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The gp41 membrane-proximal external

region (MPER) is a highly conserved

region of HIV-1 Env. Pinto et al.

characterize the broadly neutralizing anti-

MPER mAb LN01, which shows low

autoreactivity. LN01 interacts with a

complex epitope comprising MPER, the

transmembrane region, and lipids,

providing insights for vaccine design.
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SUMMARY

Potent and broadly neutralizing antibodies (bnAbs)
are the hallmark of HIV-1 protection by vaccination.
The membrane-proximal external region (MPER) of
the HIV-1 gp41 fusion protein is targeted by the
most broadly reactive HIV-1 neutralizing antibodies.
Here, we examine the structural and molecular me-
chansims of neutralization by anti-MPER bnAb,
LN01, which was isolated from lymph-node-derived
germinal center B cells of an elite controller and ex-
hibits broad neutralization breadth. LN01 engages
both MPER and the transmembrane (TM) region,
which together form a continuous helix in complex
with LN01. The tilted TM orientation allows LN01 to
interact simultaneously with the peptidic component
of the MPER epitope and membrane via two specific
lipid binding sites of the antibody paratope. Although
LN01 carries a high load of somatic mutations, most
key residues interacting with the MPER epitope and
lipids are germline encoded, lending support for the
LN01 epitope as a candidate for lineage-based vac-
cine development.
Cell Host & Microbe 26, 623–637, Novem
This is an open access article und
INTRODUCTION

The key to HIV-1 vaccine development is the induction of broadly

neutralizing antibodies (bnAbs). The currently known classes of

bnAbs target six functional regions on the envelope glycoprotein

encompassing the V2 apex, the V3 glycan site, the CD4 binding

site, the gp120-gp41 interface region, the gp120 silent face, and

the membrane proximal external region (MPER) of Env gp41

(Kwong and Mascola, 2018; Sok and Burton, 2018). MPER-spe-

cific bnAbs 4E10, 10E8, DH511, and VRC42 target the same

helical linear epitope, which precedes the transmembrane (TM)

region (Cardoso et al., 2005; Huang et al., 2012; Krebs et al.,

2019; Williams et al., 2017; Zwick et al., 2001), and neutralizes

more than 90% of multiclade strains (Krebs et al., 2019; Sok

and Burton, 2018).

A hallmark of MPER bnAbs are long, heavy-chain CDR3

(HCDR3) loops carrying hydrophobic residues at their tips,

whose interaction with membrane is required for neutralization

(Alam et al., 2009; Julien et al., 2010; Ofek et al., 2010; Scherer

et al., 2010). MPER bnAbs show various degrees of autoreactiv-

ity linked to immune tolerance mechanisms (Chen et al., 2013;

Doyle-Cooper et al., 2013) that could impair MPER bnAb devel-

opment. BnAbs 4E10 and VRC42.01 show the most significant

non-specific interaction with lipids and membrane (Alam et al.,

2007; Krebs et al., 2019), while 10E8 and DH511 lineage bnAbs
ber 13, 2019 ª 2019 The Author(s). Published by Elsevier Inc. 623
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. Analysis of LN01 mAb Sequence and Neutralization

(A) Analysis of LN01 sequences showing the inferred germline genes and alleles encoding the variable region of the heavy and light chains, the amino acid length

of the CDR3 regions and the mutation frequency of the variable regions of the light and heavy chains (aa, amino acid).

(legend continued on next page)
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lack important non-specific membrane binding (Huang et al.,

2012; Krebs et al., 2019; Williams et al., 2017), indicating that

non-specific membrane autoreactivity is not a prerequisite of

bnAbs targetingMPER. However, specific interaction with mem-

brane is important and structures of 4E10 and 10E8 revealed

lipid binding of both bnAbs (Irimia et al., 2016; Irimia et al.,

2017). Based on these structures, models of the Fab-MPER-

membrane interface have been generated and have shown

that the MPER epitope helix lies nearly perpendicular to the

membrane (Irimia et al., 2016; Irimia et al., 2017; Rujas et al.,

2016). AlthoughMPER bnAbs 4E10, 10E8, and DH511 recognize

the same epitope, their approach angles vary (Williams et al.,

2017). In contrast, VRC42.04 is a close variant of 4E10 that rec-

ognizes the same epitope with the same approach angle as

4E10. Interestingly, the latter bnAbs have been independently

generated in clade B-and clade CRF016AE-infected patients

(Krebs et al., 2019; Zwick et al., 2001).

MPER epitopes are likely only poorly accessible on native Env

trimers, and full epitope accessibility requires at least some de-

gree of receptor/co-receptor-binding-induced conformational

changes in Env (Chakrabarti et al., 2011; Lee et al., 2016; Rathi-

nakumar et al., 2012). Consequently, MPER bnAbs bind with

high affinity to the fusion intermediate conformation of gp41

(Chen et al., 2014; Frey et al., 2008; Lai et al., 2014). This confor-

mation forms during the receptor-binding-induced transitions

from native Env (Pancera et al., 2014) to the postfusion confor-

mation (Buzon et al., 2010), thereby facilitating exposure of the

linear MPER sequence motif in a membrane context. This tran-

sient conformation is suitable for bipartite anti-MPER bnAb bind-

ing of the MPER and membrane.

Dependent on the patient cohort investigated, MPER-specific

Abs are either present in a large number of patient sera with

broad neutralizing activity (Doria-Rose et al., 2017; Huang

et al., 2012; Molinos-Albert et al., 2014) or are reported to be

rare (Landais et al., 2016; Pietzsch et al., 2010). Importantly, their

presence increases the potency and breadth of the sera sub-

stantially in comparison to V2 apex bnAbs (Jacob et al., 2015).

Furthermore, antibody cocktails including MPER antibodies are

more potent (Kong et al., 2015), and in vitro the presence of

10E8 in a 4-antibody cocktail reduced significantly the amount

of incomplete neutralization (Wagh et al., 2016). Finally, both

4E10 and 10E8 protect animals from SHIV infection by passive

immunization (Hessell et al., 2010) (Pegu et al., 2014).

Here, we have isolated a broad and potent anti-MPER neutral-

izing Ab, LN01, derived from lymph-node germinal center B cells

of an elite controller infected with a clade B strain. This antibody

uses a heavy-chain germline V gene and thus extends the B cell

repertoire for the induction ofMPERbnAbs.We have determined

the reactivity of the unmutated common ancestor (UCA) and the
(B) Alignment of the amino acid sequences of the variable regions of LN01 wild-

(C) LN01 IgG1 activity was tested in vitro in neutralization assay using TZM-bl c

doviruses (PVs) of the Global Panel plus a control PV (SVA-MLV). Shown on y a

quadruplicates.

(D) Schematic of LN01 unmutated common ancestor (UCA) and variants created

Light gray areas represent sequence from UCA; dark gray regions are from the

matically mutated light (sL) chains; gH or gL, germline V-gene revertants of sH o

revertants of sH or sL in which HCDRs or LCDRs are mature.

(E) Box-and-whisker plots showing the neutralizing activity of LN01 germline va

neutralization assay on TZM-bl cells.
role of the extensive load of somatic mutations for neutralization.

We show that in addition to the MPER epitope, LN01 binding re-

quires part of the TM for interaction. Structural studies have re-

vealed the role of the TM and that of specific lipid-binding

pockets. It is noteworthy that MPER forms a continuous helix

with the complete gp41 TM region. In synergy with molecular dy-

namics simulation, we propose a model of LN01 interaction with

its monomeric epitope and with the membrane, revealing impor-

tant implications for gp41 immunogen design targeting the LN01

lineage.

RESULTS

LN01 Isolation and Characterization
Among a cohort of chronically HIV-1-infected patients, naı̈ve to

antiretroviral therapy, we identified a patient (SA003) who

showed high level of serum bnAbs, as assessed on a panel of

9 HIV-1 pseudoviruses (PVs) from the Global Panel of HIV-1

Env reference strains (Figure S1A). Of note, SA003 donor is an

elite controller with viremia <50 HIV-1 RNA copies per mL of

plasma (infected with clade B HIV-1). From patient SA003, we

isolated lymph node mononuclear cells (LNMC) and sorted

IgG memory B cells (CD19+IgA�IgM�CD27+CD38�) and IgG

germinal center (GC) B cells (CD19+IgA�IgM�CD27+CD38+).
The two B cell subsets were immortalized with Epstein-Barr virus

(EBV) in the presence of anti-B-cell-receptor polyclonal anti-

bodies and cultured for 14 days on amonolayer of mesenchymal

stromal cells (MSCs) together with a cocktail of stimuli

composed of IL2, IL21, IL6, and the TLR-9 agonist CpG-2006.

The supernatants of B cell cultures were screened for their ability

to neutralize 2 HIV-1 PVs from the Global Panel, BJOX2000

(clade CFR07) and CE1176 (clade C). One B cell supernatant

from the IgG GC B cell library showed a high percentage of

neutralization against both PVs tested (>70% for BJOX2000

and >90% for CE1176) (Figure S1B). The VH and VL regions of

the monoclonal antibody produced by this B cell clone were

sequenced and expressed as recombinant IgG1 monoclonal

antibody, hereafter referred to as LN01.

The sequence analysis revealed that LN01 was originally an

IgG3 antibody encoding the IGHV4-39 and IGKV1-39 VH and

VK germline genes. Two common features of HIV-1 bnAbs

were also found in LN01 mAb: high frequency of somatic muta-

tions in the heavy and light chain variable regions compared to

the germline sequence (28% and 27%, respectively) and a

long HCDR3 loop made of 20 amino acids (Figure 1A). The align-

ment of LN01 amino acid sequences with the unmutated

common ancestor (UCA) sequences showed a high degree of

mutations in HCDR1, framework 2 (FR-H2), FR-H4, LCDR1,

LCDR2, and FR-L4 (Figure 1B).
type and LN01 UCA. The CDRs regions are highlighted in gray.

ells. Different concentrations of the antibody were tested against nine pseu-

xes is the % of neutralization and the standard deviation (SD) calculated on

for investigation of the neutralization requirements of LN01 germlined variants.

somatic, mature antibody. Wild-type, somatically mutated heavy (sH), or so-

r sL in which HCDR3 or LCDR3 are mature; gH-FR or gL-FR, germline V-gene

riants against a panel of eight PVs of the Global Panel as measured using a

Cell Host & Microbe 26, 623–637, November 13, 2019 625



Figure 2. Analysis of LN01 Autoreactivity

(A) Immunofluorescence on Hep-2 cells. BnAbs

LN01, 4E10, and 10E8 as well as positive and

negative controls provided by the diagnostic kit

were tested at 50 mg/mL.

(B) ELISA to measure the binding to the self-antigen

cardiolipin. Assay performed according to manu-

facturer instructions. Shown are OD values of du-

plicates at 405 nm.

(C) Pharmacokinetic analysis performed in huFcRn

transgenic mice (Tg276, Jackson Laboratory).

LN01, palivizumab and a control mAb specific for an

irrelevant antigenwere administered i.v. at 10mg/kg

(n = 5). The concentration of humanmAbs in plasma

± standard deviation (SD) was determined at mul-

tiple time points using a total human IgG ELISA, as

described in STAR Methods.
The neutralizing activity of recombinant LN01 IgG1 mAb was

initially tested against a small panel of 9 HIV-1 PVs (and a control

PV, SVA-MLV). LN01 was found to neutralize 8 PVs with a me-

dian IC50 value of 0.57 mg/mL (ranging between 0.03 mg/mL of

TRO.11 and 1.61 mg/mL of BJOX2000) (Figure 1C). We also

checked the neutralizing activity of LN01 mAb expressed in the

IgG3 and Fab formats. Of note, both IgG3 and Fab formats

showed the same neutralizing activity as compared with LN01

IgG1 (Figure S2).

To further characterize the LN01 mAb activity we determined

whether FcgRI expressed on target cells could augment the po-

tency of Ab-mediated neutralization of HIV-1 PVs, an effect that

was previously described to occur with gp41 MPER-specific

neutralizing Abs and not with gp120-specific mAbs such as

b12 and 2G12 (Perez et al., 2009). Hence, we tested side by

side the LN01 IgG1 neutralizing activity on parental TZM-bl cells

versus TZM-bl expressing FcgRI in parallel with two anti-MPER

bnAbs, 10E8 and 4E10. Differences in neutralization potencies of

R3-log between parental target cells and FcgRI cells were

observed for 10E8 and 4E10, as well as for LN01 (Figure S3).

This improved potency may result from a kinetic advantage

unique to antibodies whose epitopes are difficult to access or

exposed for only a short time, such as the MPER displayed on

intermediate conformations of the Env protein during an early

stage of fusion. Taken together, these results show that LN01

is a bnAb with high breadth and potency against a multi-clade

HIV-1 PVs panel.

Neutralization by LN01 Is Dependent on Somatic
Mutations
To investigate the role of somatic mutations on the neutralizing

activity of LN01, we generated nine LN01 variants with FR and

CDR regions completely reverted to the germline in VH and VK
626 Cell Host & Microbe 26, 623–637, November 13, 2019
and compared their neutralizing activity

to that of the fully mutated LN01 mAb (Fig-

ures 1D and 1E). The germlining of all so-

matic mutations in the heavy chain (UCA

VH variant) completely abolished LN01-

neutralizing activity against the HIV-1 PVs

tested, regardless of which light-chain var-

iants were used (UCA/UCA, UCA/gL, and

UCA/sL variants). Similarly, the germlining
of all somatic mutations in the light chain (UCA VL variant) also

abolished LN01 neutralizing activity, independently of which

heavy-chain variants were used (sH/UCA, gH/UCA, UCA/UCA

variants).

However, when the mature light chain is paired to the heavy

chain completely reverted to the germline except for HCDR3

(gH/sL variant), LN01-neutralizing activity is impaired but not

abolished. Of note, when the mature heavy chain is paired to

the light chain in which all the FRs are reverted to the germline

and the CDRs are mature (sH/gL-FR), the LN01 neutralizing ac-

tivity is comparable to that of the fully mutated Ab (sH/sL) (Fig-

ure 1E). These results show that with respect to the light chain

only the somatic mutations in the CDRs (8 mutations in a total

of 29 mutations) are required for LN01 activity. Thus, this raises

the question whether other somatic mutations can be as well

reverted to germline while maintaining the LN01 neutralizing

activity.

Analysis of LN01 Autoreactivity
A common feature of several HIV-1 bnAbs, e.g. 2F5, 4E10, and

10E8, is that they cross-react with self-antigens. To evaluate

LN01 mAb autoreactivity, we tested its binding to HEp-2 epithe-

lial cells and to cardiolipin. LN01 showed a low binding to HEp-2

cells at the highest concentration tested comparable to the

staining with 10E8 but significantly lower than 4E10 (Figure 2A).

No binding was observed to cardiolipin (Figure 2B). To further

characterize the LN01 bnAb, we performed the pharmacokinetic

study in huFcRn transgenic mice. Following intravenous admin-

istration, the LN01 serum concentration declined over the

2 weeks of observation with kinetics similar to those of a control

mAb specific for an irrelevant antigen and superior to those of the

clinical stage mAb palivizumab (Figure 2C). These results show

that LN01, based on the preliminary assessment, seems to be



non-autoreactive and to have a favorable pharmacokinetic pro-

file.More in-depth analysis is needed to confirm the safety profile

of LN01.

LN01 Neutralization Breadth, Potency, and Effector
Function
Since the LN01mAb showed high breadth and potency against a

small panel of HIV-1 PVs, it was then tested against an 118-

isolate Env-PVs panel in parallel with bnAb 10E8. LN01 neutral-

ized 92% of the tested PVs compared to 95% for 10E8; the

median IC50 were 1.1 and 0.8 mg/mL for LN01 and 10E8, respec-

tively. When the IC80 values are considered, LN01 and 10E8

neutralized 83% and 85% of the tested PVs with a median of

7.4 and 6.1 mg/mL for LN01 and 10E8, respectively (Figure 3A).

Of note, the neutralizing activity of LN01 was not skewed to spe-

cific clades, albeit it seems to be less effective on clade A (the

SA003 patient was infected by a clade B HIV-1) (Table S1).

Thus, LN01 mAb mediates broad and potent neutralization

against a large panel of HIV-1 viruses comparable to bnAb

10E8 (Figure 3B).

The targeted killing of HIV-1 infected lymphocytes is an

effector function held by some but not all bnAbs. Antibody-

dependent cellular cytotoxicity (ADCC) is mediated through the

binding of the Fc portion of the antibody to Fc receptors that

are expressed on effector cells including natural killer (NK) cells.

In complement-dependent cytotoxicity (CDC), antibody binding

to the target cell induces cell lysis that is triggered by the binding

of C1q subunits to the Fc antibody region. For in vitroADCCeval-

uations, CEM-NKR-CCR5 CD4 T cells infected with one of four

HIV-1 viral strains were cultured with primary NK cells in the

presence or absence of different antibodies (Figure 3C). ADCC

activities of IgG1 and IgG3 versions of LN01 were compared to

that of bnAbs 10E8 and 4E10. BnAbs 3BNC117, 10–1074,

PGT128, PGT151 (all IgG1) and the isotype control mG053

were used as controls. One lab-adapted (NLAD8) and three pri-

mary strains of HIV-1 (YU2, CH058, and CH077) were tested. In

this assay, LN01 IgG1 displays significant ADCC against the four

HIV-1 strains tested at levels that are comparable to control

bnAbs. LN01 IgG3 showed a reduced response. 10E8 displayed

ADCC against 1 out of 4 strains and 4E10 showed no response

(Figure 3C). CDC-mediated cell lysis induced through bnAbs

was evaluated using Raji cells engineered to stably express

cell surface levels of HIV-1 YU2 envelope. Following the incuba-

tion of cells with human serum and antibodies, the appearance of

dead cells was monitored by flow cytometry with heat-inacti-

vated human serum used as negative control. LN01 IgG1 and

IgG3 antibodies both exhibited specific CDC-mediated killing

of the envelope positive cells at equivalent levels observed for

10E8, while 4E10 showed substantially reduced CDC activity

(Figure 3D).

LN01 Epitope Specificity and Binding
The results described above suggested that LN01 could target

the MPER of HIV-1 Env. To address this hypothesis, we used a

panel of HIV-2/HIV-1 chimeric PVs containing various segments

of the HIV-1 MPER replacing the parental HIV-2/7312A se-

quences (Tomaras et al., 2011). Importantly, IgG1 LN01 antibody

did not neutralize the parental HIV-2 7312A strain. IgG1 LN01

antibody was found to potently neutralize the chimeric virus
7312A.C4 in which six residues from HIV-1 were replaced in

the HIV-2 MPER region (LASWVKYIQ replaced by ITKWLWYIK)

but not the chimeric virus 7312A.C6 in which only three residues

in the same region were replaced (LASWVKYIQ was replaced by

ITSWIKYIQ) (Figure 4A). A similar finding was observed with the

chimeric virus 7312A.C1C where the same six mutations of

7312A.C4 were combined with additional seven mutations in

the N-terminal region of MPER. These results indicate that resi-

dues in the C-terminal region of the gp41 MPER (in particular

L679,W680, and K683) are involved in IgG1 LN01 antibody bind-

ing and neutralization activity, thus indicating that LN01 is a

MPER-specific bnAb.

To better define the specificity of LN01 we used a peptide

microarray formed by 1423 15-mer peptides, overlapping by

12 amino acids, that cover the full length of the consensus

HIV-1 Env gp160 sequences for clades A, B, C, D, group M,

CRF01_AE, and CRF02_AG. LN01 was tested in parallel with a

control antibody called 7B2 (that is specific for the immunodomi-

nant region of gp41) for binding to the peptide microarray. Of

note, IgG1 LN01 antibody did not react with any of the peptides

in this library, while 7B2 strongly reacted with 190–195 peptides

that spanned the gp41 immunodominant region (Figure S4A). In

addition, LN01 did not interact with a 28-amino-acid peptide

spanning the entire MPER region (Figure S4B).

To further refine the epitopemapping, we tested LN01 and two

other MPER-specific mAbs, 10E8 and 4E10, against a panel of

COT6.15 viruses (clade C) encoding MPER mutants (Tomaras

et al., 2011). LN01 neutralizing activity was reduced by >8-fold

against viruses with the mutants F673A, D674A and D674S

(both F673 and D674 are shared in HIV-2), while only marginally

reduced against the W672A mutant (Figure 4B). Of note, 10E8

shared with LN01 the reduced activity against the F673A,

D674A, and D674S mutants, but its activity was reduced by

2-log against the W672A mutant, indicating that LN01 and

10E8 share a similar interaction with F673 and D674 but are likely

to interact differently with W672.

Because LN01 did not interact with a MPER-peptide-con-

taining residues 671–683, longer MPER-containing peptides,

MPER-TM1 (residues 671–689 including seven TM residues)

and MPER-TM2 (residues 630–711, containing the complete

TM region) (Figure S5A) were tested in binding studies.

MPER-TM2, solubilized in a buffer containing b-D-octyl gluco-

side (b-OG), forms trimers (Figure S5B) but does not interact

with LN01. However, when solubilized in a buffer containing

Fos-Choline-12, MPER-TM2 is monomeric and forms a com-

plex with LN01 Fabs (Figure S5C). Binding kinetics were

analyzed both in b-OG and in Fos-Choline-12-containing

buffers by surface plasmon resonance (SPR) and compared

to 10E8 interaction with MPER-TM1 and MPER-TM2. From

this analysis, Kds were measured to be 160.8 nM for LN01

binding to MPER-TM1 in b-OG and 170.0 nM for interaction

with MPER-TM1 in Fos-Choline-12, showing similar binding in

both detergents. The interaction with MPER-TM2 is tighter, re-

sulting in a Kd of 13.0 nM, underlining a role for the complete

TM region. Binding of 10E8 yielded Kds of 62.0 and 36.9 nM

for the interaction with MPER-TM1 and again a slightly higher

affinity of 24.2 nM for the interaction with MPER-TM2 (Fig-

ure S5D). We conclude that the LN01 epitope extends from

MPER into the TM region.
Cell Host & Microbe 26, 623–637, November 13, 2019 627



Figure 3. LN01 Neutralization Breadth, Potency, and Effector Function Killing of HIV-1-Infected Lymphocytes

(A) The neutralizing activity of LN01 IgG1 tested against a cross-clade panel of 118 HIV-1 PVs. The IC50 (top panel) and IC80 (bottom panel) expressed in mg/ml

were determined in TZM-bl-cell-based micro-neutralization assay as described in STAR Methods.

(B) Neutralization breadth-potency curves for LN01 and 10E8, with breadth shown as percentage of PVs neutralized at each IC50 (top panel) or IC80 (bottom

panel) cutoff (25 mg/mL for LN01 and 10 mg/mL for 10E8).

(C) ADCC killing of HIV-1 infected lymphocytes performed with bnAbs at 15 mg/mL on CEM-NKR-CCR5 cells infected with NLAD8, YU2, CH058, or CH077 HIV-1

strains. ADCCwas calculated as the disappearance of Gag+ cells with or without antibodies (n = 6–10), with each dot representing an individual donor of primary

NK cell. ADCC responses of each tested antibody were compared to that of the isotype control mGO53 in the Wilcoxon test (*p < 0.05).

(D) CDC-mediated cell killing performedwith bnAbs at 15 mg/mL incubated with a Raji-YU2 Env cell line in the presence of normal human serum from six individual

donors or heat-inactivated human serum. The mGO53 antibody was used as a negative control in (C) and (D).
LN01 Structures in Complex with MPER-TM
Crystal structures of LN01 were determined in complex with

MPER-TM1, in complex with MPER-TM1 and phosphatidylser-

ine (06:0 PS), and in complex with MPER-TM2 to resolutions of

3.2 Å, 3.1 Å, and 3.9 Å, respectively (Table S2). Two identical
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complexes of LN01/MPER-TM1 were present in the asymmetric

unit. MPER-TM1 residues 671–689 adopt a slightly bent helical

conformation in complex with LN01 (Figure 5A). Main contacts

are mediated by polar interactions, D674 to LCDR3 T94, N677

to LCDR3 H92, T676 to HCDR3 W100h, and K683 to the



Figure 4. Relevant Residues on HIV-1 PVs for

LN01 Binding

(A) HIV-2 chimera containing HIV-1 MPER region

and parental HIV-2 were used to determined the

binding of recombinant LN01. In the table are shown

the IC50 (mg/mL) calculated based on the neutrali-

zation assay with TZM-bl cells (middle column), and

the different mutations in the sequence carried by

MPER of each chimeras (right column).

(B) The activities of LN01, 10E8, and 4E10 mAbs

against several MPERmutants of the COT6.15 virus

were assessed. Shown are the IC50 values ex-

pressed in mg/mL.
carbonyls of HCDR3 F100 and S100b (Figure 5B). Furthermore,

gp41 F673 inserts into a hydrophobic pocket composed of

HCDR3 W100h, HCDR1 Y35, and LCDR3 W96. In addition,

numerous hydrophobic contacts include long-range interactions

of HCDR3 residues, F100 and W100a, to gp41 I682, I686, and

M687, thereby positioning the tip of HCDR3 close to TM residues

(Figure 5B; Table S3). The overall contact interface of the Fab
Cell Host & Mi
and MPER-TM1 spans 683 Å2. The

structure also reveals the presence of a

Fos-Choline-12 detergent molecule (Fig-

ure S6A); its phosphate group interacts

with LCDR1 K31 and the cation of the

choline inserts into a cation box (Morita

et al., 2016; Roderick et al., 2002) made

up of gp41 W680 and Y681 and LCDR1

Y32 and HCDR3 Y100g (Figure 5B). Co-

crystallization of MPER-TM1-LN01 with

06:0 phosphatidylserine (PS) (Figure S6B)

revealed a network of polar interactions

coordinating one PS molecule. HCDR3

S97 and HCDR2 Y52 hydrogen bond to

the carbonyl of PS, HCDR1 D32 contacts

the amide of PS, the amide of HCDR3

F100 hydrogen bonds to the phosphate

group of PS, and HCDR3 W100a to the

carbonyl of the acyl chain (Figures 5B

and S6B). This interaction network reveals

how lipid interaction coordinates the

HCDR3 extended conformation, allowing

W100a immersion into the lipid bilayer.

Notably, most residues coordinating

epitope recognition, Fos-Choline-12, and

PS interaction in LN01 are present in the

LN01 UCA. Exceptions are LCDR1 K31

(Fos-Choline-12, phosphocholine head

group), which itself is coordinated by

LCDR2 Y52 (Figure 5B), LCDR3 H92 (con-

tacting MPER), HCDR1 D32, and HCDR2

Y52 (contacting PS), as well as LCDR3

H92 (contacting gp41) (Figures 1B and

5B). Furthermore, replacement of UCA

HCDR3 G100c by wild-type (WT) HCDR3

T100c likely influences the HCDR3 loop

conformation and its capacity to reach

the lipid bilayer. Thus, LN01 UCA does
not neutralize, mainly because it lacks specific lipid-bind-

ing sites.

The neutralization analyses of LN01 variants having different

heavy- and light-chain combinations (Figures 1D and 1E) agree

with the molecular details of LN01 epitope recognition. In

order to define the importance of the interaction with the

peptidic epitope, we analyzed the LN01 variants with respect
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Figure 5. Structure of LN01 in Complex with

gp41 MPER-TM1 and with Lipid

(A) Structure of the LN01-MPER-TM1 complex.

LN01 is colored in yellow (light chain) and orange

(heavy chain) and the N-acetyl-b-d-glucosamine

(NAG) on Asn107 of the light chain is shown with

spheres. Gp41 is colored in purple (MPER) and

beige (TM). The same coloring was used in all

figures.

(B) Close up of the interactions with gp41 MPER,

Fos-Choline-12, and PS revealing two lipid-binding

sites on either side of the MPER helix. Fos-Choline-

12, PS, and residues involved in polar contacts and

important hydrophobic contacts are indicated and

represented in sticks; hydrogen bond interactions

are represented as dashed lines. The upper two

panels show the interactions of LN01 with gp41

MPER from two different orientations. The lower left

panel shows the interaction with Fos-Choline-12, a

putative lipid-binding site accommodating phos-

phatidylcholine, and the lower right panel shows the

hydrogen bond network that coordinates 06:0 PS

forming a second lipid-binding pocket.
to MPER-TM2 interaction (Figure S7). Using bio-layer interfer-

ometry (BLI), WT (sH/sL) LN01 showed a KD of 2.3 ± 0.01 nM,

which is a factor of 5 higher than the KD determined by SPR (Fig-

ure S5D). LN01 sH/gL-FR (Figure 1E) binds the gp41 epitopewith

a KD of 7.0 ± 0.03 nM indicating that light-chain framework mu-

tations affect binding slightly while maintaining neutralization po-

tency, except for strain 2570 (Figure 1E). LN01 gH/sL (Figure 1D)

bindswith a KD of 6.2 ± 0.02 nMbut shows no or lower potency in

neutralization (Figure 1E) in agreement with the importance of

HCDR1 D32 and HCDR2 Y52 for PS coordination (Figure 5B).

LN01 gH/gL and LN01 gH/UCA (Figure 1D) both bind with low

micromolar affinity (KD = 1.4 ± 03 and 4.7 ± 1.7 mM) explaining

their lack of neutralization. LN01 sH/gL has a 100-fold lower KD

of 453.3 ± 82 nM and exerts only some low potency neutraliza-

tion (Figure 1E), which may be explained by the absence of the

PS and Fos-Choline12-binding sites as well as the lower affinity

due to potential long-range effects of light-chain CDR residues.
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LN01 UCA/UCA, UCA/sL, and UCA/gL

(Figure 1D) showed no binding, in agree-

ment with no neutralization (Figure 1E),

highlighting the importance of HCDR3 in-

teractions with gp41 (Figure 5B). This

thus confirms the importance of both

high-affinity gp41 peptide epitope interac-

tion and lipid binding for neutralization.

The structure of LN01 in complex with

MPER-TM2 containing the complete TM

region reveals that MPER forms a contin-

uous helix with the TM comprising resi-

dues 684–711 (Figure 6A). The asymmetric

unit contained four complexes, two with a

continuous straight MPER-TM helix and

two with a 90� and 110� kink at the

conserved Gly 691 in the middle of the

TM region (Figures 6B and S5E). LN01 in-

teractions with MPER are the same in all
four complexes and similar to the LN01-MPER-TM1 structures.

Molecular dynamics (MD) simulations of the LN01-MPER-TM2

complex placed into a bilayer with a lipid composition analogous

to that of the viral envelope (Br€ugger et al., 2006) revealed a 25�

tilted orientation of the TM segment with respect to that of the

bilayer (Figure 6C). This tilt orients the LN01 Fab on the mem-

brane such that the HCDR3 dips into the bilayer and positions

the lipid-binding sites to interact with lipid head groups (Fig-

ure 6D). Furthermore, the tilt angle of the TM allows residue

K683 to interact with lipid head groups of one leaflet and R696

to contact head groups of the opposite leaflet; residues R707

and R709 terminating the TM helix interact as well with lipid

head groups in the simulation (Figure S6C).

Although some of the LN01-interacting MPER-TM1 residues

overlap with the contacts observed for bnAbs 10E8, 4E10, and

DH511.1 (DH511.2) (Figure S5E), all four antibodies approach

the MPER epitope with different angles. Comparison of the



Figure 6. Structure of LN01 in Complex with gp41 MPER-TM2 Re-

veals a Continuous Helix of MPER and TM

(A) Structure of the LN01-MPER-TM2 complex with the TM in the straight

conformation. Color coding is the same as in Figure 5. Gp41 MPER residues

650 to 670 are disordered in the LN01-MPER-TM2 structure.

(B) Structure of the LN01-MPER-TM2 complex with the TM in the bent

conformation.

(C) Orientation of the LN01-MPER-TM2 complex in the lipid bilayer based on

the MD simulation result (lipids are represented in sticks).

(D) LN01-MPER-TM2 complex with modeled phosphatidylcholine and 06:0 PS

(based on the LN01-MPER-TM1 structure) demonstrates that both lipids are

well positioned to be part of the bilayer. Phosphatidylcholine and 06:0 PS are

shown in spheres.
approach angles, based on the orientation of the MPER-TM2 in

the membrane as determined by MD simulation (Figure 6C),

showed that Fabs 10E8, 4E10, and DH511.1 are rotated by

30�, 14�, and 34�, respectively, compared with the LN01 position

(Figure 6E). Taken together, the different angles of approach of

MPER bnAbs suggest that half of the MPER surface is immuno-

logically silent and not accessible in any of the different confor-

mational states of Env. In order to determine whether TM tilting

in the membrane is induced by LN01 binding, we performed

MD simulation to position the straight TM alone in the lipid

bilayer. Furthermore, we included the bent TM conformation in

the simulation to test its potential physiological relevance. Six

0.3-ms MD trajectories were generated, two of them starting

from a straight TM helix, and four initiated with a bent TM helix.

In the simulations starting from a straight TM helix, TM did not

interconvert into a bent form (Figures 7A and 7B). Analysis of

the trajectories indicates that the TM is steadily anchored to

the lipid bilayer by interactions of K683 with the head groups of

one leaflet, and residues R707/709 interacting with head groups

of the other leaflet (Figure 7A) as shown in the LN01-MPER-TM2

simulation (Figure S6C). Measuring the tilt of the a helix with

respect to the membrane plane as a function of time revealed

average tilt angles of 18� ± 5�, slightly smaller than the tilt angle

imposed by the LN01 Fab interaction (Figures 5C and S6C). This

conformation indicates that the guanidine group of the strictly

conserved central TM residue R696 can contact polar head

groups (Figures 7A and S6C). In contrast, simulations initiated

with the bent TM revealed a propensity to interconvert toward

a straight conformation. Out of four independent simulations,

only one preserved a bent TM conformation, with a near 90�

bending angle. In one simulation, the a helix rapidly retracted

to a nearly straight form, while in the remaining two, the TM ap-

pears to navigate between the two conformations (Figure 7B).

The central R696 can contact polar head groups in the bent

conformation as well, and the anchoring residues at the mem-

brane boundaries K683 and R707/709 squeeze the membrane,

reducing its diameter locally (Figure 7C). The MD trajectories

further suggest that the straight and the bent TM helices in a

membrane are metastable states of the free-energy landscape,

the straight conformation likely corresponding to a lower free-

energy state than the bent form. To verify this hypothesis, the po-

tential of mean force (PMF) underlying the transition between the

two conformations was determined in an 11-ms multiple-walker

adaptive-biasing-force (MW-ABF) simulation (Comer et al.,

2014). The one-dimensional free-energy profile features two

minima separated by a 4.5 kcal/mol barrier, the straight and

the bent conformations being 3.8 kcal/mol in favor of the former
(E) The angle of approach of MPER bnAbs. The upper panel shows the bnAbs

LN01 (yellow), 10E8 (orange), 4E10 (blue), and DH511.1 (red), represented with

a sphere at the center of the variable domain for each antibody.

The middle panel shows their orientations upon recognition of the linear helical

epitope as determined by Ca superposition of the MPER peptide of the four

complexes (two side views and one top view looking down the helical axis

of MPER).

The lower panel shows the representation of the angle of approach of the

different bnAbs on theMPER-TM domain inserted in the lipid bilayer (lipids and

basic residues are shown as sticks). The trajectory between the center of each

antibody and gp41 T676 is depicted by a straight line.
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Figure 7. Molecular Dynamics Simulation of the

Straight and Bent TM Conformations in a Lipid

Bilayer

The lipid bilayer is composed of POPC (turquoise),

POPE (yellow-green), POPS (red), SSM (pink), and

cholesterol (mauve). The lipid head groups are repre-

sented as van der Waals spheres of the corresponding

colorcolour. TheG residues of the a helix are highlighted

as orange spheres.

(A) MD simulation of the straight TM conformation re-

veals a tilt angle of 17�. The inset shows the complete

assay, featuring water and the K+ (violet) and Cl� (green)

ions.

(B) MD simulation of the bent TM conformation dem-

onstrates that the bent form thins the membrane locally.

(C) Time evolution of the bending angle, 4, formed by

the long axes of the a-helical segments spanning resi-

dues I675 to M687 and I697 to N706 determined from

six independentMD simulations. The inset of (C) depicts

the time evolution of the tilt angle, q, formed by the long

axis of gp41 and the normal to the lipid bilayer.

(D) Free-energy profile characterizing the transition

between the straight (left minimum) and the bent (right

minimum) conformations of gp41 in a membrane. The

error bars correspond to the standard deviation

measured from the eight walkers of the 11-ms MW-ABF

simulation.
(Figure 7D). Thus, starting from a bent a helix, the free-energy

barrier to overcome is only 0.7 kcal/mol. These observations

indicate that depending on the initial conditions, the bent a helix

can rapidly interconvert to a straight a helix. Conversely, at 310K

(37�C), the straight a helix is very unlikely to bend to an elbow-

shaped a helix, in line with our equilibrium brute-force MD simu-

lations. We conclude that the straight TM region is the lowest

energy state, which most likely represents the TM conformation

present upon LN01 binding in vivo.

DISCUSSION

Here, we report the isolation as well as functional and structural

characterization of a bnAb (LN01) isolated from lymph-node GC

B cells of an elite controller. LN01, originally isolated as IgG3,

uses IGHV4-39 and IGKV1-39 VH, and VK genes and neutralizes

92% of a 118-strain virus panel. We show that LN01 binds to the

same gp41 MPER epitope as bnAbs 10E8, 4E10, DH511, and

VRC42.04 (Cardoso et al., 2005; Huang et al., 2012; Krebs

et al., 2019; Williams et al., 2017). However, LN01 interaction

with the MPER epitope requires, in addition to MPER, amino

acid residues in adjacent helical turns of the transmembrane re-

gion for interaction. Thus, at least one helical turn of the TM is an

integral part of the LN01 epitope. Furthermore, the affinity of

LN01 is 10 times higher when MPER is fused to the complete

TM segment, which may provide a more stable TM structure.

In line with a role of the TM for anti-MPER bnAb function, the af-

finity of 10E8 is 100 times higher when the MPER epitope is

linked to part of the TM (Rujas et al., 2016).

The MPER epitope adopts the same helical structure in com-

plex with 10E8, 4E10, DH511, VRC42, and LN01, although the

contact residues differ because four of the five bnAbs approach

the epitope from different angles. Together, they cover approxi-

mately 180� of the cylindrical MPER helix surface, which is incon-
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sistent with a tight trimeric conformation. Indeed, a trimeric NMR

model of MPER-TM indicates that the MPER epitope is not

accessible in this conformation (Dev et al., 2016). The cryoelec-

tron microscopy (cryo-EM) structure of native Env in complex

with PGT151 suggests that glycans N88 and N625 sterically

hinder 10E8 binding to native Env trimers. Thus, in order to

interact with native Env, 10E8 interaction requires lifting the

trimer off the membrane surface, resulting in a conformation

similar to the one induced by CD4 splaying MPER-TM apart

(Huang et al., 2014; Lee et al., 2016). Although these early confor-

mational states of Env may provide initial binding, the binding

affinity of 10E8 or other MPER antibodies to such an early

conformational intermediate has not been investigated. The

real target of bnAbs targeting MPER is most likely the gp41

fusion intermediate conformation (Frey et al., 2008; Lai et al.,

2014), whereas anti-MPER bnAbs prevent refolding into the

fusion-active conformation (Weissenhorn et al., 1997). This is

also in agreement with the long mean half-life of neutralization

(Williams et al., 2017) linked to the prolonged MPER epitope

exposure (Shen et al., 2010) and in line with the increased

neutralization potencies observed between parental cells and

FcgRI cells as reported here.

MostMPER antibodies except VRC42 (Krebs et al., 2019) have

been isolatedas the IgG3subclass,whosemore flexible hinge re-

gion may favour MPER epitope recognition, although no differ-

ences in neutralization or CDC activity were observed between

LN01 IgG1 and IgG3 subclasses. In contrast, LN01 IgG1 showed

a trend toward improvedADCCmediated killing of HIV-1 infected

lymphocytes compared to the IgG3. These potential differences

between the LN01 antibody subclasseswill require further ADCC

investigation with a concentration response analysis. Interest-

ingly, using four different strains of HIV-1, LN01 showed a higher

ADCC activity than 10E8 and 4E10, the latter being negative in

ADCC as reported previously (Bruel et al., 2016).



We further show that LN01 binds lipids similar to 4E10 and

10E8 (Irimia et al., 2016; Irimia et al., 2017), which is likely to be

a general feature of MPER bnAbs. The long HCDR3 with hydro-

phobic residues at its tip, which are essential for neutralization

(Alam et al., 2009; Chen et al., 2014; Julien et al., 2010; Lutje Hul-

sik et al., 2013; Ofek et al., 2010; Scherer et al., 2010), is another

common feature ofMPERbnAbs. OurMD simulations reveal that

LN01 bound to MPER-TM is positioned such that HCDR3 can

insert into the membrane, thereby interacting simultaneously

with the first turn of the a-helical TM and lipids via at least two

lipid-binding pockets. Thus, the membrane is part of a bipartite

epitope, which increases the binding affinity (Reichart et al.,

2016) and transforms MPER bnAbs into ‘‘conformational’’ Abs

(Mouquet et al., 2010). Although membrane interaction is essen-

tial for neutralization, LN01 autoreactivity with membranes in the

absence of the gp41 epitope is below the detection level similar

to that reported for 10E8 (Huang et al., 2012) and VRC42.04

(Krebs et al., 2019) and thus is not as prominent as described

for 4E10 (Alam et al., 2007; Haynes et al., 2005). Nevertheless,

some autoreactivity such as specific lipid binding plays a role

in the maturation of MPER bnAbs, in line with the suggestion

that their generation requires the ability to overcome immune

tolerance mechanisms (Moody et al., 2016) by engaging anti-

body lineages induced by host proteins or microbiota (Liao

et al., 2011; Trama et al., 2014).

The germline VH and VL gene usage of MPER bnAbs shows

similarities and differences. 10E8 and DH511 use the germline

V gene IGHV3-15, and 4E10 and VRC42 employ IGHV1-69, while

LN01 uses yet another one, IGHV4-39, hence expanding the VH

repertoire of naı̈ve B cells for MPER antibody generation. In

contrast, the light-chain V gene usage of IGKV1-39 is shared be-

tween LN01 and the DH511, while 4E10 and VRC42 use IGKV3-

20 and 10E8 IGLV3-19 (Finton et al., 2014; Huang et al., 2012;

Krebs et al., 2019; Williams et al., 2017). This indicates that these

five anti-MPER bnAbs, derived from four different patients, have

found common and divergent solutions to the same problem,

suggesting that successful targeting MPER might not be excep-

tional, in line with the presence of MPER-specific Abs in poly-

clonal sera (Doria-Rose et al., 2017; Huang et al., 2012). The

UCA version of LN01 does not neutralize PVs infection, in agree-

ment with no detectable interaction with the gp41 MPER-TM2

epitope. Testing our different LN01 variants for epitope binding

revealed that high-affinity peptide epitope binding, as well as

the presence of both proposed lipid-binding sites, are important

for LN01 neutralization and potency. Furthermore, many of the

LN01 somatic mutations within the framework regions seem to

be unimportant for neutralization. However, some long-range

structural effects cannot be excluded, in agreement with findings

that suggest that HIV-1 bnAbs require framework mutations for

either increased flexibility and/or direct antigen contact (Klein

et al., 2013). In particular, our structural studies suggest that

only five of the CDR somatic mutations are implicated in epitope

and lipid binding. Similarly, a longitudinal study on the 4E10-

related bnAb VRC42 suggests that it becomes broad with a

lowmutation rate (Krebs et al., 2019). Thus, further investigations

will inform on the minimal requirement of mutations in light of

improving LN01 developability properties.

The crystal structure of MPER-TM2 containing the complete

TM region reveals a continuous helix of MPER and TM similar
to the monomeric MPER-TM NMR structure (Chiliveri et al.,

2018). Other structural models propose a hinge or helical bent

connecting MPER and TM (Apellániz et al., 2015; Kwon et al.,

2018), underlining some conformational flexibility within MPER.

MD simulation placed the TM domain alone with an approximate

18� tilt angle in the membrane stabilized by the basic residues at

both membrane boundaries. This conformation allows the cen-

tral, strictly conserved R696 to interact with lipid head groups.

Thus, R696 may be strictly conserved in order to position and/

or stabilize the tilted TM during the conformational transitions

of gp41, leading to membrane fusion (Schibli and Weissenhorn,

2004), which is consistent with the proposal that R696 is impor-

tant for membrane-fusion efficiency (Long et al., 2011). We

further observe a bent conformation of the TM region, which

has no role in LN01 interaction. Although this may be a pure

Fos-Choline-12 effect, bending occurs at Gly positions that are

strictly conserved in HIV-1, HIV-2, and SIV TM sequences

(Chen and Chou, 2017). MD simulations confirmed that the TM

region can navigate between a straight and bent conformation,

both being metastable, although the straight form represents

the lower free-energy state. Interestingly, the bent conformation

compresses the membrane, and membrane thinning of SNARE

TMs was proposed to lower the free energy of stalk formation

by favoring the local concentration of highly bent stalk structures

(Smirnova et al., 2019) formed at early stages of the fusion pro-

cess (Chernomordik and Kozlov, 2008). It is, therefore, tempting

to speculate that a bent Env TM may have a similar role in mem-

brane fusion.

In summary, the functional and structural data indicate that

potential MPER immunogens must be linked to the native Env

transmembrane region and incorporated in the membrane as

the MPER epitope extends into the TM region, thereby gener-

ating the functional bipartite gp41 membrane epitope. Since

the TM alone orients itself in the membrane with a tilt angle

that is similar to the one induced or stabilized by LN01 interac-

tion, MPER-TM inserted in the membrane may present the

optimal immunogen. However, since MPER itself has some de-

gree of conformational flexibility and may as well insert into the

membrane when linked to the TM domain (Apellániz et al.,

2015; Kwon et al., 2018), our structures indicate that stabilization

of the continuous MPER-TM helix by chemical (Bird et al., 2014)

or other means could favor immunogenicity and thus B cell

stimulation.
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should be directed to and will be fulfilled by the Lead Contact, Winfried Weissenhorn (winfried.weissenhorn@ibs.fr).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines
TZM-bl wild-type and TZM-bl expressing the FcgRI cells were obtained from NIH-AIDS Research and Reference Reagent Program

(ARRRP) and used for neutralisation assays. TZM-bl wild type cells were maintained in Dulbecco’s modified Eagle’s medium sup-

plemented with 10% fetal bovine serum, 100 units of Penicillin and 0.1 mg/ml of Streptomycin while TZM-bl expressing the FcgRI

cells were maintained in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum, 0.025M Hepes,

50 mg/ml of Gentamicin, 20 mg/ml of Blasticidin. Both cell lines were cultivated at 37�C in a humidified 5%CO2 incubator. Cell mono-

layers were split at 1x106 cells/T175 flask at confluence by treatment with 0.25% trypsin. Raji-Env cells (obtained from the ATCC,
e3 Cell Host & Microbe 26, 623–637.e1–e8, November 13, 2019

mailto:winfried.weissenhorn@ibs.fr
https://www.graphpad.com/scientific-software/prism/
https://www.graphpad.com/scientific-software/prism/
https://www.qiagenbioinformatics.com/products/clc-main-workbench/
https://www.qiagenbioinformatics.com/products/clc-main-workbench/
http://www.imgt.org
http://www.pymol.org
https://www.ks.uiuc.edu/Research/vmd/
https://www.ks.uiuc.edu/Research/namd/
http://www.charmm-gui.org
https://weblogo.berkeley.edu/logo.cgi
https://deposit-pdbe.wwpdb.org
https://validate.wwpdb.org/
https://www.moleculardevices.com
https://sbgrid.org/
https://python.org
https://www.gelifesciences.com/biacore


ATCC�CCL-86�) were cultured in RPMI supplemented with 10% FCS and 1% penicillin/streptomycin at 37�C in 5%CO2 and were

used for CDC experiments. Expi293F cells (ThermoFisher Scientific) were maintained in Expi293 Expression Medium and cultivated

at 37�C in a humidified 8% CO2 incubator (shaker with 25-mm shaking diameter, speed set to 140 rpm). Cells were split, once they

reached a density of approximately 1-4x106 cells/ml, at 0.3x106 cells/ml. Expi293F cells were used for Ab production. The sex of all

cell lines is female.

HIV-1 Primary Viruses
NLAD8, YU2 and transmitted-founder HIV-1 strains (CH058, CH077; obtained from the NIH AIDS Reagent Program) were prepared

by the transfection of 293T cells (obtained from the ATCC) along with vesicular stomatitis virus G (VSV-G) to normalize infectivity, as

done previously (Casartelli et al., 2010). HIV-1 PVs were provided by the Fraunhofer Institute for Biomedical Engineering IBMT.

Sample Collection
Male donor SA003 (year of birth 1963), ART naı̈ve, was selected among a cohort of HIV-1-infected patients enrolled in the Hospital

‘‘Sacco’’ in Milan due to the ability of its plasma to neutralize eight out of nine HIV-1 PVs of the Global Panels. The aforementioned

donor is a Long Term Non-Progressor (LTNP) patient who consented to lymphadenectomy, signed informed written consent and

underwent surgery. At that time, he had been infected with HIV-1 for 30 years with CD4 T-cell counts of 474 cells/ml and plasma

HIV-1 RNA values of 1600 copies/ml, CDC stage A1. The donor was not involved in previous procedures and he had never received

antiretroviral therapy. The protocol was approved by the Ethic Commission Milan Area A (Comitato Etico Interaziendale Milano Area

A) protocol Number 0006143 on February 20th 2015.

Animals
Treatment-naive female, 6-10weeks old, homozygous human FcRn (huFcRn) transgenicmice (Tg276 strain, Jackson Laboratory Bar

Harbor, ME) were used to assess the pharmacokinetics of monoclonal antibodies. Mice were bred in the specific pathogen-free (spf)

facility at the Institute for Research in Biomedicine Switzzerland under a chow diet. All the in vivo procedures were performed in

accordance with the Swiss Federal Veterinary Office guidelines and as authorized by the Cantonal Veterinary Office.

METHODS DETAILS

B-cell Isolation and Stimulation
Memory and GC B cells from patient SA003 were isolated from cryopreserved lympho node mononuclear cells (LNMCs) as

follows: LNMCs were stained with anti-human CD19 PE-Cy7 (BD Bioscience_341113), anti-human IgM FITC (Invitrogen_A21215),

anti-human IgA FITC (Invitrogen_A18788), anti-human CD27 BV650 (Biolegend_302827), anti-human CD38 APC (Beckman

Coulter_555462) and anti-human CD14 PC5 (Beckman Coulter_A07765) plus anti-human CD3 PC5 (Beckman Coulter_A07749) on

ice for 20 min. The cells were then washed, filtered and sorted using FACSAria (Becton Dickinson). Memory IgG+ B cells were sorted

as CD19+CD27+CD38- while GC IgG+ B cells as CD19+CD27+CD38+, both negative for all other markers, resuspended in complete

IMDM with 10% FBS and immortalized with Epstein-Barr virus (EBV) in the presence of 2.5 mg/ml CpG 2006, 2.5 mg/ml AffiniPure

F(ab’)2 Fragment Goat Anti-Human IgA+IgG+IgM (H+L) (Jackson Immunoresearch), 500 U/ml IL-2, 5 ng/ml IL-6 (BD Pharmingen)

and 10 ng/ml IL-21 (ImmunoTolls). The two subsets of B cells were seeded at 0.5 cells per well on amonolayer of Mesenchimal Stromal

Cells (MSC) (Corti et al., 2014; Pinto et al., 2013) in 384-well microtiter plates. After 2weeks, the supernatantswere screened for neutral-

ization activity using high throughput micro-neutralization assay against BJOX and CE1176 HIV-1 PVs. The B-cell cultures that neutral-

ized both the PVs were then re-tested in secondary screening against the same PVs plus other two: X1632 and 25710. The B cells that

neutralized four out of four HIV-1 PVs were lysed and the variable regions of the heavy and light chain were cloned.

Sequence Analysis of Antibody cDNA
cDNA was synthesized from selected B-cell culture and both the heavy and light chain variable regions (VH and VL) were sequenced

as previously described (Tiller et al., 2008). Using the Database: IMGT (http://www.imgt.org), the VH and VL gene family and the

number of somatic mutations were determined by analyzing the homology of the VH and VL sequences to known human V, D

and J genes. UCA sequences of the VH and VL were constructed using IMGT/V-QUEST.

Production of Recombinant Antibody and Antibody Variants
The variable regions of the heavy and light chain were cloned into IgG1 and IgK expression vectors (Tiller et al., 2008) and expressed

recombinantly by transient transfection of Expi293F cells (ThermoFisher Scientific) using polyethylenimine (PEI). After 7 days, cell

culture supernatants were collected, centrifuged, filtered and purified by protein A chromatography (GE Healthcare). The purified an-

tibodies were quantified using Pierce Rapid Gold BCA Protein Assay kit (ThermoFisher Scientific).

Neutralization Assays
A single-cycle infectivity assay was used to measure the neutralization of luciferase-encoding virions pseudotyped with the desired

HIV-1 Env-protein. For the primary screening, the culture supernatants from day 14 were tested using 384-well based HIV-1 PVs mi-

croneutralization assay using in parallel two strains, CE1176 and BJOX2000 representative respectively of clade C and CRF07.
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Neutralization were undertaken on TZM-bl (3000 cell per well). Briefly, 10ml of culture supernatant was pre-incubated with 10 ml of

diluted HIV-1 PVs for 1h at 37� (5% CO2) and then added on the top of TZM-bl. After an incubation of 72h at 37�, the cells were lysed

with BriteLite reagent (PerkinElmer) and the luciferase activity detected using the EnVision multimode plate reader (PerkinElmer). For

the secondary screening, the neutralization was performed following the same protocol but making four dilution of the culture super-

natant before adding the HIV-1 PVs (CE1176, BJOX2000, X1632 and 25710). To test the breadth and potency of the recombinant

antibodies, the neutralization assay was performed in 96-well plates. Briefly, 35ml of serial diluted mAb were pre-incubated with

35ml of HIV-1 PVs for 1h at 37� and then added on TZM-bl or TZM-bl expressing FcgRI, depending on the experiment, seeded

the day before at 10 000 cell per well. The volume of medium was then adjusted to 200 ml per well the day after. After an incubation

of 72h at 37�, the cells were lysed, and the luciferase activity measured using the EnVision. IC50 and IC80 were calculated by nonlinear

regression analysis using the GraphPad Prism 5 software.

Neutralization against the extended panel of HIV-1 PVs (Huang et al., 2016) was employed to evaluate breadth and potency.

Neutralization was assessed after a single round of infection in either TZM-bl or TZM-bl/FcgR1 cells using non-reported PV as

described (Montefiori, 2009). A pre-titrated dose of PV was incubated with serial 3-fold dilutions of test sample in duplicate in a total

volume of 150 ml for 1 hr at 37�C in 96-well flat-bottom culture plates. Freshly trypsinized cells (10,000 cells in 100 ml of growthmedium

containing 75 mg/ml DEAE dextran) were added to each well. One set of 8 control wells received cells + virus (virus control) and

another set received cells only (background control). After 48 hours of incubation, 100 ml of cells was transferred to a 96-well black

solid plate (Costar) for measurements of luminescence using the Britelite Luminescence Reporter Gene Assay System (PerkinElmer

Life Sciences). Assay stocks of PV were prepared by transfection in 293T/17 cells (American Type Culture Collection) and titrated in

TZM-bl cells as described (Montefiori, 2009).

ADCC Assay
HIV-1-infected target CEM-NKR.CCR5 CD4 T cells were stained using the Far Red DDAO cell tracker (Life Technologies). 2–53104

target cells were plated in U-bottom 96-well plates and incubated with antibodies (15 mg/ml) for 5 min at room temperature. NK cells

were added in each well (at a ratio of 1 CEM-NKR-CCR5 : 10 NK). Plates were spun 1 min at 300 g to promote cell contacts and

incubated at 37�C for 4 h. Cells were then stained for intra-cellular Gagwith the anti-Gag KC57murinemonoclonal antibody. Tomea-

sure cell viability, the live/dead fixable aqua dead cell marker (1: 1,000 in PBS, Life Technologies) was added 20 min at 4�C before

fixation. Data were acquired on a BD FACSCANTO II and analysed using FlowJo software. The frequencies of Gag+ cells among Far-

Red+ cells were determined. ADCC was calculated using the following formula: 1003 (% of Gag+ target cells plus NK without anti-

body -%of Gag+ target cells plus effector with antibody)/(% of Gag+ target cells plus NKwithout antibody). Negative valueswere set

to zero. Antibodies used in this assay, 3BNC117 (Scheid et al., 2011), 10-1074 (Mouquet et al., 2012), PGT128 (Walker et al., 2011),

PGT151 (Falkowska et al., 2014), 4E10 (Stiegler et al., 2001), 10E8 (Huang et al., 2012) and mGO53 (Wardemann et al., 2003) were

produced as described above.

Complement-dependent Cytotoxicity Assay
Raji-Env cells were generated with Raji cells (obtained from the ATCC, ATCC� CCL-86�) that were spinoculated (1,000g for 1,5h at

32�C) with a retroviral viral vector carrying Env (pMX-YU2 ENVDCT-GFP-PuroR) (Pietzsch et al., 2010). Transduced cells (GFP+) were

sorted and cultivated in the presence of Puromycin (1mg/ml, Sigma). High level of Env expression was then obtained by subcloning.

0.5 x 105 Raji-Env Cells were cultivated in presence of 50% normal human serum (NHS) or heat-inactivated human serum (HIHS) and

with or without antibodies (15 mg/ml). After 24h, cells were washed twice with PBS and stained with the live/dead fixable aqua dead

cell marker (1:1,000 in PBS, Life Technologies) for 30 min. Cells were then fixed with 4% PFA for 10min at RT. The frequency of dead

cells was measured by flow cytometry (Attune Nxt, ThermoFischer). CDC was calculated using the following formula: 100 x (% of

dead cells with antibody - % of dead cells without antibody)/(100 - % of dead cells without antibody).

Pharmacokinetic Analysis
LN01 pharmacokinetic was performed in Tg276 huFcRn transgenicmice in parallel with palivizumab and a control mAb specific for an

irrelevant antigen. The mAbs were administered i.v. at 10 mg/ml (number of mice per group = 5). The concentration of human IgG

mAbs in plasma were determined at multiple time points: 1-, 5-, 9-, 13- and 16-days post-administration. Mice bleeding was per-

formed from the tail vein of mice.

Autoreactivity Assays
The LN01mAb autoreactivity was tested by indirect immunofluorescence on human HEp-2 cells and by ELISA against a self-antigen,

the human cardiolipin. In the first approach, LN01mAb was tested at 50 mg/ml on slides coated with HEp-2 cells in parallel to a nega-

tive control and the positive control provided by the kit as well as 4E10 and 10E8 at 50 mg/ml. All the procedure was performed ac-

cording to the kit specifications (Zeus Scientific). In the second approach, the anti-cardiolipin ELISA was performed according to the

kit instructions (GenBio). Serial dilutions of the mAbs were tested on the pre-coated 96-well plate.

ELISA Assay
The binding of LN01, 10E8 and HK20 (Sabin et al., 2010) mAbs to the 28 amino acids long peptide encompassing the entire gp41

MPER was tested by ELISA using 96 well plates half-area. Briefly, ELISA plates were coated with 2 mg/ml of the long peptide
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(Pepscan), blocked with 1%BSA and incubated with titrated antibodies, followed by AP-conjugated anti-human IgG secondary anti-

body (SouthernBiotech). Plates were then washed and substrate (p-NPP, Sigma) was added. After 1h of incubation, plates were read

at 405 nm. For human IgG quantification in the plasma of mice from in vivo experiment, 96 well plates were coated with 10 mg/ml of

goat anti-human IgG UNL (SouthernBiotech), blocked with 1% BSA and incubated with titrated plasma, followed by AP-conjugated

anti-human IgG secondary antibody (SouthernBiotech). Plates were then washed and substrate (p-NPP, Sigma) was added. After

30 min of incubation, plates were read at 405 nm. As standard to quantify human IgG concentration, serial dilutions of Rituximab

were used.

Linear Epitope Mapping
Linear epitope mapping was performed by peptide microarray as previously reported (Gottardo et al., 2013; Shen et al., 2015). The

peptideswere printed onto 3D-Epoxy glass slides andwere analyzedwith aGenePix 4000B scanner (Tomaras et al., 2011). The bind-

ing of LN01 and 7B2 was detected by incubation with DyLight 649-labeled goat anti-human IgG. Fluorescence intensity was

measured using a GenePix 4000B scanner and was analyzed with GenePix software. Signal intensity is the median fluorescence in-

tensity of triplicate spots for each peptide included on array slides.

Gp41 Peptides
TheMPER-TM1 peptide (671-NWFDITNWLWYIKLFIMIV-KKKKKK-689) was synthesized (Smart Bioscience, Grenoble). MPER-TM2

contains an N-terminal His-tag, a flag-tag a TEV protease site and gp41 residues 630 to 711 similar to the construct described before

(Lutje Hulsik et al., 2013). For crystallization, the construct was engineered to contain a second TEV protease site inserted at position

649, which produced gp41-TM2 containing residues 650 to 711. The cDNAs were cloned into petM20 and expressed in C41 E. coli

cells for 3h at 37⁰. Cells were lysed by sonication in a buffer containing 20 mM Tris pH8.0, 100 mM NaCl, 1% CHAPS. The soluble

fraction was passed over a Ni2+-chromatography column. Purified gp41 was cleaved by TEV protease at a ratio (w/w) 1:10 passed

over an anion exchange column followed by a second Ni2+-chromatography column to remove non cleaved protein. The resulting

MPER-TM2 was further purified by size exclusion chromatography on a S200 column in a buffer containing either 25 mM Hepes

pH7.5, 150 mM NaCl, 3 mM Fos-Choline-12 or 25 mM Hepes pH7.5, 150 mM NaCl, 1% b-OG (n-Octyl-b-D-glucosid). For complex

formation of MPER-TM2 with LN01 Fabs, the complex was purified by SEC on a superdex 200 column in a buffer containing 25 mM

Hepes pH7.5, 150 mM NaCl, 3 mM Fos-Choline-12. The complex was concentrated to 10 mg/ml. For complex formation of the

MPER-TM1 peptide with LN01 Fabs, the peptide was solubilized in a buffer containing 25 mM Hepes pH7.5, 150 mM NaCl,

6 mM Fos-Choline-12 at 2 mg/ml, mixed with LN01 Fabs in a buffer containing 25 mM Hepes pH7.5, 150 mM NaCl, 3 mM Fos-

choline-12 and concentrated to 10 mg/ml. The peptide was added to the LN01 Fabs at the molar ratio of 1:1.5 (Fab : MPER-TM1

peptide).

Surface Plasmon Resonance (SPR) Analysis
Biacore T200 (GE Healthcare, USA) was used for real-time binding interaction studies. Antibodies LN01 and 10E8 were immobilized

via amine coupling on CM5 chips (GE Healthcare) in Hepes buffer (pH 7.5) at a flow rate of 10 ml/min until the surface plasmon reso-

nance reached 2000 RU. Analyte concentrations varied from 1 to 2048 nM. Different dilutions of analytes were sequentially injected at

a flow rate of 90 ml/min for 180s. MPER-TM1 andMPER-TM2 analytes were applied in a buffer containing 20mMTris pH 7.5, 100mM

NaCl, and either 1% b-OG (n-Octyl-b-D-glucosid) or 3 mM Fos-Choline-12. The dissociation time was set for 5 min and 0.1% SDS

was injected for regeneration of the sensor chips. The sensogrammes were processed and visualized with Python. SPR profiles were

fit to a double exponential equation. The model of biphasic binding was identified as the two state conformational change model,

since the concentration dependencies of eigenvalues were linear. Dissociation constants were calculated as described (Tiwari

et al., 2015).

Bio-layer Interferometry Binding Analysis
Binding measurements between LN01, LN01 variants and MPER-TM2 were carried out on an Octet Red instrument (ForteBio). For

the determination of the binding between LN01 IgG and MPER-TM2, LN01 IgG were labelled with biotin (EZ-Link NHS-PEG4-Biotin)

and bound to Streptavidin (SA) biosensors (ForteBio). The biosensors loaded with IgG were equilibrated in the kinetic buffer (25 mM

HEPES pH 7.5, 150mMNaCl and 0.1%Fos-Choline-12) for 120 sec prior tomeasuring association withMPER-TM2 for 200 seconds

at 25�C. Data were analyzed using the ForteBio analysis software version 11.1.0.25 (ForteBio). For LN01 sH/sL, LN01 gH/sL and

LN01 sH/gL-FR the kinetic parameters were calculated using a global fit 1:1 model. For the determination of the binding of LN01

sH/sL, LN01 gH/gL and LN01 gH/UCA, KD were estimated by steady state analysis. For LN01 UCA/sL, LN01 UCA/gL and

LN01UCA/UCA no bindingwas detected in this experimental setup. All bio-layer interferometry experiments were conducted at least

three times.

Crystallization, Data Collection and Structure Determination
Crystal screening was performed at the High Throughput Crystallisation Laboratory (HTX lab, EMBL Grenoble) in 96-well sitting drop

vapour diffusion plates (Greiner). Following optimization, crystals used for diffraction studies were grown at 20�C (293 K) in hanging

drop vapour diffusion plates. The LN01/MPER-TM1 complex was crystallized in 0.1 M HEPES pH 7.5, 10 %(w/v) PEG 3350. Crystal

were grown by mixing 1 ml of the reservoir containing 0.1 M HEPES pH 7.5, 10%(w/v) PEG 3350, 0.1%(w/v) Fos-Choline-12 and 1 ml
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of protein at a concentration of 8 mg/ml. The crystal was soaked into a cryo protectant solution containing 0.1 M HEPES pH 7.5, 5%

(w/v) PEG 3350, 30%(w/v) Ethylene glycol, 0.1%(w/v) Fos-Choline-12, and flash cooled in liquid N2 at 100 K. For LN01/MPER-TM1,

data were collected on the ESRF beamline ID30A at a wavelength of 0.9677 Å. Data were processed with the program XDS (Kabsch,

2010). The LN01/MPER-TM1 crystals belong to space group P 43 21 2 (Table S2) and the structure was solved by molecular replace-

ment using the program Phaser (McCoy et al., 2007) and a model of the LN01 Fab generated by I-Tasser (Zhang, 2008). The model

was rebuilt using COOT (Emsley et al., 2010) and refined using REFMAC (Murshudov et al., 1997) and Phenix (Adams et al., 2010).

Statistics for data reduction and structure refinement are presented in Table S2.

The crystals of LN01/MPER-TM1 plus 1,2-dihexanoyl-sn-glycero-3-phospho-L-serine (06:0 PS) were obtained by adding 1 mM of

06:0 PS in the protein solution and in the cryoprotectant solution. X-ray data were collected on the ESRF beamline ID23eh1, at a

wavelength of 0.98 Å and data were processed with the program XDS (Kabsch, 2010).

The LN01/MPER-TM2 complex was crystallized by mixing 1 ml of 10 mg ml-1 of the LN01/MPER-TM2 complex and 1 ml of the

reservoir solution containing 0.1 M HEPES pH 7.5, 9%(w/v) PEG 8000, 8% Ethylene glycol, 10 mMMnCl2. For cryo protection, crys-

tals were soaked in 0.1 M HEPES pH 7.5, 9 %(w/v) PEG 8000, 25 %(w/v) Ethylene glycol, 10 mMMnCl2, 0.1 %(w/v) Fos-Choline-12

prior to flash cooling in liquid N2 at 100 K. X-ray data were collected on the ESRF beamline ID30B at a wavelength of 0.9763 Å and

data were processed with the program XDS (Kabsch, 2010). The LN01/MPER-TM2 crystals belong to space group P 21 21 21
(Table S2). The structure was solved by molecular replacement using the program Phaser (McCoy et al., 2007) and the LN01/

MPER-TM1 model coordinates. The model was rebuilt using COOT (Emsley et al., 2010) and refined using REFMAC (Murshudov

et al., 1997) and Phenix (Adams et al., 2010). Statistics for data reduction and structure refinement are presented in Table S2. The

models were evaluated by using COOT and Phenix validation tools.

Two copies of the LN01/MPER-TM1 complex and 4 copies of the LN01/MPER-TM2 complex are present in the asymmetric units of

the respective crystals. Numbering of the Fab was performed according to Kabat. The LN01/MPER-TM1 complex was refined to

3.2 Å data with an R/Rfree of 21.3/25.3%. 96.22% of the residues are within the most favoured regions of a Ramachandran plot.

The LN01/MPER-TM1 + 06:0 PS complex was refined to 3.1 Å data with an R/Rfree of 23.8/26.7%. 95.8% of the residues are within

the most favoured of a Ramachandran plot. The LN01/MPER-TM2 complex was refined to 3.9 Å data with an R/Rfree of 21.8/26.0%

and 95.39%of the residues are within themost favoured regions of a Ramachandran plot. (Table S2). Some of the software packages

used in this study were compiled by SBGrid (Morin et al., 2013).

Figure Generation
Molecular graphics figures were generated with PyMOL (W. Delano; The PyMOL Molecular Graphics System, Version 1.8 Schrö-

dinger, LLC, http://www.pymol.org). To determine the angle of approach of antibodies LN01, 10E8, 4E10 and DH511.1 to gp41

MPER a similar method as described (Williams et al., 2017) was employed. Briefly, an axis was drawn from a spatial position midway

between the variable region disulfide bond to the Ca atom of residue T676 thereby defining the direction of approach. The represen-

tation of the sequence conservation of MPER shown in Figure S6 was generated using WebLogo (Schneider and Stephens, 1990).

Molecular Dynamics (MD) Simulation
The molecular assay consisted of gp41 MPER-TM2 or only TM embedded in a lipid bilayer formed by 20 1-palmitoyl-2-oleoyl-phos-

phatidylcholine (POPC), 44 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE), 18 1-palmitoyl-2-oleoyl-phosphatidyl serine

(POPS), 28 sphingomyelin d18:0/d16:0 (SSM) and 90 cholesterol units in equilibrium with 11,123 water molecules, corresponding

to a cell dimension of approximately 66 3 66 3 120 Å3. K+ and Cl- ions were added to reach an ionic concentration of 150 mM.

All molecular dynamics (MD) simulations reported herein were performed employing the parallel, scalable program NAMD 2.12 (Phil-

lips et al., 2005). Periodic boundary conditions (PBCs) were applied in the three directions of Cartesian space. Water was described

by the TIP3Pmodel (Jorgensen et al., 1983), and both gp41 and its lipid environment by the all-atomCHARMM36 force field (Jo et al.,

2008; Klauda et al., 2010; MacKerell et al., 1998). A mass repartitioning scheme was introduced, allowing the equations of motion to

be integrated with a time step of 4 fs, using the r-RESPA multiple time-step algorithm (Tuckerman et al., 1992). Covalent bonds

involving hydrogen atoms were constrained to their equilibrium length by means of the RATTLE (Andersen, 1983) and SETTLE algo-

rithms (Miyamoto and Kollman, 1992). The temperature and the pressure were maintained at 303 K and 1 atm, respectively, using

Langevin dynamics and the Langevin piston method (Feller et al., 1995). Long-range electrostatic forces were taken into account

by means of the particle mesh Ewald algorithm (Darden et al., 1993). A 12-Å cutoff was applied to truncate van der Waals and

short-range Coulombic interactions. Visualization and analyses of the MD trajectories were performed with the VMD program (Hum-

phrey et al., 1996). The free-energy landscape underlying the transition of gp41 from its straight to its bent formwas determined using

amultiple-walker version (Comer et al., 2014) of theMW-ABF algorithm (Comer et al., 2015) with a reaction coordinatemodel equal to

the difference of the distance root mean square deviations (RMSD) with respect to these two conformations and eight walkers. No

assumption was made on the initial orientation of the MPER-TM2 segment. The latter was placed such that its longitudinal axis was

aligned with the normal to the lipid bilayer, i.e., the z-axis of Cartesian space. Next, the computational assay was suitably thermalized

until a plateau in the dimensions of the membrane patch was reached and a steady orientation of the MPER-TM2 segment was

observed. The tilt angle reported in this work is, therefore, a consequence of the sequence of the MPER-TM2 segment in relationship

with the composition of the lipid bilayer, rather than an initial placement suggested by experiment. The steady orientation of the

MPER-TM1 segment served as a starting point for the LN01-MPER-TM2 simulation.
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The initial gp41 MPER-TM2 assay was built by aligning gp41 onto its equilibrium conformation sampled from the simulation with

the isolated straight TM peptide. Lipids and water molecules were thermalized during 50 ns, while maintaining atoms of the protein

complex to their crystallographic positions by means of harmonic restraints. Next, a set of three harmonic restraints over root-mean-

square deviation collective variables was used to maintain backbones of LN01 andMPER-TM2 and side chains of LN01/MPER-TM2

contact residues in their reference conformation, respectively. Using this protocol, the orientation of the protein complex with respect

to the bilayer was equilibrated during 200 ns. Finally, all the restraints were removed, and a 200 ns trajectory was produced.

QUANTIFICATION AND STATISTICAL ANALYSIS

Antidody EC50 and EC80 and serum ID50 were determined from log-transformed nonlinear regression, dose-response sigmoidal

curve fit data using GraphPad 8. Antibody neutralization values higher then 12.5 or 25 mg/ml were considered as negative. The results

were reported in Figures 1E and 2A and S1 and S3. Statistical models inherent to REFMAC (Murshudov et al., 1997) and Phenix

(Adams et al., 2010) were employed for the structure refinement. All binding and neutralization assays were conducted with at least

duplicate measurements. ADCC responses were analyzed in the Wilcoxon test. The results were reported in Figure 3C.

DATA AND CODE AVAILABILITY

All data generated or analyzed during this study are included in this published article (and its Supplemental Information). Atomic co-

ordinates and structure factors of the reported crystal structures have been deposited in the Protein Data Bank (https://www.rcsb.

org; PDB: 6SNC, 6SND, 6SNE).
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