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This paper considers the problem of robust adaptive efficient estimating of a periodic function in a continuous time regression model with the dependent noises given by a general square integrable semimartingale with a conditionally Gaussian distribution. An example of such noise is the non-Gaussian Ornstein-Uhlenbeck-Lévy processes. An adaptive model selection procedure, based on the improved weighted least square estimates, is proposed. Under some conditions on the noise distribution, sharp oracle inequality for the robust risk has been proved and the robust efficiency of the model selection procedure has been established. The numerical analysis results are given.

Introduction

Consider a regression model in continuous time dy t = S(t)dt + dξ t , 0 ≤ t ≤ n , (1.1) where S is an unknown 1-periodic R → R function, S ∈ L 2 [0, 1], (ξ t ) t≥0 is an unobservable noise which is a square integrated semimartingale with the values in the Skorokhod space D[0, n] such that, for any function f from L 2 [0, n], the stochastic integral

I n (f ) = n 0 f (s)dξ s (1.2)
has the following properties

E Q I n (f ) = 0 and E Q I 2 n (f ) ≤ κ Q n 0 f 2 (s)ds . (1.3) 
Here E Q denotes the expectation with respect to the distribution Q of the noise process (ξ t ) 0≤t≤n on the space D[0, n], κ Q > 0 is some positive constant depending on the distribution Q. The noise distribution Q is unknown and assumed to belong to some probability family Q n specified below. Note that the firstly semimartingale regression models in continuous time were introduced by Konev and Pergamenshchikov in [START_REF] Konev | Nonparametric estimation in a semimartingale regression model. Part 1. Oracle Inequalities // Vestnik Tomskogo Universiteta[END_REF][START_REF] Konev | Nonparametric estimation in a semimartingale regression model. Part 2. Robust asymptotic efficiency[END_REF] for the signal estimation problems. It should be noted also, that, the class of the noise processes (ξ t ) t≥0 satisfying conditions (1.3) is rather wide and comprises, in particular, the Lévy processes which are used in different applied problems (see [START_REF] Bertoin | Lévy Processes[END_REF], for details). Moreover, as is shown in Section 2, non-Gaussian Ornstein-Uhlenbeck-based models enter this class.

The problem is to estimate the unknown function S in the model (1.1) on the basis of observations (y t ) 0≤t≤n . In this paper we use the quadratic risk, i.e. for any estimate S we set R Q ( S, S) := E Q,S S -S 2 and f 2 :=

1 0 f 2 (t)dt , (1.4) 
where E Q,S stands for the expectation with respect to the distribution P Q,S of the process (1.1) with a fixed distribution Q of the noise (ξ t ) 0≤t≤n and a given function S. Moreover, in the case when the distribution Q is unknown we use also the robust risk

R * n ( S, S) = sup Q∈Q n R Q ( S, S) . (1.5)
The goal of this paper is to develop the adaptive robust efficient model selection method for the regression (1.1) with dependent noises having conditionally Gaussian distribution using the improved estimation approach. This paper proposes the shrinkage least squares estimates which enable us to improve the non-asymptotic estimation accuracy. For the first time such idea was proposed by Fourdrinier and Pergamenshchikov in [START_REF] Fourdrinier | Improved selection model method for the regression with dependent noise // Annals of the Institute of Statistical Mathematics[END_REF] for regression models in discrete time and by Konev and Pergamenshchikov in [START_REF] Konev | General model selection estimation of a periodic regression with a Gaussian noise[END_REF] for Gaussian regression models in continuous time. We develop these methods for the general semimartingale regression models in continuous time. It should be noted that for the conditionally Gaussian regression models we can not use the well-known improved estimators proposed in [START_REF] Stein | Estimation with quadratic loss[END_REF] for Gaussian or spherically symmetric observations. To apply the improved estimation methods to the non-Gaussian regression models in continuous time one needs to use the modifications of the well-known James -Stein estimators proposed in [START_REF] Konev | Estimation of a regression with the pulse type noise from discrete data // Theory Probab[END_REF][START_REF] Pchelintsev | Improved estimation in a non-Gaussian parametric regression[END_REF] for parametric problems. We develop the new analytical tools which allow one to obtain the sharp non-asymptotic oracle inequalities for robust risks under general conditions on the distribution of the noise in the model (1.1). This method enables us to treat both the cases of dependent and independent observations from the same standpoint, it does not assume the knowledge of the noise distribution and leads to the efficient estimation procedure with respect to the risk (1.5). The validity of the conditions, imposed on the noise in the equation (1.1) is verified for a non-Gaussian Ornstein-Uhlenbeck process.

The rest of the paper is organized as follows. In the next Section 2, we describe the Ornstein-Uhlenbeck process as the example of a semimartingale noise in the model (1.1). In Section 3 we construct the shrinkage weighted least squares estimates and study the improvement effect. In Section 4 we construct the model selection procedure on the basis of improved weighted least squares estimates and state the main results in the form of oracle inequalities for the quadratic risk (1.4) and the robust risk (1.5). In Section 5 it is shown that the proposed model selection procedure for estimating S in (1.1) is asymptotically efficient with respect to the robust risk (1.5). In Section 6 we illustrate the performance of the proposed model selection procedure through numerical simulations. Section 7 gives the proofs of the main results.

Ornstein-Uhlenbeck-Lévy process

Now we consider the noise process (ξ t ) t≥0 in (1.1) defined by a non-Gaussian Ornstein-Uhlenbeck process with the Lévy subordinator. Such processes are used in the financial Black-Scholes type markets with jumps (see, for example, [START_REF] Barndorff-Nielsen | Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial mathematics[END_REF], and the references therein). Let the noise process in (1.1) obeys the equation dξ t = aξ t dt + du t , ξ 0 = 0 ,

where

u t = 1 w t + 2 z t and z t = R x * (µ -µ) t . (2.2) 
Here (w t ) t≥0 is a standard Brownian motion, µ(ds dx) is the jump measure with the deterministic compensator µ(ds dx) = dsΠ(dx), Π(•) is the Lévy measure on R * = R \ {0}, (see, for example in [START_REF] Cont | Financial Modelling with Jump Processes[END_REF]), such that Π(x 2 ) = 1 and Π(x 8 ) < ∞ .

(2.3)

We use the notation Π(|x| m ) = R * |z| m Π(dz). Moreover, we assume that the nuisance parameters a ≤ 0, 1 and 2 satisfy the conditions

-a max ≤ a ≤ 0 , 0 < ≤ 2 1 and σ Q = 2 1 + 2 2 ≤ ς * , (2.4) 
where the bounds a max , and ς * are functions of n, i.e. a max = a max (n), = n and ς * = ς * n , such that for any δ > 0

lim n→∞ a max (n) n = 0 , lim inf n→∞ n n > 0 and lim n→∞ n -ς * n = 0 . (2.5)
We denote by Q n the family of all distributions of process (1.1) -(2.1) on the Skorokhod space D[0, n] satisfying the conditions (2.4) - (2.5).

It should be noted that in view of Corollary 7.2 in [START_REF] Pchelintsev | Adaptive model selection method for a conditionally Gaussian semimartingale regression in continuous time[END_REF] the condition (1.3) for the process (2.1) holds with

κ Q = 2 * .
(2.6)

Note also that the process (2.1) is conditionally-Gaussian square integrated semimartingale with respect to σ-algebra G = σ{z t , t ≥ 0} which is generated by jump process (z t ) t≥0 .

Improved estimation

For estimating the unknown function S in (1.1) we will consider it's Fourier expansion. Let (φ j ) j≥ 1 be an orthonormal basis in L 2 [0, 1]. We extend these functions by the periodic way on R, i.e. φ j (t)=φ j (t + 1) for any t ∈ R. B 1 ) Assume that the basis functions are uniformly bounded, i.e. for some constant φ * ≥ 1, which may be depend on n,

sup 0≤j≤n sup 0≤t≤1 |φ j (t)| ≤ φ * < ∞ . (3.1)
B 2 ) Assume that there exist some d 0 ≥ 7 and ǎ ≥ 1 such that

sup d≥d 0 1 d 1 0 Φ * d (v) dv ≤ ǎ , (3.2) 
where Φ * d (v) = max t≥v d j=1 φ j (t) φ j (t -v) . For example, we can take the trigonometric basis defined as Tr 1 ≡ 1 and Tr j (x) = √ 2 cos( j x) for even j and Tr j (x) = √ 2 cos( j x) for odd j ≥ 2, where the frequency j = 2π[j/2] and [x] denotes integer part of x. In Lemma A1 in [START_REF] Pchelintsev | Adaptive model selection method for a conditionally Gaussian semimartingale regression in continuous time[END_REF] it is shown that these functions satisfy the condition B 2 ) with d 0 = inf{d ≥ 7 : 5 + ln d ≤ ǎd} and ǎ = (1 -e -a max )/(4a max ).

We write the Fourier expansion of the unknown function S in the form

S(t) = ∞ j=1 θ j φ j (t),
where the corresponding Fourier coefficients

θ j = (S, φ j ) = 1 0 S(t) φ j (t) dt (3.3)
can be estimated as

θ j,n = 1 n n 0 φ j (t) dy t . (3.4) 
We replace the differential S(t)dt by the stochastic observed differential dy t .

In view of (1.1), one obtains

θ j,n = θ j + 1 √ n ξ j,n , ξ j,n = 1 √ n I n (φ j ) (3.5)
where I n (φ j ) is given in (1.2). As in [START_REF] Konev | Efficient robust nonparametric in a semimartingale regression model // Annals of the Institute of Henri Poincaré[END_REF] we define a class of weighted least squares estimates for S(t) as

S γ = n j=1 γ(j) θ j,n φ j , (3.6) 
where the weights γ = (γ(j)) 1≤j≤n ∈ R n belong to some finite set Γ from [0, 1] n for which we set

ν = card(Γ) and |Γ| * = max γ∈Γ n j=1 γ(j) , (3.7) 
where card(Γ) is the number of the vectors γ in Γ. In the sequel we assume that all vectors from Γ satisfies the following condition.

D 1 ) Assume that for for any vector γ ∈ Γ there exists some fixed integer d = d(γ) such that their first d components equal to one, i.e. γ(j) = 1 for 1 ≤ j ≤ d for any γ ∈ Γ.

D 2 ) There exists n 0 ≥ 1 such that for any n ≥ n 0 there exists a σ -field G n for which the random vector ξ d,n = (ξ j,n ) 1≤j≤d is the G n -conditionally Gaussian in R d with the covariance matrix

G n = E ξ i,n ξ j,n |G n ) 1≤i,j≤d (3.8)
and for some nonrandom constant

l * n > 0 inf Q∈Q n (tr G n -λ max (G n )) ≥ l * n a.s. , (3.9) 
where λ max (A) is the maximal eigenvalue of the matrix A.

As it is shown in Proposition 7.11 in [START_REF] Pchelintsev | Adaptive model selection method for a conditionally Gaussian semimartingale regression in continuous time[END_REF] the condition D 2 ) holds for the non-

Gaussian Ornstein-Uhlenbeck-based model (1.1) -(2.1) with l * n = n (d - 6)/2 and d ≥ d 0 .
Further, for the first d Fourier coefficients in (3.5) we will use the improved estimation method proposed for parametric models in [START_REF] Pchelintsev | Improved estimation in a non-Gaussian parametric regression[END_REF]. To this end we set θ n = ( θ j,n ) 1≤j≤d . In the sequel we will use the norm

|x| 2 d = d j=1
x 2 j for any vector x = (x j ) 1≤j≤d from R d . Now we define the shrinkage estimators as

θ * j,n = (1 -g(j)) θ j,n , (3.10) 
where

g(j) = (c n /| θ n | d )1 {1≤j≤d} , c n = l * n r * n + dκ * /n n and κ * = sup Q∈Q n κ Q .
The positive parameter r * n is such that

lim n→∞ r * n = ∞ and lim n→∞ r * n n δ = 0 (3.11)
for any δ > 0. Now we introduce a class of shrinkage weighted least squares estimates for S as

S * γ = n j=1 γ(j)θ * j,n φ j . (3.12)
We denote the difference of quadratic risks of the estimates (3.6) and (3.12) as

∆ Q (S) := R Q (S * γ , S) -R Q ( S γ , S
) . For this difference we obtain the following result. 

Model selection

This Section gives the construction of a model selection procedure for estimating a function S in (1.1) on the basis of improved weighted least square estimates and states the sharp oracle inequality for the robust risk of proposed procedure.

The model selection procedure for the unknown function S in (1.1) will be constructed on the basis of a family of estimates (S * γ ) γ∈Γ . The performance of any estimate S * γ will be measured by the empirical squared error

Err n (γ) = S * γ -S 2 . In order to obtain a good estimate, we have to write a rule to choose a weight vector γ ∈ Γ in (3.12). It is obvious, that the best way is to minimise the empirical squared error with respect to γ. Making use the estimate definition (3.12) and the Fourier transformation of S implies

Err n (γ) = n j=1 γ 2 (j)(θ * j,n ) 2 -2 n j=1 γ(j)θ * j,n θ j + n j=1 θ 2 j . (4.1)
Since the Fourier coefficients (θ j ) j≥1 are unknown, the weight coefficients (γ j ) j≥1 can not be found by minimizing this quantity. To circumvent this difficulty one needs to replace the terms θ * j,n θ j by their estimators θ j,n . We set θ j,n = θ * j,n θ j,n -

σ n n (4.2)
where σ n is the estimate for the limiting variance of E Q ξ 2 j,n which we choose in the following form

σ n = n j=[ √ n]+1 t 2 j,n , t j,n = 1 0 Tr j (t)dy t . (4.3) 
For this change in the empirical squared error, one has to pay some penalty. Thus, one comes to the cost function of the form

J n (γ) = n j=1 γ 2 (j)(θ * j,n ) 2 -2 n j=1 γ(j) θ j,n + ρ P n (γ) (4.4)
where ρ is some positive constant, P n (γ) is the penalty term defined as

P n (γ) = σ n |γ| 2 n n . (4.5)
Substituting the weight coefficients, minimizing the cost function

γ * = argmin γ∈Γ J n (γ) , (4.6) 
in (3.6) leads to the improved model selection procedure

S * = S * γ * . (4.7)
It will be noted that γ * exists because Γ is a finite set. If the minimizing sequence in (4.6) γ * is not unique, one can take any minimizer.

To prove the sharp oracle inequality, the following conditions will be needed for the family Q n of distributions of the noise (ξ t ) t≥0 in (1.1).

We need to impose some stability conditions for the noise Fourier transform sequence (ξ j,n ) 1≤j≤n introduced in [START_REF] Pchelintsev | Oracle inequalities for the stochastic differential equations[END_REF]. To this end for some parameter σ Q > 0 we set the following function

L 1,n (Q) = n j=1 E Q ξ 2 j,n -σ Q . (4.8) 
In [START_REF] Konev | Efficient robust nonparametric in a semimartingale regression model // Annals of the Institute of Henri Poincaré[END_REF] the parameter σ Q is called proxy variance. C 1 ) There exists a proxy variance σ Q > 0 such that for any > 0

lim n→∞ L 1,n (Q) n = 0 .
Moreover, we define 

L 2,n (Q) = sup |x|≤1 E Q   n j=1 x j ξ j,n   2 and ξ j,n = ξ 2 j,n -E Q ξ 2 j,n . C 2 ) Assume that for any > 0 lim n→∞ L 2,n (Q) n = 0 .
R Q (S * , S) ≤ 1 + 5ρ 1 -ρ min γ∈Γ R Q (S * γ , S) + B n (Q) ρn , (4.9) 
where

B n (Q) = U n (Q) 1 + |Γ| * E Q | σ n -σ Q | and the coefficient U n (Q) is such that for any > 0 lim n→∞ U n (Q) n = 0 . (4.10)
In the case, when the value of σ Q in C 1 ) is known, one can take σ n = σ Q and

P n (γ) = σ Q |γ| 2 n n (4.11)
and then we can rewrite the oracle inequality (4.9) with 

B n (Q) = U n (Q).
E Q | σ n -σ Q | ≤ κ n (Q)(1 + Ṡ 2 ) √ n ,
where the term κ n (Q) possesses the property (4.10) and Ṡ is the derivative of the function S.

To obtain the oracle inequality for the robust risk (1.5) we need some additional condition on the distribution family Q n . We set As is shown in [START_REF] Pchelintsev | Adaptive model selection method for a conditionally Gaussian semimartingale regression in continuous time[END_REF], both the conditions C * 1 ) and C * 2 ) hold for the model (1.1) with Ornstein-Uhlenbeck noise process (2.1). Using Proposition 4.2 from [START_REF] Pchelintsev | Adaptive model selection method for a conditionally Gaussian semimartingale regression in continuous time[END_REF] we can obtain the following result Theorem 4.3. Assume that the conditions C * 1 )-C * 2 ) hold. Then the robust risk (1.5) of the estimate (4.7) for continuously differentiable function S(t) satisfies for any n ≥ 2 and 0 < ρ < 1/2 the oracle inequality

ς * = ς * n = sup Q∈Q n σ Q and L * n = sup Q∈Q n (L 1,n (Q) + L 2,n (Q)) . ( 4 
R * n (S * , S) ≤ 1 + 5ρ 1 -ρ min γ∈Γ R * n (S * γ , S) + 1 ρn B * n (1 + Ṡ 2 ) ,
where the term B * n satisfies the property (4.10). Now we specify the weight coefficients (γ(j)) j≥1 as it is proposed in [START_REF] Galtchouk | Sharp non-asymptotic oracle inequalities for nonparametric heteroscedastic regression models[END_REF][START_REF] Galtchouk | Adaptive asymptotically efficient estimation in heteroscedastic nonparametric regression[END_REF] for a heteroscedastic regression model in discrete time. Firstly, we define the normalizing coefficient v n = n/ς * . Consider a numerical grid of the form

A n = {1, . . . , k * } × {r 1 , . . . , r m } ,
where r i = iε and m = [1/ε 2 ]. Both parameters k * ≥ 1 and 0 < ε ≤ 1 are assumed to be functions of n, i.e. k * = k * (n) and ε = ε(n), such that for any δ > 0

     lim n→∞ k * (n) = +∞ , lim n→∞ k * (n) ln n = 0 , lim n→∞ ε(n) = 0 and lim n→∞ n δ ε(n) = +∞ .
One can take, for example, ε(n) = 1/ ln(n + 1) and k * (n) = ln(n + 1). For each α = (β, r) ∈ A n we introduce the weight sequence γ α = (γ α (j)) j≥1 as

γ α (j) = 1 {1≤j≤d} + 1 -(j/ω α ) β 1 {d<j≤ωα} (4.13) 
where

d = d(α) = [ω α / ln(n + 1)], ω α = τ β r v n 1/(2β+1)
and

τ β = (β + 1)(2β + 1) π 2β β .
We set Γ = {γ α , α ∈ A n } . (4.14)

It will be noted that such weight coefficients satisfy the condition D 1 ) and in this case the cardinal of the set Γ is ν = k * m. Moreover, taking into account that τ β < 1 for β ≥ 1 we obtain for the set (4.14)

|Γ| * ≤ 1 + sup α∈A ω α ≤ 1 + (υ n /ε) 1/3 .
Remark 4.1. These weight coefficients are used in [START_REF] Konev | Efficient robust nonparametric in a semimartingale regression model // Annals of the Institute of Henri Poincaré[END_REF][START_REF] Konev | Robust model selection for a semimartingale continuous time regression from discrete data // Stochastic processes and their applications[END_REF] to show the asymptotic efficiency for model selection procedures.

Asymptotic efficiency

In order to study the asymptotic efficiency we define the following functional Sobolev ball

W k,r = {f ∈ C k p [0, 1] : k j=0 f (j) 2 ≤ r} ,
where r > 0 and k ≥ 1 are some unknown parameters, C k p [0, 1] is the space of k times differentiable 1 -periodic R → R functions such that f (i) (0) = f (i) (1) for any 0 ≤ i ≤ k -1. To study the asymptotic efficiency we denote by Σ n all estimators S n i.e. any σ{y t , 0 ≤ t ≤ n} mesurable functions. In the sequel we denote by Q * the distribution of the process (y t ) 0≤t≤n with ξ t = ς * w t , i.e. white noise model with the intensity ς * . Theorem 5.1. Assume that Q * ∈ Q n . The robust risk (1.5) admits the following lower bound

lim inf n→∞ inf S n ∈Σ n v 2k/(2k+1) n sup S∈W k,r R * n ( S n , S) ≥ l k (r) ,
where

l k (r) = ((1 + 2k)r) 1/(2k+1) (k/π(k + 1)) 2k/(2k+1) .
We show that this lower bound is sharp in the following sense.

Theorem 5.2. The quadratic risk (1.2) for the estimating procedure (4.7) has the following asymptotic upper bound

lim sup n→∞ v 2k/(2k+1) n sup S∈W k,r R * n (S * , S) ≤ l k (r) .
It is clear that these theorems imply the following efficient property. 

Monte Carlo simulations

In this section we give the results of numerical simulations to assess the performance and improvement of the proposed model selection procedure (4.6). We simulate the model (1.1) with 1-periodic function S of the form

S(t) = t sin(2πt) + t 2 (1 -t) cos(4πt) (6.1)
on [0, 1] and the Lévy noise process ξ t is defined as

dξ t = -ξ t dt + 0.5 dw t + 0.5 dz t , z t = N t j=1 Y j ,
where N t is a homogeneous Poisson process with intensity λ = 1 and (Y j ) j≥1 is i.i.d. N (0, 1) sequence (see, for example, [START_REF] Konev | Robust model selection for a semimartingale continuous time regression from discrete data // Stochastic processes and their applications[END_REF]).

We use the model selection procedure (4.6) with the weights (4.13) in which k * = 100 + ln(n + 1), r i = i/ ln(n + 1), m = [ln 2 (n + 1)], ς * = 0.5 and ρ = (3 + ln n) -2 . We define the empirical risk as

R(S * , S) = 1 p p j=1 E∆ 2 n (t j ) and E∆ 2 n (t) = 1 N N l=1 ∆ 2 n,l (t) ,
where ∆ n (t) = S * n (t) -S(t) and ∆ n,l (t) = S * n,l (t) -S(t) is the deviation for the lth replication. In this example we take p = 100001 and N = 1000. 1 gives the values for the sample risks of the improved estimate (4.6) and the model selection procedure based on the weighted LSE (3.15) from [START_REF] Konev | Efficient robust nonparametric in a semimartingale regression model // Annals of the Institute of Henri Poincaré[END_REF] for different numbers of observation period n. Table 2 gives the values for the sample risks of the the model selection procedure based on the weighted LSE (3.15) from [START_REF] Konev | Efficient robust nonparametric in a semimartingale regression model // Annals of the Institute of Henri Poincaré[END_REF] and it's improved version for different numbers of observation period n. Remark 6.1. Figures 12show the behavior of the procedures (3.6) and (4.6) depending on the values of observation periods n. The bold line is the function (6.1), the continuous line is the model selection procedure based on the least squares estimators S and the dashed line is the improved model selection procedure S * . From the Table 2 for the same γ with various observations numbers n we can conclude that theoretical result on the improvement effect (3.13) is confirmed by the numerical simulations. Moreover, for the proposed shrinkage procedure, Table 1 and Figures 12, we can conclude that the benefit is considerable for non large n. Consider the quadratic error of the estimate (3.12)

S * γ -S 2 = n j=1 (γ(j)θ * j,n -θ j ) 2 = d j=1 (γ(j)θ * j,n -θ j ) 2 + n j=d+1 (γ(j) θ j,n -θ j ) 2 = n j=1 (γ(j) θ j,n -θ j ) 2 + c 2 n -2c n d j=1 ( θ j,n -θ j ) θ j,n θ n d = S γ -S 2 + c 2 n -2c n d j=1 ( θ j,n -θ j )ι j ( θ n ) ,
where ι j (x) = x j / x d for x = (x j ) 1≤j≤d ∈ R d . Therefore, we can represent the risk for the improved estimator S * γ as

R Q (S * γ , S) = R Q ( S γ , S) + c 2 n -2c n E Q,S d j=1 ( θ j,n -θ j ) I j,n ,
where I j,n = E(ι j ( θ n )( θ j,n -θ j )|G n ). Now, taking into account that the vector θ n = ( θ j,n ) 1≤j≤d is the G n conditionally Gaussian vector in R d with mean θ = (θ j ) 1≤j≤d and covariance matrix n -1 G n , we obtain

I j,n = R d ι j (x)(x -θ j )p(x|G n )dx .
Here p(x|G n ) is the conditional distribution density of the vector θ n , i.e.

p(x|G n ) = 1 (2π) d/2 det G n exp - (x -θ) G -1 n (x -θ) 2 .
Changing the variables by u = G -1/2 n (x -θ), one finds that

I j,n = 1 (2π) d/2 d l=1 g j,l R d ιj,n (u)u l exp - u 2 d 2 du , (7.1) 
where ι j,n (u) = ι j (G 1/2 n u + θ) and g ij denotes the (i, j)-th element of G 1/2 n . Furthermore, integrating by parts, the integral I j,n can be rewritten as

I j,n = d l=1 d k=1 E g jl g kl ∂ι j ∂u k (u)| u= θ n |G n .
Now taking into account that z Az ≤ λ max (A) z 2 and the condition D 2 ) we obtain that

∆ Q (S) = c 2 n -2c n n -1 E Q,S trG n θ n d - θ n G n θ n θ n 3 ≤ c 2 n -2c n l * n n -1 E Q,S 1 
θ n d .
Recall, that the denotes the transposition. Moreover, in view of the Jensen inequality we can estimate the last expectation from below as

E Q,S ( θ n d ) -1 = E Q,S ( θ + n -1/2 ξ n d ) -1 ≥ ( θ d + n -1/2 E Q,S ξ n d ) -1 .
Note now that the condition through the inequality (1.3) we obtain

E Q,S ξ n 2 d ≤ κ Q d . So, for S 2 ≤ r * n E Q,S θ n -1 ≥ r * n + dκ Q /n -1
and, therefore,

∆ Q (S) ≤ c 2 n -2c n l * n r * n + dκ * /n n = -c 2 n .
Hence Theorem 3.1. 

σ n n -θ * j,n θ j + S 2 -ρ P n (γ) . (7.2) Now we set L(γ) = n j=1 γ(j), B 1,n (γ) = n j=1 γ(j)(E Q ξ 2 j,n -σ Q ) , B 2,n (γ) = n j=1 γ(j) ξ j,n , M (γ) = 1 √ n n j=1 γ(j)θ j ξ j,n and B 3,n (γ) = 1 √ n n j=1 γ(j)g(j) θ j,n ξ j,n .
Taking into account the definition (4.5), we can rewrite (7.2) as

Err n (γ) = J n (γ) + 2 σ Q -σ n n L(γ) + 2 M (γ) + 2 n B 1,n (γ) 
+ 2 P n (γ) B 2,n (γ) √ σ Q n -2B 3,n (γ) + S 2 -ρ P n (γ) (7.3) 
with γ = γ/|γ| n . Let γ 0 = (γ 0 (j)) 1≤n be a fixed sequence in Γ and γ * be as in (4.6). Substituting γ 0 and γ * in (7.3), we consider the difference

Err n (γ * ) -Err n (γ 0 ) ≤ 2 σ Q -σ n n L(x) + 2M (x) + 2 n B 1,n (x) + 2 P n (γ * ) B 2,n (γ * ) √ σ Q n -2 P n (γ 0 ) B 2,n (γ 0 ) √ σ Q n -2B 3,n (γ * ) + 2B 3,n (γ 0 ) -ρ P n (γ * ) + ρ P n (γ 0 ) , where x = γ * -γ 0 . Note that |L(x)| ≤ 2|Γ| * and |B 1,n (x)| ≤ L 1,n (Q).
Applying the elementary inequality

2|ab| ≤ εa 2 + ε -1 b 2 (7.4)
with any ε > 0, we get

2 P n (γ) B 2,n (γ) √ σ Q n ≤ εP n (γ) + B 2 2,n (γ) εσ Q n ≤ εP n (γ) + B * 2 εσn ,
where

B * 2 = max γ∈Γ B 2 2,n (γ) + B 2 2,n (γ 2 )
with γ 2 = (γ 2 j ) 1≤j≤n . Note that from definition the function L 2,n (Q) in the condition C 2 ) we obtain that

E Q B * 2 ≤ γ∈Γ E Q B 2 2,n (γ) + E Q B 2 2,n (γ 2 ) ≤ 2νL 2,n (Q) . (7.5) 
Moreover, by the same method we estimate the term B 3,n . Note that

n j=1 g 2 γ (j) θ 2 j = c 2 n ≤ c * n n , (7.6) 
where c * n = n max γ∈Γ c 2 n . Therefore, through the Cauchy-Schwarz inequality we can estimate the term B 3,n (γ) as

|B 3,n (γ)| ≤ |γ| n √ n c n   n j=1 γ 2 (j) ξ 2 j   1/2 = |γ| n √ n c n σ Q + B 2,n (γ 2 ) 1/2 .
So, applying the elementary inequality (7.4) with some arbitrary ε > 0, we have

2|B 3,n (γ)| ≤ εP n (γ) + c * n εσ Q n (σ Q + B * 2 ) .

Using the bounds above, one has

Err

n (γ * ) ≤ Err n (γ 0 ) + 4|Γ| n | σ n -σ Q | n + 2M (x) + 2 n L 1,n (Q) + 2 ε c * nσ Q (σ Q + B * 2 ) + 2 ε B * 2 nσ Q + 2εP n (γ * ) + 2εP n (γ 0 ) -ρ P n (γ * ) + ρ P n (γ 0 ) .
The setting ε = ρ/4 and the estimating where this is possible ρ by 1 in this inequality imply

Err n (γ * ) ≤ Err n (γ 0 ) + 5|Γ| n | σ n -σ Q | n + 2M (x) + 2 n L 1,n (Q) + 16(c * n + 1)(σ Q + B * 2 ) ρnσ Q - ρ 2 P n (γ * ) + ρ 2 P n (γ 0 ) + ρ P n (γ 0 ) .
Moreover, taking into account here that

| P n (γ 0 ) -P n (γ 0 )| ≤ |Γ| n | σ n -σ Q | n and that ρ < 1/2, we obtain that Err n (γ * ) ≤ Err n (γ 0 ) + 6|Γ| n | σ n -σ Q | n + 2M (x) + 2 n L 1,n (Q) + 16(c * n + 1)(σ Q + B * 2 ) ρnσ Q - ρ 2 P n (γ * ) + 3ρ 2 P n (γ 0 ) . (7.7)
Now we examine the third term in the right-hand side of this inequality. Firstly we note that

2|M (x)| ≤ ε S x 2 + Z * nε , (7.8) 
where S x = n j=1 x j θ j φ j and

Z * = sup x∈Γ 1 nM 2 (x) S x 2 .
We remind that the set Γ 1 = Γ -γ 0 . Using Proposition ?? we can obtain that for any fixed

x = (x j ) 1≤j≤n ∈ R n E M 2 (x) = E I 2 n (S x ) n 2 = σ Q S x 2 n = σ Q n n j=1
x 2 j θ 2 j (7.9) and, therefore, 

E Q Z * ≤ x∈Γ 1 nM 2 (x) S x 2 ≤ σ Q ν . ( 7 
S * γ -S * γ 0 2 = n j=1 (x(j) + β(j)) 2 θ 2 j ≥ S x 2 + 2 n j=1 x(j)β(j) θ 2 j ,
where β(j) = γ 0 (j)g j (γ 0 ) -γ(j)g j (γ). Therefore, in view of (3.5)

S x 2 -S * γ -S * γ 0 2 ≤ S x 2 -S x 2 -2 n j=1 x(j)β(j) θ 2 j ≤ -2M (x 2 ) -2 n j=1
x(j)β(j) θ j θ j -2 √ n Υ(x) ,

where Υ(γ) = n j=1 γ(j)β(j) θ j ξ j . Note that the first term in this inequality we can estimate as 2M (x 2 ) ≤ ε S Note that, similarly to (7.10) we can estimate the last term as

E Q Z * 1 ≤ σ Q ν .
From this it follows that for any 0 < ε < 1 x(j)β(j) θ j θ j ≤ ε S x 2 + 4c * εn .

S x 2 ≤ 1 1 -ε S * γ -S *
To estimate the last term in the right hand of (7.11) we use first the Cauchy -Schwarz inequality and then the bound (7.12), i.e. The inequality (7.6) implies the bound (7.13). Hence Lemma 7.1.

Theorem 3 . 1 .

 31 Assume that the conditions D 1 ) -D 2 ) hold. Then for any n ≥ n 0 supQ∈Q n sup S ≤r * n ∆ Q (S) < -c 2 n . (3.13) Remark 3.1. The inequality (3.13) means that non asymptotically, i.e. for any n ≥ n 0 the estimate (3.12) outperforms in mean square accuracy the estimate (3.6).

Theorem 4 . 1 .

 41 If the conditions C 1 ) and C 2 ) hold for the distribution Q of the process ξ in (1.1), then, for any n ≥ 1 and 0 < ρ < 1/2, the risk (1.4) of estimate (4.7) for S satisfies the oracle inequality

.12) C * 1 ) 2 )

 12 Assume that the conditions C 1 )-C 2 ) hold and for any > Now we impose the conditions on the set of the weight coefficients Γ. C * Assume that the set Γ is such that for any >

Corollary 5 . 3 .

 53 The model selection procedure (4.7) is efficient, i.e. * , S) = l k (r) . Theorem 5.2 and Theorem 5.1 are shown by the same way as Theorems 1 and 2 in [9].

Figure 1 :

 1 Figure 1: Behavior of the regression function and its estimates for n = 500.

Figure 2 :

 2 Figure 2: Behavior of the regression function and its estimates for n = 1000.

7. 2 1 Substituting ( 4 . 4 )

 2144 Proof of Theorem 4.in (4.1) yields for any γ ∈ Γ Err n (γ) = J n (γ) + 2 n j=1 γ(j) θ * j,n θ j,n -

. 10 )

 10 Moreover, the norm S * γ * -S * γ 0 can be estimated from below as

1 nM 2 (x 2 ) S x 2 .

 1222 

  )β(j) θ j θ jthat |x(j)| ≤ 1 and using the inequality (7.4), we get that for any ε > 0 2 n j=1

≤ 7 . 3 Lemma 7 . 1 . 1 P 2 ≥

 737112 εP n (γ * ) + εP n (γ 0 ) + 2c * (σ Q + B * 2 ) nεσ Q. Property of Penalty term For any n ≥ 1, γ ∈ Γ and 0 < ε < By the definition of Err n (γ) one hasErr n (γ) = n j=1 (γ(j)θ * j,n -θ j ) 2 = n j=1 γ(j)(θ * j,n -θ j ) + (γ(j) -1)θ j 2 ≥ n j=1 γ(j) 2 (θ * j,n -θ j ) 2 + 2 n j=1 γ(j)(γ(j) -1)θ j (θ * j,n -θ j ).Taking into account the condition B 2 ) and the definition (3.10) we obtain that the last term in tho sum can be replaced asn j=1 γ(j)(γ(j) -1)θ j (θ * j,n -θ j ) = n j=1 γ(j)(γ(j) -1)θ j ( θ j,n -θ j ) ,i.e. E n j=1 γ(j)(γ(j) -1)θ j (θ * j,n -θ j ) = 0 and, therefore, taking into account the definition (4.11) we obtain thatE Err n (γ) ≥ n j=1 γ(j) 2 E (θ * j,n -θ j ) 2 = n j=1 γ(j) 2 E ξ j,n√ n -g γ (j) θ j P n (γ) -) 2 g γ (j) θ j,n ξ j ≥ (1 -ε) P n (γ) -

  Now we study the estimate (4.3).

Proposition 4.2. Let in the model (1.1) the function S(•) is continuously differentiable. Then, for any n ≥ 2,

Table 1 :

 1 The sample quadratic risks for different optimal γ

	n	100	200	500	1000
	R(S * γ * , S)	0.0289 0.0089 0.0021 0.0011
	R( S γ , S)	0.0457 0.0216 0.0133 0.0098
	R( S γ , S)/R(S * γ * , S)	1.6	2.4	6.3	8.9

Table 2 :

 2 The sample quadratic risks for the same optimal γ

	n	100	200	500	1000
	R(S * γ , S)	0.0391 0.0159 0.0098 0.0066
	R( S γ , S)	0.0457 0.0216 0.0133 0.0098
	R( S γ , S)/R(S * γ , S)	1.2	1.4	1.3	1.5
	Table				
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So, using all these bounds in (7.11), we obtain that

Using in the inequality (7.8) this bound and the estimate

Choosing here ε ≤ ρ/2 < 1/2 we obtain that

From here and (7.7), it follows that

Choosing here ε = ρ/3 and estimating (1 -ρ) -1 by 2 where this is possible, we get

Taking the expectation and using the upper bound for

where ǓQ,n = 4L 1,n (Q) + 56(1 + c * n )(2L 2,n (Q)ν + 1) + 2c * n . The inequality holds for each γ 0 ∈ Λ, this implies Theorem 4.1.