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Abstract  

A combined experimental and theoretical study on molecular junctions with asymmetry 

in both the electrode type and asymmetry in the anchoring group type is presented here. 

A scanning tunneling microscope is used to create the “anti-symmetric” Au-S-(CH2)n-

COOH-graphene molecular junctions and determine their conductance. These 

measurements are combined with electron transport calculations based on Density 

Functional Theory (DFT) to analyze the electrical conductance and its length 

attenuation factor from a series of junctions of different molecular length (n). Our 

results show an unexpected trend with a rather high conductance and a smaller 

attenuation factor for the Au-S-(CH2)n-COOH-graphene configuration compared to the 

equivalent junction with the “symmetrical” COOH contacting using the HOOC-(CH2)n-

COOH series. Due to the effect of the graphene electrode, the attenuation factor is also 

smaller than the one obtained for Au/Au electrodes. These results are interpreted 

through the relative molecule/electrode couplings and molecular level alignments as 

determined with DFT. We show that in an anti-symmetric junction, the electrical current 

flows through the less resistive conductance channel, similarly to what is observed in 

the macroscopic regime. 

 

Introduction 

Aviram and Ratner first proposed the creative idea of using molecules as rectifiers by 

connecting molecules within a sandwich structure.1 Since then, molecular electronics 

has been put forward as a notion for extending the physical scale limits of conventional 

silicon integrated circuits. In terms of technical breakthrough in the measurement of 

electrical current through “molecular circuits” a key breakthrough was made in 1988 

by Aviram et al., who deployed a scanning tunneling microscope (STM) to observe the 

I-V characteristics of an “anti-symmetrical” semiquinone containing molecular bridges 

(by “anti-symmetrical” we mean here molecular bridges which do not have a center of 

symmetry, either as a result of their intrinsic molecular symmetry or as a result of 

different contacting to the electrode contacts at either end). This was a seminal attempt 
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to measure the electrical properties of single molecules using a STM to record the I-V 

response for molecular junctions (MJs).1 Today, mechanically controlled break 

junctions (MCBJ)2, scanning tunneling microscopy-break junctions (STM-BJ)3, 

conductive probe atomic scanning force microscopy (CP-AFM)4 and STM I(s)5 (I = 

current, s = distance) have all been developed as effective methods to characterize the 

essential properties of MJs. Examples of the use of these techniques to study the 

electrical characteristics of single molecule can be found in review.6-12  

 

 

So far, well-studied molecular junction systems most often have symmetric 

configurations, for instance using molecules terminated with similar anchoring groups 

at each extremity of the junction, including dithiol13-15 , diamine14, 16  and dicarboxylic 

acid14, 17etc. Likewise, the majority of single-molecule electrical studies have used the 

same metal contact types on either respective side, with gold being the most common6-

12, although other electrodes have been used such as Cu18, 19 and Ag18 etc. There have 

also been a selection of studies where different contact electrodes have been used for 

example gold as one contact, with the second contact being graphite or graphene20 or 

semiconductors such as gallium arsenide21or silicon.22 Nevertheless, the majority of 

single molecule electrical characterizations have been carried out with both 

symmetrical molecules and identical metal contact types at either end of the molecular 

bridge. Such symmetrical MJ configurations have been welcome since they are 

generally most readily constructed particularly with gold contacts and have formed the 

testbed for most fundamental studies of charge flow through single molecule 

junctions.6-12 However, anti-symmetrical configurations occur opportunities for new 

ways of generating electrical functionality as such rectification, switching, molecular 

transistor behavior and charge storage. Indeed, some of the founding studies in 

molecular electronics demonstrated rectification through the use of directionally 

orientated and non-symmetric molecular monolayers, formed for example by 

Langmuir-Blodgett methods.23, 24 A number of studies25 have attempted to describe how 

introducing asymmetry into single molecule electrical junctions can impact on the 
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current-voltage or electrical conductance response. For example, Martin et al.26 found 

that a series of molecules (SH-(CH2)n-COOH) with anti-symmetric anchoring groups 

exhibits a lower conductance than their comparable symmetric molecules. On the other 

hand, Wang et al.27 presented an investigation of 1,4-disubstituted benzene molecular 

junctions and they analyzed molecular rectification and the impact arising from anti-

symmetric anchoring groups. Diez-Perez et al.28 have achieved current rectification at 

the single molecule level by controlling the orientation of a non-symmetric diblock 

dipyrimidinyldiphenyl molecule bound between a pair of gold electrode contacts which 

responded as a single molecule diode. Other examples of the use of anti-symmetric MJs 

to create the future single-molecule information processing devices (rectification, 

switching and negative differential resistance) can be found in review.29 

 

In our previous works, we have investigated anti-symmetric hybrid Au-molecule-

graphene junctions, where the anti-symmetry arises from the different contacts at either 

ends of the molecular bridge. In these studies a number of different anchoring groups 

have been employed (dithiol30, 31, diamine32, and dicarboxylic acid33). We found that 

the anti-symmetric MJs with a graphene bottom electrode contact lead to a lower 

current attenuation factor (decay constant, -factor) than the corresponding symmetric 

gold-molecule-gold junctions. These results bring in new perspectives for enhanced 

conductance at longer molecular length. It is also clear that the mechanism of transport 

properties for gold-molecule-graphene junctions is remarkably different from the gold-

molecule-gold counterpart. Anti-symmetric graphene/gold contacts open new routes 

for controlling the electrical properties of single-molecule junctions. We now extend 

this work by combining two anti-symmetric elements (anti-symmetric anchoring 

groups and anti-symmetric electrodes) simultaneously into one molecular junction. The 

molecular bridges deployed in this study are polymethylene (alkane) chains with 

different lengths terminated on one side by a carboxylic acid anchoring group and on 

the other end by a thiol moiety. The electrodes are a STM gold tip and a graphene 

bottom electrode. The conductance of these junctions is measured using a so-called 
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STM I(s) method, which can be considered as a variant of the in situ break junction 

method (in situ BJ). In this technique the STM tip is used to form molecular junctions 

by approaching very close to the graphene substrate, but direct physical contacting 

between the gold tip and graphene is avoided to prevent damage to either. In this study, 

we found that the conductance of Au-S-(CH2)n-COOH-graphene junctions decays 

exponentially with the number of methylene groups with an attenuation factor of 0.37 

per molecular unit length, similar to the alkanedithiol molecular bridges tethered 

between gold and graphene electrodes. These anti-symmetric junctions with 

Au/graphene contacts present a higher conductance than those formed with symmetric 

molecular bridges with carboxylic acid anchoring groups. However, the conductance 

of Au-S-(CH2)n-COOH-graphene junctions is found to be lower than the equivalent 

junctions with thiol moieties on both ends of the molecular junction (i.e. Au-S-(CH2)n-

SH-graphene electrodes). In this respect it is noted that the attenuation factor is driven 

by the low attenuation channel conductance associated with the thiol group. Density 

Functional Theory (DFT) calculations confirm this feature and help in interpreting the 

obtained attenuation factors and relative conductance values. 

 

Experimental methods 

In this experiment, gold-molecule-graphene junctions were formed using the STM-I(s) 

method6 (Bruker Multimode 8 microscope) and all the conductance measurements were 

performed under a stable liquid (mesitylene) environment. Gold wires (99.99%) bought 

from Tianjing Lucheng Metal were made into STM tips by electrochemical etching as 

has been reported previously.34 The 1 × 1 cm size graphene substrates (Graphene 

Supermarket, US) were used as the bottom electrode. During the conductance 

measurement, the graphene substrate was fixed onto the sample plate using silver gel 

to make the electrical contact between the graphene and the metal sample plate. The 

target molecules were prepared as 10 mM solution in mesitylene (99%, Aladdin) and 

the solution was placed in a liquid cell and first allowed to stabilize before the formation 

of MJs. The gold STM tip was set at an initial vertical distance (4 nm) and then toward 
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to the graphene substrate. The gold tip was then retracted to its initial distance, and the 

process of approach and retraction cycle was repeated continuously to obtain a large 

number of I(s) curves. The tip bias in each experiment was set at + 0.3 V unless 

otherwise stated. Over 10000 I(s) curves were collected from the conductance 

measurements of each MJ. The I(s) curves which present big noise and no plateau were 

removed. The remaining I(s) curves were divided into a few equal bins according to the 

position of the plateaus. More than 500 I(s) curves from the bins with the most I(s) 

curves were selected for data analysis. The selected current data was converted into 

conductance values to obtain a one-dimensional (1D) conductance histogram. A 

Gaussian fit was applied to the most prominent peak in the 1D histogram. The 

conductance data was also used to plot the two-dimensional (2D) frequency histograms 

to locate the most probable range for the conductance value of molecular junctions. The 

color of specific area in 2D histogram ranges from blue (low count) to red (high count) 

as an indicator of an increasing number of data point within this area. To verify the 

configuration of MJs, control experiments were conducted. The gold STM tips were 

dipped into either SH-(CH2)7-COOH or SH-(CH2)11-COOH containing solutions for 24 

hours in order to promote close-packed surface coverage of the molecular target on the 

gold STM tip. This procedure will favor of the formation of Au-S-(CH2)n-COOH-

graphene molecular junctions (the H atom is expected to be removed through the 

formation of Au-S, as has been observed previously21). The measurement was carried 

out punctually on the day following the 24 hour adsorption period to form the molecular 

film on the gold STM tips. The collected I(s) curves were closely monitored and the 

new gold STM tip was generally changed if after a few hours no further plateaus were 

observed in the I(s) traces.  

 

Results and discussions 

The conductance of a series of hybrid graphene/molecular junctions has been measured. 

Figure 1 shows typical I(s) traces of molecular junctions during the opening process of 

the STM-I(s) method. Two types of curves are presented. The black exponential decay 
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curve which shows no current steps indicates the absence of molecular junction 

formation. When a molecular junction is captured between the two electrodes, a 

pronounced plateau appears as can be observed in other color curves. The plateau is 

due to the enhanced current through the molecule, with the position of the plateaus 

reflecting the MJ conductance. For example, the conductance of Au-S-(CH2)7-COOH-

Graphene junctions is around 4-6 nS, while the conductance of the shorter Au-S-

(CH2)5-COOH-Graphene junctions is located at around 10-15 nS. To find the dominant 

location of conductance from a large amount of raw data, selected plateau curves were 

used to plot 1D and 2D histograms as shown in Figure 2a and 2b. In Figure 2a, a 

significant peak is observed for the Au-S-(CH2)7-COOH-Graphene molecular junctions, 

giving a peak conductance value of around 5 nS after a Gaussian curve fit is applied. 

The corresponding 2D histogram is presented in Figure 2b. In this 2D plot a high count 

feature is apparent, as seen in the red area located at around 4 to 6 nS; this is in good 

agreement with the peak in Figure 2a and the plateaus for this MJ (Figure 1).  

 

Although these MJs are anti-symmetric, only a single conductance peak is 

observed indicating that the two different orientations, with the thiol bound to either 

graphene or gold, respectively, do not give discernable conductance values. Here it is 

noted that thiols (thiolates) bind much more strongly with gold than carboxylic acid end 

groups do, so from this fact it would appear likely that Au-S-(CH2)7-COOH-graphene 

junctions would be favored over Au-COOH-(CH2)7-S-graphene junctions. Differences 

in MJs formed with either thiol (thiolate) or carboxylic (carboxylate) anchoring groups 

to gold has been previously studied. It was found that when changing from a thiol to a 

carboxylic acid anchor the contact resistance increased, and this increase was correlated 

with the decrease in bond strength with the Au surface.14 Control experiments have also 

been carried out in which the self-assembly of the target molecules was done in two 

different ways. The comparison here was to either (a) form the SAM on the graphene 

substrate or (b) to form the SAM directly onto the gold STM tip. Figure 3 shows a 

comparison of MJ conductance using these two different self-assembly modes. For SH-
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(CH2)7-COOH (Figure 3a) and SH-(CH2)11-COOH (Figure 3b), it is seen that the 

conductance value of SAM formed on the gold tip and graphene substrate are 

essentially similar to each other. 
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Figure 1: Typical I(s) curves of SH-(CH2)n-COOH, with n = 3 (blue), 5 (red) and 7 (green). 

The black curve is recorded in absence of molecules on graphene (without forming molecular 

junctions). 
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Figure 2: (a) A 1D histogram for the Au-S-(CH2)7-COOH -graphene hybrid junction (from 

selected 534 I(s) curves). (b) The corresponding 2D histogram, where the red colour 

represents high point count. The distance is the retraction distance from the set point 

conditions. 
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Figure 3 : Comparison of molecular conductances between SAMs formed on graphene substrate 

(black) and SAMs (red) formed on gold tip (a) SH-(CH2)7-COOH (b) SH-(CH2)11-COOH. 

Figures 4 presents the five conductance histograms with the same scaling in order to 

compare the conductance peaks for different molecular lengths. Only a single main 
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peak was found for each histogram, and the conductance values of SH-(CH2)1-COOH 

(grey), SH-(CH2)3-COOH (blue), SH-(CH2)5-COOH (pink), SH-(CH2)7-COOH (green) 

and SH-(CH2)11-COOH (purple) are determined to be 63, 30, 15, 4.9, and 1.7 nS, 

respectively. As expected, the conductance decreases as the molecular length increases; 

clearly the molecular backbone lengths play a key important role in determining the 

magnitude of the molecular conduction.35 It has been demonstrated that for a wide 

variety of different anchoring groups (-SH14, 30, 36,-NH2
14, 32, 36,-COOH14, 33, 37,-I38 …) in 

the case of polymethylene (alkane) backbones conductance decreases sharply with 

molecular length, generally satisfying the well-known equation: 

𝐺 = 𝐴exp(−𝛽
𝑛
𝑁) 

where G is the conductance, 𝛽𝑛 is the attenuation factor per number of –CH2 units, N 

is the number of phenyl groups and A is a constant related to the contact resistance 

between the molecular target and the electrode. The slope of the plot of ln (G) versus N 

gives the 𝛽𝑛 value. Figure 5 shows the natural logarithmic plots of the conductance as 

a function of the number of methylene groups for Au-S-(CH2)n-SH-graphene(blue), Au-

COO-(CH2)n-COOH-graphene(grey), Au-S-(CH2)n-COOH-graphene(red) and Au-S-

(CH2)n-COOH-graphene(theory, green). The measured conductance decreases with the 

molecular length and the linear fit yields a tunneling decay constant of around 0.37 per 

methylene unit for Au-S-(CH2)n-COOH-graphene junctions. 
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Figure 4 : Conductance histograms for SH-(CH2)n-COOH junctions in which n = 1 (grey), 3 (blue), 

5 (red), 7 (green), and 11 (purple). 

Table 1 summarizes the conductance values and tunnelling decay constants (𝛽𝑛) of the 

anti-symmetric MJs (SH–(CH2)n–COOH) and symmetric MJs (SH–(CH2)n–SH, 

COOH–(CH2)n–COOH) with Au/Au electrodes and Au/graphene electrodes. We found 

that the decay constant of Au/S-(CH2)n-COOH/graphene junctions is lower than the 

Au/S-(CH2)n-COOH/Au junctions.37  

Table 1 Conductance values and tunneling decay constant (𝛽) for SH–(CH2)n–COOH, SH–(CH2)n–

SH and COOH–(CH2)n–COOH 

Molecular junctions Number of 

CH2 

Conductance (nS) 

 

Decay constant (𝛽𝑛) 

  Experiment Theory Experiment Theory 
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Au/S-(CH2)n-COOH 

/graphene 

1 63 43.6 

0.37 0.30 

3 30 26.4 

5 15 14.4 

7 4.9 4.81 

11 1.7 2.62 

Au/ S-(CH2)n-SH 

/graphene30, 32 

2 98 152 

0.40 0.32 

4 53 46 

6 24 25 

 8 9 18 

 10 4 6 

Au/ COO-(CH2)n-

COOH /graphene33 

2 15.6 38.5 

0.69 0.69 

3 10.3 13 

4 5.1 5.3 

5 2.4 4 

6 1.08 2.2 

Au/ S-(CH2)n-COO 

/Au 26 

5 2.5  
0.87  

7 0.88  

Au/ S-(CH2)n-S 

/Au13, 14  

6 28.2  

1.08  8 3.9  

10 0.2  

Au/ COO-(CH2)n-

COO /Au 26 

6 2.48  
0.78  

8 0.80  

 

Similarly to our previous results30, 32, 33 , junctions with Au/graphene electrodes yield a 

lower decay constant compared to the similar MJs with symmetric gold electrodes 

resulting in a higher conductance for MJs with alkane backbone at longer lengths. Our 

experimental results show that the decay constant (0.37) of Au-S-(CH2)n-COOH-

graphene junctions is smaller than that obtained for Au-S-(CH2)n-SH-graphene 

junctions (0.40), which is in good agreement with the results reported in those 
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molecules measured between Au/Au electrodes.26 In Figure 5, we present the evolution 

of the logarithm of the conductance vs. the molecular length for the different 

Au/graphene MJs considered in this work, as well as theoretical results. We can now 

classify the different MJs according to their respective conductance values from the 

highest to the lowest as: Au-S-(CH2)n-SH-graphene junctions, Au-S-(CH2)n-COOH-

graphene junctions, Au-COO-(CH2)n-COOH-graphene junctions.  

 

 

Figure 5 : Natural logarithmic plots of the conductance as a function of the number of 

methylene groups for Au-S-(CH2)n-SH-graphene(blue), Au-COO-(CH2)n-COOH-graphene(grey), Au-S-

(CH2)n-COOH-graphene(red) and Au-S-(CH2)n-COOH-graphene(theory, green) 

Extending the linear fits in Figure 5 to the origin, we can get the value of the contact 

resistance. The contact resistance of Au-S-(CH2)n-SH-graphene junctions, Au-S-

(CH2)n-COOH-graphene junctions and Au-COO-(CH2)n-COOH-graphene junctions 

are 3.9 MΩ30, 11.3 MΩ and 14.2 MΩ33, respectively. This difference indicates that the 

coupling is rather weak at the carboxylate group-electrode interface.  
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In order to understand the underlying physical mechanism at the origin of this 

phenomenon, we have performed Density Functional Theory (DFT) calculations on 

these junctions. Following a now well-established procedure21,23, we have considered 

Au-S-(CH2)n-COOH-graphene junctions, for n = 1,3,5,7,11, as represented in Figure 6 

(a). After structural optimization, electronic structure has been determined as well as 

electronic transport properties using a Keldysh-Green formalism.21 The evolution of the 

electronic transmission is represented in Figure 6 (b).  

 

 

Figure 6 : (a) Atomic representation of the Au-S-(CH2)n-COOH-graphene junctions calculated in 

DFT. (b) Corresponding electronic transmissions. 

From those transmissions, we can observe that the electronic transport in the Au-S-

(CH2)n-COOH-graphene junctions lies in the non-resonant tunnelling regime, since the 

Fermi level is in the gap, slightly closer to the LUMO level. Hence, the transport 

properties are driven by the LUMO level and its position with respect to the Fermi level 

represents a key parameter for the determination of the attenuation factor. Indeed, from 
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a simple barrier tunnelling model, 𝛽𝑛 can be expressed as:  𝛽𝑛=2𝑑0√(2mφ)/ℏ where  

𝑑0  is the unit length between the monomers in the molecule, m  is the mass of the 

electron, and φ  is the barrier height, corresponding here to the energy difference 

between the LUMO and the Fermi level. In order to understand the obtained value for 

the attenuation factor, we have also calculated the electronic transmission of the Au-

COO-(CH2)7 –COOH-graphene junction. This transmission is presented in Figure 7, in 

comparison with the transmission of the Au-S-(CH2)7-COOH-graphene junction. As we 

can observe, the two transmission curves are very similar in shape, with a gap of about 

5 eV and an electronic conductance slightly dominated in both cases by the LUMO 

level. Although the shapes and gap of these two transmission curves are similar, the 

conductance at the Fermi level clearly differs.  

 

 

Figure 7 : evolution of the calculated electronic transmissions for Au-S-7T-COOH-graphene 

and Au-COO-6T-COOH-graphene molecular junctions. 

Referring to Figure 7, the LUMO level in the junction with –COO(H) contacting groups 

at both molecular ends (“full COOH junction”) is located at about 2.4 eV from the 

Fermi level, which is a bit farther than in the case of the S-COOH junction, where the 
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LUMO is located at about 2 eV. This latter value is due to the stronger coupling of the 

sulphur atom to the gold electrode26. This results in a slightly smaller electronic barrier 

for the anti-symmetric junction. Hence, by referring to the expression for 𝛽𝑛, we can 

deduce that the attenuation factor will be reduced for the Au-S-(CH2)n -COOH-

graphene junctions with respect to the full COOH junctions, in a similar manner to the 

observation for the Au-S-(CH2)n-SH-graphene junctions. Another way of interpreting 

this value is to consider that the electrons choose the less resistive conductance channel 

offered by the coupling of the sulphur group to the electrode, as observed in 

macroscopic electronic circuits. In the case of Au/Au electrodes, Martín et al.26 also 

measured the conductance of X–bridge–X, X–bridge–Y and Y–bridge–Y (X=thiol 

terminus and Y=COOH) molecular bridges and their results showed that the anti-

symmetric configuration (Au-S-(CH2)n-COO-Au) produces the lowest conductance. In 

this respect, our present results show an unexpected trend in Figure 5 with a rather high 

conductance for the Au-S-(CH2)n-COOH-graphene configuration with respect to the 

Au-COO-(CH2)n-COOH-graphene configuration. To elucidate this peculiar behaviour, 

we analyse these two junctions within the frame of a single level model39. Here, the 

LUMO level determines the conductance and therefore, the electronic transmission at 

the Fermi energy can be expressed as:  

 

T(𝐸𝐹)= 4𝛤𝐿𝛤𝑅/[(E𝐿−𝐸𝐹)2+(𝛤𝐿+𝛤𝑅)2] 

 

with 𝛤𝐿/𝑅 the left (right) coupling to the electrodes (namely 𝛤𝑆−𝐴𝑢 or 𝛤𝐶𝑂𝑂−𝐴𝑢 for 

𝛤𝐿 and 𝛤𝐶𝑂𝑂𝐻−𝑔𝑟𝑎𝑝ℎ𝑒𝑛𝑒 for 𝛤𝑅), 𝐸𝐿 − 𝐸𝐹 the energy difference between the LUMO 

and the Fermi level, namely, the electronic barrier potential of the system. Comparing 

the Au-S-(CH2)n-COOH-graphene to the Au-COO-(CH2)n-COOH-graphene, it is 

known from Ref [19] that 𝛤𝑆−𝐴𝑢 >  𝛤𝐶𝑂𝑂−𝐴𝑢 (respectively 0.6 and 0.4 eV). Moreover, 

from Figure 7, 𝐸𝐿 − 𝐸𝐹  is smaller for the anti-symmetric junction than for the full 

COOH junction (respectively 2 and 2.4 eV). Consequently, considering these values 

and 𝛤𝐶𝑂𝑂𝐻−𝑔𝑟𝑎𝑝ℎ𝑒𝑛𝑒  necessarily smaller than 𝛤𝑆−𝐴𝑢  or 𝛤𝐶𝑂𝑂−𝐴𝑢  (due to the weak 



17 

 

coupling at the molecule/graphene interface), we find that 𝑇(𝐸𝐹) is higher for the anti-

symmetric junction than for the full COOH junction, which confirms the experimental 

and theoretical results presented in Figure 5. From this analysis, we can deduce that the 

anti-symmetric Au-S-(CH2)n-COOH-graphene junction is more conductive than the 

corresponding Au-COO-(CH2)n-COOH-graphene junction due to the stronger coupling 

at the S-Au interface, which has an effect both on the coupling strength 𝛤𝑆−𝐴𝑢 and on 

the reduced potential barrier 𝐸𝐿 − 𝐸𝐹. Hence, the electronic and transport properties of 

the anti-symmetric junction are driven by the most favourable conductance channel 

related to the thiol anchoring group. 

 

Conclusions  

In summary, we have studied the conductance of the anti-symmetric SH-(CH2)n-COOH 

molecular junctions (n = 1, 3, 5, 7 and 11), using graphene bottom and gold top 

electrodes. The conductance decays exponentially with the number of methylene 

groups with an attenuation factor of 0.37, much lower than the value obtained with 

Au/Au electrodes. The obtained value is very similar to the one found for alkanedithiols, 

and smaller than for alkanedicarboxylic acids in the same configuration. Moreover, the 

conductance is also close to the one of the alkanedithiol, contrary to what is observed 

in Au/Au junctions. DFT-based electronic transport calculations and analysis of the 

relative molecule/electrode couplings and molecular level alignments confirm these 

features. As a result, the electronic transport properties of the anti-symmetric junctions 

are enhanced by the introduction of the graphene electrode, and driven by the most 

coupled anchoring group, namely the thiol group. In other words, the current in anti-

symmetric junctions flows along the most favourable conductance channel associated 

to the sulphur atom, similarly to what happens in macroscopic circuits.  
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