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The impact of imbalance in waveguides propagation constants among Parity-Time symmetric 
coupled waveguides and/or of a complex-valued coupling coefficient is assessed. The narrow 
tolerance found implies that attempts to tightly control waveguides parameters appear as 
elusive because of fabrication technology limitations, calling for more feasible mitigation 
avenues. It is shown that a grating-assisted Parity-Time symmetric coupler design restores 
both technologically robust binary switching operation and exceptional point. In addition the 
proposed design is compatible with birefringence compensation techniques providing 
polarization-independent operation as well as coupling and/or gain-loss profile modulation 
techniques that extend the control of switching operation in the Parity-Time symmetric phase. 
Using wavelength as an additional tuning parameter near exceptional points opens promising 
avenues for manipulating the trajectory on Riemann sheets in topological photonics 
applications. 
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The proposal in 1998 by Bender and Boettcher of the 
concept of “non-Hermitian Hamiltonians” obeying parity-
time (PT) symmetry as a complex extension of conventional 
quantum mechanics quickly became a new paradigm in 
theoretical physics [1,2]. The distinctive feature of this 
special class of antilinear symmetry non-Hermitian 
Hamiltonians [3] is that under certain conditions they can 
have a completely real spectrum. This property is referred as 
exact PT-symmetry. In the opposite case the PT symmetry is 

said to be broken. At the transition point between exact and 
broken PT-symmetry two or more of the real eigenvalues of 
the Hamiltonian coalesce [4,5], leading to an “exceptional 
point” (EP) [6].  

Aside the pure intellectual interest of this topic, it became 
clear that PT-symmetry is also of utmost relevance in 
photonics. Because of the formal equivalence between such 
operators and coupled-modes equations, optics provides 
growing opportunities for the implementation and 
experimental investigation of PT-symmetry-type systems 
(PTSS) [7-11]. A pair of coupled waveguides with gain and 
loss sketched in figure 1(a) represents the simplest 
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configuration of PT-symmetric optical system (PTSS), which 
was extensively studied in view of optical signals 
manipulation [8,12-23] or of terahertz devices [24,25].  

 
Figure 1. a) Sketch of a PT-symmetric directional coupler; b) 
Operation at zero detuning (�=0). Real parts (“Re”, blue 
lines) and Imaginary parts (“Im”, red lines) of the complex 
eigenvalues difference ∆�, normalized to the coupling 
coefficient κ; c) Intensity distribution along the gain 
waveguide for a PTSS with gain-loss level γ = 0 (blue line) 
and γ = 0.6765κ (red line); At point B, power in the other 
guide (not shown) vanishes exactly if �=0, whereas at point 
C, the exact zero output is in the input guide. d) Color-coded 
switching operation for a PTSS with gain-loss level γ = 0 
(bar state - left) and γ = 0.6765κ (cross state - right), the 
colormap can be read from the correspondence of the top 
guide of the two cases to the two plots of (c). 

In such a PTSS the effective detuning of the propagation 
constants between the odd and even supermodes (i.e., 
propagation eigenvalues difference ∆β=βo-βe between odd 
end even supermodes) is gradually reduced upon increasing 
the level of combined gain/loss in the system until the 
imaginary parts of these constants merge at the the 
exceptional point [figure 1(b)]. The variation of the beat 
length, which is inversely proportional to ∆β [figure 1(c)], 
can be advantageously exploited for implementing switches 
and modulators [figure 1(d)]. 

Several such studies focused their attention on the singular 
properties of PTSS related to the abrupt evolution of 
propagation constants �’+i �” in the vicinity of the EP 
[14,16-20] and manipulation of the trajectory on Riemann 
sheets in a growing number of topological photonics 
applications [24,25]. Experimentally however, achieving 
operation right at the EP is far from being trivial. The main 
factors causing the smearing of EP are the imbalance in 
propagation constants of coupled waveguides [19,20] and/or 
a complex-valued coupling coefficient [18,19]. To 
circumvent these issues, the solution proposed in [19] to 
recover the the EP is to consider a design with vertically 
stacked waveguides having different core thickness. The 
phase matching condition between non-identical waveguides 
is obtained by using for the core a dispersive material of very 
high gain (~ 1500 cm-1).  

The aim of this Letter is to propose a more affordable 
solution in terms of gain (loss) level. For 1-mm length-scale 
device, the required gain (loss) level of our design does not 
exceed ~45 cm-1 (i.e. 200 dB/cm). Furthermore, this design 
not only ensures a robust recovery of the EP, but it is also 
perfectly suited for binary switching operation below EP as 
presented in [26,27]. In addition it does not impair the use of 
birefringence compensation technique for achieving 
polarization-independent operation [28]. 
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To present our approach, we start with the simplest model 
of two coupled waveguides, one with gain and the other with 
balanced losses. We consider two scalar fields q1 and q2 
propagating in these waveguides and described by the 
system: 

( ) ( )1 2
1 1 2 1 2 2,

dq dq
i q q q i q

dz dz
β γ κ κ β γ= + + = + −  (1) 

where �=�’+i �” is the complex-valued coupling coefficient 
while γ is the z-invariant gain-loss coefficient. The 
eigenvalues of propagation constants in the system are:  

( )2 2 21 2 2
2

i
β βσ κ δ γ δγ κ κ+ ′ ′ ′′= ± + − + +  (2) 

Here the convenient variable � = (�1 - �2)/2 is the half-
detuning of the waveguides propagation constants. As 
evident from Eq. (2) the presence of an imaginary term in the 
square-root of Eq. (2) leads to complex eigenvalues, and 
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further results in the smearing of the EP. The ratio |δ+κ”|/κ 
may serve as a measure of deviation from the ideal case i.e., 
the EP. To evaluate the impact of the detuning δ, the 
deviation of waveguides propagation constants, whose limits 
are dictated by technological imperfections, we assume for 
the moment that κ” = 0. Expressing a meaningful condition 
of a “small” detuning around EP then involves the coupling 
length Lc = π/2κ as follows: 

( )1 2 1cL
n n

δ
κ λ

= − <<   (3) 

where nj is the waveguide j modal (effective) index. For 1-
mm scale coupling length typical for integrated optics and 1-
µm scale wavelength, the detuning is negligible when the 
effective index difference ∆n = (n1 - n2) obeys ∆ n <<10-3. 
The detrimental impact of the waveguides effective index 
difference ∆n on the EP is illustrated in figure 2(a). As can 
be seen, when ∆n = 10-3, the evolution of coupled 
waveguides eigenvalues as a function of γ widely differs 
from evolution in the ideal case ∆n = 0. For ∆n = 10-4 some 
resemblance of eigenvalues curves with respect to the ideal 
case is retrieved, though large deviations subsist even far 
from the EP. When ∆n = 10-5 a global behavior approaching 
to that of an ideal case is recovered, except in the near 
vicinity of EP [see inset in figure 2(a)]. One important 
parameter that motivated the quest for operating at the EP is 
the steep variation of eigenvalues (dσ/dγ) in its near vicinity. 
In the presence of finite detuning δ the maxima for real and 
imaginary components of dσ/dγ are achieved at the inflection 
points of corresponding branches, i.e. Re(σ) and Im(σ). In 
contrast to the ideal case δ = 0, the maxima of d[Re(σ)]/dγ 
and d[Im(σ)]/dγ on the abscissa axis γ split and go below and 
above the EP, respectively. Furthermore, as shown in the 
Appendix A, the maxima are equidistant (albeit to first order 
only) from the exact EP ( γ/κ = 1) : 

2 2
Re Im

2 2

4 1 4 1
1 , 1

3 33 3

δ δγ γδ δ
κ κ κ κ κ κ

= + − = + +  (4) 

Note, that despite this is a linear approximation when 
δ /κ <<1, the derivatives dRe(σ)/dγ and dIm(s)/dγ are tending 
toward the same limit: 

( ) ( )
4

0 0

Re Im 27
lim lim

16δ δ

σ σ κ
γ γ δ→ →

∂ ∂
= ≈

∂ ∂
 (5) 

As follows from Eq. (5) the steepness of eigenvalues 
derivatives dσ/dγ in the near vicinity of EP grows only as  
δ-1/2. It means that in order to increase by an order of 
magnitude dσ/dγ from the modest value of 101 observed for 
∆n = 10-5 up to a more palatable 102 target, the index 
detuning should be reduced by two orders of magnitude, 
down to ∆n = 10-7, which is all but attainable with any 
foreseeable technologies. 

To illustrate this we consider a typical design of III-V 
semiconductor waveguide with butyl-cyclo-benzene (BCB) 

overclad represented as inset in figure 3. The numerically 
calculated dependence of TE polarization effective index as a 
function of waveguide width w is displayed in figure 3. As 
can be seen for w ~ 2 µm, corresponding to the single mode 
operation, a variation of waveguide width by 100 nm leads to 
a change in effective index ∆n = 10-3. Thus, to achieve 
∆n = 10-5, the width of the two coupler waveguides should be 
identical within an accuracy of 1 nm. And to achieve a 
detuning of ∆n = 10-7, a sub-atomic precision level is 
required. Consequently, the capability to control detuning 
through waveguides geometry and material parameters is 
definitely quite elusive. 

 
Figure 2. Evolution of eigenvalues in a system of PT-

symmetric waveguides with different values of detuning 
(black: ∆n = 0 , green: ∆n = 10-5

 : blue: ∆n = 10-4
 , red: 

∆n = 10-3). a) Real parts (solid lines) and Imaginary parts 
(dotted lines) of the two normalized and offset eigenvalues, 
i.e. σ-(�1 +�2)/2, with a zoom of the EP in the inset; b) 
Derivatives of the Real parts (solid lines) and Imaginary 
parts (dotted lines) of the eigenvalues dσ/dγ.  
 

Similar findings, which are detailed in Appendix B, hold 
when considering switching operation in the PT-symmetric 
phase below EP [26]. Traditionally, such “2×2” four-port 
devices operate either in the so-called bar state sketched in 
left panel figure 1(d) or in the cross state [29] [right panel in 
figure 1(d)]. To tackle the switch we consider the evolution 
of the input "binary" state (e-iϕ, 0)T, [hereafter T stands for 
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the transpose]. We want the output of the device z = L to be 
either bar state (T111, T12=0) or cross state (T11=0, T12=1). 
For the considered coupler of length L = 2.1 Lc with constant 
coupling and gain-loss profile, the lowest binary state is bar. 
It is achieved when γ ≈ 0.3 κ. The second binary state 
corresponding to the switching operation from bar to cross is 
achieved at γ ≈ 0.7 κ. The detrimental effect of effective 
index detuning appears in figure 4. Almost perfect switching 
operation with very low level of zero (< -40 dB) is observed 
when ∆n = 10-6 [see figure 4(a)]. When ∆n = 10-5 the 
switching is still acceptable with the level zero ~ -20 dB [see 
figure 4(b)]. But further increase of detuning up to ∆n = 10-4

. 
totally compromises the switching operation [see figure 
4(c)]. 

 
Figure 3. Effective index dispersion as function of 

waveguide width w. Inset: Sketch of an AlGaAs/InGasAs rib 
waveguide with BCB overclad (values of refractive indices 
are indicated for � = 1.55 µm). 

 
We make the point here that the situation of switching is 

particularly sensitive because it is the quest of a perfect zero 
of the scattering matrix. Thus we are going to show that it is 
nearly as sensitive for the switching as it is around the EP. In 
the case of switching, we show in Appendix B that we have a 
linear dependence of the departures from zero, in the form of 
the imaginary part of cos(ΩL) and sin(ΩL) that define q1(L). 
In the case of the EP, we show that the derivatives of the 
eigenvalues, instead of being steep, are stalling at points for 
which we establish an analytical formulation in Appendix A, 
which turns out to have a quite similar behaviour. 

Similar behavior for the switching operation and EP is 
observed when the impact of complex valued coupling 
coefficient �=�’+i �” instead of detuning is considered. The 
measure of smallness in this case is  given by the �”/κ. ratio  

It should be noted that as follows from Eq. (2) the 
negative impact of �” can be compensated by a judicious 
introduction of detuning δ and vice versa. The associated 
analysis was performed in refs [18] and [19]. The issue is 
that for a fixed detuning δ the impact of �” can be corrected 

only for a single gain point on the eigenvalues dispersion 
diagram σ(γ), when meeting the condition: 

0δγ κ κ′ ′′+ =   (6) 
The alternative solution, proposed in [19] consists in 

compensating detuning by using complex valued coupling 
coefficient. This provides some freedom to tune the 
operation point on the σ(γ) diagram, but, as said, requires 
huge gain levels. Hence, this solution is not satisfactory 
either.  

 
Figure 4. Switching operation of conventional PT-symmetric 
coupler of length L =2.1 Lc (slightly longer than in Fig.1, 
hence the bar and cross points are shifted to γ ≈ 0.3 κ and 
γ ≈ 0.7 κ) for different values of detuning. a) ∆n = 10-6; b) 
∆n = 10-5; c) ∆n = 10-4. 



������
��
������
������
 !����
�����




 %
 




*(����	
����)������������� �	�����������
��

����
�����	��������	��������� � �	�����
�������

As follows from Eq. (6) the situation can be remediated if 
it is possible to modulate the detuning as function of some 
parameter. The wavelength becomes such a parameter in two 
interesting cases. Firstly, an asymmetric directional coupler 
design [30] naturally makes dispersion curves coincide at 
some wavelength λ0 ensuring thus the phase matching 
condition β1(λ0) = β2(λ0). In a linear expansion 
βj(λ) = βj(λ0) + (λ - λ0) dβj/dλ the detuning δ can be 
expressed as: 

δ = (λ - λ0) d(β1 -β2)/dλ  (7) 

The typical value of the index dispersion, d(n1-n2)/dλ, for 
III-V semiconductor waveguides is ~ 0.01 µm-1, meaning 
that the required control on the wavelength positioning to 
attain a detuning ∆n<10-7 is then of the order of 10-2nm, 
which is quite common with existing tunable semiconductor 
laser sources. 

The second case, more convenient to hit an adapted 
detuning (say ∆n ~ 10-6 ) is to use long period grating 
assisted directional couplers [GADC, see figure 5(a)] 
providing greater degree of freedom for the choice of 
materials and design of the waveguides. The phase matching 
condition in this case reads: 

β1(λ0) - β2(λ0) = 2π/Λ    ⇔   λ0 = Λ⋅[n1(λ0) - n2(λ0)]   (8) 

where Λ is the grating period, typically on the order of 
few tens of microns. Furthermore, the birefringence 
compensation technique originally proposed in [28] and 
experimentally demonstrated in [31,32] allows achieving 
polarization-independent operation. 

To this end a condition of identical TE and TM 
birefringence should be met through appropriate guide 
design (material composition and geometry): 

n1
TE -n1

TM=n2
TE-n2

TM    (9) 

To examine the switching behaviour of grating assisted 
PT-symmetric coupler we consider the example of device 
with length L = 2.0Lc, = 2 mm, n1 = 3.3, n2 = 3.25, 
Λ = 30 µm. According to Eq. (7) the phase matching 
condition is met at λ0 = 1.5 µm. For the given coupler length 
the bar state occurs for γ = 0 and the cross state is achieved 
when γ ≈ 0.677κ corresponding to amplification level γL of 
18.5 dB [26]. The impact of introducing additional detuning 
∆n between waveguides is illustrated in figures 5(b-d). To 
perform this modeling we used the conventional coupled 
mode theory formalism of transfer matrix [33]. 

As can be observed, perfect switching operation is now 
successfully observed even for ∆n = 10-3, though at the 
expense of a ~30 nm shift of the phase-matching wavelength, 
see figure 5(d). The phase matching wavelength is red-

shifted if ∆n >0 and blue-shifted if ∆n <0. The shift scales 
linearly with ∆n and is thus down to ∆λ0 ≈ 1 nm for a 
feasible target ∆n ≈ 3.3 10-5. Such shifts from the nominal 
value can be commonly compensated using for instance a 
thermal tuning mechanism [32]. 

 

Figure 5. Switching operation of grating assisted PT-
symmetric coupler of length L = 2 Lc for different values of 
detuning, whereby perfect switching is achieved albeit at the 
expense of a shifted wavelength. a) ∆n = 10-5; b) ∆n = 10-4; 
c) ∆n = 10-3. 
 

For InGaAsP with a quaternary alloy composition 
corresponding to λg≈1.5�m bandgap wavelength, according 
the expressions and values given in [34], an index variation 
∆n/∆T=4×10-4 is theoretically expected. A temperature 
variation of 25°C could thus be sufficient to obtain a 
variation of index of 10-2. Based on this approach an 
electrical wavelength tuning control was experimentally 
demonstrated in [32]. To this end a 400nm thick Ti film was 
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evaporated and stripped by a lift-off technique to form a thin-
film heater of 40µm strip width overlaying both GADC 
waveguides. A greater than 20nm tuning range with a 
remarkable polarisation isotropy was achieved. The electrical 
electrical power consumption around 0.3W could be further 
reduced at least bay a factor of two by optimizing the design 
of heating electrodes. 

Note also that the amplification (attenuation) γL required 
for switching can be reduced down to only 13.6 dB level by 
considering an appropriate square longitudinal modulation of 
the gain-loss profile as detailed in a recent optimization study 
[27]. 

We can now come back to the issue of encircling the EP, 
which entails a circulation on different Riemann sheets. The 
solution proposed by the GACD mitigates the structural 
detuning by a wavelength detuning. We can therefore 
conclude that by scanning the injected light wavelength and 
gain/loss level in an adequate way we will encircle the EP for 
a plausibly reasonable span of wavelengths. 

+(�,�� � ��������
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In summary, the impact of effective index detuning in a 
system of PT-symmetric coupled waveguides is considered. 
It is shown that for a 2-mm-long coupler, the achievement of 
EP as well as switching operation in PT-symmetric phase 
requires a detuning typically lower than ∆n ~ 10-5. Achieving 
a detuning below this limit seems elusive because of tight 
constraints imposed on fabrication technology. To 
circumvent these issues a long-period grating-assisted PT-
symmetric coupler design was considered and shown to 
perform well at the expense of a manageable wavelength 
shift. The proposed solution advantageously restores robust 
binary switching operation and exceptional point. In addition 
such design is compatible with birefringence compensation 
techniques providing polarization-independent operation as 
well as with gain-loss or coupling longitudinal profile 
tailoring allowing reduction of amplification (attenuation) 
level with respect to the conventional uniform PT-symmetric 
coupler design. The introduction in PT-symmetric systems of 
the wavelength as an additional tuning parameter around the 
exceptional point opens promising avenues for manipulating 
the trajectory on Riemann sheets in topological photonics 
applications. 
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To calculate the impact of modal index imbalance δ on the 
eigenvalue sensitivity to gain dσ/dγ in the vicinity of EP, let 
us consider for the sake of simplicity that κ” = 0. Then, as 
follows directly from Eq. (2):  

2 2 2 2

i

i

σ γ δ
γ κ δ γ δγ

∂ − +=
∂ + − +

   (A.1) 

To find the loci of extrema for real and imaginary parts of 
dσ/dγ let us introduce for convenience 

2 2 2 2V iκ δ γ δγ= + − +   (A.2) 

Since dV/dγ = - (γ-iδ)/V it then follows that: 
2 2

2 3V
σ κ
γ

∂ =
∂

   (A.3) 

By introducing the auxiliary variables: 
2 2 2a κ δ γ= + −  and 2b δγ=   (A.4) 

we get: 

( )
( )

3
2

2
32 2 2

a ib

a b

σ κ
γ

−∂ =
∂ +

   (A.5) 

Note now: 
ic e a ibϕρ −= = −   (A.6) 

where 2 2a bρ = +  and ( )tan
b
a

ϕ =    (A.7) 

Then ( ) ( )3 3 cos 3 2 sin 3 2c iρ ϕ ϕ= −� �� �   (A.8) 

The condition for Re[d2σ/d2γ]=0 implies that ϕ=π/3. By 
using Eq. (A.7) we obtain: 

2 2 2 2
3 3

b
a κ γ δ δγ= ⇔ − + =    (A.9) 

The Eq. (A.9) is satisfied when: 
3

2
Re 4

33
δ δγ κ= − ± +    (A.10) 

In a similar manner, the extremum for the imaginary part 
of dσ/dγ is achieved when ϕ=2π/3. It corresponds to the 
condition: 

2 2 2 2
3 3

b
a κ γ δ δγ= − ⇔ − + = −    (A.11) 

This is satisfied when: 
3

2
Im 4

33
δ δγ κ= ± +     (A.12) 

 

&��������(��� ���	�
/�� 
����������� �������
����

��� � �	�����
�������� �	�����
����	�
�

As illustrated in figure 3 in a binary switching operation 
the modal index imbalance primarily affects the extinction 
level (the missed zero). For a PT-symmetric coupler of 
length L with uniform gain-loss and coupling profiles the 
transmission in bar state is [23]: 
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( ) ( )1 cos sin
i

q L L
γ δ+= Ω + Ω

Ω
 (B.1) 

where  
2 2 2 2iκ δ γ δγΩ = + − +  (B.2) 

Considering a linear approximation when the detuning δ is 
small we get: 

0 0
0

i i
δγ ′′Ω ≈ Ω + = Ω + Ω
Ω

   (B.3) 

where: 
2 2

0
0

;
δγκ γ ′′Ω = − Ω =
Ω

  (B.4) 

As detailed in [23], the following relations holds when q1=0: 

( ) ( )0
0 0sin ; cosL L

γ
κ κ
ΩΩ = Ω = −  (B.5) 

Using Eqs. (B.3) and (B.5) as well as the smallness of the 
detuning δ << Ω0, we obtain the new values for the detuned 
case with a linear-in-δ expansion (through Ω”) as: 

( ) ( )0 0
0sin ; cosL i L L i L

γ γ
κ κ κ κ
Ω Ω′′ ′′Ω = − Ω Ω = − − Ω  (B.6) 

As follows from Eq. (B.1), the presence of additional 
terms in Eqs. (B.6) caused by the modal index imbalance 
breaks the condition q1=0 required for binary switching 
operation. 
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