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A NONISOTHERMAL THERMODYNAMICAL MODEL OF1

LIQUID-VAPOR INTERACTION WITH METASTABILITY2

HALA GHAZI∗, FRANÇOIS JAMES, AND HÉLÈNE MATHIS3

Abstract. The paper concerns the construction of a compressible liquid-vapor

relaxation model which is able to capture the metastable states of the non
isothermal van der Waals model as well as saturation states. Starting from

the Gibbs formalism, we propose a dynamical system which complies with the

second law of thermodynamics. Numerical simulations illustrate the expected
behaviour of metastable states: an initial metastable condition submitted to a

certain perturbation may stay in the metastable state or reaches a saturation

state. The dynamical system is then coupled to the dynamics of the compress-
ible fluid using an Euler set of equations supplemented by convection equations

on the fractions of volume, mass and energy of one of the phases.

Contents4

1. Introduction 15

2. Thermodynamic assumptions and the van der Waals EoS 46

2.1. Description of a single fluid 47

2.2. The van der Waals Equation of State 58

3. Thermodynamics of equilibria for a multicomponent system 99

3.1. The Gibbs phase rule 1010

3.2. Maxima of the constrained optimization problem 1111

4. Dynamical system and attraction bassins 1312

4.1. Equilibria and attractivity 1513

4.2. Numerical illustrations 1814

5. A homogeneous relaxation model 3015

5.1. Properties of the homogeneous relaxation model 3016

5.2. Numerical illustrations 3217

6. Conclusion 3418

Acknowledgments 3619

References 3620

1. Introduction21

Metastable two-phase flows are involved in many industrial applications, for in-22

stance in scenarii of safety accidents in pressurized water reactors. They can also23

appear in everyday life. Warming water in a microwave with the maximum power24
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may make the liquid water being metastable: its temperature increases above the1

saturation temperature; the water is then called superheated. The metastability2

corresponds then to a delay in vaporization. Even a small perturbation of the3

metastable water may lead to the brutal appearance of a vaporization wave. In4

[4] an analogous phenomenon is highlighted. Liquid water can be brought to a su-5

perheated state by means of a very rapid depressurization. The depressurization is6

stopped suddenly by an explosive nucleation causing, in its turn, an increase of the7

pressure.8

As pointed out in [7], such compressible two-phase flows are characterized by9

three main difficulties. The first two difficulties are linked to the dynamics of the10

fluid, namely the compressibility of both phases and the presence of the moving11

interface between them. The third difficulty lies in the modelling of the thermody-12

namical exchanges which occur at the interface. The references [31] and [35] focus on13

the two first difficulties and propose models coming from the Bear-Nunziato model14

for compressible two-phase flows. The models are either 6 or 5 equations models,15

possibly including pressure and velocity interfacial terms. Each phase possesses his16

own convex Equation of State (EoS), namely a stiffened gas law (or a Mie-Grüneisen17

generalization). Relaxation towards thermodynamical equilibrium is assumed to be18

infinitely fast, so that metastable states appear far from the vaporization fronts. In19

[7, 8] and [9], the authors improve this approach by using the realistic tabulated20

law IAPWS-IF97 EoS coupled with cubic interpolation and accurate HLLC-type21

numerical scheme. They compare different models of a same hierarchy. Starting22

from a single-velocity six equations model with full disequilibrium, they consider23

a homogeneous equilibrium model where the liquid and the vapor are at thermo-24

dynamical equilibrium (meaning stable) and a homogeneous relaxation model in25

which the liquid is assumed to be metastable and the vapor is at saturation. Again26

emphasis is given to the two first difficulties of compressible two-phase flows, the27

question of metastability being addressed solely in the choice of the complex EoS.28

In the present paper, we focus on the third difficulty, namely the modelling29

of thermodynamical transfers and the appearance of metastable states. As the30

dynamics of the flow is concerned, we adopt the strategy proposed in [7, 8] and31

consider the homogeneous relaxation model given in [18] and [22]. We assume that32

the two phases evolve with the same velocity and consider the mass, momentum33

and energy conservation equation of the flow. The specificity is to assume that34

the two phases follow the same non-convex EoS, namely a reduced form of the van35

der Waals equation. Because the model involves a mixture pressure based on this36

cubic equation, the convective system is not strictly hyperbolic, notably in the van37

der Waals spinodal zone. To get rid of this problem, the pressure is relaxed and38

depends on additional quantities, which are the fractions of volume, mass and energy39

of one of the phases. These fractions obey to convective equations with relaxation40

terms towards the thermodynamic equilibrium. The core of the paper is the proper41

definition of these relaxation terms. To do so, we extend the method we proposed42

in [24] in the isothermal case and provide a characterization of thermodynamic43

equilibria which are either saturation states, stable and metastable states.44

In a first section, we recall some basic facts of thermodynamics in the extensive45

and intensive form [5], notably the notion of entropy. We focus on the van der Waals46

model, which is well-known to depict stable and metastable states but is classically47

used with a convexification correction to properly depict saturation. It turns out48

that the representation of metastable states of the van der Waals model is done in49
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the volume-pressure plane, although the equations of motion require to manipulate1

phase diagram and EoS defined in the volume-energy plane. A large part of Section2

2.2 then concerns the representation of stable, metastable and spinodal zone in the3

volume-energy plane.4

In Section 3 we investigate the thermodynamic stability of a system described5

by the non convex EoS of van der Waals in its reduced form. As suggested in [5,6

chap. 8], introducing heterogeneity in a system is the hallmark of phase transition.7

Hence, in order to introduce heterogeneity in the system, we decompose it in an8

arbitrary number of subsystems depicted by the same nonconvex EoS. The second9

principle of thermodynamics leads to a constrained maximization problem on the10

mixture entropy. It turns out that the number of subsystems is limited to two,11

in accordance with the Gibbs phase rule. Then the study of the optimization12

problem leads to two possible kinds of maximizers, either saturation states or states13

corresponding to the identification of the two phases. In the latter case, there14

is no distinction between the two phases and all the states belonging to the van15

der Waals EoS are possible maximizers, including the non-admissible (physically16

unstable) states of the spinodal zone. On the other hand, the saturation states17

correspond to the coexistence of the two phases at saturation, with equality of the18

pressures, temperatures and chemical potentials of the two phases, corresponding19

to the convexification of the EoS.20

Section 4 provides a dynamical description of the thermodynamic equilibrium21

and of its two kinds of equilibrium states. Following the approach developed in [24]22

and [15] in the isothermal case, we introduce a dynamical system whose long-time23

equilibria coincide with the maxima of the above optimization problem, under a24

mixture entropy growth criterion. We focus in this paper on a dynamical system on25

the fractions of volume, mass and energy of the phase 1. The system is designed to26

recover the above two possible equilibria: either saturation states or states corre-27

sponding to the identification of the two phases. In the latter case, the equilibrium28

is characterized by the equality of all the fractions which converge asymptotically29

to some value belonging to ]0, 1[. Hence, as the two phases identify, the fractions30

are not equal to 0 or 1, in contrast with the Baer-Nunziato type two-phase models31

[1]. This is one fundamental feature of the dynamical model we propose. Another32

property stands in the attractivity of the equilibria and their attraction basins. If33

the energy-volume state of the mixture belongs to the spinodal zone, then the cor-34

responding equilibrium is a saturation state, whatever the initial conditions of the35

dynamical system are. Thus the dynamical system gets rid of unstable states of36

the spinodal zone by construction. On the other hand, if the mixture state belongs37

to a metastable zone, there are two possible equilibria depending on the perturba-38

tion: either the identification of the two phases to the mixture metastable state or39

a saturation state. This interesting property was already highlighted in [24, 15] and40

is extended here to the non-isothermal case. Numerical simulations illustrate the41

attraction of each equilibria and typical trajectories of the dynamical system in the42

volume-energy plane, volume-pressure plane and in the fractions domain.43

Finally, Section 5 addresses the coupling between the thermodynamics and the44

compressible dynamics of the two-phase flows we are interested in. Following the45

approach in [18, 22, 7], we consider that the fluid is homogeneous in the sense that46

the two phases evolve with the same velocity. Then the model is based on the47

conservation equations of total mass, momentum and energy. To close the system,48

it is endowed with a complex equation of state depending on the fractions of volume,49
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mass and energy of one of the phases. To ensure the return to the thermodynamic1

equilibrium, the evolution equations of the fractions admit relaxation source terms2

derived from the dynamical system studied in Section 4. Because the mixture3

pressure involves the van der Waals EoS, the hyperbolicity is non strict. However,4

it has been proved in [24] that the domains of hyperbolicity of the complete model5

strongly depend on the attraction basins of the dynamical system. In order to6

illustrate the dynamical behaviour of the model, we use a simple numerical scheme7

based on a fractional step approach: the convective part is approximated by an8

explicit HLLC solver while the source terms is integrated by a RK4 method.9

2. Thermodynamic assumptions and the van der Waals EoS10

2.1. Description of a single fluid. We consider a monocomponent fluid of mass11

M ≥ 0, occupying a volume V ≥ 0 with internal energy E ≥ 0. Following the Gibbs12

formalism [16, 5], we introduce the extensive entropy S of the fluid as a function of13

its mass M , volume V and energy E:14

(1) S : (M,V,E) 7→ S(M,V,E).

All the above quantities are said extensive, in the sense that if the system is doubled,15

then its mass, volume, energy and entropy are doubled as well. Any extensive16

quantity Φ : E ⊂ Rn → R is said positively homogeneous of degree 1 (PH1), and17

satisfies18

(2) ∀λ > 0, ∀x ∈ E Φ(λx) = λΦ(x).

Especially for the entropy function S, the PH1 property (2) reads19

(3) ∀λ > 0, S(λM,λV, λE) = λS(M,V,E).

We assume that the entropy function S belongs to C2(R+×R+×R+). It allows to20

introduce intensive quantities, that are positively homogeneous functions of degree21

0 (PH0), corresponding to derivatives of extensive functions. From the gradient22

vector ∇S of the entropy S, we commonly define the pressure p, the temperature23

T and the chemical potential µ by24

(4)
1

T
=
∂S

∂E
(M,V,E),

p

T
=
∂S

∂V
(M,V,E),

µ

T
= − ∂S

∂M
(M,V,E),

leading to the fundamental thermodynamics extensive Gibbs relation25

(5) dS = −µ
T
dM +

p

T
dV +

1

T
dE.

Standard thermodynamics requires that26

(6) T =

(
∂S

∂E

)−1

> 0.

Since the entropy S is a PH1 function, it verifies the Euler relation27

(7) S(M,V,E) = ∇S(M,V,E) ·

MV
E

 ,

which, combined with the definitions (4), gives28

(8) S(M,V,E) = −µM
T

+
pV

T
+
E

T
.
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Introducing the specific volume τ = V/M and the specific internal energy e = E/M ,1

and using the homogeneity of the extensive entropy function, one can define the2

specific entropy s3

(9) s(τ, e) = S

(
1,
V

M
,
E

M

)
=

1

M
S(M,V,E).

The dimensions of the arguments of the extensive entropy S are respectively kg,4

m3 and J . This is not the case for the middle term in (9) by abuse of notation.5

We keep the same notations to denote the pressure and the temperature expressed6

as functions of the specific volume and energy7

(10)
1

T
=
∂s

∂e
(τ, e),

p

T
=
∂s

∂τ
(τ, e).

The fundamental thermodynamics relation in its intensive form reads as follow8

(11) Tds = de+ pdτ.

and the intensive counterpart of relation (8) is9

(12) Ts = −µ+ pτ + e.

2.2. The van der Waals Equation of State. In this work we focus on a non10

necessarily concave nor convex entropy function s. A common example is the van11

der Waals Equation of State (EoS), with the entropy function12

(13) s(τ, e) = Cv ln
(a
τ

+ e
)

+R ln(τ − b) + s0,

where R is the universal constant of gas, Cv > 0 the calorific constant at constant13

volume, s0 is the entropy of reference, and a and b are two nonnegative parameters14

[5, 26].15

The entropy is well defined for (τ, e) ∈ (R+
∗ )2 such that16

(14) τ > b,
a

τ
+ e > 0.

The corresponding definition domain of s is denoted Ds:17

(15) Ds :=
{

(τ, e) ∈ (R+
∗ )2; τ > b and

a

τ
+ e > 0

}
.

According to the relations (10), the van der Waals temperature and pressure read18

T (τ, e) =
1

Cv

(
e+

a

τ

)
,(16)

p(τ, e) =
R

Cv(τ − b)

(
e+

a

τ

)
− a

τ2
=
RT (τ, e)

τ − b
− a

τ2
.(17)

The van der Waals entropy is neither concave nor convex. Indeed the coefficients19

of its Hessian matrix Hs(τ, e) are given by20

(18)



∂2s

∂τ2
(τ, e) =

a

CvT 2(τ, e)τ3

(
2CvT (τ, e)− a

τ

)
− R

(τ − b)2
,

∂2s

∂e2
(τ, e) = − 1

CvT 2(τ, e)
,

∂2s

∂τ∂e
(τ, e) =

1

CvT 2(τ, e)

a

τ2
.

Since the temperature T is positive on Ds, one has21

(19)
∂2s

∂e2
< 0.
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However, the entropy function s is not globally concave and its domain of concavity1

restricts to the set where the determinant of Hs is positive, that is2

(20) Dc :=

{
(τ, e) ∈ Ds;

∂2s

∂τ2

∂2s

∂e2
−
(
∂2s

∂e∂τ

)2

> 0

}
.

The non-concavity property of the van der Waals entropy makes it an appropriate3

toy-model to represent liquid-vapor phase transition [5, chap.9]. States belonging to4

the concavity region of the entropy refer to stable and metastable liquid and vapor5

states. In contrast states belonging to the non-concavity region are non-admissible6

states. The purpose of this section is to precise the geometrical loci of these states7

and provide representations of the phase diagrams of the van der Waals EoS in both8

the (τ, p) and the (τ, e) planes.9

Usually the metastable zones of the van der Waals EoS are defined and observable10

in the (τ, p) plane at constant temperature. This implies to manipulate the entropy11

and the pressure as functions of the volume τ and the temperature T . Adapting12

relations (16), (17) and (13) leads to13

(21)

s(τ, T ) = Cv ln(CvT ) +R ln(τ − b) + s0,

p(τ, T ) =
RT

τ − b
− a

τ2
.

We represent in Figure 1 the isothermal curves (τ, p(τ, T )) (black lines) in the14

(τ, p) plane for fixed temperatures T . There exists a unique critical temperature15

Tc for which the pressure admits a unique inflection point (τc, p(τc, Tc)), called the16

critical point. For supercritical temperature T > Tc, the pressure is a strictly17

decreasing function of the specific volume. Below the critical isothermal curve, for18

T < Tc, the pressure is an increasing function of the volume between the minimum19

(τ−, p(τ−, T )) and the maximum (τ+, p(τ+, T )). This increasing branch refers to20

non physically admissible states. The critical isothermal curve is plotted in green in21

Figure 1. The set of minima and maxima is plotted in blue in Figure 1 and delimits22

the spinodal zone. Actually the spinodal zone in the (τ, p) plane corresponds to the23

zone Ds \Dc in the plane (τ, e) where the entropy function is not concave.24

At a given temperature T < Tc, it is classical to replace the non admissible in-25

creasing branch of the pressure by a specific isobaric line satisfying the Maxwell26

equal area rule. Such a construction defines two volumes τ∗1 and τ∗2 , for each tem-27

perature T < Tc, such that p(τ∗1 , T ) = p(τ∗2 , T ). Their set, represented in red in28

Figure 1, is called the saturation dome. Another classical definition of the saturation29

curve is given in Section 3.2, see relations (48). The states belonging to decreasing30

branches of isothermal curves, below the saturation dome (in red) and above the31

spinodal zone (in blue) are called metastable states.32

The purpose of this section is to provide a representation of the saturation dome,33

spinodal and metastable zones in the (τ, e) plane. We represent in Figure 2 the34

isothermal curves in the (τ, e) plane. The spinodal zone corresponds to the domain35

where the concavity of the entropy function (τ, e) 7→ s(τ, e) changes. According to36

the definition (18) of the Hessian matrix Hs(τ, e) of the entropy s, this domain is37

delimited by the set of states (τ, e) ∈ Ds such that38

(22) det(Hs)(τ, e) = 0.

Solving (22) allows to define the spinodal zone ZSpinodal ⊂ Ds39

(23) ZSpinodal := {(τ, e) ∈ Ds; e < g(τ)},
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Figure 1. Isothermal curves of the van der Waals EoS in the (τ, p)
plane. Isothermal curves p(τ, T ) are plotted in black. The isother-
mal curve at critical temperature T = Tc is plotted in green. Be-
low the critical isothermal curve, the pressure is not monotone
with respect to the specific volume and increases in the spinodal
zone of non admissible states. This zone is delimited by the blue
curve representing the set of minima (τ−, p(τ−, T )) and maxima
(τ+, p(τ+, T )) of the pressure for each temperature T < Tc. The
Maxwell equal area rule construction allows to replace the non
physically admissible increasing branch of an isothermal curve by
computing two volumes τ∗1 and τ∗2 at each temperature T < Tc,
such that p(τ∗1 , T ) = p(τ∗2 , T ). The set of these volumes is repre-
sented in red in the graph and corresponds to the saturation dome.
The states belonging to decreasing branches of isothermal curves,
below the saturation dome (in red) and above the spinodal zone
(in blue), are called metastable states.

where1

(24) g(τ) =
2aCv(τ − b)2

Rτ3
− a

τ
.

2

Remark 1. Classically the spinodal curve is defined as the loci of

(
∂p

∂τ

)
T

= 0.

Actually it is equivalent to define the spinodal curve as the loci of det(Hs)(τ, e) = 0.
According to (18) the Hessian matrix of s(τ, e) reads

Hs(τ, e) =
1

CvT 2

 a

τ3
(2CvT − a/τ)− RCvT

2

(τ − b)2

a

τ2

a

τ2
−1

 ,
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Figure 2. Isothermal curves of the van der Waals EoS in the (τ, e)-
plane. The black lines correspond to isothermal curves e(τ, T ). The
isothermal curve at the critical temperature T = Tc is plotted in
green. States belonging to the zone above the critical isothermal
curve are supercritical states. The spinodal zone is delimited by
the blue curve, which is the graph of the function g defined in (24).
The saturation dome is represented by the set of red points. Stable
states belong to the areas below the critical isothermal curve (in
green) and above the saturation dome (in red). The metastable
areas correspond to zones above the spinodal zone (in blue) and
below the saturation dome (in red).

where T is a function of (τ, e). Setting det(Hs)(τ, e) = 0 gives

−CvT
(

2a

τ3
− RT

(τ − b)2

)
= 0.

One observes that the term in parentheses corresponds to the partial derivative of
the pressure with respect to the volume at fixed temperature, see (21). Since the
temperature is strictly positive, it remains

det(Hs)(τ, e) = 0⇔
(
∂p

∂τ

)
T

= 0.

This equivalent definition allows to determine the minima and maxima of isotherms1

and then the spinodal curve in the (τ, p) plane as it is done in [32] and shown in2

Figure 1.3

The critical isothermal curve (green curve) admits a unique intersection point4

with the graph of g which turns to be the critical point (τc, ec = g(τc)). In all the5

representations given in the sequel, we use a reduced form of the EoS, as the one6

proposed in [11], with the parameters7

(25) a = 1, b = 0.5, R = 0.5, Cv = 3, s0 = 0,
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which lead to the following critical values1

(26) τc = 1.5, ec = 2.88, Tc = 1.185, pc = 0.148.

The Maxwell construction, which is usually defined in the (τ, p)-plane, admits2

its counterpart in the (τ, e)-plane. Actually the construction of the concave hull of3

the van der Waals entropy function (τ, e) 7→ s is equivalent to the Maxwell equal4

area rule construction [6, 10]. An analogous proof, based on the properties of the5

Legendre transform, is available in [19]. In practice, the computation of the concave6

hull of the graph of (τ, e) 7→ s boils down to the construction of a ruled surface.7

For any point (τ, e), this ruled surface contains a segment which is bitangent to the8

graph of (τ, e) 7→ s in two points denoted (τ∗1 , e
∗
1) and (τ∗2 , e

∗
2). The set of points9

((τ∗1 , e
∗
1), (τ∗2 , e

∗
2)) defines the saturation dome in the (τ, e) plane and is represented10

in red in Figure 2. Note that the computation of the points ((τ∗1 , e
∗
1), (τ∗2 , e

∗
2)) is not11

explicit and requires the resolution of a nonlinear system [6, 10, 19]. However, if we12

assume that the set of the red dots is the graph of a function g∗ : τ → g∗(τ), then13

the curve (τ, g∗(τ)) defines the saturation dome ZSaturation, that is14

(27) ZSaturation := {(τ, e) ∈ Ds; e = g∗(τ)}.

Thus the metastable states ZMetastable correspond to the states belonging to the15

saturation domain but outside the spinodal zone16

(28) ZMetastable := {(τ, e) ∈ Ds; g(τ) < e < g∗(τ)}.

Finally the stable zones, either stable liquid or stable vapor states, correspond to17

states below the critical isotherm curve and above the saturation dome18

(29) ZStable := {(τ, e) ∈ Ds; g
∗(τ) < e < e(τ, Tc)}.

3. Thermodynamics of equilibria for a multicomponent system19

We consider a system of mass M > 0, volume V > 0 and energy E > 0 which20

is composed of I subsystems. Each subsystem i = 1, . . . , I is characterized by its21

mass Mi ≥ 0, its volume Vi ≥ 0 and its energy Ei ≥ 0. Moreover, we assume that22

each subsystem i follows the same non concave entropy S(Mi, Vi, Ei), namely the23

van der Waals EoS in its extensive setting. The conservations of mass and energy24

require that25

(30) M =

I∑
i=1

Mi, E =

I∑
i=1

Ei.

Furthermore, we suppose that all the subsystems are immiscible and that no vacuum26

appears, in the sense that27

(31) V =

I∑
i=1

Vi.

The entropy of the system is the sum of the partial entropies of each subsystem:

(Mi, Vi, Ei)i=1,...,I 7→
I∑
i=1

S(Mi, Vi, Ei).

According to the second principle of thermodynamics, the entropy of the multicom-28

ponent system achieves its maximum at Thermodynamic equilibrium. Considering29
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a state vector (M,V,E) of the multicomponent system, the equilibrium entropy is1

(32) Σ(M,V,E) = sup
(Mi,Vi,Ei)∈(R+)3

I∑
i=1

S(Mi, Vi, Ei),

under the constraints (30)-(31).2

We now turn to the intensive formulation of the maximization problem. In the3

following, we denote ϕi = Mi/M ∈ [0, 1] the mass fraction, αi = Vi/V ∈ [0, 1] the4

volume fraction and ξi = Ei/E ∈ [0, 1] the energy fraction. Given τ = V/M and5

e = E/M the specific volume and specific energy of the multicomponent system,6

the specific volume of the subsystem i = 1, . . . , I is τi = Vi/Mi = αiτ/ϕi ≥ 0 and7

its specific energy is ei = Ei/Mi = zie/ϕi ≥ 0.8

The conservation of mass and energy and the volume constraints read now9

(33)

I∑
i=1

ϕi = 1,

I∑
i=1

ϕiτi = τ,

I∑
i=1

ϕiei = e.

Using the homogeneity property of the extensive entropy function S, the defini-10

tions of the mass fractions ϕi and phasic intensive quantities τi and ei, the intensive11

form of the equilibrium entropy of the system is, for any state vector (τ, e)12

(34) σ(τ, e) = sup
(τi,ei)∈(R+)2

I∑
i=1

ϕis(τi, ei),

under the constraints (33).13

3.1. The Gibbs phase rule. For the moment the number I of subsystems, po-14

tentially present at the thermodynamic equilibrium, is not determined. Actually,15

the theorem of Caratheodory gives a first estimate on the number of subsystems I.16

We recall the theorem statement and refer to [30, 20] for a detailed proof.17

Theorem 1. (Theorem of Caratheodory) Let A be a subset in Rn and conv(A) the18

set of all the convex combinations of elements of A. Then every point x ∈ conv(A)19

can be represented as a convex combination of (n+ 1) points of A.20

In the present context, the theorem provides the following first bound.21

Proposition 1. Consider the maximization problem (34) under the constraints22

(33). The number of subsystems which may coexist at equilibrium is I ≤ 3.23

Proof. Consider (τ, e) ∈ (R+)2 7→ −s(τ, e) ∈ R. According to Caratheodory’s24

theorem, the convex hull of the epigraph of −s at any point (τ, e) ∈ (R+)2 is25

(35) (conv (−s))(τ, e) = inf

3∑
i=1

−λis(τi, ei),

with
3∑
i=1

λiτi = τ and
3∑
i=1

λiei = e where the infimum is taken over all the expressions26

of (τ, e) as a convex combinations of three points (τi, ei), i = 1, 2, 3. Now considering27

λi = ϕi, we recover the intensive constraints (33) and the maximization problem28

(34) is equivalent to the determination of the concave hull of s. �29

As a consequence of Caratheodory’s Theorem, at the most three phases remain30

at thermodynamic equilibrium. This result is in total agreement with the Gibbs31

phase rule. Indeed, considering a single component system, the Gibbs phase rule32
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states that the number of phases is I = 3−F , where F ≥ 0 is the degree of freedom1

[2, 28].2

Actually when considering the van der Waals EoS, the admissible number of3

subsystems present at Thermodynamic equilibrium restricts to at most 2.4

Theorem 2. Consider the maximization problem (34), and assume that the entropy5

function s verifies the inequality (19). Then6

(36) I(τ, e) < 3 ∀(τ, e) ∈ Ds.

Proof. Assume that I = 3 and consider a point X ∈ Ds. Then X belongs to a7

simplex of dimension 2. On the one hand, inside this simplex, the concave hull8

of s, denoted conc(s) is an affine function. It follows that the partial derivatives9

of conc(s), ∂τconc(s)(X) and ∂econc(s)(X) are constant. On the other hand, at10

the boundaries of the simplex, the concave hull conc(s) is tangent to the surface11

(τ, e) 7→ s. Hence ∂econc(s)(X) = ∂es(X), which leads to a contradiction with12

property (19). �13

According to Theorem 2, the maximization process using the van der Waals EoS14

does not allow the coexistence of more than two phases and prevents from the15

modelling of a triple point.16

3.2. Maxima of the constrained optimization problem. From now on we17

consider I = 2 and consider the optimization problem18

(37) σ(τ, e) = max S (ϕ1, ϕ2, τ1, τ2, e1, e2),

where19

(38) S (ϕ1, ϕ2, τ1, τ2, e1, e2) = ϕ1s(τ1, e1) + ϕ2s(τ2, e2),

under the constraints20

(39) ϕ1 + ϕ2 = 1, ϕ1τ1 + ϕ2τ2 = τ, ϕ1e1 + ϕ2e2 = e.

Note that if τ1 6= τ2 and e1 6= e2, (39) imply that the mass fractions ϕi, i = 1, 221

satisfy22

(40) ϕ1 =
τ − τ2
τ1 − τ2

=
e− e2

e1 − e2
, ϕ2 =

τ − τ1
τ2 − τ1

=
e− e1

e2 − e1
.

On the other hand, if τ = τ1 = τ2 and e = e1 = e2, the mass fraction is undeter-23

mined. In order to preserve the positivity of the fractions, we assume that24

(41) (τ, e) ∈ [min(τ1, τ2),max(τ1, τ2)]× [min(e1, e2),max(e1, e2)].

Introducing the Lagrange multipliers λϕ, λτ and λe associated to the constraints25

(39), we define the Lagrangian26

(42) L(λϕ, λτ , λe, x) = S (x) + λϕβϕ(x) + λτβτ (x) + λeβe(x),

with x = (ϕ1, ϕ2, τ1, τ2, e1, e2) and27

(43)


βϕ(x) = ϕ1 + ϕ2 − 1,

βτ (x) = ϕ1τ1 + ϕ2τ2 − τ,
βe(x) = ϕ1e1 + ϕ2e2 − e.
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Since S is C1 and the conditions (43) are affine, we obtain straightforwardly the
optimality conditions for the maxima in the problem (37)-(39):

s(τ1, e1) + λϕ + λττ1 + λee1 = 0,(44a)

s(τ2, e2) + λϕ + λττ2 + λee2 = 0,(44b)

ϕ1
p(τ1, e1)

T (τ1, e1)
+ ϕ1λτ = 0,(44c)

ϕ2
p(τ2, e2)

T (τ2, e2)
+ ϕ2λτ = 0,(44d)

ϕ1
1

T (τ1, e1)
+ ϕ1λe = 0,(44e)

ϕ2
1

T (τ2, e2)
+ ϕ2λe = 0.(44f)

We now turn to the determination of the maxima of the problem (37). It turns out1

that it involves the notion of relative entropy, which is defined, for any two states2

a, b ∈ (R+)2 by3

(45) s(a|b) = s(a)− s(b)−∇s(b) · (a− b).

Proposition 2. The maxima of the problem (37)-(39) are4

(1) Identification of phases 1 and 2:5

• τ1 = τ2 = τ and e1 = e2 = e, ϕi undetermined,6

• ϕ1 = 0, ϕ2 = 1, (τ2, e2) = (τ, e) and (τ1, e1) solution to7

(46)

{
s
(
(τ1, e1)|(τ, e)

)
= 0,

µ(τ1, e1)/T (τ1, e1) = µ(τ, e)/T (τ, e).

• ϕ1 = 1, ϕ2 = 0, (τ1, e1) = (τ, e) and (τ2, e2) solution to8

(47)

{
s
(
(τ2, e2)|(τ, e)

)
= 0,

µ(τ2, e2)/T (τ2, e2) = µ(τ, e)/T (τ, e).

(2) Saturation states: there exists a unique couple of points9

M∗1 = (τ∗1 , e
∗
1, s(τ

∗
1 , e
∗
1)) and M∗2 = (τ∗2 , e

∗
2, s(τ

∗
2 , e
∗
2))10

with τ ∈ [min(τ∗1 , τ
∗
2 ),max(τ∗1 , τ

∗
2 )] and e ∈ [min(e∗1, e

∗
2),max(e∗1, e

∗
2)] given11

by (40), satisfying12

(48)


p(τ∗1 , e

∗
1) = p(τ∗2 , e

∗
2),

µ(τ∗1 , e
∗
1) = µ(τ∗2 , e

∗
2),

T (τ∗1 , e
∗
1) = T (τ∗2 , e

∗
2),

such that M = (τ, e, σ(τ, e)) belongs to the line open segment (M∗1 ,M
∗
2 ) =13

{zM∗1 + (1− z)M∗2 , z ∈ ]0, 1[} contained in the concave hull conc(s).14

In Proposition 2- 2, taking z = 0 or z = 1 corresponds to Proposition 2- 1. Since15

item 2 characterizes the saturation states, that is liquid-vapor mixture, one does not16

consider the configuration where (τ∗1 , e
∗
1) = (τ∗2 , e

∗
2) = (τ, e) obtained when z = 0 or17

z = 1.18

Proof. The first case τ = τ1 = τ2 and e = e1 = e2 is straightforward. We focus on
the case ϕ1 = 0. The mass conservation constraint induces ϕ2 = 1 and thus τ2 = τ
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and e2 = e. Then the optimality conditions (44d) and (44f) give

λτ = −p(τ, e)/T (τ, e), λe = −1/T (τ, e).

Associated with the conditions (44a) and (44b), the definition of the relative1

entropy (45) and the definition of the chemical potential (12), one determines (τ1, e1)2

as the solution of (46). The same holds for the case ϕ1 = 1.3

We now consider the saturation case. It is characterized by ϕ1ϕ2 6= 0. The
optimization procedure also reads as a convexification of (τ, e) 7→ s(τ, e) in the
sense that the graph of (τ, e) 7→ σ(τ, e) is the concave hull of (τ, e) 7→ s(τ, e), see
the definition (35). Then for any saturation state (τ, e), the graph of σ contains a
segment (M∗1M

∗
2 ) passing through (τ, e, σ(τ, e)). The characterization (48) of the

points M∗1 and M∗2 derives from the optimality conditions. Combining (44e) and
(44f) gives the temperatures equality

1

T (τ∗1 , e
∗
1)

=
1

T (τ∗2 , e
∗
2)
.

Similarly using (44c) and (44d), yields

p(τ∗1 , e
∗
1)

T (τ∗1 , e
∗
1)

=
p(τ∗2 , e

∗
2)

T (τ∗2 , e
∗
2)
.

Finally (44a) and (44b), combined with the definition of the chemical potential (12),
give

µ(τ∗1 , e
∗
1)

T (τ∗1 , e
∗
1)

=
µ(τ∗2 , e

∗
2)

T (τ∗2 , e
∗
2)
.

We now address the uniqueness of the segment (M∗1M
∗
2 ). Outside the spinodal4

zone, the van der Waals entropy is a concave and increasing function with respect5

to τ and e. Then there is a bijection between (p, T ) and (τi, ei), i = 1, 2. Define a6

second segment (M̃∗1 M̃
∗
2 ) with M̃∗1 = (τ̃∗1 , ẽ

∗
1) and M̃∗2 = (τ̃∗2 , ẽ

∗
2). If (τ, e, σ(τ, e)) ∈7

(M∗1M
∗
2 )∩ (M̃∗1 M̃

∗
2 ), since (p, T, µ) are constant along (M∗1M

∗
2 ) and (M̃∗1 M̃

∗
2 ), then8

M∗i = M̃∗i and the segments coincide. �9

Notice that, for a given saturation state (τ, e), the quadruplet (τ∗1 , τ
∗
2 , e
∗
1, e
∗
2)10

satisfies also11

(49) s((τ∗1 , e
∗
1)|(τ∗2 , e∗2)) = s((τ∗2 , e

∗
2)|(τ∗1 , e∗1)) = 0.

We emphasize that the necessary conditions in Proposition 2 include all equilib-12

rium states, regardless of their stability. In particular, we recover in item (1) the13

complete van der Waals EoS, including physically unstable states (spinodal zone),14

and liquid and vapor metastable and stable states.15

To proceed further the classical method consists in studying the local concavity16

of the mixture entropy out equilibrium S introduced in (38). We adopt here the17

approach proposed in [24]. We introduce a relaxation towards the equilibrium states18

by means of a dynamical system.19

4. Dynamical system and attraction bassins20

The goal of this section is to introduce time dependence to create a dynamical21

system able to characterize all the equilibrium states including the metastable states.22

To build the appropriate dynamical system, we impose two basic criteria:23

• long-time equilibria coincide with the maxima given by the optimality con-24

ditions in Proposition 2.25
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• the mixture entropy increases along trajectories.1

Fix (τ, e) a state vector of the system. The maximization problem applies to2

six variables under the three constraints (39). Hence it is sufficient to reduce the3

variables from six to three. We consider the vector of volume, mass and energy4

fractions r = (α,ϕ, ξ). Then the phasic specific energies and volumes are now5

functions of r = (α,ϕ, ξ) ∈]0, 1[3 with6

(50)

τ1(r) =
ατ

ϕ
, τ2(r) =

(1− α)τ

1− ϕ
,

e1(r) =
ξe

ϕ
, e2(r) =

(1− ξ)e
1− ϕ

.

The formulas in (50) do not suggest any natural order in the volumes nor energies.7

Besides, it is possible that the phasic specific volumes (resp. energies) coincide.8

Indeed, if α = ϕ = ξ ∈]0, 1[, then τ1(r) = τ2(r) = τ and e1(r) = e2(r) = e. Hence9

the constraint (41) still remains.10

In this context, the mixture entropy of the system becomes a function of r, still11

denoted S :12

(51) S (r) = ϕs(τ1(r), e1(r)) + (1− ϕ)s(τ2(r), e2(r)).

Using the relations (50) and the expressions (10) of the partial derivatives of the13

entropy function, the gradient of S reads14

(52) ∇rS (r) =


τ
p(τ1(r), e1(r))

T (τ1(r), e1(r))
− τ p(τ2(r), e2(r))

T (τ2(r), e2(r))

−µ(τ1(r), e1(r))

T (τ1(r), e1(r))
+
µ(τ2(r), e2(r))

T (τ2(r), e2(r))
e

T (τ1(r), e1(r))
− e

T (τ2(r), e2(r))

 .

Observe that both S and ∇rS are defined only for (α,ϕ, ξ) ∈]0, 1[3.15

We wish to construct a dynamical system which complies with the entropy16

growth criterion in the sense that entropy increases along the trajectories i.e.17

d/dtS (r(t)) ≥ 0. A naive choice is to choose ṙ close to ∇rS . We introduce18

the following dynamical system:19

(53)


α̇(t) = α(1− α)τ

( p(τ1(r), e1(r))

T (τ1(r), e1(r))
− p(τ2(r), e2(r))

T (τ2(r), e2(r))

)
,

ϕ̇(t) = ϕ(1− ϕ)
(µ(τ2(r), e2(r))

T (τ2(r), e2(r))
− µ(τ1(r), e1(r))

T (τ1(r), e1(r))

)
,

ξ̇(t) = ξ(1− ξ)e
( 1

T (τ1(r), e1(r))
− 1

T (τ2(r), e2(r))

)
.

Proposition 3. The dynamical system (53) satisfies the following properties.20

(1) If r(0) ∈]0, 1[3 then, for all time t > 0, one has r(t) ∈]0, 1[3.21

(2) If the condition (41) is satisfied at t = 0, then (τ, e) belongs to the segment22

[(τ1(r), e1(r))(t), (τ2(r), e2(r))(t)] for all time t > 0.23

(3) The mixture entropy increases along the trajectories24

(54)
d

dt
S (r(t)) ≥ 0.

Proof. The multiplicative term α(1−α) in the first equation of (53) ensures that the

right-hand side vanishes only if the term

∣∣∣∣ p(τ1(r), e1(r))

T (τ1(r), e1(r))
− p(τ2(r), e2(r))

T (τ2(r), e2(r))

∣∣∣∣ remains
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bounded when α tends to 0 or 1. The same holds for the equations on the remaining
fractions ϕ and ξ. This proves (1). Item (2) is nothing but a reformulation of (40).
Finally, the time derivative of the mixture entropy writes

d

dt
S (r(t)) = ∇S (r) · ṙ(t).

Since τ > 0, e > 0 and the fractions belong to ]0, 1[, it follows that the item (3)1

holds true. �2

4.1. Equilibria and attractivity. In the sequel, we let F(r) = (Fα,Fϕ,Fξ) be the3

right-hand side of (53), such that4

(55)


α̇(t) = Fα(r),

ϕ̇(t) = Fϕ(r),

ξ̇(t) = Fξ(r).

Proposition 4 (Equilibrium states). The equilibrium states for the dynamical5

system (53) are6

(1) Saturation states: either r∗ = (α∗, ϕ∗, ξ∗) or r# = (1−α∗, 1−ϕ∗, 1−ξ∗) with7

α∗ 6= ϕ∗ 6= ξ∗ ∈]0, 1[, defined by (50) such that τ∗i = τi(r
∗) = τi(r

#) and8

e∗i = ei(r
∗) = ei(r

#), i = 1, 2, corresponding to the characterization (48) of9

Proposition 2- (2).10

(2) Identification of phases 1 and 2: r = (β, β, β), β ∈]0, 1[ such that τ1(r) =11

τ2(r) = τ and e1(r) = e2(r) = e.12

The equilibria of the dynamical system are given by F(r) = 0. In the case of13

equilibria (1), consider that α 6= ϕ 6= ξ. Then, according to the Proposition 2- (2),14

there exists a unique triplet r∗ = (α∗, ϕ∗, ξ∗) such that the characterization (48)15

holds. It turns out that r# is also an equilibrium of the system. If the equilibrium16

r∗ corresponds to τ∗1 < τ < τ∗2 , e∗1 < e < e∗2, then the equilibrium r# corresponds17

to τ∗1 > τ > τ∗2 and e∗1 > e > e∗2 and conversely.18

Both r∗ and r# are equilibrium states since the two phases have the same EOS19

and, thus, they can be swapped.20

In the case of equilibria (2), the two phases coincide, in the sense that τ1 = τ2 = τ21

and e1 = e2 = e. The determination of the constant β ∈]0, 1[ depends on the initial22

data of the dynamical system (53). We emphasize that the equilibrium states23

r = (β, β, β) are valid for all states (τ, e) and go over the van der Waals surface. In24

other words, all states (τ, e, s(τ, e)) of the van der Waals surface are solutions of the25

optimization problem (37). Especially the pure liquid-vapor states, the metastable26

states but also unstable states of the spinodal zone are equilibria.27

Therefore, to go further and identify the physically admissible equilibrium states,28

we must investigate their stability and attractivity.29

Proposition 5 (Attractivity). The equilibrium states are classified as follow:30

• The saturation states r∗ = (α∗, ϕ∗, ξ∗) and r# = (1−α∗, 1−ϕ∗, 1− ξ∗) are31

attractive points,32

• The equilibrium r = (β, β, β) ∈]0, 1[, corresponding to the identification of33

the two phases, is strongly degenerate.34

Proof. We deal with the proof of the second item. The attractivity of the equilib-
rium states r∗ and r# is difficult to prove because the eigenvalues of the Jacobian
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matrix of F do not simplify. We give in Remark 2 numerical evidence for the attrac-
tivity of the equilibrium states r∗ and r#. In the sequel and for sake of readability,
we denote pi := p(τi(r), ei(r)), Ti := T (τi(r), ei(r)) and µi := µ(τi(r), ei(r)). The
goal now is to find the spectrum of the Jacobian matrix of F denoted by

DrF(r) :=

∂αFα(r) ∂ϕFα(r) ∂ξFα(r)
∂αFϕ(r) ∂ϕFϕ(r) ∂ξFϕ(r)
∂αFξ(r) ∂ϕFξ(r) ∂ξFξ(r)

 .

Consider the equilibrium r = (β, β, β) ∈]0, 1[3, which corresponds to the identifica-1

tion of the two phases. In that case, the Jacobian matrix DrF(r) reads2

(56)

DrF(r) =


τ ∂τ (

p

T
)(τ, e) −τ ∂τ (

p

T
)(τ, e)− e ∂e(

p

T
)(τ, e) e ∂e(

p

T
)(τ, e)

−τ ∂τ (
µ

T
)(τ, e) τ ∂τ (

µ

T
)(τ, e) + e ∂e(

µ

T
)(τ, e) −e ∂e(

µ

T
)(τ, e)

τ ∂τ (
1

T
)(τ, e) −τ ∂τ (

1

T
)(τ, e)− e ∂e(

1

T
)(τ, e) e ∂e(

1

T
)(τ, e)

 .

Since the middle column is the opposite of the sum of the two remaining columns,3

then the determinant of DrF(r) is zero and the Jacobian matrix admits a null4

eigenvalue. Hence the equilibrium r is a strongly degenerate. �5

Remark 2. As the saturation equilibrium r∗ = (α∗, ϕ∗, ξ∗) is concerned, the co-6

efficients of the Jacobian matrix DrF(r∗) do not simplify much and obtaining an7

explicit formulation of its eigenvalues is out of reach. So, we turn to the numerical8

illustration of the spectrum {λ1, λ2, λ3} of the matrix DrF(r∗) for some saturation9

states r∗ = (α∗, ϕ∗, ξ∗) with the van der Waals EoS with parameters (25).10

r∗ (τ, e) (τ∗1 , e
∗
1) (τ∗2 , e

∗
2) λ1 λ2 λ3

(0.71, 0.29, 0.39) (1.99, 2.1) (4.76, 2.80) (0.82, 1.80) -8.443 -1.290 -0.061
(0.94, 0.73, 0.82) (3.9, 2.49) (5.13, 2.77) (0.81, 1.73) -5.713 2.048 -0.055
(0.76, 0.22, 0.35) (2.39, 1.59) (8.23, 2.56) (0.73, 1.32) -8.477 -2.835 -0.110
(0.64, 0.14, 0.24) (1.79, 1.49) (8.25, 2.56) (0.73, 1.32) -9.044 -2.405 -0.097
(0.68, 0.25, 0.35) (1.89, 1.99) (5.11, 2.77) (0.81, 1.73) -8.660 -1.368 -0.065

One observes numerically that, for these saturation equilibria r∗, the Jacobian ma-11

trix DrF(r∗) admits three negative eigenvalues, which means that these equilibria12

are attractive. The same hold true for the equilibrium r#.13

To complete the study of equilibrium states, in particular to cope with the degen-14

erate state r, corresponding to the identification of the two phases, we investigate15

the attraction basins of r, r∗ and r#. We introduce the following functions with16

index I for Identification and S for Saturation:17

(57)
GS(r) = −S (r) + conc(s)(τ, e),

GI(r) = −S (r) + s(τ, e),

where conc(s)(τ, e) refers to the concave hull of the function s, see the definition18

(35).19

Proposition 6. The basins of attraction of the equilibrium states are the following:20

• In the spinodal zone, with (τ, e) ∈ ZSpinodal, GS is a Lyapunov function on21

the whole domain (α,ϕ, ξ) ∈]0, 1[3.22
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• In the liquid or vapor stable zones, with (τ, e) ∈ ZStable, GI is a Lyapunov1

function of the whole domain (α,ϕ, ξ) ∈]0, 1[3.2

Proof. The two functions are candidate to be a Lyapunov function, since3

• by construction GS(r∗) = 0. Indeed, the concerning equilibrium state is

r∗ = (α∗, ϕ∗, ξ∗) =

(
ϕ∗τ∗1
τ

, ϕ∗,
ϕ∗e∗1
e

)
where (τ∗1 , e

∗
1), (τ∗2 , e

∗
2) are characterized by proposition 2-2 and ϕ∗ satisfies

(40) and takes the following expression

ϕ∗ =
τ − τ∗2
τ∗1 − τ∗2

=
e− e∗2
e∗1 − e∗2

.

Denoting p∗ = p(τ∗1 , e
∗
1) = p(τ∗1 , e

∗
2), T ∗ = T (τ∗1 , e

∗
1) = T (τ∗1 , e

∗
2), and4

µ∗ = µ(τ∗1 , e
∗
1) = µ(τ∗1 , e

∗
2), one has5

(58)

GS(r∗) = −ϕ∗s(τ∗1 , e∗1)− (1− ϕ∗)s(τ∗2 , e∗2) + p∗/T ∗τ + e/T ∗ + µ∗/T ∗

= p∗/T ∗(τ − ϕ∗τ∗1 − (1− ϕ∗)τ∗2 ) + 1/T ∗(e− ϕ∗e∗1 − (1− ϕ∗)e∗2)

+ µ∗/T ∗(1− ϕ∗ − (1− ϕ∗))
= 0,

using the Gibbs relation (12). The same holds for the equilibrium r#.6

Similarly GI(r) = 0;7

• it holds∇rGS(r) = ∇rGI(r) = −∇rS (r). Then we obtain as well∇rGS(r∗) =8

∇rGS(r#) = ∇rGS(r) = 0, according to (52);9

• for the same reason, and using (54), we have

d

dt
GS(r(t)) =

d

dt
GI(r(t)) ≤ 0.

It remains to check the positivity of GS and GI in a neighborhood of r∗, r# and r10

respectively, depending on the domain the state (τ, e) belongs to.11

Saturation with (τ, e) ∈ ZSpinodal. By definition of conc(s), conc(s)(τ, e) > S (r)12

for r 6= r∗ (or equivalently r 6= r#) . Hence GS(r) > 0.13

Stable states with (τ, e) ∈ ZStable. We make use again of the concave hull of s

GI(r) = −ϕs (α/ϕτ, ξ/ϕe)− (1− ϕ)s ((1− α)/(1− ϕ)τ, (1− ξ)/(1− ϕ)e)− s(τ, e)
≥ −ϕconc (s)(α/ϕτ, ξ/ϕe)

− (1− ϕ)conc (s)((1− α)/(1− ϕ)τ, (1− ξ)/(1− ϕ)e)

− s(τ, e)
≥ −conc (s)(α/ϕτ + (1− α)/(1− ϕ)τ, ξ/ϕe+ (1− ξ)/(1− ϕ)e)− s(τ, e)
= −conc (s)(τ, e)− s(τ, e).

In the liquid or vapor stable zones, (τ, e) belongs to the convex hull of the graph14

of s, that is conc(s)(τ, e) = s(τ, e). Then GI(r) ≥ 0 and the equality occurs if15

r = r. �16

When considering the metastable regions with (τ, e) ∈ ZMetastable, there are two17

basins of attraction, numerically illustrated in Section 4.2.3, see Figure 9. Unlike18

in the spinodal zone, the function GI is non-negative in a neighborhood of (τ, e),19

provided that (τ, e) belongs to a zone of strict concavity of s. It means that both20

r and r∗ are reachable. The two basins of attraction are separated by an unstable21
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manifold, which is difficult to determine theoretically and numerically as well. It1

is already tough in the isothermal framework, see [24], [14] and[15]. In the latter2

reference the determination of the basins of the metastable states is more precise,3

even if it is not explicit, the basins being defined through the application of the4

implicit function theorem.5

4.2. Numerical illustrations. This section provides numerical simulations to il-6

lustrate the behavior of the dynamical system (53) and the attraction of each pos-7

sible equilibrium states studied in Propositions 4 and 6.8

The computations correspond to the reduced van der Waals EoS, with parameters9

(25). Cauchy problems for the system (53) are solved using a BDF method for10

stiff problems available in the Python ODE-solver package. The numerical results11

are computed for a large computational time Tf = 200s. For each test case, the12

state (τ, e) of the total system is picked either in the spinodal zone ZSpinodal, in13

stable zones ZStable or in a metastable zones ZMetastable, as depicted in Figure 2.14

We provide the associated vector field in the (α,ϕ, ξ) phase space and plot some15

trajectories in the phase space starting from arbitrary initial state r(0) in order to16

illustrate the attractivity of the equilibria. Several complementary trajectories are17

represented in the planes (τ, e) and (τ, p).18

4.2.1. Spinodal zone. The purpose is to illustrate the fact that, for any initial data19

r(0) ∈]0, 1[3, if the state (τ, e) belongs to the spinodal zone ZSpinodal, the correspond-20

ing attraction points are either r∗ or r#, that is the system achieves a saturation21

state of the saturation dome, see Proposition 6.22

We consider the state (τ, e) = (2, 2.5) belospnging to the spinodal zone. The23

vector field of the dynamical system (53) is represented in Figure 3 by light blue24

arrows. For some random initial conditions r(0) ∈]0, 1[3 (representing by green25

or yellow dots), the corresponding trajectories converge either towards the point26

r∗ = (α∗, ϕ∗, ξ∗) (green lines converging towards the green star) or towards r# =27

(1 − α∗, 1 − ϕ∗, 1 − ξ∗) (yellow lines converging towards the yellow star). In both28

cases, the asymptotic state corresponds to the unique state (τ∗i , e
∗
i ), i = 1, 2, defined29

by (48), which belongs to the saturation dome, see Proposition 2-(2).30

In Figures 4 and 5 are plotted trajectories corresponding to the initial condition31

(59) r(0) = (0.2, 0.5, 0.42),

which corresponds to a state (τ1(r), e1(r))(0) = (0.8, 2.1) belonging to the sta-32

ble liquid zone with p1(0) = 0.2986, T1(0) = 1.1166 and µ1(0) = 2.561, and33

a state (τ2(r), e2(r))(0) = (3.2, 2.9) belonging to a metastable vapor state with34

p2(0) = 0.1006, T2(0) = 1.0708 and µ2(0) = 2.2736. Focusing on Figure 4-top,35

the trajectory (τ1(r), e1(r))(t) is represented with a dashed magenta line. One ob-36

serves that the trajectory starts from the magenta subcritical isothermal curve, goes37

through the stable liquid zone and converges towards a point of the saturation dome,38

see Figure 4-middle for a zoom of the trajectory. The trajectory (τ2(r), e2(r))(t)39

(dashed orange line) is similar, except that it remains in the metastable vapor zone40

before converging towards a point of the saturation dome. The saturation asymp-41

totic state is characterized by the fractions42

(60) r(Tf ) = (0.255, 0.55, 0.47),

with (τ1, e1)(Tf ) = (0.923, 2.15), (τ2, e2)(Tf ) = (3.33, 2.93) and p1(Tf ) = p2(Tf ) =43

0.1, T1(Tf ) = T2(Tf ) = 1.077), µ1(Tf ) = µ2(Tf ) = 2.284. See Figure 4-bottom for a44
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Figure 3. Spinodal zone: vector field of the dynamical system
(53) (light blue arrows). The red line corresponds to the line α =
ϕ = ξ. Depending on the initial condition r(0), the trajectories
converge either towards the equilibrium r∗ = (α∗, ϕ∗, ξ∗) (green
lines) or towards r# = (1 − α∗, 1 − ϕ∗, 1 − ξ∗) (yellow lines). In
both case, the asymptotic regime corresponds to the state (τ∗i , e

∗
i ),

i = 1, 2, defined by (48), belonging to the saturation dome.

zoom of the trajectory. Figures 5 represent the complementary trajectories plotted1

in the (τ, p) plane.2

4.2.2. Stable phase zone. The purpose is to illustrate the attraction of the line3

α = ϕ = ξ for any initial data r(0) ∈]0, 1[3, as soon as the state (τ, e) belongs4

to a stable phase zone. The corresponding equilibrium is then the equilibrium5

(τ1(r), e1(r)) = (τ2(r), e2(r)) = (τ, e), see Proposition 6.6

We consider a state (τ, e) = (3, 3.1) belonging to the stable vapor zone. The7

vector field of the dynamical system (53) is represented in Figure 6 by light blue8

arrows. For some random initial conditions r(0) ∈]0, 1[3 (represented by green dots),9

the corresponding trajectories (green lines) converge towards points belonging to10

the line α = ϕ = ξ plotted in red. Then the asymptotic states are such that11

(τ1(r), e1(r)) = (τ2(r), e2(r)) = (τ, e).12

In Figures 7 and 8 are plotted trajectories with the initial condition13

(61) r(0) = (0.134, 0.5, 0.338),

which corresponds to a state (τ1(r), e1(r))(0) = (0.8, 2.1) belonging to the sta-14

ble liquid zone, and a state (τ2(r), e2(r))(0) = (5.196, 4.1044) corresponding to a15

supercritical state. Focusing on Figure 7, the trajectory (τ1(r), e1(r))(t) is repre-16

sented with a dashed magenta line. One observes that it starts from the magenta17

subcritical isothermal curve, goes over the critical point entering the supercritical18

zone, and finally converges towards the point (τ, e). The trajectory (τ2(r), e2(r))(t)19
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Figure 4. Spinodal zone, from top to bottom. Trajectories of the
dynamical system (53) in the (τ, e) plane. Starting from an initial
state (τ1(r), e1(r))(0) in the stable liquid region (on the magenta
isothermal curve), the trajectory (τ1(r), e1(r))(t) is represented
with a dashed magenta line and converges towards the saturation
dome. The trajectory (τ2(r), e2(r))(t) is represented in orange.
Middle and bottom figures: zoom of trajectories (τ1(r), e1(r))(t)
and (τ2(r), e2(r))(t) respectively.
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Figure 5. Spinodal zone, from top to bottom. Trajectories of the
dynamical system (53) in the (τ, p) plane. Starting from an initial
state (τ1(r), p(τ1(r), e1(r)))(0) in the liquid region (on the isother-
mal curve in magenta), the trajectory (τ1(r), p(τ1(r), e1(r)))(t) is
represented with a dashed magenta line and converges towards the
saturation dome. The trajectory (τ2(r), p(τ2(r), e2(r)))(t) is repre-
sented in orange. Middle and bottom figures: zoom of trajectories
(τ1(r), p(τ1(r), e1(r)))(t) and (τ2(r), p(τ2(r), e2(r)))(t) respectively.
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Figure 6. Stable phase zone: vector field of the dynamical system
(53) (light blue arrows). The red line corresponds to the line α =
ϕ = ξ. For any initial condition r(0), the trajectories converge
towards a point belonging to the line α = ϕ = ξ, corresponding to
the state (τ, e).

.

(dashed orange line) is similar, going from the supercritical zone to the stable va-1

por zone and finally converging towards the point (τ, e). Figure 8 represents the2

same trajectories plotted in the (τ, p) plane. One observes that the trajectory3

of (τ1(r), p(τ1(r), e1(r)))(t) starts from the stable liquid zone, crosses the critical4

isothermal curve twice before converging towards the point (τ, p(τ, e)).5

4.2.3. Metastable zone. The purpose is to illustrate the fact that, if the state (τ, e)6

belongs to a metastable zone, for any initial data r(0) ∈]0, 1[3, there exist two7

possible attraction points.8

We consider a state (τ, e) = (3.2, 2.5) belonging to the metastable vapor zone with9

p(τ, e) = 0.0759 and T (τ, e) = 0.9375. The vector field of the dynamical system (53)10

is represented in Figure 9 by light blue arrows. For some random initial conditions11

r(0) ∈]0, 1[3 (represented by green or yellow dots), the complementary trajectories12

(green or yellow lines) converge towards13

• either an attraction point which lies on the line α = ϕ = ξ (yellow trajec-
tories). In that case the asymptotic state satisfies

(τ1(r), e1(r)) = (τ2(r), e2(r)) = (τ, e),

and remains metastable, see Propositions 2-(1) and 4-(1);14

• either the attraction point r∗ = (α∗, ϕ∗, ξ∗) (green trajectories) which con-15

curs with the unique state (τ∗i , e
∗
i ), i = 1, 2, defined by (48), which belongs16

to the saturation dome, see Propositions 2-(2) and 4-(2).17
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Figure 7. Stable phase zone. Trajectories of the dynamical
system (53) in the (τ, e) plane. Starting from an initial state
(τ1(r), e1(r))(0) in the stable liquid region (on the isothermal curve
in magenta), the trajectory (τ1(r), e1(r))(t) is represented with
a dashed magenta line and converges towards the state (τ, e).
The trajectory (τ2(r(t)), e2(r))(t) is represented in orange. Mid-
dle and bottom figures: zoom of trajectories (τ1(r), e1(r))(t) and
(τ2(r), e2(r))(t) respectively.
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Figure 8. Stable phase zone, from top to bottom. Trajecto-
ries of the dynamical system (53) in the (τ, p) plane. Start-
ing from an initial state (τ1(r), p(τ1(r), e1(r)))(0) in the stable
liquid region (on the isothermal curve in magenta), the trajec-
tory (τ1(r), p(τ1(r), e1(r)))(t) is represented with a dashed ma-
genta line and converges towards the point (τ, e). The trajec-
tory (τ2(r), p(τ2(r), e2(r)))(t) is represented in orange. Middle and
bottom figures: zoom of trajectories (τ1(r), p(τ1(r), e1(r)))(t) and
(τ2(r), p(τ2(r), e2(r)))(t) respectively.
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Figure 9. Metastable zone: vector field of the dynamical sys-
tem (53) (light blue arrows). The red line corresponds to the line
α = ϕ = ξ. For any initial condition r(0), the trajectories converge
either towards a point belonging to the line α = ϕ = ξ, corre-
sponding to the state (τ, e) (yellow trajectories), or to the point
r∗ = (α∗, ϕ∗, ξ∗), which concurs with a state belonging to the sat-
uration dome (green trajectories).

Metastable state and perturbation within the phase. In Figures 10 and 11 the1

represented trajectories correspond to a realization of the dynamical system for the2

initial condition3

(62) r(0) = (0.5, 0.5, 0.55).

It boils down to an initial state (τ1(r), e1(r))(0) = (3.2, 2.75) in the metastable4

vapor zone with p1(0) = 0.091, T1(0) = 1.02, µ1(0) = 2.15, and to an initial state5

(τ2(r), e2(r))(0) = (3.2, 2.25) belonging to the spinodal zone with p2(0) = 0.06,6

T2(0) = 0.85, µ2(0) = 1.75. Notice that in this case, it holds e1(r)(0) > e > e2(r)(0).7

The perturbation is small enough to ensure that the trajectories (τi(r), ei(r))(t)8

converge towards the point (τ, e) in the metastable zone. The asymptotic state is9

characterized by the fractions10

(63) r(Tf ) = (0.499, 0.499, 0.499),

with p1(Tf ) = p2(Tf ) = 0.0759 and T1(Tf ) = T2(Tf ) = 0.9374.11

Metastable state and perturbation outside the phase. We provide in Figures 1212

and 13 the trajectories of the dynamical system for an initial condition13

(64) r(0) = (0.16, 0.5, 0.328).

It corresponds to an initial state (τ1(r), e1(r))(0) = (0.8, 2.1) in the stable liq-14

uid zone and an initial state (τ2(r), e2(r))(0) = (5.376, 3.36) belonging to the sta-15

ble vapor zone. The perturbation is large enough to ensure that the trajectories16

(τi(r), ei(r))(t) converge towards a state belonging to the saturation dome.17
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Figure 10. Metastable state and perturbation within the phase.
Top figure: trajectories of the dynamical system (53) in the
(τ, e) plane. Starting from an initial state (τ1(r), e1(r))(0) in
the metastable vapor region (on the magenta isothermal curve),
the trajectory (τ1(r), e1(r))(t) is represented with a dashed ma-
genta line and converges towards the state (τ, e). The trajectory
(τ2(r), e2(r))(t) is represented in orange and starts with an initial
condition in the spinodal zone. Bottom figure: zoom of trajectories
(τi(r), ei(r))(t).
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Figure 11. Metastable state and perturbation within the phase.
Top figure: trajectories of the dynamical system (53) in the (τ, p)
plane. Starting from an initial state (τ1(r), p(τ1(r), e1(r)))(0) in the
metastable vapor region (on the isothermal curve in magenta), the
trajectory (τ1(r), p(τ1(r, e1(r))))(t) is represented with a dashed
magenta line and converges towards the point (τ, e). The coun-
terpart for the state (τ2(r), p(τ2(r), e2(r)))(t) is represented in
orange, and starts from an initial datum in the spinodal zone.
Bottom figure: zoom of trajectories (τ1(r), p(τ1(r), e1(r)))(t) and
(τ2(r), p(τ2(r), e2(r)))(t) respectively.
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Figure 12. Metastable state and perturbation outside the phase.
From top to bottom: trajectories of the dynamical system (53) in
the (τ, e) plane. Starting from an initial state (τ1(r), e1(r))(0) in
the metastable vapor region (on the magenta isothermal curve),
the trajectory (τ1(r), e1(r))(t) is represented with a dashed ma-
genta line and converges towards the state (τ, e). The trajectory
(τ2(r), e2(r))(t) is represented in orange and starts with an initial
condition in the spinodal zone. Middle and bottom figures: zoom
of trajectories (τi(r), ei(r))(t).



A MODEL OF LIQUID-VAPOR INTERACTION WITH METASTABILITY 29

Figure 13. Metastable state and perturbation outside the
phase. From top to bottom: trajectories of the dynamical sys-
tem (53) in the (τ, p) plane. Starting from an initial state
(τ1(r), p(τ1(r), e1(r)))(0) in the stable liquid region (on the ma-
genta isothermal curve), the trajectory (τ1(r), p(τ1(r), e1(r)))(t) is
represented with a dashed magenta line and converges towards
the point (τ, e). The trajectory (τ2(r), p(τ2(r), e2(r)))(t) is repre-
sented in orange. Middle and bottom figures: zoom of trajectories
(τ1(r), p(τ1(r), e1(r)))(t) and (τ2(r), p(τ2(r), e2(r)))(t) respectively.
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5. A homogeneous relaxation model1

The aim of this Section is to investigate the impact of the fluid dynamics on the2

stability of metastable states and the apparition of phase transition. To do so we3

now consider the liquid-vapor mixture as a compressible medium. It is described4

by its density ρ(t, x) (and τ(t, x) = 1/ρ(t, x) its specific volume), its velocity u(t, x)5

and its internal energy e(t, x), depending on the time variable t ∈ R+ and the one-6

dimensional space variable x ∈ R. Since both phases evolve with the same velocity7

u, we focus on so-called homogeneous models in the spirit of [3, 22].8

The homogeneous model reads9

(65)



∂t(ρα) + ∂x(ρuα) =
ρ

ε
Fα(r),

∂t(ρϕ) + ∂x(ρuϕ) =
ρ

ε
Fϕ(r),

∂t(ρξ) + ∂x(ρuξ) =
ρ

ε
Fξ(r),

∂t(ρ) + ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2 + p) = 0,

∂t(ρE) + ∂x(ρuE + up) = 0,

where E = e + u2/2 is the total energy. The last three equations correspond to10

the Euler’s system with a mixture pressure law p to be define in the sequel. The11

first three equations are evolution equations of the fractions r = (α,ϕ, ξ) ∈]0, 1[3,12

with relaxation source terms (Fα,Fϕ,Fξ) towards the Thermodynamic equilibrium,13

which coincide with the dynamical system (53) studied in the previous section.14

The parameter ε > 0 stands for a relaxation time towards the thermodynamic15

equilibrium.16

17

Remark 3. We have chosen to use the same relaxation time-scale for the three
relaxation terms. This choice might be non physical according to few references.
In [13] the author provides an estimate of the mechanical time relaxation in a two-
phase flow. In [25] the authors consider a two-velocity model and order the thermal
time-scale λT , the mechanical relaxation time scale λp and the kinetic relaxation
time-scale λu as follows

0 < λp, λu � λT .

Hence one should consider at least another relaxation time in the equation on the18

energy fractions. We choose to consider the same time-scale for all the relaxation19

processes rather than impose an arbitrary choice of different time-scales. One must20

be aware that this choice may lead to stiff problems and numerical difficulties.21

5.1. Properties of the homogeneous relaxation model. First, we focus on the22

convective part of the model (65). It consists in the Euler system complemented23

with convection equations of the fractions r(t, x); thus it inherits from the wave24

structure of the Euler system. In order to close the system, in agreement with25

the thermodynamical constraints presented in the previous sections, the considered26

pressure p is a function of the density ρ, the internal energy e and the fraction27

vector r. Following [3, 21, 18, 22], the mixture pressure law should be derived from28

the mixture entropy function S defined in (51).29

Highlighting the dependency on (τ, e), the entropy of the mixture reads30

(66) S(τ, e, r) = ϕs(τ1(r), e1(r)) + (1− ϕ)s(τ2(r), e2(r)),
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where s is again the van der Waals EoS and the functions τi(r) and ei(r) are defined1

in (50). The associated pressure p and the temperature T of the mixture are deduced2

from an extended Gibbs relation3

(67) TdS(τ, e, r) = de+ pdτ +
∂S
∂α

dα+
∂S
∂ϕ

dϕ+
∂S
∂ξ
dξ.

Then the definitions of the mixture temperature and pressure, as functions of4

(τ, e, r), are5

(68)

1

T (τ, e, r)
=

ξ

T (τ1(r), e1(r))
+

1− ξ
T (τ2(r), e2(r))

,

p(τ, e, r)

T (τ, e, r)
= α

p(τ1(r), e1(r))

T (τ1(r), e1(r))
+ (1− α)

p(τ2(r), e2(r))

T (τ2(r), e2(r))
.

The sound speed of the system (65) is6

(69) c2 = −τ2 ∂

∂τ
p+ τ2p

∂

∂e
p,

which, using the expression of the mixture pressure (68), simplifies to7

(70)

− c2

Tτ2
=

1

ϕ
(−α, ξp)Hs1

(
−α
ξp

)
+

1

1− ϕ
(−(1− α), (1− ξ)p)Hs2

(
−(1− α)
(1− ξ)p

)
,

where Hsi denotes the hessian matrix of the phasic entropy s at (τi, ei)8

(71) Hsi(τi, ei) =


∂2s

∂τ2
i

(τi, ei)
∂2s

∂τi∂ei
(τi, ei)

∂2s

∂ei∂τi
(τi, ei)

∂2s

∂e2
i

(τi, ei)

 ,

and the dependency to the variables has been skipped for readability reasons.9

The convective system is hyperbolic if and only if the right-hand side of (70)10

is negative. This is the case if the hessian matrices Hs1 and Hs2 are negative11

definite, which is true in concavity region of the van der Waals entropy, that is12

outside the spinodal region ZSpinodal. Hence the system is non-strictly hyperbolic.13

However, it has been highlighted in [24] in the isothermal context that the domains14

of hyperbolicity of (65) strongly depend on the attraction basins of the dynamical15

system (53). More precisely, the invariant domains of hyperbolicity for the relaxed16

system are subsets of the attraction basins of the dynamical system.17

The convective part of the model (65) inherits the wave structure of the Euler18

system. The fields associated with the fractions r are linearly degenerated with19

the eigenvalue u and the mass equation is linearly degenerated with velocity u.20

The momentum and energy conservation laws are genuinely nonlinear fields with21

velocities u± c because the system inherits from the Euler system with a complex22

EoS. Hence one can mimic the proof given in [17] for instance. But, the proof holds23

true only in the concavity region of the mixture entropy (66), that is to say in24

the region of strict hyperbolicity. The Riemann invariants associated to the wave25

of velocity u are the velocity u and the pressure. Moreover the volume fraction,26

the mass fraction and the energy fraction are Riemann invariants associated to the27

genuinely nonlinear waves. The positivity of the fractions is ensured by both the28

positivity property of the dynamical system, see Proposition 3-(1), and the form of29

the convection equations of the fractions r, see [23].30
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5.2. Numerical illustrations. Numerous numerical schemes have been proposed1

for homogeneous models with relaxation, see again [3] and [22] for models involving2

stiffened gas or tabulated laws. We propose here a very standard approach, and3

take a special interest to numerical illustrations.4

The numerical approximation consists in a fractional step method.5

We restrict to regular meshes of size ∆x = xi+ 1
2
− xi− 1

2
, i ∈ Z. The time step6

is ∆t = tn+1 − tn, n ∈ N. We focus on the convective part of (65) with an initial7

condition8

(72)

{
∂tW + ∂xF (W ) = 0,

W (0, x) = W0(x),

withW = (ρα, ρϕ, ρξ, ρ, ρu, ρE)T , and F (W ) = uW+pD, withD = (0, 0, 0, 0, 1, u)T .9

Let W (tn, x) be approximated by10

(73) Wn
i =

1

∆x

∫ x
i+1

2

x
i− 1

2

W (tn, x) dx.

Integrating the system (72) on the space-time domain [xi− 1
2
, xi+ 1

2
] × [tn, tn+1,∗]11

provides12

(74)

∫ x
i+1

2

x
i− 1

2

(W (tn+1,∗, x)−W (tn, x))dx

+

∫ tn+1,∗

tn
(F (W (t, xi+ 1

2
))− F (W (t, xi− 1

2
)))dt = 0.

Using the notation (73), one obtains13

(75) Wn+1,∗
i = Wn

i −
∆t

∆x

(
Fni+ 1

2
−Fni− 1

2

)
,

where
∫ tn+1,∗

tn
F (W (t, xi+ 1

2
))dt is approximated by an explicit numerical flux clas-14

sically involving the two neighboring cells of interface xi+ 1
2
: Fn

i+ 1
2

= F (Wn
i ,W

n
i+1)15

In the following, we choose the explicit HLLC numerical flux [34] to define the16

fluxes Fni+1/2 through the interface xi+1/2.17

The source terms of the system (65) are accounted for discretizing18

(76)


d

dt
ρ(t) = 0,

d

dt
(ρu)(t) = 0,

d

dt
(ρE)(t) = 0,


d

dt
(ρα)(t) =

ρ

ε
Fα(r, ρ, e),

d

dt
(ρϕ)(t) =

ρ

ε
Fϕ(r, ρ, e),

d

dt
(ρξ)(t) =

ρ

ε
Fξ(r, ρ, e).

It can be written in an equivalent manner19

(77)


d

dt
α(t) =

1

ε
Fα(r(t), ρ(0), e(0)),

d

dt
ϕ(t) =

1

ε
Fϕ(r(t), ρ(0), e(0)),

d

dt
ξ(t) =

1

ε
Fξ(r(t), ρ(0), e(0)).

The numerical approximation Wn+1 is an approximated solution of the system (76)20

at time t = ∆t with the initial condition Wn+1,∗ deduced from the convection step.21
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The numerical method for the convective part has been validated on diphasic1

test cases with a real van der Waals EoS proposed in [12]. Our HLLC results2

are comparable to the results given by the Rusanov scheme. Nonetheless these two3

numerical schemes are not robust enough to solve properly the contact discontinuity.4

This inaccuracy is related to the difficulty in conservative methods for Euler-like5

models with nonlinear equation of state. More accurate results may have been6

obtained using the VFRoe-ncv or VFFC schemes defined in [12] or adaptive schemes7

like in [27].8

In order to capture accurately the thermodynamic equilibrium, one should ideally9

consider infinitely fast relaxation with ε = 0. The integration of the source terms10

(77) reduces the projection of the solution on the appropriate equilibrium (described11

in Proposition 4), depending on the basin of attraction that state Wn+1,∗ belongs12

to.13

Unfortunately, as mentioned in Section 4.1, the boundaries of the basins of at-14

traction are not explicitly defined. This is for instance the case of the basins of15

attraction of the spinodal zone and the metastable zones. These basins are either16

delimited by the saturation dome, which determination requires the resolution of17

the nonlinear system (48), or by an unstable manifold, which numerical approxi-18

mation is intrinsically not reachable. Hence, we consider in the sequel finite but19

sufficiently small relaxation time parameter ε coupled with a Runge-Kutta 4 inte-20

gration method.21

The following numerical results are solely illustrations of the homogeneous relax-22

ation model behaviour. The development of more appropriate numerical strategies23

is beyond the scope of the present work.24

5.2.1. Stable diphasic test case. We provide a validation test case which mimics25

the one proposed in [12], for a non-reduced van der Waals equation of state. The26

Riemann data correspond to a left stable liquid state, see the magenta dot in Figure27

14 and a right stable vapor state, see the coral dot in Figure 14, namely28

(78)
ρL = 1.111, uL = 0, pL = 0.2, αL = ϕL = ξL = 10−6,

ρR = 0.277, uR = 0, pR = 0.11 αR = ϕR = ξR = 10−6.

This test case corresponds to a single-phase subsonic 1-rarefaction wave, since29

the fractions are constant and small. The domain [0, 1] is decomposed into 100030

cells and the discontinuity is applied at x0 = 0.5. The final time of computation is31

0.4 and the CFL coefficient is 0.9.32

The global behaviour given in Figure 15 is consistent with the results provided33

in [12]. In particular, the curve profiles around the contact discontinuity is not34

precise enough. A more robust numerical flux should be considered to overcome the35

problem, which actually disappears as the grid is refined. Note that the undershoots36

remain in the pressure and velocity profiles when refining the grid, even though their37

amplitude decrease. The fractions are not plotted since they are constant in space38

and equal to 10−6.39

5.2.2. Weak acoustic perturbation of a metastable vapor state. This example con-40

sists in a constant metastable vapor state submitted to a weak compression. A41

similar test case has been studied in [15] in the isothermal case. The initial state is42

(79) ρ = 0.3125, p = 0.09, α = 0.16, ϕ = 0.5, ξ = 0.3285,
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Figure 14. Initial data for the stable diphasic test in plane (τ, p).

which corresponds to the magenta dot in Figure 16. We impose a small compression1

from the left with velocity uL = 0.1, while uR = 0. The domain [0, 1] is discretized2

with 1000 cells, and the solution is computed at time 0.1, with a CFL number 0.9.3

In Figure 17, one observes the appearance of a droplet around x = 0.5. In the4

droplet, the density reaches a saturation value which corresponds to the coral state5

(τ∗, p∗) plotted in Figure 16. Indeed, the fractions are different but the pressures6

pi, the temperatures Ti and the chemical potential µi (which are not plotted here)7

are equal.8

5.2.3. Strong acoustic perturbation of a metastable vapor state. In this case, we keep9

the same initial data as in the previous one but we impose a stronger compression10

from the left with velocity uL = 0.9. A similar test case is provided in [15] in11

the isothermal case. The domain [0, 1] is also discretized with 1000 cells, and the12

solution is computed at time 0.1, with a CFL number 0.9. Here, the strong com-13

pression induces the appearance of a droplet which moves from the left to the right,14

see Figure 19. One observes not only that the pressures pi, the temperatures Ti and15

the chemical potentials µi (which are not plotted here) are equal but also that the16

fractions are equal inside the droplet. Hence only one phase remains in the droplet.17

Concentrating on the density and pressure values inside the droplet, one observes18

that it coincides with a supercritical state (τ∗, p∗), represented by a coral dot in19

Figure 18.20

6. Conclusion21

This paper concerns the construction of appropriate relaxation source terms to-22

wards thermodynamic equilibrium for a liquid-vapor flow with the possible appear-23

ance of metastable states. Extending the works [24, 15] in the isothermal context,24

the two phases are assumed to follow the same non convex van der Waals equation25

of state. We provide time evolution equations of the fractions of volume, mass and26
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Figure 15. Stable diphasic test. From top left to bottom right:
density profile, velocity, pressure, internal energy and temperature
profile with respect to the space variable.

energy of one of the phases which guarantee the growth of the mixture entropy.1

The dynamical model admits three major properties. First the attractive equilibria2

are either saturation states, characterized by the equalities of the phasic pressures,3

temperatures and chemical potentials, or stable or metastable states, for which the4

two phases coincide. In the latter case, the equilibrium states correspond to the5

equality of the fractions to some asymptotic value strictly between 0 and 1. The6

fluid is either in a liquid or vapor, metastable or stable, state, but the fractions do7

not cancel, in contrast with the classical Baer-Nunziato type models. Second, when8

considering a mixture state belonging to a metastable zone, there are two possi-9

ble equilibria depending the initial condition on the fractions. The system either10

reaches a saturation state or converges towards the metastable initial state charac-11

terized by the identification of the two phases. Third, the systems allow to deal with12

supercritical cases as well. The method we propose here could be extended to more13
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Figure 16. Initial (τi, ei) and intermediate (τ∗, e∗) data for a
weak acoustic perturbation of a metastable vapor state in the plane
(τ, p).

realistic non convex cubic equations of state as considering Soave-Redlich-Kwong1

[33] or the Peng-Robinson [29] models. Using tabulated laws could be a real issue2

because of the difficulty of determining the attraction basins. Another issue is the3

coupling with fluid dynamics, which is merely illustrated here. It deserves a more4

careful study, from both theoretical and numerical viewpoints.5
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