
HAL Id: hal-02336445
https://hal.science/hal-02336445v1

Submitted on 29 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Checking diagnosability on centralized model of the
system

Mehdi Chankate, Alexandre Philippot, Véronique Carré-Ménétrier, Pascale
Marangé

To cite this version:
Mehdi Chankate, Alexandre Philippot, Véronique Carré-Ménétrier, Pascale Marangé. Checking di-
agnosability on centralized model of the system. International Conference on Control, Automation
and Diagnosis, ICCAD’19, Jul 2019, Grenoble, France. �10.1109/ICCAD46983.2019.9037869�. �hal-
02336445�

https://hal.science/hal-02336445v1
https://hal.archives-ouvertes.fr

Checking Diagnosability on Centralized Model of
the System

M. CHANKATE, A. PHILIPPOT and
V. CARRE-MENETRIER

CReSTIC
University of Reims Champagne-Ardenne (URCA)

Reims, France
mehdi.chankate@univ-reims.fr

alexandre.philippot@univ-reims.fr
veronique.carre@univ-reims.fr

P. MARANGE
CRAN

University of Lorraine, UMR 7039, Campus Sciences, BP 70239, 54506
Vandoeuvre-les-Nancy, France CNRS, CRAN, UMR 7039, France

pascale.marange@univ-lorraine.fr

Abstract—In this work, the problem of checking diagnosability
on Discrete Event System (DES) is considered especially in cen-
tralized architecture. Many approaches in literature deals with
diagnosability using one or more intermediate models. In this
paper, we present a new model based diagnosability algorithms in
the framework of set theory for deciding diagnosability, without
any intermediate constructions or models and considering several
faults at the same time.

Index Terms—Diagnosability, Diagnosis, Model based system,
Finite state machine, Discrete Event System (DES).

I. INTRODUCTION

In recent years, work around diagnosis attracted the at-
tention of the academic and the industrial world due to the
increasing complexity of systems, the costs of maintenance
interventions but also avoiding catastrophes and loss of life.
To improve the availability and reliability of industrial in-
stallations, it is necessary to develop systematic diagnostic
approaches to detect and isolate faults. Moreover, it has
become essential to implement approaches to evaluate the
performance of these methods in terms of detection, location,
and identification of a fault in a finite time. This is called
diagnosability. Among the diagnostic approaches, the literature
has shown an interest in model-based approaches for the
diagnosis of Discrete Event Systems (DES) [1].
The concept of diagnosing using the observer of the system
appeared for the first time in the work of [2]. It is also in these
works that the notion of ”diagnosability” appeared, which
means evaluating the possibility to guarantee the diagnosis of
a fault in a finite time. The diagnosability becomes essential
information on the system. A fault is defined as any deviation
of the system from its specified behavior. The fault diagnosis
is the process that detects and identifies the fault and its type
based on the observable symptoms. Various evolution of the
diagnosability is found in the literature, notably according to
the structure of the system and its modeling [3], [4], [5].
But regardless of this diagnosability, it is essential to be able
to evaluate its capacity. In [2], diagnosability is checked by
detecting fault-indeterminate cycles in a global diagnose. In
[6], the detection of such behaviors is based on the twin

plant construction and in [7] it is based on the construction of
verifiers.
In [8], an empty test in a Büchi automaton has been treated
as centralized approaches. The check of diagnosability is done
in two stages: the construction of the automaton B based on
two models one represents the whole system, while the other
conserves only the nominal behavior of the system, then a
composition is done. And an algorithm looking for a cycle
that proves the system is not diagnosable is applied. In [9],
the same diagnosability problem is proposed to be solved as
a model-checking problem by the use of two models of the
system, the first represents the global behavior of the system
and the second considers only the faulty behavior in order to
reduce the number of state of the synchronous composition,
several symbolic model-checking algorithms are proposed to
test diagnosability using twin plant construction with fairness
properties.
In [10] a variant of the classical diagnoser is introduced to
explicitly separate the normal states from the faulty ones in
each node of the diagnoser. Most of these approaches highlight
efficient resolution algorithms as long as the system remains
reasonable and the fault partition is very small (often a single
type of fault considered). The approach presented in this paper
is based on a verification method of monolithic diagnosability
in the case of centralized systems. This proposal allows, in
particular, the analysis of the diagnosability from the overall
model of the system without the construction of intermediate
models. We are interested in this work to determine a solution
in a centralized architecture to prove the feasibility of the
approach. In section 2, some notions on the modeling of DES
and related operations are recalled, followed by the definition
of diagnosability. Section 3 focuses on the proposed approach
of verification of diagnosability on the centralized systems.
A comparison between our approach and main approaches is
discussed in the section 4. Finally, we conclude the paper with
prospects.

978-1-7281-2292-2/19/$31.00 ©2019 IEEE 386

II. PRELIMINARIES
A. DES Modeling

To study the logical behavior of DES, one of the formal
ways is based on the language theory and automata. Where,
the temporal aspect of the system is ignored, only the order and
identity of the events generated by the system are considered.
Therefore, a logic model where only the sequences of events
are manipulated is perfectly adapted to this type of problem.
Discrete-event systems are quite convenient to perform the
safety analysis of complex systems in a sufficiently high
abstraction level.
Let G = (Q,Σ, δ, q0) be a finite state machine model of
the system to be diagnosed, where Q is the set of states
in the model, the finite set of events with two subsets: Σo

denote the set of observable events and Σuo denote the set of
unobservable events such that Σ = Σo ∪ Σuo. δ is the partial
transition function (q, σ, q,) ∈ Q × Σ × Q with q, ∈ δ(q, σ)
and q0 is the initial state of the system. The model G accounts
for the normal and failed behavior of the system. The behavior
of the system is described by the prefix-closed language L(G)
to denote the generated language of G. L(G) is a subset of
Σ∗, where Σ∗ denote the Kleene closure of the set Σ. In the
context of the diagnosis, faults are basically assumed to be
unobservable events Σf ⊆ Σuo, the set of fault events can be
partitioned as disjoint fault classes Σf = Σf1∪Σf2∪...∪Σfm

denoted by
∏
f

= Σf1, ...,Σfm,m ≥ 1.

Since a diagnoser is a model based on the observable events
of the system, then it is necessary to recall the operation
to capture the observed behavior. Therefore, the projection
function of all the observable events by P : Σ∗ → Σ∗o, i.e.
The effect of P on an event sequence s ∈ Σ∗ is simply to
erase the unobservable events in it. Generally, P (σ) = σ if
σ ∈ Σo and P (σ) = ε if σ ∈ Σuo, P (s.σ) = P (s)P (σ)
with s ∈ Σ∗ and σ ∈ Σ. The inverse projection P−1L is
defined by P−1L (y) = {s ∈ L ⊆ Σ∗ : P (s) = y}. Moreover, a
synchronous composition of two models G1 and G2, noted ‖,
is a well-known operation denoted, G1 ‖ G2 = (Q1×Q2,Σ1∪
Σ2, δ, q1×q2). It represents the evolution of the global model.

B. Definition of Diagnosability
The diagnosability of a system has been formulated in the

seminal work of [2]. Based on the construction of a global
diagnoser as an automata and their extensions [2] and [4], or
Petri nets. Checking diagnosability is equal to look for the
conformity with two sufficient conditions:
• C1. There is at least one state of the diagnoser for which

the diagnoser decides with certainty the occurrence of a
fault belonging to a partition

∏
fi

.

• C2. There must be no so-called indeterminate cycles for
which the diagnoser is unable to decide with certainty the
occurrence of a fault belonging to a partition

∏
fi

.

In addition, the following two assumptions must be accepted:
• The automaton G is alive, i.e., that from each state q of
G, there is at least one possible transition;

• There is no cycle containing only unobservable events.
The absence of unobservable event cycles makes it possible
to ensure that regular observations are available to observe the
effects of a fault. L(G) is therefore diagnosable with respect
to the projection P : Σ→ Σo and with respect to the partition∏
f

of Σf , if the following condition is satisfied.

(∀i ∈
∏
f

)(∃ni ∈ N)[∀s ∈ Ψ(Σfi)](∀t ∈ L/s) : [‖ t ‖≥ ni

=⇒ ω ∈ P−1L(G)[P (st)] =⇒ Σfi ∈ ω] (1)

With :
• Ψ(Σfi) the set of traces ending in a fault of Σfi.
• L/s the set of suffix sequences of s in L(G).
• ‖ t ‖ the length of the sequence t.
• P−1L(G)[P (u)] all traces v in L(G) such that P (v) = u.

Ψ(Σf) is the set of finite sequences of events that end with a
faulty event of (Σfi). This definition means that an L language
is diagnosable if and only if, for any sequence s terminating
with an offending event and any sequence of events t of s
sufficiently long (| t |≥ ni), then any other sequence of events
ω having the same observable projection as (P (s.t) = P (ω))
necessarily contains a faulty event of Σf . The idea of the cycle
is the main element in diagnosability check, so it is necessary
to recall it as follows:
Property 1. (Cycle in G)
A cycle is a path of transitions and states wherein a state is
reachable from itself. In our application, we denote by CL
be the set of possible cycles cl in a system G such that (q ∈
Q, σ ∈ Σ):

cl = (q0, σ0, q1, σ1, ..., qp, σp, ..., qp).

To check the diagnosability in the model G of the system
it is necessary to check the absence of two cases:
• The system G is not diagnosable if it exists a cycle cl1 in
G with fault Fi and another cycle cl2 not containing the
fault Fi with respect to the same observable projection.

(∃cl1 ⊆ CL/∃(qj , σj ∈ L : σj ∈ Fi)(∃cl2 ⊆ CL/
∀(qk, σk) ∈ L : σk ∈ Σ0)/P (cl1) = P (cl2) avec
j ∈ [0, n], k ∈ [0, p].

(2)

• The system G is not diagnosable if it exists a cycle cl1 in
G with fault Fi and another cycle cl2 with another fault
Fj (Fi 6= Fj) and the cl1 and cl2 are sharing the same
observable projection.

(∃cl1 ⊆ CL/∃(qj , σj ∈ L : σj ∈ Fi)(∃cl2 ⊆ CL/
∀(qk, σk) ∈ L : σk ∈ Fs 6=i)/P (cl1) = P (cl2) avec
j ∈ [0, n], k ∈ [0, p].

(3)

In the literature, the monolithic diagnosability is analyzed first
in the frame work of automata, and depends on both the
observable event and the set of faults in the system. Section 3
starts with definitions of the sets used in the proposed approach
then presents the algorithm designed.

387

III. CHECKING DIAGNOSABILITY ON
CENTRALIZED MODEL OF THE SYSTEM

The proposed approach is based on previous work on
the diagnosability [11], it aims to avoid the construction of
intermediate models and automata compositions by using class
instances (G1 and G2) of the model G, then properties of
diagnosability are verified in this basis using set theory.

A. Definitions

The analysis of diagnosability is based on the set theory, so
it is necessary to define sets that are used as following.
Definition 1.
Let Sv denote the finite set of all the cycle sequences in G
starting from the initial state q0, where σi is the event related
to a transition with respect to the event index i, where Svi
denotes the sequences of observable and unobservable events
constituting the cycle i from q0.
Definition 2.
• Ev denotes the finite set of all observable sequences

related to all cycles in G.
• Evi is the sequence i in G which is the concatenation of

all the observable events occurred in the cycle i, starting
from the initial state q0.

• Evci is the sequence of all observable events belonging
only to the loop in the cycle i.

Definition 3.
SvEv

i
is a sub-set of Sv which is named sequence set sharing

the same observable sequence of Evi.
Definition 4.
Let Qv denotes the finite set of states visited in all cycles. We
note that Qvi is the set containing all the states visited in the
cycle i.
Definition 5.
Let Fv be the finite set of faults in all cycles, where Fvi is
the set of faults occurred in the cycle i.
The definitions above will be illustrated in section III.C

B. Proposed approach

Figure 1 illustrates the different steps to check diagnosabil-
ity based on the centralized model of the system. Model G is
instantiated twice (G1,G2). These models account for both the
normal and the faulty behavior of the system. The approach
is detailed in five steps in Figure 1.
• Step1: Verification of assumptions and research of the

cycle. (Figure 2)
After the activation of the instance G1, the cycle search begins
after the execution of the first possible transition (σi) of the
system from its initial state q0. After the occurrence of an event
(observable or not), a test condition (4) is called to check if a
cycle is detected or not as follows with (k) and (k − 1) refer
to the step for the event or state.

m,|Q|∑
i=1,k=1

qi(k) ∩Qvi(k − 1) 6= ∅ (4)

Fig. 1. The proposed approach

Fig. 2. Verification of assumptions and research of the cycle

With: m is the number of cycles in the model G, qi (k)
is the last visited state, and Qvi (k − 1) is the set of states
visited (q0 to q(k−1)). The test is based on the set of states
visited with respect to the first instance G1. In words, during
the evolution of the system, if the new visited state qi (k)
already exists in the set of Qvi (k − 1) that means a cycle
detection qi(k) ∩Qvi(k − 1) 6= ∅. To have more information
about the type of cycle detected, several cases are possible:
Case 1. The detected cycle (faulty or not) is formed only by

388

unobservable events.
m,|Q|∑

i=1,k=1

qi(k) ∩Qvi(k − 1) 6= ∅ and Evi 6= ∅ (5)

Case 2. The model has a deadlock during its evolution, it
means that the model does not respond to the first hypothesis
of liveliness,

∀q ∈ Q δ (q, σ) = q′ (6)

In case 1 and case 2 the verification of the diagnosability is
impossible because of the non-respect of the assumptions in
section II.
Case 3.The detection of a normal cycle in G1 means that the
algorithm must look for another cycle with fault in instance
G1.
Case 4.The detection of a faulty cycle (one or more type of
faults) in G1 means that the existence of all observable and
unobservable events Svi forming this cycle. And the rest is to
determine the sequences for the verification.
• Step2: Obtaining the sequences found. (Figure 3)

Based on the detection of the faulty cycle in G1 (case
4), a requested backup of useful information related to the
observable sequence is needed, by applying a projection and
detection of repeated loops on Svi (Evi = P (Svi)). Then
a call to memorize Evi, the loop cycle Evci and the faults
appeared Fvi is done.

Fig. 3. Obtaining the sequences found.

• Step3: Construction of all sequences in G2 containing
unobservable events from Evi. (Figure 4)

The search of the cycle in G2 respects the order of execution
using Evi and makes it possible to execute unobservable
events accepted in the sequence of the future cycle. The search
for the inverse projection of Evi is necessary in order to get
a sub-sequence SvEvi accepted in L(G). The idea is to find
a sequence Svj with observable and unobservable events, this
sequence must form a cycle in G2. The inverse projection of
Evi is defined as follows:

P−1L (Evi) = {Svj ∈ L ⊆ Σ∗ : P (Svj) = Evi}

This inverse projection is ensured by the algorithm using (7).
On the basis of the sequence Evi saved in G1, a construction
is set up depending on two elements: an observable events
σEvi(k

′) of Evi with respect to the order in the set, or a pos-
sible unobservable event σNobspossible . This specific execution
is ensured as follows:

Fig. 4. Construction of all sequences in G2 containing unobservable events
from Evi.

σj(k) =

{
σEvi

(k′)
σNobspossible

(7)

With k is the index of the event generated in Svj and
k

′ ∈ [1 , Dim(Evi)]. Dim is the size of the set Evi and
Nobspossible denotes unobservable events possible to occur
in the cycle. If the Evi sequence is executed completely and
the cycle is not yet detected then Evci will be looped until
the cycle detection or the achievement of |Q| states which
represents the longest cycle.
• Step4: Verification, comparison of cycles and decision

on diagnosability (Figure 5)
After the detection of a cycle in G2, which shares the same
observable sequence Evi, a step relating to the fault decision
is needed to decide on diagnosability. The objective is to
determine the fault types of the two cycles detected. This test
is the analysis of the faulty sets to decide whether the two
decisions of fault share the same type of fault or not.

Fig. 5. Verification, comparison of cycles and decision on diagnosability.

Faults are represented by indexes and each index belongs
to a fault partition or several indices belong to the same
partition. For that we carry out two operations: the product
(Pdtc) represents the product of the indices of faults detected
in the cycle and the sum (Smc) means the sum of the indices
relating to the faults for each cycle detected in G. The products
(Pdtc1,Pdtc2) and the sums (Smc1,Smc2) are the decision

389

makers for each cycle detected in G1 and G2. The fault
decision is defined as follows:

Pdtc =

|F |∏
k=1

F (k) Smc =

|F |∑
k=1

F (k) (8)

Fault decision in G for a cycle cl

If the two decisions are different i.e. (Fault decision no1
6= Fault decision no2), in other ways (Pdtc1 6= Pdtc2)
OR (Smc1 6= Smc2) then it means that two sequences have
the same observation, but the cycle in G1 has a type of fault
and for the cycle in G2 has a different type of fault (3) or
without (2), so both cycles have two different fault decisions
and therefore the system G is Not Diagnosable. On the other
hand, if the two decisions are equal (Fault decision no1 =
Fault decision no2), which means (Pdtc1 = Pdtc2 AND
Smc1 = Smc2) then the fault decision is the same and the
algorithm looks for another cycle of the sub-set SvEvi of G2.
• Step5: The course verification of all cycles. (Figure 6)

Fig. 6. The course verification of all cycles.

If all cycles of SvEvi in G2 relating to the observable
sequence Evi detected in G1 are covered, it means that the
test of fault decision is true for all the sub-sets SvEvi in G2.
Then the algorithm looks for a new sequence Evi+1. In every
new search for a cycle in G1, the algorithm checks whether the
new sequence found evi is already processed in the previous
sequences of Evi (9).

m,(i−1)∑
i=1,k=1

evi ∩ Evk 6= ∅ (9)

If the new sequence evi already exists in the set of Evk
then the algorithm looks for the next sequence evi+1 and
then the check (9) is recalled until the algorithm finds a new
sequence never occurred before in all sets of Evk. The system
is Diagnosable if for all the sequences found Evi in G1 and
all the sub-sequences found SvEvi in relation to Evi in G2,
any case does not involve at least once the property (Fault
decision no1 6= Fault decision no2)

C. Application example

To evaluate and compare the proposed approach, let us
consider the automaton G in figure 7 from the work of

[2]. The subsets of the events are Σo = {a, b, c} ,Σuo =
{uo, f1} ,Σf = {f1} .

Fig. 7. Model G of the example

The model G is the system to be diagnosed and it is
characterized by the presence of a single fault f1 and a single
unobservable event uo. To decide on diagnosability of G the
steps presented must be followed.
Step 1. The system G respects the assumptions of section
II. We first instantiate the model G twice (G1,G2), and the
cycle search begins after the execution of the first possible
event (f1 or a or uo) in G1, i.e. one cycle of CL is going
to be started. Then a test condition (4) is called to check if
a cycle is detected, else the next possible event is occurred
until the detection of a cycle. According to (4) the system is
composed by three cycles (CL):

cl1 = (q1, f1, q2, a, q3, c, q4, b, q3)
cl2 = (q1, a, q5, c, q6, b, q8, c, q9, uo, q10, b, q5)

cl3 = (q1, uo, q7, a, q8, c, q9, uo, q10, b, q5, c, q6, b, q8)

In the case where the first cycle search in G1 detects the
cycle cl1 or cl2 which are non-faulty cycles, the algorithm
decides to look for another cycle in G1 until find a faulty
cycle (case 3 in step1).
Step 2. According to definition.1, Svi is the sequences of
observable and unobservable events constituting the cycle i.

Sv1 = (f1, a, c, b)
Sv2 = (a, c, b, c, uo, b)

Sv3 = (uo, a, c, uo, b, c, b)

To find all the observable events occurred in the cycles Evi,
a projection on Svi is done, then a recovery of sequence Evci
is applied. Although we have three cycles in this example, the
sets Ev2 and Ev3 share the same observable sequence. So,
we have:

Ev1 = (a, c, b), Evc1 = (c, b)
Ev2 = (a, c, b, c, b), Evc2 = (c, b, c, b) = (c, b)

Lets take the detection of the first cycle cl1 in G1, this one,
is a faulty cycle considering the presence of f1 in Sv1, and
consequently the algorithm continues the rest of steps since a
faulty cycle in G1 is detected, parallel to the cycle detection,
Ev1 is determined by Ev1 = P (Sv1), the sequence of the
loop in the detected cycle Evc1 = (c, b) is determined and
the memorization of the faults appeared Fv1 = (f1) is done.

390

Step 3. The observable sequence of Ev1 is applied in G2

by respecting the order of the sequence and adding all possible
unobservable events. In other words, according to (7), the
algorithm run σj(k) wich is the first event a in Evi or uo
from the list of all unobservable events possible in this cycle.
One of these events will activate the next state, then (4) is
called for the cycle detection. In absence of cycle, another
event σj(k + 1) is called based on c or uo then the test of
detection cycle is recalled until it becomes true. As a result
of the inverse projection, all the possible cycles in G2 which
are likely to be covered is the sub-set SvEvi

.

P−1L (Evi) = {Sv1, Sv2, Sv3} = SvEvi

Step 4. According to definition.3, and thanks to the share of
the same observable sequence Ev1 and the same sequence in
the loop of cycle Evc1. The evolution of the model G will
detect for example the cycle cl2, which is a not faulty cycle
since Fv2 = ∅ then the test of fault decision is called to
analyze the labels relating to the two cycles cl1 and cl2, in
this case the system is non-diagnosable according to (2) and
(4).

Pdtc1 = f1 Smc1 = f1
Pdtc2 = 0 Smc2 = 0

Step 5. Since the system G has only one faulty cycle, step
5 will not be automatically executed, because the model of
the system accepts a single set Ev1, this step is important if
the model contains more than one set Evi, that means several
subsets in SvEvi , in this case steps 3 and 4 must be checked
for all SvEvi sequences and steps 1 and 2 must be checked
for all Evi sequences.
To check the diagnosability in this example the best case is
to cover the faulty cycle cl1 in G1 formed by 5 states then
cl2 in G2 formed by 7 states so globally 12 states to decide
on diagnosability. The worst case is to cover the normal cycle
cl2 formed by 7 states in G1, then the second normal cycle
cl3 formed by 8 and then the faulty cycle cl1 with 5 states in
G1. After that, the same faulty cycle cl1 formed by 5 states
in G2 then cl3 composed by 8 states in G2, i.e. 33 states to
decide on diagnosability.
If the unobservable event uo becomes a faulty event, so the
system becomes diagnosable. In this case all the cycles in G
are faulty and share the same Evi, therefore, the algorithm in
the worst case will cover cl3 with 8 states in G1 then compare
it with cycles in G2: cl1 formed by 5 states, cl2 with 7 states
and cl3 formed by 8 states, in global 28 states.

IV. DISCUSSION

We note that the classical approaches require the construc-
tion of an intermediate model whereas the approach proposed
in this paper does not require it. The presence of several
types of faults is considered in the proposed approach. The
algorithm has been tested on several examples of different
sizes with different faults, and we are able through this method
to identify certain, uncertain and ambiguous faults cases. In the
aim of detecting possible limitations, the use of the algorithm

on complex examples takes longer time and sometimes does
not give a decision on the diagnosability.

V. CONCLUSION

We have first used the conditions of checking diagnosability
and applied them directly on the model of the system without
construction of intermediate models and considering several
faults. This article presents diagnosability analysis in the
context of set theory. To test the approach, a centralized
example with a single fault in the literature is studied, where
G1 and G2 are instances of G. We tested other examples
with several faults, and the approach showed interesting results
consistent with those of the literature.
This study should be continued to show the possibility of
directly detecting cycles, then switch to larger systems to
compare our approach in terms of computed time, search
algorithm and state space. What seems interesting in this work
is to arrive at the same decision of diagnosability based on the
same system structure, consider several faults at the same time,
and the uncertainty cases without need to build intermediary
models. In the same concept, we tested whether it was possible
to apply the approach in the decentralized architecture. In this
case G1 is instantiated for one of the models and G2 on the
other model. Again, the first results look promising.

REFERENCES

[1] C. G. Cassandras and S. Lafortune, Introduction to discrete event
systems, 2nd ed. New York, NY: Springer, 2008, oCLC: 255370614.

[2] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and
D. Teneketzis, “Diagnosability of discrete-event systems,” IEEE Trans-
actions on Automatic Control, vol. 40, no. 9, pp. 1555–1575, Sep. 1995.

[3] O. Contant, S. Lafortune, and D. Teneketzis, “Diagnosis of modular
discrete event systems 1,” IFAC Proceedings Volumes, vol. 37, no. 18,
pp. 327–332, Sep. 2004.

[4] R. Debouk, S. E. Lafortune, and D. Teneketzis, “Coordinated Decen-
tralized Protocols for Failure Diagnosis of Discrete Event Systems,”
Discrete Event Dynamic Systems: Theory and Applications, vol. 10, no.
1-2, pp. 33–86, 2000.

[5] Wenbin Qiu and R. Kumar, “Decentralized failure diagnosis of discrete
event systems,” IEEE Transactions on Systems, Man, and Cybernetics -
Part A: Systems and Humans, vol. 36, no. 2, pp. 384–395, Mar. 2006.
[Online]. Available: http://ieeexplore.ieee.org/document/1597408/

[6] Shengbing Jiang, Zhongdong Huang, V. Chandra, and R. Kumar, “A
polynomial algorithm for testing diagnosability of discrete-event sys-
tems,” IEEE Transactions on Automatic Control, vol. 46, no. 8, pp.
1318–1321, Aug. 2001.

[7] Tae-Sic Yoo and S. Lafortune, “Polynomial-time verification of diagnos-
ability of partially observed discrete-event systems,” IEEE Transactions
on Automatic Control, vol. 47, no. 9, pp. 1491–1495, Sep. 2002.

[8] F. Cassez and S. Tripakis, “Diagnostic des systèmes temporisés,” in
Systèmes embarqués – Approches formelles, ser. Traite IC2, Roux, O. H.,
Jard, and Claude, Eds. Hermes Science, Oct. 2008, pp. 145–176.

[9] A. Grastien, “Symbolic Testing of Diagnosability,” The 20th Interna-
tional Workshop on Principles of Diagnosis (DX-09), no. 131-138, p. 8,
Jun. 2009.

[10] A. Boussif, M. Ghazel, and K. Klai, “Combining Enumerative and Sym-
bolic Techniques for Diagnosis of Discrete-Event Systems,” in VECOS
2015 - 9th Workshop on Verification and Evaluation of Computer and
Communication Systems, Bucarest, Romania, Sep. 2015, p. 11p.

[11] M. Chankate, A. Philippot, V. Carre, and P. Marange, “Conception D’un
Système De Vérification De La Diagnosticabilité Par Model Checking
A Partir Du Modèle Du Système,” 12th International Conference on
Modelling, Optimization and SIMulation MOSIM18, no. 157-164, p. 8,
Jun. 2018, toulouse, France.

391

