (Us) and (ws) holds.
Similarly we have 8;;4, " = dywB;; (0?n) " (dyw)?, and arguing as above yields that (B;;4; ") =
’Bji.ﬂoil. In addition
Bw,O) = 3 8,35 6 :an( 3 By, (agn)—lgigj)(aw)t,

i,j€D 4,J€D

so that the matrix B is positive semi-definite from (U3) and (ws3) is established. The expressions
(2.10) and (2.11) for 4; and B;; are also obtained by a direct calculation.

Finally, using (U4) the modified source term Q = dyw Q may be written Q = —L(w) w with L(w)
given by (2.12) and (w4) is established. The regularity class of 4y, 4;, B;;, £, and the source term
Q is a direct consequence of (2.9)-(2.12), the regularity class of Ay, Aj, Bij, L, and @, and the
regularity class of dyn, Oyw and 0,U.

Since d = — ZWED 9i(Ovw)B;j0,,U0;w, the first n, components vanish from (2.5). The kth com-
ponent dj, is also in the form dj, = Zl<l’l,<n(9\/[ij)k”18iwlajwl/ with coefficients given by (M) =
*Z1<r,sgn O, (Ov, wi)(Bij),.s0w, Us where the coefficients of B;; € R™" are denoted by (Bjj),.-
The quadratic residual may thus be written as (2.8) where 94;(w) are third order tensors that are
C* over O, and this completes the proof. O

We introduce a structural assumption about the open set O, that will be convenient for investi-
gating asymptotic expansions in the quasinormal variable w.

(Us) The open set O, is in the form O, = O, x R™ where O, is a convex open set of R™.

This assumption is natural since the fast variable ¢ = (9,7)! is the Legendre conjugate of v
and its components are slopes of the convex function 1. The assumption (Us) thus means that the
gradient of 7 is infinite at the boundaries of the domain Oy, which is natural from a thermodynamic
point of view. This condition also corresponds to the notion of ‘essentially smooth functions’ in
convex analysis [33]. In addition, the ¢ component will converge rapidly to zero during the initial-
layers of multitime expansions in such a way that it is a natural requirement that such initial-layer
trajectories in the form (u,q(7))'—where u € O, is fixed—lie in O,. Such a structure condition
holds in particular in the situation of two temperature fluids [18] as well as complex chemistry fluids
[20]. With (Us) the open set O, is also convex as Oy and this will allow to derive various differential
identities.



2.2 Equilibrium limit and reduced system
We study equilibrium states and then investigate formally the second-order reduced system as ¢ — 0.

Proposition 2.2. For any U € O, letting w = w(U) = (u,q)t, the following properties are equiva-
lent:

(1) Physical entropy production due to the source term vanishes: —0,nQ = 0.
(1i) The source term and the fast component vanish: @ =0 and g = 0.
(i4i) The entropic variable v and the quasinormal variable w belong to the equilibrium manifold E.

Any U € O, that satisfies these equivalent properties is termed an equilibrium state as well as its
image w under the map U — w.

Proof. These properties are directly obtained from the structure of the source term and using
that £ = R™ x {0}. Physical entropy production due to source terms is in the form —9,nQ =
—{(0,m)t, Q) = (Sq,q) so that 9,n@Q = 0 is equivalent to ¢ = 0 or Q = —(0,5¢)" = 0 since S is
symmetric positive definite. Moreover, since v = ((9,n)", q)*, we have v € Z if and only if ¢ = 0, and
similarly w € £ if and only if ¢ = 0 and this completes the proof. O

Such properties of the source term have been discussed in an abstract framework by Chen,
Levermore and Liu [3]. These properties hold in particular for gas mixtures with complex chemistry
[14, 17, 20] as well as two temperature fluids [18]. Another interesting property of the source term
is that the jacobian matrix at an equilibrium states is symmetric [39, 18]. The set of equilibrium
points characterized by the condition ¢ = 0 is naturally parametrized by the slow variable u. Indeed,
for any u € O,, there exists a unique equilibrium point weq € O, such that II}weq = u simply given
by weq = (u,0)". Similarly, there exists a unique equilibrium point Ueq € Oy such that ITLUeq = u
simply given by Ueq = U(@eq). Letting Ueq = (U, veq)?, the map u + veq(u) is then C> over O, and
by differentiating the equilibrium relation q(u,veq(u)) = 0 it is obtained that 0,veq = — (7)™ 0,
where we have denoted for short 7, (©) = 7, (@eq) = My (1, 0) and 7, () = Ny, (weq) = My, (u, 0).

Lemma 2.3. Defining the entropy at equilibrium by n°(u) = 1n(Ueq(w)) for u € O, then u — n°(u)
is C° over Oy, 0yn° = 0un(Ueq) and

(2.13) 2n° = Muw = oo () T = A5 (4, 0),

U)here ﬁuu(u) = nuu (wﬁ'q(u)) = nuu(u’ 0) G/Ild ﬁuv(u) = nuv(wﬂ](u)) = qu(“a 0)

Proof. Differentiating the entropy 7° first yields that 9,n° = 9un(u, veq(u)) since dyn(u, veq(u)) =

0. Differentiating again and using 9yveq = —(7,,) ‘7, then yields (2.13) and 92n° = 7,, —
T (Mow) ™y coincides with 45 (u, 0) from (2.9). O
Our aim is now to obtain a second-order accurate reduced system for the slow variable v as e — 0

for the standard time dynamics associated with time ¢. The fast component of Equation (2.7) may
first be rewritten as

0 =—eS7 (O + o D 0,55(u.0) + 10 D 0,0: (0, @) + O() ).
jeD J
We thus obtain formally that ¢ = O(e) and thus that d;q = O(e) for the standard time dynamics,
so that near equilibrium
o l--1 — — 2
q= 75S Nyw Z (nvuaufj(u5 0) + nvvaugj (’U,, 0))8]11, + O(E )7
jeD
where S(u) = S(Ueq(u)). On the other hand, the slow component of Equation (2.7) may be rewritten

(214) atu + Z ajfj — € Z al((Bze],e - Bie]"rn;vlnvu)aju + Bie]"rn;vlajq) = Oa
JED i,j€D



using (2.10) and (2.11). We may further expand the coefficients near equilibrium
By (0) = B (05 ow = By (Ueq) = By (Ueq) Ty o + O(E),

since w — weq = (0,¢)" = O(g) and U — Ugq = O(e) as well as expand the flux f;(u,¢) in (2.14) into
fi(u,q) = fi(u,0)+9,f;(u,0)g+ O(¢?). Combining these expansions with (2.14) yields the following
reduced system called the second-order equilibrium approximation of (1.1)

(2.15) Oru + Z Af(u)Oju — € Z 9 (Bs;(u)d;u) =0,
j€D i,jeD

where f£(u) = f;(u,0) = F®(Ueq(u)), AS(u) = 0y f$(u) = 4;°(u,0), and

J
Bfj(u) = Bjj*(Veq) = Bjj (Veq)Tlou Tou
—1 _ _ _
+ g fi(w, 008 7o (T Ou f5 (1, 0) + 7, 0ug5 (1, 0)).
The matrices AS, j € D, and Bf}, i,j € D, defined over O, have regularity C>°. Further using the
expression (2.11) of B;; as well as the relation (9, f;(u, 0))t83776 = Mo (TouOufj (w0, 0) +177,,0ug; (1, 0))
deduced from the symmetry of 4y4;, the equilibrium diffusion matrix Bj; can be written

(2.16) Bfj(u) = B3 (Ueq) + 0y fi(u,0) S~" (9, £;(u,0))" Onr°.

This procedure to derive (2.15) corresponds to a second-order Chapman-Enskog expansion us-
ing the variable w [28, 3, 18] or equivalently a Maxwellian iteration that generally yields similar
results at second-order [35]. The first term B;;°(Ueq) in the expression of the equilibrium dif-
fusion matrices (2.16) is inherited from the original diffusion term B;; whereas the second term
0y f(u,0)S™1 (0, fi(u,0))* 92n° comes from relaxation of the fast variable g. It leads in particular
to the complete viscous tensor in one-temperature equilibrium fluid models with the shear viscos-
ity inherited from the non-equilibrium two-temperature system and the volume viscosity coefficient
associated with the relaxation of internal energy [18, 19]. The structure of the reduced system at
equilibrium is summarized in the following proposition.

Proposition 2.4. Under Conditions (U1)—(Uy4) the following properties hold.

(u1) The Hessian matriz 92n° is positive definite over O,.

(uz) The products AS (02n°)~L, j € D, are symmetric over u € O,.

(us) We have (ij (8ﬁne)_1)t = B;i(aﬁne)_l, i,j € D, and for any & € X471 the diffusion matriz
Be = >ijep B5 (02n°)~1&:&; is positive semi-definite over O,.

Proof. 1t has been established in Lemma 2.3 that 920° = 7, — Tue (Tw) 1w S0 that it is positive
definite as a Schur complement of the positive definite matrix 7, in the positive definite matrix 92n
evaluated at Ueq(u) and (u1) is established.

From the symmetry of ﬂljﬂlofl established in (w2) and evaluated at the equilibrium point Ueq, we
deduce that the products Af (021°)~1 are symmetric over O, and (uy) is established. The symmetry

e

properties of B (02n°)~1 are also deduced from (2.16) and the symmetry properties of B;;4; !

,

established in (wj3). Finally, for any ¢ € 971 we obtain from from (2.16) that

B° = Z By (0an°) " &g + (Z 3qu'(%0)§¢) S (Z 3qu(U,0)§j)t7
ieD jeD

i,J€D

and the positive semi-definiteness of Beisa consequence from that of 8 and this establishes (u3). O



The reduced equilibrium system (2.15) has been obtained by using a Chapman-Enskog expansion
with the quasinormal variable w. It is established in Appendix A. that it naturally coincides
with that obtained in previous work [18]. In particular, the properties of the entropic symmetrized
equilibrium system obtained in [3, 18] also applies to (2.15). We finally investigate the relative
entropy with respect to equilibrium that is a natural distance to equilibrium. Relative entropies
have been found to be key tools for investigating hyperbolic as well as hyperbolic-parabolic systems
[5, 7,22, 6,41, 36, 11, 26, 9, 1, 20, 4]. The relative entropy with respect to equilibrium is nonnegative
by the convexity of n and locally behaves quadratically with respect to g.

Lemma 2.5. The relative entropy with respect to equilibrium
(2.17) ' (u, q) = n(U(u,q)) = n(v(u,0)) = dun(U(u,0)) (U(u,q) — U(u,0)),

is such that O,n"' = ¢'n,.} and may be written n'(u,q) = (Hq,q) where H = foln;} (u, vq)ada is
positive definite matriz.

Proof. Using U(u,q) — U(u,0) = (0,v(u,q) — v(u,0)) as well as that 9,n(U(u,0)) € £ from Proposi-
tion 2.2 it is first obtained that dyn(U(u,0))(U(u,q) — U(u,0)) = 0 so that

' (u, q) = n(U(u, q)) —n(U(u,0)) =n(u,v(u,q)) —nu,v(u,0)).

Differentiating with respect to ¢ we obtain 9,n'' = 9,n0,0 = ¢'n;,} and by calculus 7' (u,q) =
fol (0ymOqv)(u, aq) da q keeping in mind that all states (u,aq)® are in O, from (Us). The identity
n'!(u,q) = (Hq,q) then follows since d,n(u,v(u,aq)) = ag' and dyv(u, v(u, aq)) = 1y}t (u, ag). The
matrix H is finally positive definite as an average of positive definite matrices over a compact set. [

3 Formal asymptotic expansion

The solution to the Cauchy problem for system (2.7) with initial data @, is denoted by w. = (ue, ¢-)*.
A formal approximation of w. is built as € goes to zero by using composite or multitime expansions
[30, 39]. The variable w is more convenient than U since it is adapted to the slow manifold £. Such
a construction is similar to that for hyperbolic systems [40] but now includes diffusion terms.

3.1 Composite expansion

We seek a composite expansion in the form
(3.1) w.(x,t) = wo(z,t) + ew, (x,t) + w(x,t/e) + ewll(z, /) + O(e?),

where wq and w; depend on the standard time ¢ whereas w{} and @i depend on the fast time 7 = ¢ /e.
The expansion (3.1) thus includes an outer expansion

(3.2) wo(x,t) + ew (z,t) + O(e?),

associated with standard time dynamics and standard time ¢. This outer expansion (3.2), however,
cannot generally satisfy the prescribed initial value w.. It is then necessary to add a fast evolving
initial-layer corrector in the form

wy (,t/) + ew) (z,t/e) + O(€?),

associated with fast time dynamics and fast time 7 = t/e. The initial-layer correctors wil and wi
have to decay exponentially to zero as 7 goes to infinity from general matching principles [10]. The
complete approximation of z. is then a multitime expansion since it involves both the standard time
t and the fast time 7 = t/e.

We will notably use the second-order truncated approximation w? defined by

(3.3) w(z,t) = wo(x,t) + cw (x,t) + wh (x,t/e) + ewll (2, t/¢).



This four term expansion =2 will be shown to be well defined over some time interval independent of
e and used to establish an existence theorem for the out of equilibrium system (2.7). The expansion
w? will also be shown to be an accurate approximation of the out of equilibrium solution w. in the
next section.

As a formal solution of (2.7) with initial value w., the composite expansion must also take the
prescribed initial value

wo(z,0) 4 ewy (,0) + wil (z,0) 4+ ewll(2,0) + O(?) = w.(z).
Assuming naturally that w. has an expansion w. = wg + ew; + O(£?), we get
(3.4) wo(z,0) + wil(2,0) = wo(z), wi (z,0) 4+ il (2,0) = @ (z).

The difficulty is then to find the proper initial values for wy and =i, based on the above initial
value relations, as well as to determine the initial-layer correctors w{l and w! by using the matched
asymptotic expansion principle [10, 39].
For the projections u. and ¢. the composite expansions are denoted by
{us = ug(z,t) + euy(x,t) + ull(z,t/e) + eull(z, t/e) + O(?),
ge = qo(x,t) +eqi(z,t) + qiol(xa t/e) + Eqill('r’ t/e) + 0(52)’
using the straightforward notation w. = (uc,q.)!, wo = (uo,qo)t, w; = (u1,q1)t, @i = (ull, ¢i)?, and

il

wil = (ull, ¢i")t. From (3.4) we also have the relations
(3.5) uo(x,0) +up(w,0) = Uo(w),  ua(x,0) +uli(w,0) = (),
(36> QO(zaO)+q61(x70) :Z]vO('r)v ql(z50)+q111(1'50) :Zlvl('r)v

where 17/0 = (ao,ao)t and Z/l = (ﬂl,q~1)t.

3.2 Outer expansion

The equations governing the coefficients wy and w; are obtained by substituting the outer expansion
(3.2) into system (2.7) and equating each power of €. The governing equations obtained for wy and
wy are then projected onto the slow and fast manifolds £ and £ in order to get the governing
equations for ug, qo, w1 and ¢;. Equating the kth power of € generally yields an equation for u; and
qr+1 so that there is no clear separation of the asymptotic orders.

At the order e =1 we first obtain from (2.7) that Q(wp) = 0 and from the structure of Q = (0, Q)"
with Q, = —n,,,5¢ this yields that

(37) qo = 0.

The zeroth order solution wy = (ug, qo)" = (ug,0)? thus represents equilibrium states. At the next
order € it is obtained that

(38) Orwo + Z ﬂj(ﬂ/())aj wy = 7L(ZU0)ZU1.
JjeD
Projecting on the slow manifold, using go = 0 and the structure (2.10) of 4;, we obtain
(3.9) Oruo + Z 9;fj(uo,0) = 0.
j€D

From the structural properties of the out of equilibrium system and its symmetrizability, the system
(3.9) is a hyperbolic system of conservation laws in such a way that there exists a unique local
solution starting from an appropriate initial value uo(0). On the other hand, the fast component of
(3.8) yields

(3.10) Z (nvu (UO, O)GUfJ (Uo, 0) + Nov (Uo, O)GUgj (UO, 0))aqu = —Lr’r(wO)ql,
Jj€ED



where £ (wg) = 7, (u0)S (ug). This relation uniquely defines g; since L™" is invertible keeping in
mind that both 7, (ug) and S(ug) are invertible.
Finally, at the order €', the u; equation on the slow manifold is found in the form

(3.11) Osuy + > 0;(0uf (w0, 0)ur) + Y 950y f5(u0,0)q1) — Y 0i(Bg ;(uo,0)d;u0) = 0.

j€D Jj€D i,j€ED

This is again a hyperbolic system that uniquely defines u; for an appropriate initial condition u(0).

In summary, from the symmetry properties of the equilibrium fluxes f established in Propo-
sition 2.4, ug satisfies a symmetrizable hyperbolic system (3.9) and standard existence theory [21,
13, 29, 22, 28, 6, 25] yields a local classical solution wug(z,t) once ug(x,0) is given appropriately.
The perturbed fast component ¢ (z,t) is then explicitely given in terms of ug and its first spatial
derivatives 0,ug. Once ug(z,t) and ¢ (x,t) are determined, the system (3.11) is linear symmetrizable
hyperbolic for u; and standard existence theory yields a local classical u;(x,t) once the initial value
up(z,0) is given appropriately. A key issue is therefore to find the initial values ug(+,0) and u1(+,0)
and this requires to further study the composite expansions (3.1).

3.3 Inner expansion

In order to derive the equations governing the initial-layer correctors wil and w! associated with
the fast time 7 = ¢/e and to investigate composite expansions, it is first required to write the outer
expansion in terms of 7 by using t = e7. To this aim we note that

1l
wo(z,e7) = wo(x,0) + et wo(x,0) + 272 // O wo(z, caft)adadf,
0o

and letting R{, = 72 folfol D2 wo(z,eafBr)adadB and Ry = 70, wo(z,0) + eR} yields wo = wo(z,0) +
eRo and wo = wo(z,0) + eTdywo(x,0) + 2Ry, Similarly, we have

1
wy(z,e7) = wy(z,0) + 57‘/ Orw1(z, eat)da,
0

and letting R1 = 7 fol Orw1(z,ear)da yields wy; = wi(x,0) + eRy. By combining these expressions
we obtain

(3.12) wo(z,t) + cwy (z,t) + O(?) = & (z,7) + ewl (z,7) + O(e?),
where
(3.13) w) (x,7) = wo(x,0), wl (z,7) = wy(z,0) + 7O wo(x,0).

The superscript stands for ‘polynomial’ since ) is generally found to be a polynomial in 7 of the ith
degree [40]. The relations (3.13) may also be written component wise uf = ug(z,0), ¢5 = qo(x,0) = 0,
uf = uy(z,0) + 70uo(x,0), and ¢} = q1(z,0), where wf) = (uf, ¢f)" and @} = (u?,¢})".

The resulting inner expansion in terms of 7 is then

(3.14) we(z,7) = wl (z,7) + wg(:c,T) + E(W{’(z, T)+ will(x,T)) + 0(e?),

and should asymptotically satisfy system (2.7). Substituting the inner expansion (3.14) into (2.7)
written in terms of the fast time 7, expanding into power series of ¢, and equating the coefficients
yield the governing equations for w} + wil and @} + wil.

At the order e~! we obtain that

(3.15) Or(wh + wp) = —L(wf + wp) (wf + wp) = Qwf + wp),
and projecting on the slow and fast manifolds yields
(3.16) O (uf +ull) =0,

(3.17) Or (a6 + @) = Qu(wf) + wp)-
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At the order €9 it is next obtained

(3.18) Or (a® + wll) = — Z 0,2 (wf) + wy)0; (wf + wpy) + 0w Qwh + wy) (wh + wh).
j€ED

Projecting for the slow and fast components yields that

(3.19) O-(uf +ul) = = >0, f;(wf + wp),
jeD
(3.20) O (qf + df) = 0uQ, () + wh) (uf + ull)

+ 0,Q(wh + wp) (¢F + i) + C(wf + wp),
where
Clal +wy) = = > (o (@ + wp)0; fi () + why) + 1y () + w})D;9; () + wp)).
je€D

On the other hand, the outer expansion wy(x,t) + ew;(z,t) + O(e?) may also be rewritten in
terms of the fast time @} (z,7) +ew} (z,7) + O(e?) and this expression naturally satisfies the system
(2.7). This procedure yields the governing equations satisfied by uf and u}. Equivalently, we may let
e — 0 in the governing equations for uf + ul} and u} + ull, keeping in mind that !} and ul converge
exponentially to zero as 7 — oo. At order e~ this yields after some algebra

(3.21) Orwh = —L(wf) wh = Qw) =0,
(3.22) Orug =0,  0Orqy = Qu(wp).

Similarly, at the order £, we obtain that

(3.23) Orawf = — Z 0,2 (wy ) 05wy + 0, Qwp) ) wh,
JjeD
(3.24) Orul = =3 0 fi(wf),  0rdb = 0uQu(wf)uf + 0, Q,(w)af + C ()
JjeD
where C(wf) = =3 cp (M (@) £5(wh) + 1y (w5)0;95(wp)). The relations (3.21)-(3.24) may

also be derived directly from the expressions of the outer expansion coefficients =} and w} and the
governing equations for ug, qo, u1 and q;.

3.4 Initial-layer correctors

We investigate the initial-layer correctors wi and w!! by using the governing equations (3.15)—(3.17)
and (3.18)—(3.20). Both =} and w; have been expressed in terms of the outer expansion and
in particular, uf(z,7) = uo(z,0), ¢f (z,7) = qo(x,0) = 0, u}(z,7) = wi(x,0) + 7O uo(z,0), and
¢ (z,7) = q1(x,0) keeping in mind that 79:qo(x,0) = 0 since qo(z,t) = 0.

At order e~! we obtain from (3.15) and (3.21) that

(3.25) Orwy = Qwh + wh) — QUwh) = Qwh + w}y),

and projecting on the slow and fast manifold—or equivalently using (3.16), (3.17), and (3.22)—we
obtain that Oy — 0 and 9yl — @, (uf + ul} qi) keeping in mind that q8(z. ) — 0. Using ,uf = 0

and that the initial-layer corrector wbl (x,7) goes to zero as T goes to infinity, we deduce that
(3.26) ub (z,7) = ull (z, 00) = 0.

Combining uli(z,7) = 0, uf(z,7) = uo(x,0), go(x,0) = 0, with wg(z,0) + wl (z,0) = wo(z) obtained
from (3.4) we get

(3.27) uo(x,0) = up(x), qiol(:c, 0) = go(x).

11



In particular wo(z,0) = w§(z,0) = (Uo(z), O)t, wh (z,0) = (0, q~0(x))t, and for any 7 > 0

wh(z,7) = (ﬂo(x),())t, wél(:c,T) = (O,qiol(z,T))t.

In particular, g (x, 7) satisfies the following nonlinear ordinary differential equation involving solely
the fast time 7

(3.28) { 0-qp = Q. (o (@), 5),

i (2,0) = go(x).

The existence of a global in time classical solution ¢ll(z,7) that decays exponentially to zero as
7 — oo will be established by using Q,(to,q)) = —,, (0, q) S(U(do,q))q), the mathematical
entropy 7, as well as the symmetry and positive definiteness of n,, and S.

Considering next the first order initial-layer corrector wi(z, 7) we get from (3.18) and (3.23) that

(3.29) Orwi =~ (ﬂj(wé’ + @)D (wf + wp) — ﬂj(wé’)@jwé’)
JjeD . .
+ 0uQ(wf + wp) (@] + 1) — 04 Q(wf) w].
Projecting on the slow and fast manifolds—or equivalently using (3.19), (3.20), and (3.24)—we obtain
the following differential equations involving solely the fast time 7

(830)  Orul = = > {0 f;(wh + wp) — 05(wh)},
jeD
(3.31) 8'rqill = 0uQ,(wp + wlol)(uli) + Ulll) — 0uQ, (wp Juy
+ 0,Qu(wh + wp)(af + ar) — 8y Q. (wh)a} + C(wg + wy) — C(wy).
The matching principle yields that
(332) ulll(za OO) = Oa qill('rv 0) = E]vl(z) - q1(1', 0)7
where g1 (z,0) can be obtained from (3.10)
q1 (:L', 0) = 7§(ﬂ0)71 Z (7_7;711 (ﬂo)ﬁvu (aO)aufJ (607 0) =+ ajgj (ﬂO, 0))(9]60
jeD

In particular, we may evaluate ull(z,7) from (3.30) and (3.32) in the form

(3.33) wler) = [ (A0 (o + wh() = 015

JjED

and wuy(x,0) is then finally given by ui(z,0) = @ (x) — ull(z,0). The existence of a global in time
classical solution ¢''(z, 7) may be obtained by using (3.31), the corresponding initial condition (3.32)
and the symmetry and positive definiteness of 7,, and S. The exponential decay for wi(z,7) is
obtained by using the exponential decay of w! (x,7) [40].

In summary, ug and gfl are first obtained whereas go = 0 and u!} = 0. Then ¢; is directly evaluated
as well as u!! and this finally yields the required initial conditions u;(0) and ¢i!(0) in order to obtain

up and ¢l

3.5 Approximate equations

We investigate in this section the approximate equation satisfied by the second-order truncated
approximation w?(z,t) = wo(z,t)+ew; (z,t)+wl (z,t/e)+ewil(z,t/€). Defining the residual operator
R(f) for any function f(x,t) twice differentiable in space and once in time by

(3.34) R(f) =0,f + > a;(H0,f —e > 0i(B;(FOf) + éL(f)f —ed(f,0,1),

jeD i,j€D
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then R? = R(w?) is a measure of the accuracy of the approximated solution w?. In order to
estimate the composite residual R?, we first estimate the outer residual R2"* = R(wo (x,t)+ewi(x, t))
associated with the outer expansion wq(x,t)+ew (z,t), and next estimate the difference of residuals
SR. = R* — R°" associated with initial-layer corrector wil + cwl!

(3.35) OR. = R* — R®™ = R(wp + ewy + w) + ewl) — R(wqy + ew1).

The outer residual RO associated with the standard time dynamics is investigated in the following
proposition.

Proposition 3.1. The outer residual R®™ = R(wo(x,t) + ew1(z,t)) can be written R2"® = eG.,
where

1
(336) G:. = Oywy + Z / awﬂj(WQ + anl) da wlajwo
jep /0
1
+ Z A (wo + ewr)0jwr + / 0, L(wo + cawy) da wyan
jeD 0

— Z 8i(@ij(wO 4+ swl)aj(wo =+ swl)) — L{(ZUO 4+ gwy, 8Iw0 =+ sazwl).
i,j€D

Moreover we have eG. = Gy + €2Ga. where

(337) G1 =0;w1 + Z awﬂlj(wo)wlc')jwo + Z ﬂj(ﬂ/o)ajwl
Jj€ED j€D
=+ QwL(wo)wlwl — Z ai(@ij(wO)aij) — z{(wo, 8Iw0),
i,j€ED

1,1
Goe = Z /0/0 024 (wo + eafwr) adadB wyw,d;wy

JjeD

1 1,1
+ Z / 0, (wo + eaws) do w10jwy + // aiL(wo + cafwr) adad wywywy
iep /o 0Jo

1
+ Z 81(/0 8wﬂ3ij(w0+€ozw1)do¢ wlaij) + Z &(Z?j(woJrswl)ajwl)

1,j€D 4,J€D

1
+ Z /8w%](w0 + anl)da wlainaij
i,jeD 0
+ Z %J‘(WO + swl)(a’?iwlajwl + &-woajwl + aiwlaij).
i,J€D

In addition, letting G1 = (G1e, G11)t we have G1o = 0 and G1 € E*-.

Proof. These relations are established after some algebra by using the governing equations for wj
and = and calculus identities in the form 4;(wg + ew1) — 2;(wp) = sfol 0w (wo + eawr) da wy.
Such identities are notably valid since the open set O, is convex so that any segment [wy, wo + ew ]
lies in O, whenever wy € O, and wy + ecw; € O,. The expression of G, is first obtained and
consequently that of Gy by letting ¢ — 0. The slow component of G is then found to be zero by
using the governing equation (3.11) of u;, keeping in mind that 4 = 0. O

We now investigate the difference residual 0 R. that is naturally expanded around 7 = 0 in order
to use the governing equations of w!l and wi.

Proposition 3.2. The residual difference §R. may be written in the form 0R. = eF. where the
expression of F. is detailed in Appendix B. Moreover F. decreases exponentially towards zero as
7 — 00 when wl and wi decrease exponentially to zero.
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Proof. The proof is essentially a lengthy calculation summarized in Appendix B. The difference
residual § R, is naturally obtained in a form involving the initial-layer correctors wbl and = or their
derivatives in each contributing term and this yields the exponential convergence towards zero. [

It will be convenient in the following to consider R2" as a function of ¢ and J R as a function of
7 with 7 = t/e. Combining the expressions of G, and F. we may now state the following result on
the approximate system.

Proposition 3.3. The second-order approximation w? satisfies the system of equations

a a a a a 1 a a

(3.38) 0w + Z Aj(wl)0jwi — € Z 0i (Bi,j (w)0;w?) + EL(w6 !
J€ED 1,jED

—ed(w?, 0

x

w?) =e(G. + F.),
where G- and F. are detailed in Propositions 3.1 and 3.2

Proposition 3.3 shows that whenever the outer coefficients wy and w; are estimated as well as the
initial-layer correctors wil and wl, then the residuals R and §R. = R® — R°" are also estimated,
in such a way that w? satisfies the approximated system (3.38) with a O(e) residual.

3.6 The outer second-order fast-component corrector

In order to establish that the truncated expansion @w? yields a second-order accurate approximation
of w., we need to consider modified expansions. More specifically, due to the stiff sources, the outer
residual G. in the approximated equation (3.38) has a first order contribution £G;. Even though
using the truncated expansion w? leads to a O(3/2) accuracy estimate [40], new modified expansions
are required in order to obtain an O(¢?) accuracy estimate without extra regularity assumptions.

Since G; belongs to the fast manifold G; € £ from Proposition 3.1, a natural idea is to absorb
this residual by using the source term. This precisely leads to add the second-order fast-component
qa corrector term in the outer expansion as established in the following proposition.

Proposition 3.4. Denote by wy = (ug,q2)" the second-order outer corrector expansion coefficient
and by wh = (0,q2)! its projection on the fast manifold. Then we have the identity

(339) L(WQ)ZUQ = L(’Z{/O)’Z{/Q = —-G1.

Proof. The €' relation deduced from (2.7) is in the form

(340) Orw1 + Z 8wﬂlj(w0)w16j wo + Z ﬂj(ﬂ/o)aj w1 + 8wL(w0)w1 w1
JjED JjED
— Z 61- (@ij(WQ)aij) — Lf(WQ,aIZUQ) + L(ZUO)ZUQ =0.
1,J€D

The identity (3.39) is then a consequence of (3.40) and the expression (3.37) of G; established in
Proposition 3.1. On the other hand, the slow projection of (3.40) yields the u; governing equation
(3.11) already derived in Section 3.2. O

It is then natural to introduce the new expansion

(3.41) W = w* + 2w,
that appears to be the simplest modified expansion with a second order accurate outer residual. In
particular, only the fast part gs of the second-order outer correction ws is required in order to cancel
the residual eG; and this will be sufficient in order to establish a second-order accuracy for w? as
well as w/®.

Such a procedure appears to be natural since the orders are ‘mixed’ so that we first get ¢y = 0 at
the order ¢!, then we get up and ¢ at the order € and next u; and ¢, at the order ! simultaneously,
so that the ‘orders’ are not clearly separated and we need to consider ¢o even if we only want to
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estimate the error arising from qg, ug, g1, and u;. Another point of view is that some of the natural
norms arising in a priori estimates—once rewritten in terms of the quasinormal variable—are in the
form |w — w*| + L|q[f_, where @* denotes an equilibrium state and | - |, the norm in the Sobolev
space HF(R?) [19, 20], in such a way that, loosely speaking, more accuracy is required on the fast
component because of the 1/¢ factor.

3.7 Improved approximate equations

We investigate in this section the residual associated with the modified truncated approximation

w* = w + e2w),. This residual is denoted by R = R(w/*) and is a measure of the accuracy of the

modified approximated solution /.

Proposition 3.5. Keeping the notation of Propositions 3.1 and 3.2 the modified second-order ap-
proximation w/* satisfies the system

) ) 1 an g
(3.42) Opw® + Z A (wl*)0;wl* —¢ Z 0 (B j (wl*)0;wl) + EL(wé“)wéd
jED i,jED
—ed(w/?, 0, w/") = *Gh, + Gy, + e F,

with a residual R(w/*) = e2Gl, + 3Gl + F! split into

£
he = Goc + Oray + > A;(w/*)0;wh
i€D
/

1
+ / OuwL(wo + wh + as(wy + wi + cwh))da (w1 + wh + cwh) wh
0

1 1
+ Z/ Do i (w? + ac®wh) da who;w® + / Do L(w? + ac?wh) da whuwn
0 0

i€D
1
—c Z / OuwM;j (w? + ae®wh) da whO;w?0jw?
i,jep 0
—€ Z M (wl*) (20, w0 wh + O;wi0jwh + O;whOjw?)
i,jED
1
—€ Z OuwBij (W) 0w/ 0wy — € Z 0; (/ DuwBij(w? + ac®wh) da w;ang),
i,j€D i,j€D 0
be=— > Biy(wl*)0i0;wh,

i,j€D
1 . . 1 . .
Fl= F.+ / OuwL(wo + awl) dawiwl + / OuwL(w? + ac?wh) da wh(wh) + cwl).
0 0

Proof. The residual R(w/*) is first written in the form

R(w*) = R(w?) + 62{&% + ) Ao — e D 0 (Bij(wl*)0; wg)}

i€D 1,j€D

+ 5{(L(w8’a) — L(wo + wy) ) wh + (L(wo + wl) — L(wg)) wh + L(wo)wé}

2 (el — o))t + 3 (Au(wl) - ()
— e 30 O ((Bi(wl) — B (w) Oyu2 ) — e (wl®,0,wl%) — d (w2, O, al)).

i,j€D

The first order term e £(wg)wh then compensates with eG; arising from G, in R(w?) and this yields
the decomposition of R(w/®). O
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The new outer residual has been decomposed into e2G), + 3G}, where GY, is less regular and
need to be considered separately. We finally note that the initial condition associated with the new
approximated solution is now in the form

(3.43) w*(0) = wo + ewy + 2 wh(0),

where w}(0) = (0, qz(()))t and ¢2(0) is directly obtained from (3.39).

4 Mathematical analysis

We establish in this section the existence of strong solutions to the Cauchy problem for system (2.7).
We further rigorously establish the accuracy of the second-order truncated approximations = and
w/®. To this aim, we first establish the existence of appropriate outer expansion coefficients wg
and w; and initial-layer correctors wil and w!! and discuss standard normal forms that uncouple
hyperbolic and parabolic variables. We then use a convergence-stability lemma in order to establish

existence of solutions and the accuracy of the approximate solutions.

4.1 Existence of approximate solutions

We denote by | e|; the norm in the Sobolev space H! = H!(R?) and otherwise | e |, in the functional
space A. f a = (avy,...,qq4) € N? is a multiindex, we denote as usual by 0 the differential operator
¢t --- 034 and by |a] its order |a| = a1 + -+ + aq4. For any scalar function ¢ the L? norm of k™
derivatives is defined by

k!
k.2 e o 112
(a.1) Folia= 3 3 [ ool a.

where k!/al are the multinomial coefficients with a similar definition for vector functions. For any
map ¢ : R¥x[0,#] + R™ where £ > 0 is positive and for any ¢ € [0,%], we denote by ¢(t) or ¢(-,1)
the partial map = + ¢(x,t) defined over R? with a similar convention for functions that depends
on the fast time 7. We collect in the following Lemma various useful properties of Sobolev spaces
32, 22, 37].

Lemma 4.1. We denote by ly the integer lo = [d/2] + 1.

(i) Let k,1 be integers with k <1 and lo < 1. Then for any f € H* and g € H', we have fg € HF
and there exists a constant co depending on l and d such that |f gl < colf|x|gl:-

(ii) Assume that | > lo + 1,f € H' and g € H'='. Then for all multi-indices |a| < | we have
[f,0%g = fo*g — 0%(fg) € L? and there exists a constant co depending on | and d such that

[fo*g — 9%(fg)lo < colfli Iglja)—1-
(iii) The following nonlinear estimate holds for k > 1 and ¢ € H* N L>

(4.2) 1£(8) = FO)k < <ol fler(o,) (1 + 165" 6]k,

where Oy denotes a ball of radius strictly larger than |¢|;~ and co a constant depending on k

and d.

We denote by w* an equilibrium state w* = (u*,0) with ¢* = 0 and look for solutions w such
that w. — w* € C°([0,t.], H*?) and similarly @? — w* € C°([0,t.], H'*?). There is a natural shift of
two order derivatives, however, between the governing equations of ug and u;, since there are second-
order derivatives of ug in the governing equation of u;. We must thus have ug —u* € C°([0,t,], H'**)
in order to obtain that u; € C°([0,t.], H*?) and w? — w* € C9([0,t.], H'*2). The initial data is
naturally expanded in powers of €

(4.3) we = wo +ewy + O(e?),
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and the coefficients are correspondingly assumed such that wg — w* € H**, gy = 0 and w; € H'2.

In order to establish the existence and properties of approximated solutions the condition (Us)
will be especially useful. Moreover, we assume that the relative entropy n'! is level bounded in the
following sense.

L) The relative entropy n'' is such that lim,_ o n''(u,q) = oo uniformly with respect to u on
n lg|—o0 71
compact sets of O, .

Heuristically, this condition means that the entropy 7 is infinite at finite boundaries of the equi-
librium set O, x{0}. Such an assumption is notably used in convex analysis [33] and holds for the
two-temperature fluids presented in [18, 19]. Assuming (U;)—(Us) and (L) we now rigorously establish
the existence of the multitime expansion coefficients investigated formally in Section 3.

Proposition 4.2. Let ! > lop+ 1 and lop = [d/2] + 1 be integers and b > 0 be given. Assume that the
initial data is such that wy — w* € HY* and wy € H'? with |wo — w*|114 + |@1]142 < b. Assume
that (U1)~(Us) and (L) hold, that @y € O, = Oy x (=§,§)™ C O, where O, is a bounded convex
open set with its closure in Oy and q > 0 is a given initial bound for fast variable components. Then
there exist a time t. > 0, outer expansion coefficients wo(t) and w1 (t) defined over [0,t.], as well as
initial-layer correctors wi () and w'(7) defined over [0,00) and decreasing exponentially as T — 0o,
with regularity

(4.4) wy — w* € CO([0,t.], H'Y), wy € CO[0,t.], H*?),

(4.5) wil € C([0, +00), HTY), @il € CO([0, +o0), H'F?),

such that the outer expansion equations (3.7), (3.8), and (3.11), the inner expansion equations (3.25)
and (3.29), and the matching conditions (3.4) are satisfied. These coefficients are uniquely defined
and there exists positive constants ¢ and § depending on O, 51“ q, b and the system coefficients 4;,
Bi;j, L and n such that

(4.6) lwo(t) — w*li4a + |wi(t) 42 < ¢, 0<t<ts,

(4.7) |5 (7) l144 + @] (7) |42 < cexp(=07),  0<7 < cc.

Moreover, there exists O,0 = Ouo X (—qo,q0)™ C O, with (5u C 0w COu CO, and 0 < q < qo,
as well as € € (0,1], only depending on O, Oy, q, b and the system coefficients 4;, Bi;, L and 1,
such that for any e € [0,&], the functions wo, wo + w1, and wo + cwy + e2wh, as well as wo + wi,

wo + wi + e(wy + @), and wo + Wl + e(wr + wi) + 2wl have their value in O,0 C Oy C O,

Corollary 4.3. Letting wo = (up,qo)t, w1 = (u1,q1)t, wil = (ull, ¢}, and @l = (ull, ¢l)?, there
exist ug(t), qo(t), ui(t) and g1 (t) with

(48) ug — u” € CO([Ovt*]v Hl+4) N Cl([ovt*]v HH_S)) qo = Oa
(4.9) ur € CO([0, ¢, H*?) n CH([0,¢.], H'™),
(4.10) q1 € C°[0,t.], HT?) nCY([0,t.], HT?),

and initial-layer coefficients ull(7), ¢\ (1), vil(7), ¢l'(T) with
(4.11) ug =0, gy € C([0,00), H*?),
(4.12) uj € C1([0,00), H™?),  qi € C'([0,00), H'*?),

such that (3.7), (3.9)—(3.11), (3.26), (3.28), (3.30), (3.31), (3.5), and (3.6) are satisfied.
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Proof. In the following, a > 1 and J < 1 denote respectively large and small generic constants only
depending on O,, O,, q, and the system coefficients 4;, B;;, £ and 7, whereas ¢ > 1 denotes a
generic constant that also depends on b. In the proof, we will successively obtain the existence and
properties of wg = (ug, o), the existence and exponential decrease of wi] = (ull, ¢i})?, the integrability
properties of wl, the existence and properties of w; = (u1,q1)?, the existence, exponential decrease
and integrability of @il = (ull, ¢i)?.

Step 1. The outer coefficient wy. From (3.7) we have ¢o = 0 and from (3.9) and Proposition 2.4,
the zeroth order slow variable ug satisfies a symmetrizable hyperbolic system of conservation laws.
More over g € O, uo(-,0) — u* = Ug — u* € H'™ and |ug — u*|;+4 < b. The initial value g has
its value in 5u and we arbitrary select an open bounded set O, that contains the closure of 5u
and with O,9 C O,. According to the local-in-time existence theory of initial-value problems for
symmetrizable hyperbolic system [21, 13, 29, 22, 28, 6, 25], there exists a unique solution ug = ug(x, t)
with initial value ug(x,0) = up(x) defined over [0, t.] where ¢, > 0 with values in Q0. This solution
also satisfies the estimates

[uo(t) — w144 < Cloclto — w144 < c, 0 <t <t,,

where cjo. only depend on O,, b and the system coefficients. This establishes the existence of wy
with the regularity properties (4.4).

Step 2. Existence of the initial-layer eorreetor wl. From (3.26) we have ull = 0 and the ordmary
differential equation (3.28) governing gl yields, for any fixed x € R?, a unique local solution ¢l (x, 7)
with respect to the fast time 7 starting from go(z) € (—q,q)™. In order to establish that this solution
Go(z,7) is defined over the whole fast time interval 7 € [0, 00) and decreases exponentially towards
Z€ro as T — 00, we use the relative entropy n''. This entropy n'! is nonnegative and locally behaves
quadratlcally ' = (Hq,q) where H = folnv_vl (u,aq)ada as established in Lemma 2.5. Letting
o(1) =0 (to(z), g} (z, 7)) and using O, = yndqv0-ql, ¢ = (Oun)!, and Jyvd, g = —Sq, we obtain
that d;¢ + (¢, 5¢) = 0. The modified entropy ¢ is thus decreasing and is a Lyapunov function for
the ¢l differential equation. By integration, leaving implicit the dependence on x for the sake of
notational simplicity, we get

(4.13) " ((Go, g5 (7)) +/0

T

(@i (7). S (u(to, a6 (7)) @i (7)) d7" = 0" (o, Go).

Letting M = sup{n(u,q); u € Ou, g € (—4,3)™ }, that is finite since Oy, x(—d,q)™ has compact
closure in O,,, and using that 7! is level bounded (L), there exists qo such that ¢ ¢ (—qo,q0)™
implies (%o, q) > M. Therefore, (4.13) implies that whenever iy € O, and g € (—4,q )", we must
have ¢l(7) € (—qo,qo)™ for any 7. All trajectories therefore remain uniformly bounded and thus
exist for all positive 7. Letting then O/, = Ouox(—4q0, o )™ we have 5;/0 = Ouox[—q0,q0]™ C O,
and all trajectories are such that ug(t) € Oy and ¢i(7) € (—qo,q0)™ and wo(t) + wil(7) € O’ for
any t € [0,t.] and 7 € [0,00). On the other hand, on the compact set (5;/0 of O,, that includes all
trajectories starting from O, there exists § > 0 such that 25 < (q,Sq) and 6{q,q) < v < (1/6)(q,q)
since ¢, (g, q), and (Sq,q) all behave quadratically with respect to ¢. From the inequality 20 <
{q,Sq) we get that 9, + 25p < 0 and by integration ¢(7) < 7'(io, ¢o) exp(—2d7). Further using
§{q,q) < ¢ we obtain |¢l(z,7)| < a|go(z)| exp(—67) and

(4.14) |qi01(T)|Loo < aexp(—oT).

This yields the exponential decrease towards zero of the initial-layer corrector uniformly in z € R¢
and uniformly for the initial conditions ug € O,, and ¢ € (—q,q)".

Step 3. Integrablhty of the initial-layer corrector w!. We first note that by using mollifiers, We may
assume that ug — u* and ¢y are smooth functions W1th compact support. In this situation, ¢il is also
smooth with compact support so that it is sufficient to establish a priori estimates of gi! in Sobolev
spaces in this particular situation.

Since o is in L? and |gi}(z,7)| < | o(z)|exp(—67), we first obtain that ¢l is in L? and that
’0 < alqoloexp(—07) < cexp(—d7). We now establish by induction that for any 0 < k <1+ 4
(4.15) |46 | < cexp(=0xT),
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for some decreasing constants dy < 0x—1 < -+ < d depending on O,, (5u, g, and the system
coefficients 4;, B;;, £ and 7. This estimate is already established for £ = 0 and we now consider the
situation where 1 < k <[+ 4. Letting o be a multiindex with |a| = &, we may write a = ¢; + o/ for
some j € D where e, ..., ¢; denotes the canonical basis of R? and |o/| = k — 1. Applying 0; to the
equation 0;¢l = Q, (o, ql)) we first get that 9,948 = 9,Q,0;¢ + 9,Q,0;to. Further applying the
derivation operator 9 we obtain

(4.16) 0-0° g} = 0,Q.0%4)} + 00,108 + 0 (0.Q,D700)-
The partial derivative 9,Q, may be decomposed into
an,r(abv ‘IB]) = 777va - aq(nvvs)q = 7771;71?7 (nva - ﬁvvg) - aq(%us)%

where 7, = 1,,,(tio, 0) and S = S(U(up,0)). Letting

7o) =7 | 0401005 . 00) o +0,(1,,9)).

we have 0,Q, (o, @) = —7,,S — MppJq and 9,Q(u,q) = —u(n,,S) ¢. Multiplying equation (4.16)
by M0t = Moot (o), that does not depend on 7, and next scalarly by 9%gll, it is obtained that

0r 3000715,/ 0%a0) + (a0, S0%ap) + (0°q0, T a9 0 ap) =
+(0°65, 1,007 04Q.10545) — (9% 1y (0u(1,,,5) 4 0;0) ).

Letting o = (0%}, 7,.10%¢ll) and using the inequality 46’¢ < (0%gl, S9“ql}) as well as the inequality
(0%} T gl 0%q)| < algll(T)| = ¢ both valid over (5;0 we obtain after some algebra

i o il]2 ilg ~ |2
O30+ (30" — alg) (7))o < [0, 04Q,10548 |, + €|0u(1,,S) 4 D0 ;.-

Using the induction assumption, Leibnitz formula, and the commutator estimates then yields
-5+ (38" —algp (7)| 1o ) < coxp(—265-17).

Using (4.14) there exists 79 such that a|g}(7)|;~ < &' for 7 > 79 and then

(4.17) Or 30+ 280 < cexp(—26,_17).

Summing for || = k, integrating over [ry, 00), and selecting d; < ¢’ and d§ < dx—1 we obtain that
q}}(r)’k < c‘q}}(m)’k exp(—0,7) + cexp(—d;7) for 7 > 79. On the other hand, we may also directly

write that on the interval [0, 79] we have 87%@ < ap + ¢, so that applying Gronwall lemma yields
that |q3(7)}k < c over [0, 79]. Combining both estimates over [0, 79| and [rg, +00) then completes the
proof of (4.15).

Step 4. Existence of the outer corrector wi. Once ug is known, ¢; may directly be evaluated by
using (3.10). Taking into account the regularity properties of ug, and since the expression of ¢; only
involves first order spatial derivatives of ug, we obtain that q; € C°([0,t.], H*3) nCL([0, t.], H*?).

Similarly, once ug and ¢l are known, the initial-layer corrector ul is directly obtained from (3.33)
in the form

oo pl
ul(z, 1) = Z 8]-/ / Oy fj (u,aqS(T’))da gh (r)dr’.
jeD T 0
Using the properties of ¢l established in Step 2, in particular the uniform exponential decrease, it is
obtained that u!! € C1([0,00), H'™?) and |[ull(7)|;4+3 < cexp(—6T).

Once ul is known, we may evaluate ul(0) € H'*3, and thus u1(0) = %1 — u!'(0) so that uy(0) €
H'™2 since u; € H'*? and uil(0) € H'*3. The first order slow variable u; also satisfies a semilinear
and symmetrizable hyperbolic system with nonhomogeneous terms that are functions of ug, 9,10 and
02ug and are C°([0,t.], H'T2). According to the local-in-time existence theory for symmetrizable
hyperbolic system, there exists a unique solution w; = uq(z,t) with initial condition u1(0) = w3 —
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ull(0) for a positive time interval that may be chosen to be [0,t.], eventually after a change of
notation. This solution u; also satisfies the estimate

[ur () |1+2 < clu1(0)|142 < c, 0<t<ts,

and the existence of wg and w; with regularity (4.4) is established.

Step 5. Existence and integrability of the initial-layer corrector wi'. The global existence of ¢l(z, 1)
in C1([0,00), R™) follows from the general theory of linear d1fferent1al equations since ¢ samsﬁes
the linear equation with bounded coefficients

Orqi = 0,Q,(wh + wi)gi + 1Y,
where

= (9uQu(wh + ) — 0Qu () ) + 0,Q () + wi)ul

(04w + ) — 0, () ) ab + Claf + w) — ().

The polynomial factor in 7 of u} is in particular compensated by the exponential decrease towards zero
of u . Using the T-mdependent metrics already used for q as well as the exponential decrease of ri,
the exponentlal decrease of ¢i! is next established. The integrability propertles of ¢l are consequences
of that of ri! obtained from (4.15) and proceeding as in Step 3 yields that ¢i! € C1([0,00), H!*?2) and
|41 (T)]1+2 < cexp(—d7).

Finally, the values of wg and wi remain in the compact set (5;,0 = Ouox[—qo0, qo]"r and we may
find O, with 5;,0 C Ouo C Oy C O,. On the other hand, the values of w;, @', and @) remain
in a compact set of R" since |w1 g~ —|— |l Lo + |wh|Le < c. As a consequence, for & small enough,
wo +ewy, wo +ew + e wh, wo + wy +e(wi + wl), and wo + wi + (w1 + wl) + e?w} all have their
value in the open set O, and O,9 C O, C O, for any ¢ € [0, &]. O

In the following proposition we investigate the approximated system satisfied by the second-order
truncated expansions w?® and w/®.

Proposition 4.4. Keeping the assumption and notation of Proposition 4.2, for any ¢ € (0,£],
the approzimated solution w® = wqy + cwy + wl + ewll is such that w® — w* € C°([0,t.], H*?).
The residuals Ge, Gy, Gae, and F. defined in Propositions 3.1 and 3.2 are such that G¢,Gae €
CO([0,t.], HY), G1 € C°([0,t.], H*Y), F. € C°([0,t. /€], H), and F. is decreasing exponentially with
respect to the fast time. Moreover, there exist ¢ and § independent of € with

(4.18) Go(t)]1 + |Gac (W) +1G1(B)isr <€ 0<t<t,,

(4.19) |Fo(7) |1 < cexp(—dT), 0<7<t./e.

Similarly, the second-order projected outer corrector w2 (0,q2)t is such that wh € C°([0,t.], H'*1)
and the modified approximate solutwn w? = w? + 2wl is such that w/® — w* € C°([0,t.], H*1).
Finally, the residuals GL, GY., G5, F! deﬁned in Proposition 8.5 are such that G, € C°([0,t.], H'),

Gh. € CU([0,t.], H=1), F! € C°([0,t./¢], H') and there exist constants c and 6 independent of €
such that

(4.20) |Goe (Dl + G (D1 <, 0t <t

(4.21) |FL(7)|; < cexp(—dT), 0<7<t/e.

Proof. The regularity properties of »? and of the residuals G., Gi, Ga., and F. are direct con-
sequences of the regularity properties established in Proposition 4.2, and of the expression of the
residuals obtained in Proposition 3.1, Proposition 3.2 and Appendix B. The corresponding estimates
are also consequences of the estimates established in Proposition 4.2.

Similarly, the regularity properties of w/® and G5_, G5., and F! and the corresponding estimates
are also consequences of Proposition 4.2 and Proposition 3.5. Finally, the estimating constants only
depend on O, Oy, q, b and the system coefficients 4;, B;;, L and 7. O
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4.2 Normal variable

In order to establish the existence of solutions =, to (2.7) as well as the accuracy of w? and »/?, it is
necessary to have a local existence theorem. To this aim we have to put the system into a normal form
that distinguishes between hyperbolic and parabolic variables [22, 23, 24, 16, 18, 19, 20]. A natural
sufficient condition for system (1.1) to be rewritten into a norm form is Condition N introduced by
Kawashima and Shizuta [24] and strengthened in [14].

(N) The nullspace N(E(U,&)) of E(U,&) =2 jep Bij (02n)~1&:&; does not depend on U € Oy and
Eexi1 and Bij(U)(agn)_lN(E(U,f)) =0, fori,j=1,...,d.

Heuristically, the independence of N (E ) on £ is an isotropy condition of diffusion processes and the
independence on x is an ubiquitous condition of diffusion processes. For fluid models, Condition (N)
generally results from natural constraints on transport coefficients associated with mass, momentum,
or energy conservation and derived from the kinetic theory [2, 12, 14]. Under Condition (N) it
is then possible to describe all possible normal variables [16, 14]. Letting n, = dim(N (E)) and
ny = n — ng, let P denote an arbitrary constant nonsingular matrix of dimension n such that its
first n, columns span the nullspace N(B), and define the auxiliary variables by v’ = P'u = (v}, u},)*
and v/ = P~lv = (v/,v),)! where v = (9yn)" [16, 14]. The diffusion matrices corresponding to these
auxiliary variables have nonzero coefficients only in the lower right block of size n;, = n — n; and
normal forms are equivalently—and more easily—obtained from the v/ symmetric equation [16, 14].

Lemma 4.5. Assume that the nullspace invariance property (N) is satisfied and denote by U’ = P'u
and V' = P~1v the auziliary variable. All normal variables of system (1.1) are in the form w =
(gbI(Uf),(,bH(v{I))t where ¢, and ¢y are two C diffeomorphisms of R™ and R™, respectively. The
component w; = ¢;(U}) is then the hyperbolic variable and wy = ¢y (v],) is the parabolic variable.

Assuming that Condition (N) holds, the structure of the normal form is investigated in the
following proposition using the partition R” = R™ x R,

Proposition 4.6. Let w = (w, wn)t be a normal variable with a C* diffeomorphism U — w. Letting
U = U(w) in (1.1) and multiplying on the left by (OnU)!0%n = (Owv)! yields

_Qw) |
(4.22) (wWwe + > Aj(w)diw —2 Y 0i( dw) = — +ed(w, 0,w),
JjED i,j€ED
where the matrices Ay = (04U)* 1“1 Ow U, AJ = (8WU)t837]Aj OwU, Eij = ( U)t UnB” OwU, the

0?2
residual d(w,d,w) = =i jep i ( (OwV) tau )B;; 9;U, and the source term Q = (0,U)'0°nQ have
the following properties.

TI,1
(w1) The matriz Ay has a block structure [ Aé) Z(])I’” ] and is symmetric positive definite over O,,.
0
(w2) The matrices A;, j € D, are symmetric over O,.
= 0 0 L =y = ..
(ws) The matriz B;; has a block structure 0 B and satisfy B;; = Bji, 1,j € D, over Oy. For
ij

any & € 21 the diffusion matriz B™" = Zi,jeD Flgnfz@ is positive definite over O,,.

_ The matrices Ay, A B”, and the source term Q have regularity C> and the quadratic residual
d may be written

(4.23) d(w,d,w) = Z M (w)iwo;w,

i,j€D
where M;; are third order tensors depending on w, have regularity C*° and only involve parabolic

5 — t
components d(w, d,w) = (0, > ijeD M (w)dw 9w
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We also assume in the following that the source term @ is in quasilinear form.

(wy) The source term Q may be written Q(w) = —L(w)w where L is a symmetric positive semi-

definite matriz of size n with a fived nullspace N(L) ="E and w + L(w) has regularity C>.

We use the terminology quasilinear for such source terms @ since the matrix L has several invari-
ant properties, being symmetric positive semi-definite with fixed range and nullspace. In particular,
the linear subspace Z is the slow manifold with respect to the normal variable w, £+ is the cor-
responding fast manifold, and we denote by 7 the orthogonal projector onto Z*. Source terms Q
that are in quasilinear form with respect to the entropic variable v = (9,n)" are often encountered
in mathematical physics [44]. The assumption (wy) concerning the source term of the normal form
Q is thus natural in terms of properly chosen normal variables w [18]. This is notably the case when
the normal variable is such that 7w = 7(9,w)v as investigated in [18] as well as for multitemperature
nonequilibrium gas models [18] and complex chemistry fluids [20]. The assumption (wy4) further im-
plies extra properties already observed for the quasinormal variables like for instance (Q(w),w) = 0
if and only if Q(w) = 0 and if and only if w € . Incidentally, it is often the case that the source
terms @ belongs to the parabolic subspace {0} x R™ but such a property will not be needed in the
analysis. Finally, we introduce a commutation relation that simplifies a priori estimates [18, 19, 20].

(C) The commutation relation Ag(w)m = wAg(w) holds where 7 is the orthogonal projector onto
the fast manifold E*.

Th1s property is equivalent to AgE C E or AgE+ C E' and naturally implies Ay (w)L(w) =
7t Ayt (w)L(w)7 since L = L = nL and 7" = 7. These relations simplify some commutator estimates
for nonequlhbrlum variables [18, 20].

Since the change of variable U — w is a C°° diffeomorphism, we may use the induced C*
diffeomorphism = +— w from O, onto O,, and define naturally the second order approximations w?
and w’? in the normal variable as

(4.24) wi=w(w?),  w=w(w).

The approximate equation satisfied by w’* is investigated in the following proposition and an analo-
gous equation for w? is similarly obtained.

Proposition 4.7. Keeping the assumptions and notation of Proposition 4.2, for any € € (0,&|, the
approzimation W is such that w® —w* € C°([0,t.], H'*') and satisfies the system

— @(W/a)
/a /a /a . /a fay) _ €

(4.25) Ag(wW2)ow + " A (WHow —e > 0i(Bij(w)ow) -

JED i,j€ED

+ed(w?, 0w + &2 Gy, + 7 Gy, + e FL

where Gy, = (OwV)! 0,UGh., G = (0uV)'0,UGh., and F'. = (0yv)'0,U F!. Moreover, there evists
positive constants ¢ and § mdependent of € such that
(4.26) GO+ 1Gh(Oly S Gholt) € {0)xR™,  0<t<t,
(4.27) |FL(T)], < c exp(—67), 0<71<t,/e.

Proof. The approximate equation in normal form (4.25) is obtained from the approximate equation
in the quasinormal variable (3.42) after the change of variable w = w(w) and multiplication by
(Owv)t0,U = Agd,w. The second-order derivative terms are also integrated by part in order to
include the multiplying factor (9yv)!9,U inside the derivation operators in such a way that the
quadratic residual reads d = (Owv)'0,Ud + > i jep(Owv) 0, UB;; 05w/,

Proposition 4.4 then yields that w* —w* € C°([0,t.], H*1) and w® —w* € C°([0,t.], H'*?) using
that w — w is of regularity class C°° The integrability of the residuals also directly results from the
expressions Gh. = (Owv)!0,UGh., G = (0uv)!0,U G4, and F’. = (0,v)!9,U F! and Proposition 4.4.
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Finally, the residual G%_ may be rewritten by using the definition of G%_ from Proposition 3.5 in

the form G}, = — Ziyjep(awv)tawwijaiang where all matrices (9uv)", 9,U and B;; are evaluated
at w*. Using then 3;; = (0,U) ' B;;0,U we obtain that
_gs == Z (awv)tBijaaniajw/Q, = — Z Ejawwai(’)ng,
i,j€D i,jeD

in such a way that G4 € {0} xR™ from the properties of the diffusion matrices B;;, i,j € D. O

The initial conditions w., wo, and w1, are assumed to be such that |w. — wg — ew1|; < ce? in
such a way that |w?(0) — w.|; < ce? and |w/*(0) — w.|; < ce?. Letting naturally w. = w(w.) and
w?(0) = w(w/*(0)), we thus have

(4.28) IW2(0) — We|; < ce?

Finally, we define the zeroth order outer coefficient wy and the limit at infinity w* in the normal
variable as

(4.29) wo = w(wp), w* = w(w").

Since w/* = w? + e%wh, where w? = wy +cw; + w})l + ew!!, we also obtain from Proposition 4.2 that
there exists constants ¢ and § with

W2 —wol; < claf® — wol, < c(s + eXp(*(ST)).

Note that one may define similarly approximate solutions in the conservative variable U2 = U(w?),
and U = U(w/*) that also satisfy approximate equations analogous to (1.1) but only w? and w’* are
used in the following.

4.3 Existence of solutions

Let w be a normal variable and consider the Cauchy problem for the system of partial differential
equations (4.22) with initial condition w. where e € (0,&] and & is fixed with 0 < & < 1. The initial
value W, is assumed such that w. — w* € H/(R?) where [ > Iy + 1 and w.(z) € Op, € RY, where
Oy is a bounded open set with Oy € Oy C O,. We further introduce a d;-neighborhood of Oy with
0 < dy < d(Op,00,,) defined by

(430) 0, = {W € Ow; d(W, 60) <dj },

in such a way that Oy C O; € O; C O,, and O; is bounded.
According to the local existence theory for hyperbolic-parabolic systems [37, 22, 34|, for any
e € (0,&], the system (4.22) has a unique classical solution w. taking its value in the open set O,

(4.31) we —w* e CO[0,Z], HYnCY([0,2], H2),  wey —wi € L2([0,%], H'FY),
(4.32) we(z,t) € O, (z,t) € RYx[0,#].
For each fixed ¢ € (0, ] we may thus define a maximal time . by

te = sup{t > 0 : w, satisfies (4.31) and (4.32) }.

This maximum time ¢. depends on the relaxation parameter € and may tend to zero as € — 0. In order
to establish that £, remains at finite distance form zero, we may use the existence of approximate
solutions defined on a finite interval that satisfy the following properties (L1)—(Ls).

(L1) There exists a finite time t. > 0 independent of € and a family of approximate solutions
w € C0([0,t.], HY) for e € (0,¢] such that

(4.33) wi —w* e CO[0,t.], H') n C([0,t.], H'~?),
(434) ng - W;; € L2([07t*]7 Hl+1)7
(4.35) w(z,t) € Oy, (z,t,e) € RY x [0,t.]x € (0,4].
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(L) Letting t,, = min(t.,t.), we have

(4.36) lim sup |we(t) —w2(t)| - = 0.
€20t€(0,t,m)

(Ls) There exists a constant ¢ independent of € € (0,&] such that

tTrL
(4.37) sup |we(t) — w2 (t)[} + / 10, wenr () — B, wii, (1) Fdt < c.
t€[0,tm) 0

A key tool in order to establish existence results by using approximate solutions with (Lj)—(Ls)
is the following convergence-stability lemma [43].

Lemma 4.8. Assume that there exists a family of approximated solutions w2 for e € (0,&] such that
(4.33)(4.37) hold. Let t. be the mazximal existence time for a classical solution with H' reqularity
and values in O1. Then for € small enough we have t. > t,.

Proof. Arguing by contradiction we assume that there exists a sequence (g;);eny with lim; .o e; =0
and t; < t.. From (4.37) and the properties of w* we obtain that supcoz. [we,(t) — wH? < c
and from the governing equations in normal form that dywe,((t) € L*((0,%.,), H'~!). Similarly, since

Ot” Oywe,u(t)[7dt < c/e; from (4.37) we also get that dywe,u(t) € L*((0,%.,), H'™1), so that finally
dwe, (t) € L*((0,t.,), H'=1). The existence of lim; 7, we,(t) in H'=1 then follows from the estimate
lwe, (t') — we, (t)[i—1 < c/t/ — ¢ valid for 0 < t < ' < t.,. The limit lim, ,; w.(t) then exists in
H'~! and also as a continuous function since [ — 1 > [d/2] + 1. Moreover, from (4.37) and standard
functional analysis arguments, the limit w., (£,) also belongs to H'. Since the trajectories w/?(t) for
0 <t <t <t, are included in the compact set Oy C 01, we obtain from (4.36) that the values
of we(z,t) are necessarily in the open set 07 and remain at finite distance from its boundary for
e small. In particular, the limits w,,(x,%c,) also belongs to the open set O; for €; small enough.
We may then use a local solution starting from we, (f,) showing that the solution can be extended
beyond t., and contradicting the definition of #,.

Another method of proof consists in noting that the local existence time for parabolic systems
with smooth uniformly bounded coefficients is uniform with respect to initial solutions that are a
priori bounded in H'. Classical solutions with a fixed and small enough ¢ can thus be extended
beyond f., from the uniform H! a priori bound [39)]. O

In order to establish (L )—(Ls) and the properties (4.33)—(4.37), we may now use the approximate
solutions w’ constructed in Section 4.1 that satisfy (4.33) and (4.35) when w(O,0) C Op. We further
establish in the next section a stronger version of (4.36) and (4.37) by proving that

tm
(4.38) t S[(l)l%) ) lwe (1) — w2(t)|7 + 5/0 |0, Wen (1) — O,w2 (1)]7dt < ce?, 0<e<e
e sfm

By combining these estimates with the convergence-stability lemma, we obtain the following existence
and approximation theorem.

Proposition 4.9. Keep the assumptions and notation of Proposition 4.2 and further assume that
(w1)—(wy), (N) and (C) hold. Assume that w(Ouo) C Oy C Og C Oy, and that w. € Oy. Then
there exist positive constants t,. and c such that for € sufficiently small, system (4.22) has an unique
solution we over [0,t,] with reqularity class (4.31) and (4.32) such that

(4.39) sup |we(t) —wP(t)); < ce?
te[0,t.]

Proof. The existence of w. on a finite time interval is a consequence of the existence of the approxi-
mated solution w’?, of Lemma 4.8, and of the error estimates (4.38) which is established in the next
section. 0
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Corollary 4.10. The family of approximate solutions w2 constructed in Section 4.1 also satisfies
SUPsefo,e,] We(t) — W2(B)1 < ce?. Using the diffeomorphism U — w and letting U = U(w?) and

U(t) — u2(t)]; < ce?.

U. = U(we) we also have a second-order estimate in the form SUDse(0,¢.]

The estimate (4.39) is an improved version of a former O(£3/2) estimate and is established without
extra reqularity assumptions. The extra accuracy is obtained by first using w’* instead of w? in the
proof. Ultimately, since w® — w? = O(e?), it is also obtained that we(t) — w?(t) = O(¢?) but the
proof requires to first use w* because of the entanglement of the asymptotic orders.

4.4 Proof of the error estimates

We establish in this section the error estimates (4.38) for w. —w’® used in Theorem 4.9. To this aim, we
consider a solution w, of the equations in normal form with the regularity class w. —w* € C' ([0, t], HY)
and initial condition w.. We also consider the approximate solution w* = w(w/*) that satisfies the
approximate system (4.25) with initial condition (3.43). The solution w, is defined over an interval
[0,%-) and the approximate solution over [0,¢,] and we have to compare these solutions over [0, t,)
where ¢, = min(t.,?.). Note that by assumption we have w. € O; and w* € Oy C Oy in such a way
that both |we|re and |w?|r= are already a priori bounded. Moreover, it is sufficient to establish the
estimates (4.38) for smooth solutions since we may use mollifiers and convolution operators.

Step 0. Preliminaries. In the following § < 1 denotes a generic small constant and ¢ > 1 a generic
large constant, both depending on the system coefficients and initial data but, independent of .
The various occurrences of these constants may be distinguished and the minimum of all § and the
maxima of all ¢ may be taken at the end of the proof so that only single constants ultimately remain.
For k > 0 and ¢ € H* we introduce

(4.40) o) = X B [ (Gowors.0v0)a

0< o<k

we define the error e. by e. = w. — w’ and the error for the parabolic variable by e.; = we; — wW/3,.
The error is such that e. € C([0,ty,), H') N L2([0,t,,), H') and de. € C([0,ty,), H™?) and we
may form the difference between equations (4.22) and (4.25). This yields the following equation for
e. written in nonconservative form for convenience

_ _ _ 1—
(4.41) Ap(we)ohee + Y Aj(w)djec —e Y Bij(we)di0,ec + L(we)e: = h,
JED i,j€ED
where h = hey + hgs + hg + hpe and

hoy == /To(WE)(_al(Ws)/_li(Ws) — Ayt (w?) Z-(w?))ajw’f,

>0
&
|
Q)
S
=
s
o
—
o
SN
B
=
=
o
|
N
[}
s
)
o8]

(W) ) Di

errx e

e Ao (we) (A5 (we)d (we, D, we) — A5 (W) (w2, 0,wl)) ),

e = — = Ao(we) (A5 (we) L(we) — g () L(w) )i

£
hpt = — Ag(we) Ay ' (W) (2Ghe + 3Gl + eFL).
These residuals hey, hgs, hsr, and hy,¢ are respectively due to convection, diffusion, sources and pertur-

bations and the quadratic residual d’ is defined by d’(w, 9,w) = d(w, d,w)+ > ijep OwBij (W)Diwo;jw.
Applying 0% to equation (4.41) where |a| <1 we get that

_ _ _ 1—
(442)  Ap(we)di0%c + Y Aj(we)d;0%: — e Bij(we)0;0,0%. + ~L(we)d%ec =h" +g°,

JjED 1,jED
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where the residual h® is associated with the derivatives of h whereas g® is due to commutators:

(4.43) he = Ay(w.)d” (Zal(we)h),
(4.44) g = Z eAg(wo)[Ag H(we)Bij(w.), 0%]9;0je.
_ Z ZO(WE)[Zal(WE)Zi(WE), 0%)0;ec — EZO(WE)[Zal(WE)Zij(WE), 0%le..
i€D

Step 1. The [th order estimate. Multiplying equation (4.42) by 0%, and |a|!/a!, integrating over
R?, summing over 0 < |a| <[, using the inequality |¢|z~ < co|d|;_1, the Garding inequality

5|a ¢H|0 Z / ij Ws i, j‘l5>d:c+(:0|a WE|L°°|¢H|05

4,J€D

keeping in mind that (B;;(w.)0;¢, 0;6) = <_H "(We)0ipu, O;n) where ¢ = (¢1, ¢)?, and integrating
by part the second-order terms

*Z/ Bij(w.)9;0;,0%., 0%, d:cfZ/ (0w Bij(We)Ow.0;0%., %) da
Rd

i,j€D i,jED

+ Z/ 15(W)D;0%€<, 0;0%€.) dx

1,j€D

it is obtained that

) _ _
(445)  OuER(ec) + 280 eanl? + Zlmel? < (10 Ao(we)lio1 + D 10,4, (w1 ) lecl?
j€D

+ celd,wel? |ecu]? 4 ¢ Z / ha+ga,5a€a>d$’-
0<]al<!

The integration by part of second-order terms and the Garding inequality both yield extra similar
contributions in the form ce|d,we|? ;|ecu|? < celd,we|?_;|ec|? on the right hand side.

The terms arising from |<9ij (we)|i—1 are majorized by c(1+ |0 e.];—1) upon writing w, = w4 e,
and using the a priori bound of w in H'. For the time derivative |9, Ag(w.)|;—1 we may use the
governing equation (4.22) for w. and 7wy = 0, to obtain that

(4.46) |0, Ao (we)|1-1 < C(Z@'Wshﬂ + ) eldwenli-y
j€D Jj€D
m(we — wo)li—
+ Z 5|aiajwan|l—1 + w)
i,J€D

Combining (4.45) and (4.46), using the identity w. = wg + (W2 —wg) + €. as well as w2 —wg|;—1 <
c(e + exp(—07)), we obtain the Ith order estimate

2 5, 0 2 2y1, |2
(4.47) OcBi (ec) + €0|0peenl + Z|meel < c(1 + [ecl: + elec]i)lecl:

c c
+ S exp(=ar)leclf + Sfmeclialec + Y / (h + g°, 0%.) dal.

0<]al<l

More specifically, the terms |0;jw.|;—1|ec|7 are majorized by c(1+|ec|;)|ec|?, the terms |0jwen|? | |ec|?
are majorized by (1+¢|ec|?)|ec|?, the terms £]0;0;w.y|i—1|ec|? are partly compensated by the parabolic
regularity term de|0,e.y|? of the left hand side of (4.45) and yield on the right hand side ec(1 +
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lec|?)|ec|?, and the source term yields the majorizing quantity c(|mec|;—1 + € + exp(—07))|ec|? /e. We
next have to investigate in the right hand side of (4.47) the terms associated with h® = A,0%(A; *h)
where h = hey + hgs + hg + hp as well as the terms associated with commutators g.

Step 2. Convective terms h.,. In order to estimate Ag(w.)o (Zo_l(wg)hcv), we first note that
Ap(w,.) is bounded in L and that Zgl(wg)hcv is in the form

A5 (wohey = = 3 (A7 (we) Ailwe) — A" (W) A (w2) ) Oywe

€D

Using the nonhnear estimate (4.2) with the variable w. — w®, the L> bounds of w, — w/*, and the
estimates of w/ in in C/([0,¢.], H'!) yields

/ a ec, Ap(we) 0 (A" (W) hey) >d:c‘ < cle.|?.

0<]al<l

Step 3. Diffusion terms hgqs. We first note that

Z(Tl(Ws)hds =€ Z (Zal(ws)gij(wa) - Zal(wlsa)gij(wéa))aiajwlsa
1,j€D
e 30 (A5 (e () — ™ (i) (w2) ) D0

1j€D

+e€ Z A W8 MU WE) (aiesajeg + &-egajw’; + aiw;aajeg),

1j€D

where only parabolic components are involved for hgs, 9;w/?, and 9;e., with the blocks _IZ']”, Z‘OI M and
ﬁli']?”’”, due to the block structure of B;;, Ay, and M;;. The norm ‘Ao we)has is then directly
majorized in the form

i

!ZE We hdsyl 1—C5|ea|l 1+C5(1+|ea|l 1)(|eall|l+|eaﬂ|l)

using the L° bounds of e. as well as the H'*! bounds of w/®. This inequality may then be simplified
into

|/_15 W, hds|l , Sce(lee)i + le<[1),

using |ecu|; < |ec|; and inequalities in the form 2? < c(x+ z*) valid for x > 0 when 1 < 8 < 4.
We first consider the terms Ag(w.)0(Ay " (w:)has) such that || < 1 — 1. From the previous
estimates, these terms can directly be estimated as

Z / 8 eg,Ao (we) 0% (A (Ws) hds >d$‘ <c€(|e€|l Jr|‘5€|l)

0< || <l—1

On the other hand, for the terms such that || = [, an integration by part in performed by writing
a = ¢, + o for some iy € D where ¢, ..., e; denotes the canonical basis of R? and |a/| =1 — 1. We
may then write

‘/ 0 ee, Ag(w.) 0% (A (WE) hds)>dx‘
_ ‘/<a (Ao(wo)d%e:), 0 (Ay " (w.) hds)> dx}
- | / (B0 o (we) iy 0% + To(we)Diy 0 e, 0 (A5 (we) has) ) |

The term involving the higher order derivative 0;,0%¢. yields a majorizing term in the form

ce|0 eenli(lec|r + |€sl?),
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keeping in mind that only parabolic components are involved, whereas the remaining terms are easily
majorized by ce(lec|? + |ec|?).
We have finally established that

3 /a ec, Ao(we) 0 (A (wg)hds)>dz’

0<]al<l

< celdecnli(lecl: + |es|?) + C5(|es|12 + |ea|?)-

Step 4. Source terms hy,. We first note that A;"(w.)hs may be rewritten in the form

Zo_l(wa)hsr = —é (ZO_I(WE)Z(WE) _ Zo_l(W;a)Z(W;a)) (W/a o WO)

since L(we)wp = 0 and L(w*)wg = 0. We may then write

S | [ (0. Ao 07 (5 (wey ) | < (14 2 exp(-07) e

0<|al<l

by using [w® — wol; < c(g + exp(—47)).

Step 5. Perturbation terms hy¢. The terms arising from hyy may be split by considering separately
e2Glh,, e3GY_, and eF’. The term associated with e2GY,_ is directly majorized in the form

Z / 0 ee, Ag(w.) 0% (2 A5 (W) 6'28)>dx‘ < ce?led]s,

0< || <1

using the a priori bounds of G%, in H'! from Proposition 4.7. Similarly the term associated with e F".
is majorized as

/ 8 ee, Ao Wg)ao‘(sf_lal(w’f)l?;»dz’ < ceexp(—d7)lec|r,

0< |l <I
using the a priori bound of F’ in H' from Proposition 4.7.

We next consider the terms arising from G4, such that || <[ — 1. These terms may directly be
estimated by using the a priori bound of G5, in H =1 and yields that

/ (e, Ao(we) 0 (A5 (W) B.) ) dla] < e

0<|a\<l 1

On the other hand for the terms arising from G%. such that |a| = [, an integration by part in
performed by writing a = ¢;, + o’ where ig € D and |o/| =1 — 1. We may then write

[ (o7 Ratw) 27 (45 (w) Gy.) o
- ‘ / <ai0 (Ao(wo)d%e.), 0 (g (we) _g8)> dz‘
- ’ / <6WZO(W8)81-0W8 0% + Ag(we)h,0%ec, 0% (g (we) §g€)> dx‘.
The higher order derivative contribution 9;,0%. yields a majorizing term in the form

Z / AO (We)Dy, 0%ec, O (e Ay (we) GY,) >dx‘ < ce®|d,ecnlr

lee| =l
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On the other hand, the remaining terms are directly majorized in the form

Z / 8 Ao(wo)di,we 0%, ol ( Ay (W5>G3E >dz‘ < ce®(1 + lec)t)|eaulr,

|a| =1
and we have established that
/ a ec, Ao(we) 0% (g (we) hpe) >d:c‘ < ce?le.s
0<|al<i

+ ceexp(—07)|ec|; + c53(|ee|l + |eg|12) + c53|8$66n|l.

Step 6. Combined estimates. From the estimates associated with hey, hgs, hsy, and hye we deduce
after some algebra, keeping only the dominant terms and using that e < 1, that

S | f (@) o] <celdyeanli(e? + lech + leclt + ce(elech + el

0<]al<!
1 2
+ c(l + - exp(—&‘)) lec|i + ceexp(—07)|ec]:-

This estimate for the residuals associated with h® may then be combined with the [th order inequality
to get that

0
(4.48) OEf (ec) + 0|0 eculi + [mecli < e(1 + fecli + elec?)lec|7

C C
+ Sexp(=om)lecl? + Smeclilecl? + ‘/ £ 0%.) da

0<|a|<l

+ el ecnli(e? + lecl + lecl) + celelecl + [ecl?)
1
+ c(1 +2 eXp(fm) le|? + cz exp(—o7)|ecl:.

We may then only keep dominant terms in the right hand side, using ab < %(a® + b%) and £ < 1.
The term ce?|e.|; yields in particular a majorizing factor in the form cle.|? + ce? and the term
e exp(—d7)|ec|; yields the majorizing factors (c/e) exp(—dt/e)|ec|? + ce® exp(—dt/e). In addition, we
may absorb all €/2|0, e.y|; terms with the help of the parabolic regularity term el0,ecn|? of the
left hand side. This yields the extra terms cele.|? that is dominated by c|e.|? the term ce® that is
dominated by ce?, as well as the term cele.|? that is majorized by cle.|?. Using finally ¢ < 1 and
inequalities in the form z” < c(2? 4 28) valid for 2 < 0 when 2 < 3 < 8, it is established that

1) c
(4.49) OB} (ec) + 0]decnl + g|7f€s|z2 <c(lecl? +leclf) + geXp(*5T)|€s|12
|7T€5|l 1le? +c(e* + e exp(— Z / > 9%.) da|.
0<|al<t R?

It will be useful in the following to have an inequality for E7 sufficient for our purposes. In this
particular situation o = 0 there are no commutators so that h® = h and g = 0. Proceeding as for
the [th estimates it is first obtained that

)
(4.50) atEg(ea) + 56|ax68”|§ + g|7"€6|8 <c(l+ el + 5|ea|l2)|€6|%

C C
+gmMJﬂm%+wm%wm%+gmmqm%+th%m%
]Rd
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Using indeed (4.45) and (4.46), the terms arising from |0;w.|;_1|ec|3 are majorized by c(14|ec|)|ec|3,
the terms e|0jwey|?_|ec|3 are majorized by c(1 + |e-|7)|ec|2, the terms £|9;0;wen|i—1]ec|3 are ma-
jorized by cz(1+ [0 ecui)|ec|3. We may use for the source terms the majorizing factors c(|me.|i—1 +
€ +eXp(—6T)) le|3/e. We next have to investigate the terms associated with h = hey + hgs + hgy 4 hps.
From the expression of these residuals, the L* bounds of w, —w/?, and the estimates of w* in in
C([0,¢,], H'™), it is directly obtained that

[teesbes) da] < dlecl,

[eehan) o] < celecls + celeclirloyecnld + celecll,eanlo

/(eg, her ) d:z:‘ < c(l + %exp(—&')) le<|3.

Furthermore, for the terms arising from hpe, we split the contributions by considering separately
e2Gh., e3GY_, and eF”. and we obtain that

/<es,§’25> dz‘ < ce?lec]o < clecld + ce?,

/<ee, F’E> dx‘ < ceexp(—dt/e)lezlo < gexp(—6t/5)|eg|g + ce? exp(—0dt/e),

/<es,§’3€> dz’ < ce3|ecnlo.
Combining finally the previous estimates for & = 0 we have established that
1) C
(4.51) OB (ec) + €0|0zecnlg + —|mecls < c(1 4 lecl + elec|?)lec|T + < exp(=d7)lec[5

c
+ ce|O ecnlile<|s + g|7re€|l,1|e€|g + c(54 + &% exp(—67)).

Step 7. Terms arising from commutators. The commutators terms in (4.44) are in the form
[p(we), 0] where ¢(w.) converges to ¢(w*) at infinity. Upon decomposing ¢(w.) = ¢(w*) + (¢(w.) —
¢(w*)) and since [¢p(w*), 8] = 0 and [¢(w.),d"] = 0 we have the inequality

o llgwe), 01|, = > [ld(we), 018, < clé(we) — S(w)[i [¢]i-1-
0<|a|<l 1<|al<t

Using the nonlinear estimate (4.2) and since both w. and w/* are a priori bounded in L, this
inequality is simplified into ZO<|Q‘<ZH¢(WE),80‘]¢’0 < clwe — w*|;[9)|;—1. Finally using w, — w* =
we — W2 + w® —w* yields the useful estimate

> léwe), 0°T], < c(1+ [ec|)ibli1.

0< o<l
Using this inequality with ¢ = Za LA, and ¢ = O;e. first yields that
Z ‘/<8a€€a ZO(WE)[Zal(W€>Zi(WE)v 9%0ie:) dz’ <1+ lecl)lec |7
0<]al<t
i€D
Similarly with ¢ = Zglgij and ¢ = 0;0;je. we have
3 ]/<aaes,EZO(WE)[Zgl(WE)Ej(WE),aa]aiaje€>dx’ < ce(1 + leclr)leauld]dycenl:.

0<al<!
i,j€D
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Finally, we also obtain for ¢ = Zg 'L and ¢ = e. that

1-— - — c
Z }/@ae&a EAO(Wa)[AO H(we) L(we), 0%]ec) dar| < E(l + lecli)|mee|i—1|meeli.
0< o<

We have thus established that

(4.52) > | / (0%ecig®) da| < (1 + fech)lec

0< o<t

c
+ ce(1+ |ecli)|ecnli|Opecnli + g(l + leel)|mee|i—1|mec ;.

Step 8. Final estimates. Combining (4.49) and (4.52) and using 2 <! we obtain that

1) C
(4.53) O E} (ec) 4 €610, ecnlf + E|7T€a|12 < c(lecli + lecli) + - exp(—07)lec|}
c
+ E|7reg|l_1|ee|12 +cet +ce? exp(—07)

C
+ce(1+ |ecli)|esnli|Opeenlr + 5(1 + leel)|mec|i—1|mee]:.

The £'/2 |0 e.q|; factor can then be absorbed using the term due to parabolic regularity € |9, ep|?.
This yields on the right hand side the quantity ce(1+ |ec|?)|ecn|? that is dominated by c(|e-|? + |ec|}).
Moreover, the product (c/e)|mec|;—1|me.|; may be eliminated from (4.53) by using the left hand side
term (§/)|me.|? of the Ith estimate, the left hand side term (§/£)|me.|3 of the zeroth order estimate,
multiplying the zeroth order estimate by a suitable large constant a, adding the result to the /th order
estimate, and using the interpolation inequality |¢|;_1 < co|¢|¢|¢|s~? where @ = (I —1)/I. The extra
term ce|d,e-uli|e<|3 arising from the addition of the zeroth order estimate is then controled by using
parabolic regularity and yields on the right hand side ¢|e.|3 that is dominated by c(|e-|3 + |e|8),
whareas all other added terms from (4.51) are already present on the right hand side using 1 < .
Letting E2(e.) = E?(e.) 4+ aE2(e.), it has been established that

~ o c
(4.54) O Ef (ec) + 6|0, e-nl + g|77€6|12 < cle} + g|ea|l3

+ c(l + % exp(—éT)) lec|? + c(e + % exp(—d7)).

Letting

1~ ~o [ €e ~o (W — WA
v=k (ec) = E; (?) =L (75 = ),
dividing (4.53) by €2, and using |e.|? < cE2(w.) and ¢ < 1, it is obtained that

) 1
o) + g|8zesn|12 <t + c(l + - eXp(f(ST))’l/) + c(52 + sexp(f&')),

where we have used ¢3/2 < ¢* + . Moreover (0) = (1/£2)E? (We —w/2(0)) since w.(0) = W, and
using |we — w(0)|; < ce? from (4.28) yields 1(0) < c£?. Assuming then that (0) = c£? < 1, it
remains true in an interval near zero in such a way that 1* < 1) on this interval. Then on this
interval we get that

t
1

(4.55) P(t) < c/ (1+ - exp(—6t'/e))p(t') dt’ + ce?,

0
and from Gronwall Lemma we obtain that

t

1
(4.56) P(t) < ce? eXp(c/ (1+ - exp(—dt'/¢)) dt') < ceexp(c(t. + 1)),
0

using f(f exp(—dt' /) dt’ = (1 —exp(—4t/c)). Assuming finally that ce? exp(c(t,+1)) < 1, it is then
guarantee that v remains lower than unity over [0,t,,) with ¢,, < t., so that finally the estimate
(4.56) is established over [0,%,,). Moreover, from 9(t) < ce?exp(c(ts + 1)) over [0,,,), we further

obtain that e fot’" |0, €cn(t')|? dt’ < ce* and this completes the proof of (4.38).
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4.5 Chapman-Enskog expansion

The Chapman-Enskog method allows to derive governing equations for reduced systems [2, 12, 28,
3, 14, 25, 18]. Considering in particular the system in quasinormal form (2.7), this asymptotic
method yields an expansion in the form w. = wi® + ew§® + O(¢?) involving a zeroth order variable
wi® = (u®®, ¢5°)" with a slow component u®® that is a priori infinitely accurate ue = u® and higher
order coefficients w$® for ¢ > 1 in the form w{® = (0,¢f°)". Its effective resulting accuracy then
depends on the truncation order of the expansion. In other words, with Hilbert method, the slow
variable u. itself is expanded u. = ug + eu; + O(?) and each coefficient u; has its own system of
equation whereas with the Chapman-Enskog method the slow variable equation is expanded and the
corresponding solutions resultmg after truncation, that may be denoted by u$®, ¢ > 0, are ith order
approximation of u, = u. We first investigate in this section the difference between the zeroth and
first order Hilbert and Chapman-Enskog expansions. We then discuss the inital layer associated with
a two-term Chapman-Enskog expansion.

With the hyperbolic-parabolic system presented in Section 2, it is obtained after some algebra
that at zeroth order the Hilbert and Chapman-Enskog expansions coincide with wi® = wy = (ug,0)*
where ug = uf® is the solution of the first order system (3.9). Such zeroth order approximations
would typically yield Euler equations for a compressible gas. On the other hand, after some algebra,
at first order of Enskog expansion, the coefficient w$® is found in the form w$® = (0,q;)" where
¢1 = ¢§° is given by (3.10) and thus differ from the Hilbert first order term w; = (ul, q1)t. Moreover
the first order approximation u{® of u°® is found to be the solution of the more accurate reduced
system (2.14) that includes all (9( ) terms. This Chapman-Enskog first order approximation would
typically yields the Navier-Stokes-Fourier system for a compressible gas. A first task in therefore to
compare the first order Hilbert outer expansion

(4.57) ul" (z,t) = uo(z,t) + cuy(x,t),

to the solution u§® = wue of (2.14). Since ue = u§® is the solution of the reduced system (2.14), the
natural method in order to compare u{® = u, and uo‘lt = ug + cuq is to evaluate the outer residual
RO defined by

(458) OUt GUOUt + Za f Ollt —E Z a Be Out a ZUt)-

JED i,j€ED

The difference between u{® and uo + cu; will then be estimated by using a stability theorem for
hyperbolic-parabolic systems.

Proposition 4.11. The outer residual RS is in the form RO" = £2R$% where

Rg‘;t = Z/ / 82fe (ug + afeuy) adadBuiuy — Z 0; ( (uo + aguq )0, ul)

1€D i,j€D
_ Z /8B u0+a5u1)dau18uo)
i,j€D
Proof. This result from a direct calculation. O
In order to compare the Chapman-Enskog first approximation u{® = u. that is the solution of

the reduced system (2.15) to the Hilbert approximate solution ug + euy, we need some assumptions
on the structure of the reduced equilibrium system. We assume in the following that Condition N,
holds for the reduced system.

(No) The nullspace N(Ee(u,«s)) of Ee(u,f) =i jep B; (62 ©)=1¢&; does not depend on u € O,
and £ € 2471 and B%(@Zne)’lN(Ee) =0 fori,jeD.

Note that from the expression (2.16) of the diffusion matrices Bf;(u) we have Be = Héé IL, +
FS—LFt where F = Y, op &0, f; in such a way that N(B¢) = II;'N(B) NN (F). With condition (N)
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for the nonequilibrium system, then II; ' N (B) is independent of u and &, so that a sufficient condition

in order to obtain (N¢) is therefore that the nullspace of F = Y, 5, 04 fi& contains II7'N(B). In

this situation, we then have N(B°) = 7' N(B) that is independent of u and & and this situation
notably arises for two-temperature fluids [18] and multicomponent fluids [14, 20].
We also naturally assume that the initial value of u. is in H' and that

‘ue(()) — (uo(0) + €U1(0))|l = ‘ue(()) - uZ“t(O)‘l =0(?).
We then have a second-order difference estimate between the Hilbert and the Enskog expansions [38].

Proposition 4.12. Letl > lp+ 1 and let t,, > 0 such that both the second-order Hilbert expansion

up + euy = ul" and the equilibrium solution u§® = ue exist over [0, t,,] with reqularity

tm
(4.59) s fut) = e [ uen®) w0 < cue©) =l
te(0,tm 0

Then there exists a constant c independent of € such that

(4.60) sup  Jue(t) — (uo(t) +eur(t)) ‘l < ce?
te[0,tm]

Proof. This is a direct consequence of the estimate for the residual RS that is O(g?) and of the
stability theorem presented in Appendix B of Reference [20]. O

Thanks to the above result on u, = u{°® and uﬁ“t = ug + cuy and Theorem 4.9, we obtain the

following result about the initial-layer of Chapman-Enskog expansion.

Proposition 4.13. Keep the assumptions of Theorem 4.9, assume that the equilibrium solution also
exists over [0,t.] with reqularity (4.59). Then there exist positive constants t. and c such that the
systems (1.1) and (2.15) have unique solutions in C°([0,t.], H') for e € [0,&] with

(4.61) sup [ue(-,t) — (e, 1) + eull(-, t/e))|s < ce®.
te[0,t.]

Proof. We may indeed write that
|ue(t) = (ue(t) +cui(t/e))|, < |ue(t)—(uo(t) + cur(t) + cuj(t/e))],
+ uo(t) + e (t) — ue(t)],.

The estimate (4.60) then yields |ug(t) + euq(t) — ue(t)|; < ce? whereas we obtain from Theorem 4.9
that [uc(,t) — (uo(t) + cuy(t) + eull(z,t/€))|; < ce? and this completes the proof. O

We have thus obtained the initial-layer for a two term Chapman-Enskog expansion, extending
the results of [18]. It is remarkable that, even though there exists a zeroth order initial-layer term g
for the nonequilibrium system, the reduced equilibrium system is nevertheless a good approximated
system from (4.61).

APPENDICES
A Equivalence of equilibrium systems

Proposition A.1. The reduced equilibrium system (2.15) coincides with that obtained in the frame-
work of entropic symmetrizable systems [18].

Proof. The convective matrices have been obtained previously [18] in the form IT{ A;0,Ueq. Since

I I
0‘|a Az: 5 auUeq|: :|a

au'Ueq

e,e e,r
r,e r,r
Ai Az
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and dyveq = (Myy) Ty ab equilibrium, a calculation yields that I1£ 4;0,Ueq = A7 — AT (M00) ™ ou
which is easily shown to coincide with 8, F°(u, veq(u,0)) = 8, fi(u,0) that is the convective matrix
of (2.15).

The same calculation may be applied to the first part of the diffusion matrices and this yields the
identity IT.B;;0yUeq = B{*® — B (M)~ 7y SO that these terms in both formulations also coincide.
The remaining part of the diffusion matrices obtained previously is in the form Hegi/lgjauveq =
Heﬁi/ﬂjneaﬁne where A; = A;0pv = A;(02n)~1 and A is the generalized inverse of L = —9,Q with
prescribed nullspace AgZ and range (AgZ)* = galfL where Ay = 8,U = (92n)~L. After some
algebra, it is obtained that A; = 0,0 2; O,w and using O, w = Oyw(dyv)~! that

Ow — [ (ﬁuu - ﬁuvﬁ;vlnvu)_l _(ﬁuu - ﬁuvﬁ;vlnvu)_lﬁuvﬁ;} ]
W = .
0 I

Using the special structure of £ = R™ x{0} it is then established that

0 0 0 0
0 S7H| | Tty I

A direct calculation then yields that II, 9,,U 4; = [0y fi, 0,fi] and O,w A (O,w)" simplifies into

A:

0 7771,’0 7_717’111
0 I

0 0
awA@uw)ft=| _ |.
w A (Ow) [o 5—1]

Finally o _
LA AA L, = T120,U 4; 0, wA(Oyw)' (2;) (9U) Tl = Oy f; S~ (94 f5)",
and this completes the proof. O

B The inner layer residual

Proposition B.1. The residual difference §R. may be written dR. = eF. with F. = F.cy + Fer +
Frgs + Foqa where

1
Feev = Z / 0,3 (wo + w1 + owh + Ew'll)) do (wh + ew?)dj (w1 + Ro)
jep 0

1
+ Z / 0,2 (wo + w1 + o(wh + swlll)) do w95 wh
jep v 0
trt i1 il il i1
+ Z / / 954; (wh + awp + Be(wr + awy + Ro)) (w1 + aw) + Ro) dadB wy 0;wh
sep /o Jo
1 . . . .
+ Z / 0 (wh + why + ae(wr + wi + Ro)) dov (w1 + w! + Ro)d;wh
jep 0

+ Z a; (wo +ewr + wh + swill) ijill,
jeD
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1
F = / BwL(wo + ewy + a(wf)l + 6w'11)) da (wf)l + z—:wlll)"Rl
0
1 . . .
+ / awL(wo +ewr + a(wb1 + 6w'11)) da wilan (0)
0
1 1 . . . .
+ / / BZ,L(wg + awl + ef(w1 + awl + Ro)) dp (w1 + aw! + Ro) da wh w1 (0)
0Jo
1 . . . .
+ / OuwL(wh + wh + ea(wr + w! + Ro)) da (w1 + W + Ro)wh
0

1,1
+ / / BE,L(WS + b+ eafB(w1 + wl + Ro)) adadf (w1 + wi + Ro) (w1 + wi + Ro)wf)l
0 Jo

+ O L(wh 4+ wh)(RY + Ra)wp,

1
Fgo= — Z 0; (/0 0. Bij (wo + cwi + a(wh + ew!))da (wh + ew)d; (wo + cwn)

i,jED
— Z 0; (Q%ij (wo +ewr + wh + 6wi11)8j(wg + swill)),
i,jED
Foa =— Z M (wo + ewr + wh + swill)ai(wg +ewh)) 9 (wh +ewl)
i,jED

— Z Mij (wo + ewr + wh + swill)&'(wo + ewr) 0;(wh + ewl)
i,jED

- Z M (wo + ewr + wh + z—:will)&'(w(i)l +ewl) 9j(wo + cwr)

i,JE€ED

1
- Z / 0, Mij (wo + ewr + a(wh + ew?)))da(wh + ew') 8;(wo + ew) 9 (wo + ew).
0

i,j€ED
Proof. Tt is first established directly that the difference d R. may be written
(B.1) SR = Oy (wh) + ewl)
1

+ Z / 0, (wo + ewy + awh) +ewl)) da (wh + ew!)0;j(wo + ewr)

jep 0
+ Z A (wo + ewy + wh +ewl) 0j(wl) + cwl)

jED

1
+ / Ouwl(wo + cwy + awh + ewl)) da (wf) + cwl)wy
0

1 . . . .
+ EL(wo +ewt + wh +ewl) da (wh +ewl) + eFLq, + eF, 4
The full expression of R, = F. is then obtained by using the governing equations of @i and i, in

order to eliminate the time derivatives 0;wil and 9;w!, and after lengthy algebra. O

The residual R, = ¢F}. may also be expanded in the form e F. = e F} +¢2F,. where F} is directly
associated with the second-order initial-layer corrector wi. In particular, by adding both w} and wi]
contributions to the truncated expansion w7, one may cancel both first order residuals G and e F;.

Proposition B.2. Denote by wi = (ul}, ¢}')! the second-order initial-layer corrector. Then we have
the ordinary differential equation

(B.2) Or w4 L(wh) + wi)wh + 0, L(wh) + wh)whwl

+ L(wh) + @) ws(0) + 9y L(wh) + wh)wo(0)wil = —F).
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Proof. The expression of F} is directly obtained by taking the limit ¢ — 0 in F.. The ordinary
differential equation for ! is then obtained from the ! inner expansion relation deduced from (2.7)

after lengthy calculations. |
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