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Improved model selection method for an adaptive

estimation in semimartingale regression models ∗

Pchelintsev E.A., † Pergamenshchikov S.M.‡

Abstract

This paper considers the problem of robust adaptive efficient esti-
mating of a periodic function in a continuous time regression model
with the dependent noises given by a general square integrable semi-
martingale with a conditionally Gaussian distribution. An example
of such noise is the non-Gaussian Ornstein–Uhlenbeck–Lévy processes.
An adaptive model selection procedure, based on the improved weighted
least square estimates, is proposed. Under some conditions on the
noise distribution, sharp oracle inequality for the robust risk has been
proved and the robust efficiency of the model selection procedure has
been established. The numerical analysis results are given.
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1 Introduction

Consider a regression model in continuous time

dyt = S(t)dt+ dξt , 0 ≤ t ≤ n , (1.1)

where S is an unknown 1-periodic R → R function, S ∈ L2[0, 1], (ξt)t≥0 is
an unobservable noise which is a square integrated semimartingale with the
values in the Skorokhod space D[0, n] such that, for any function f from
L2[0, n], the stochastic integral

In(f) =

∫ n

0

f(s)dξs (1.2)

has the following properties

EQIn(f) = 0 and EQI
2
n(f) ≤ κQ

∫ n

0

f2(s)ds . (1.3)

Here EQ denotes the expectation with respect to the distribution Q of the
noise process (ξt)0≤t≤n on the space D[0, n], κQ > 0 is some positive con-
stant depending on the distribution Q. The noise distribution Q is unknown
and assumed to belong to some probability family Qn specified below. Note
that the firstly semimartingale regression models in continuous time were
introduced by Konev and Pergamenshchikov in [8, 9] for the signal estima-
tion problems. It should be noted also, that, the class of the noise processes
(ξt)t≥0 satisfying conditions (1.3) is rather wide and comprises, in particu-
lar, the Lévy processes which are used in different applied problems (see [2],
for details). Moreover, as is shown in Section 2, non-Gaussian Ornstein–
Uhlenbeck-based models enter this class.

The problem is to estimate the unknown function S in the model (1.1)
on the basis of observations (yt)0≤t≤n. In this paper we use the quadratic

risk, i.e. for any estimate Ŝ we set

RQ(Ŝ, S) := EQ,S ‖Ŝ − S‖2 and ‖f‖2 :=

∫ 1

0

f2(t)dt , (1.4)

where EQ,S stands for the expectation with respect to the distribution PQ,S

of the process (1.1) with a fixed distribution Q of the noise (ξt)0≤t≤n and a
given function S. Moreover, in the case when the distribution Q is unknown
we use also the robust risk

R∗n(Ŝ, S) = sup
Q∈Qn

RQ(Ŝ, S) . (1.5)

The goal of this paper is to develop the adaptive robust efficient model
selection method for the regression (1.1) with dependent noises having con-
ditionally Gaussian distribution using the improved estimation approach.
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This paper proposes the shrinkage least squares estimates which enable us
to improve the non-asymptotic estimation accuracy. For the first time such
idea was proposed by Fourdrinier and Pergamenshchikov in [4] for regres-
sion models in discrete time and by Konev and Pergamenshchikov in [10]
for Gaussian regression models in continuous time. We develop these meth-
ods for the general semimartingale regression models in continuous time. It
should be noted that for the conditionally Gaussian regression models we
can not use the well-known improved estimators proposed in [7] for Gaus-
sian or spherically symmetric observations. To apply the improved esti-
mation methods to the non-Gaussian regression models in continuous time
one needs to use the modifications of the well-known James - Stein esti-
mators proposed in [13, 14] for parametric problems. We develop the new
analytical tools which allow one to obtain the sharp non-asymptotic oracle
inequalities for robust risks under general conditions on the distribution of
the noise in the model (1.1). This method enables us to treat both the cases
of dependent and independent observations from the same standpoint, it
does not assume the knowledge of the noise distribution and leads to the
efficient estimation procedure with respect to the risk (1.5). The validity of
the conditions, imposed on the noise in the equation (1.1) is verified for a
non-Gaussian Ornstein–Uhlenbeck process.

The rest of the paper is organized as follows. In the next Section 2, we
describe the Ornstein–Uhlenbeck process as the example of a semimartingale
noise in the model (1.1). In Section 3 we construct the shrinkage weighted
least squares estimates and study the improvement effect. In Section 4 we
construct the model selection procedure on the basis of improved weighted
least squares estimates and state the main results in the form of oracle
inequalities for the quadratic risk (1.4) and the robust risk (1.5). In Section 5
it is shown that the proposed model selection procedure for estimating S
in (1.1) is asymptotically efficient with respect to the robust risk (1.5). In
Section 6 we illustrate the performance of the proposed model selection
procedure through numerical simulations. Section 7 gives the proofs of the
main results.

2 Ornstein-Uhlenbeck-Lévy process

Now we consider the noise process (ξt)t≥0 in (1.1) defined by a non-Gaussian
Ornstein–Uhlenbeck process with the Lévy subordinator. Such processes
are used in the financial Black–Scholes type markets with jumps (see, for
example, [1], and the references therein). Let the noise process in (1.1) obeys
the equation

dξt = aξtdt+ dut , ξ0 = 0 , (2.1)

3



where

ut = %1wt + %2 zt and zt =

∫
R
x ∗ (µ− µ̃)t . (2.2)

Here (wt)t≥0 is a standard Brownian motion, µ(ds dx) is the jump measure
with the deterministic compensator µ̃(ds dx) = dsΠ(dx), Π(·) is the Lévy
measure on R∗ = R \ {0}, (see, for example in [3]), such that

Π(x2) = 1 and Π(x8) < ∞ . (2.3)

We use the notation Π(|x|m) =
∫
R∗
|z|m Π(dz). Moreover, we assume that

the nuisance parameters a ≤ 0, %1 and %2 satisfy the conditions

− amax ≤ a ≤ 0 , 0 < % ≤ %2
1 and σQ = %2

1 + %2
2 ≤ ς

∗ , (2.4)

where the bounds amax, % and ς∗ are functions of n, i.e. amax = amax(n),

% = %n and ς∗ = ς∗n, such that for any δ̌ > 0

lim
n→∞

amax(n)

nε
= 0 , lim inf

n→∞
nε %

n
> 0 and lim

n→∞
n−ε ς∗n = 0 . (2.5)

We denote by Qn the family of all distributions of process (1.1) – (2.1)
on the Skorokhod space D[0, n] satisfying the conditions (2.4) – (2.5).

It should be noted that in view of Corollary 7.2 in [16] the condition
(1.3) for the process (2.1) holds with

κQ = 2%∗ . (2.6)

Note also that the process (2.1) is conditionally-Gaussian square integrated
semimartingale with respect to σ-algebra G = σ{zt , t ≥ 0} which is gener-
ated by jump process (zt)t≥0.

3 Improved estimation

For estimating the unknown function S in (1.1) we will consider it’s Fourier
expansion. Let (φj)j≥ 1 be an orthonormal basis in L2[0, 1]. We extend these
functions by the periodic way on R, i.e. φj(t)=φj(t+ 1) for any t ∈ R.

B1) Assume that the basis functions are uniformly bounded, i.e. for some
constant φ∗ ≥ 1, which may be depend on n,

sup
0≤j≤n

sup
0≤t≤1

|φj(t)| ≤ φ∗ <∞ . (3.1)

B2) Assume that there exist some d0 ≥ 7 and ǎ ≥ 1 such that

sup
d≥d0

1

d

∫ 1

0

Φ∗d(v) dv ≤ ǎ , (3.2)
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where Φ∗d(v) = maxt≥v

∣∣∣∑d
j=1

φj(t)φj(t− v)
∣∣∣.

For example, we can take the trigonometric basis defined as Tr1 ≡ 1 and
Trj(x) =

√
2 cos($jx) for even j and Trj(x) =

√
2 cos($jx) for odd j ≥ 2,

where the frequency $j = 2π[j/2] and [x] denotes integer part of x. In
Lemma A1 in [16] it is shown that these functions satisfy the condition B2)
with d0 = inf{d ≥ 7 : 5 + ln d ≤ ǎd} and ǎ = (1− e−amax)/(4amax).

We write the Fourier expansion of the unknown function S in the form

S(t) =
∞∑
j=1

θjφj(t),

where the corresponding Fourier coefficients

θj = (S, φj) =

∫ 1

0

S(t)φj(t) dt (3.3)

can be estimated as

θ̂j,n =
1

n

∫ n

0

φj(t) dyt . (3.4)

We replace the differential S(t)dt by the stochastic observed differential dyt.
In view of (1.1), one obtains

θ̂j,n = θj +
1√
n
ξj,n , ξj,n =

1√
n
In(φj) (3.5)

where In(φj) is given in (1.2). As in [11] we define a class of weighted least
squares estimates for S(t) as

Ŝγ =

n∑
j=1

γ(j)θ̂j,nφj , (3.6)

where the weights γ = (γ(j))1≤j≤n ∈ Rn belong to some finite set Γ from
[0, 1]n for which we set

ν = card(Γ) and |Γ|∗ = max
γ∈Γ

n∑
j=1

γ(j) , (3.7)

where card(Γ) is the number of the vectors γ in Γ. In the sequel we assume
that all vectors from Γ satisfies the following condition.

D1) Assume that for for any vector γ ∈ Γ there exists some fixed integer
d = d(γ) such that their first d components equal to one, i.e. γ(j) = 1 for
1 ≤ j ≤ d for any γ ∈ Γ.
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D2) There exists n0 ≥ 1 such that for any n ≥ n0 there exists a σ - field

Gn for which the random vector ξ̃d,n = (ξj,n)1≤j≤d is the Gn-conditionally

Gaussian in Rd with the covariance matrix

Gn =
(
E ξi,n ξj,n|Gn)

)
1≤i,j≤d

(3.8)

and for some nonrandom constant l∗n > 0

inf
Q∈Qn

(trGn − λmax(Gn)) ≥ l∗n a.s. , (3.9)

where λmax(A) is the maximal eigenvalue of the matrix A.
As it is shown in Proposition 7.11 in [16] the condition D2) holds for the non-
Gaussian Ornstein–Uhlenbeck-based model (1.1) – (2.1) with l∗n = %

n
(d −

6)/2 and d ≥ d0.
Further, for the first d Fourier coefficients in (3.5) we will use the im-

proved estimation method proposed for parametric models in [14]. To
this end we set θ̃n = (θ̂j,n)1≤j≤d. In the sequel we will use the norm

|x|2d =
∑d

j=1
x2
j for any vector x = (xj)1≤j≤d from Rd. Now we define

the shrinkage estimators as

θ∗j,n = (1− g(j)) θ̂j,n , (3.10)

where g(j) = (cn/|θ̃n|d)1{1≤j≤d},

cn =
l∗n(

r∗n +
√
dκ∗/n

)
n

and κ∗ = sup
Q∈Qn

κQ .

The positive parameter r∗n is such that

lim
n→∞

r∗n =∞ and lim
n→∞

r∗n
nδ̌

= 0 (3.11)

for any δ̌ > 0.
Now we introduce a class of shrinkage weighted least squares estimates

for S as

S∗γ =
n∑
j=1

γ(j)θ∗j,nφj . (3.12)

We denote the difference of quadratic risks of the estimates (3.6) and
(3.12) as

∆Q(S) := RQ(S∗γ , S)−RQ(Ŝγ , S) .

For this difference we obtain the following result.
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Theorem 3.1. Assume that the conditions D1) – D2) hold. Then for any
n ≥ n0

sup
Q∈Qn

sup
‖S‖≤r∗

n

∆Q(S) < −c2
n . (3.13)

Remark 3.1. The inequality (3.13) means that non asymptotically, i.e. for
any n ≥ n0 the estimate (3.12) outperforms in mean square accuracy the
estimate (3.6).

4 Model selection

This Section gives the construction of a model selection procedure for esti-
mating a function S in (1.1) on the basis of improved weighted least square
estimates and states the sharp oracle inequality for the robust risk of pro-
posed procedure.
The model selection procedure for the unknown function S in (1.1) will be
constructed on the basis of a family of estimates (S∗γ)γ∈Γ.

The performance of any estimate S∗γ will be measured by the empirical
squared error

Errn(γ) = ‖S∗γ − S‖
2.

In order to obtain a good estimate, we have to write a rule to choose a
weight vector γ ∈ Γ in (3.12). It is obvious, that the best way is to minimise
the empirical squared error with respect to γ. Making use the estimate
definition (3.12) and the Fourier transformation of S implies

Errn(γ) =
n∑
j=1

γ2(j)(θ∗j,n)2 − 2
n∑
j=1

γ(j)θ∗j,n θj +
n∑
j=1

θ2
j . (4.1)

Since the Fourier coefficients (θj)j≥1 are unknown, the weight coefficients
(γj)j≥1 can not be found by minimizing this quantity. To circumvent this

difficulty one needs to replace the terms θ∗j,n θj by their estimators θ̃j,n. We
set

θ̃j,n = θ∗j,n θ̂j,n −
σ̂n
n

(4.2)

where σ̂n is the estimate for the limiting variance of EQ ξ
2
j,n which we choose

in the following form

σ̂n =

n∑
j=[
√
n]+1

t̂2j,n , t̂j,n =

∫ 1

0
Trj(t)dyt. (4.3)

For this change in the empirical squared error, one has to pay some penalty.
Thus, one comes to the cost function of the form

Jn(γ) =

n∑
j=1

γ2(j)(θ∗j,n)2 − 2

n∑
j=1

γ(j) θ̃j,n + ρ P̂n(γ) (4.4)
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where ρ is some positive constant, P̂n(γ) is the penalty term defined as

P̂n(γ) =
σ̂n |γ|2n
n

. (4.5)

Substituting the weight coefficients, minimizing the cost function

γ∗ = argminγ∈Γ Jn(γ) , (4.6)

in (3.6) leads to the improved model selection procedure

S∗ = S∗γ∗ . (4.7)

It will be noted that γ∗ exists because Γ is a finite set. If the minimizing
sequence in (4.6) γ∗ is not unique, one can take any minimizer.

To prove the sharp oracle inequality, the following conditions will be
needed for the family Qn of distributions of the noise (ξt)t≥0 in (1.1).

We need to impose some stability conditions for the noise Fourier trans-
form sequence (ξj,n)1≤j≤n introduced in [15]. To this end for some parameter
σQ > 0 we set the following function

L1,n(Q) =
n∑
j=1

∣∣∣EQ ξ2
j,n − σQ

∣∣∣ . (4.8)

In [11] the parameter σQ is called proxy variance.
C1) There exists a proxy variance σQ > 0 such that for any ε > 0

lim
n→∞

L1,n(Q)

nε
= 0 .

Moreover, we define

L2,n(Q) = sup
|x|≤1

EQ

 n∑
j=1

xj ξ̃j,n

2

and ξ̃j,n = ξ2
j,n −EQξ

2
j,n .

C2) Assume that for any ε > 0

lim
n→∞

L2,n(Q)

nε
= 0 .

Theorem 4.1. If the conditions C1) and C2) hold for the distribution Q of
the process ξ in (1.1), then, for any n ≥ 1 and 0 < ρ < 1/2, the risk (1.4)
of estimate (4.7) for S satisfies the oracle inequality

RQ(S∗, S) ≤ 1 + 5ρ

1− ρ
min
γ∈Γ
RQ(S∗γ , S) +

Bn(Q)

ρn
, (4.9)
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where Bn(Q) = Un(Q)
(
1 + |Γ|∗EQ|σ̂n − σQ|

)
and the coefficient Un(Q) is

such that for any ε > 0

lim
n→∞

Un(Q)

nε
= 0 . (4.10)

In the case, when the value of σQ in C1) is known, one can take σ̂n = σQ
and

Pn(γ) =
σQ |γ|2n
n

(4.11)

and then we can rewrite the oracle inequality (4.9) with Bn(Q) = Un(Q).
Now we study the estimate (4.3).

Proposition 4.2. Let in the model (1.1) the function S(·) is continuously
differentiable. Then, for any n ≥ 2,

EQ|σ̂n − σQ| ≤
κn(Q)(1 + ‖Ṡ‖2)√

n
,

where the term κn(Q) possesses the property (4.10) and Ṡ is the derivative
of the function S.

To obtain the oracle inequality for the robust risk (1.5) we need some addi-
tional condition on the distribution family Qn. We set

ς∗ = ς∗n = sup
Q∈Qn

σQ and L∗n = sup
Q∈Qn

(L1,n(Q) + L2,n(Q)) . (4.12)

C∗1) Assume that the conditions C1)–C2) hold and for any ε > 0

lim
n→∞

L∗n + ς∗n
nε

= 0 .

Now we impose the conditions on the set of the weight coefficients Γ.
C∗2) Assume that the set Γ is such that for any ε > 0

lim
n→∞

ν

nε
= 0 and lim

n→∞

|Γ|∗
n1/2+ε

= 0 .

As is shown in [16], both the conditions C∗1) and C∗2) hold for the model
(1.1) with Ornstein-Uhlenbeck noise process (2.1). Using Proposition 4.2
from [16] we can obtain the following result

Theorem 4.3. Assume that the conditions C∗1)–C∗2) hold. Then the robust
risk (1.5) of the estimate (4.7) for continuously differentiable function S(t)
satisfies for any n ≥ 2 and 0 < ρ < 1/2 the oracle inequality

R∗n(S∗, S) ≤ 1 + 5ρ

1− ρ
min
γ∈Γ
R∗n(S∗γ , S) +

1

ρn
B∗n(1 + ‖Ṡ‖2) ,

where the term B∗n satisfies the property (4.10).
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Now we specify the weight coefficients (γ(j))j≥1 as it is proposed in [5, 6]
for a heteroscedastic regression model in discrete time. Firstly, we define the
normalizing coefficient vn = n/ς∗. Consider a numerical grid of the form

An = {1, . . . , k∗} × {r1, . . . , rm} ,

where ri = iε and m = [1/ε2]. Both parameters k∗ ≥ 1 and 0 < ε ≤ 1 are
assumed to be functions of n, i.e. k∗ = k∗(n) and ε = ε(n), such that for
any δ > 0

limn→∞ k∗(n) = +∞ , limn→∞
k∗(n)

lnn
= 0 ,

limn→∞ ε(n) = 0 and limn→∞ nδε(n) = +∞ .

One can take, for example, ε(n) = 1/ ln(n+1) and k∗(n) =
√

ln(n+ 1). For
each α = (β, r) ∈ An we introduce the weight sequence γα = (γα(j))j≥1 as

γα(j) = 1{1≤j≤d} +
(

1− (j/ωα)β
)
1{d<j≤ωα} (4.13)

where d = d(α) = [ωα/ ln(n+ 1)], ωα =
(
τβ r vn

)1/(2β+1)
and

τβ =
(β + 1)(2β + 1)

π2ββ
.

We set
Γ = {γα , α ∈ An} . (4.14)

It will be noted that such weight coefficients satisfy the condition D1) and
in this case the cardinal of the set Γ is ν = k∗m. Moreover, taking into
account that τβ < 1 for β ≥ 1 we obtain for the set (4.14)

|Γ|∗ ≤ 1 + sup
α∈A

ωα ≤ 1 + (υn/ε)
1/3 .

Remark 4.1. These weight coefficients are used in [11, 12] to show the
asymptotic efficiency for model selection procedures.

5 Asymptotic efficiency

In order to study the asymptotic efficiency we define the following functional
Sobolev ball

Wk,r = {f ∈ Ck
p[0, 1] :

k∑
j=0

‖f (j)‖2 ≤ r} ,
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where r > 0 and k ≥ 1 are some unknown parameters, Ck
p[0, 1] is the space of

k times differentiable 1 - periodic R→ R functions such that f (i)(0) = f (i)(1)
for any 0 ≤ i ≤ k−1. To study the asymptotic efficiency we denote by Σn all
estimators Ŝn i.e. any σ{yt , 0 ≤ t ≤ n} mesurable functions. In the sequel
we denote by Q∗ the distribution of the process (yt)0≤t≤n with ξt = ς∗wt,
i.e. white noise model with the intensity ς∗.

Theorem 5.1. Assume that Q∗ ∈ Qn. The robust risk (1.5) admits the
following lower bound

lim inf
n→∞

inf
Ŝn∈Σn

v2k/(2k+1)
n sup

S∈Wk,r

R∗n(Ŝn, S) ≥ lk(r) ,

where lk(r) = ((1 + 2k)r)1/(2k+1) (k/π(k + 1))2k/(2k+1).

We show that this lower bound is sharp in the following sense.

Theorem 5.2. The quadratic risk (1.2) for the estimating procedure (4.7)
has the following asymptotic upper bound

lim sup
n→∞

v2k/(2k+1)
n sup

S∈Wk,r

R∗n(S∗, S) ≤ lk(r) .

It is clear that these theorems imply the following efficient property.

Corollary 5.3. The model selection procedure (4.7) is efficient, i.e.

lim
n→∞

(vn)
2k

2k+1 sup
S∈Wk,r

R∗n(S∗, S) = lk(r) .

Theorem 5.2 and Theorem 5.1 are shown by the same way as Theorems
1 and 2 in [9].

6 Monte Carlo simulations

In this section we give the results of numerical simulations to assess the
performance and improvement of the proposed model selection procedure
(4.6). We simulate the model (1.1) with 1-periodic function S of the form

S(t) = t sin(2πt) + t2(1− t) cos(4πt) (6.1)

on [0, 1] and the Lévy noise process ξt is defined as

dξt = −ξtdt+ 0.5 dwt + 0.5 dzt , zt =

Nt∑
j=1

Yj ,

where Nt is a homogeneous Poisson process with intensity λ = 1 and (Yj)j≥1

is i.i.d. N (0, 1) sequence (see, for example, [12]).
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We use the model selection procedure (4.6) with the weights (4.13) in
which k∗ = 100 +

√
ln(n+ 1), ri = i/ ln(n + 1), m = [ln2(n + 1)], ς∗ = 0.5

and ρ = (3 + lnn)−2. We define the empirical risk as

R(S∗, S) =
1

p

p∑
j=1

Ê∆2
n(tj) and Ê∆2

n(t) =
1

N

N∑
l=1

∆2
n,l(t) ,

where ∆n(t) = S∗n(t)− S(t) and ∆n,l(t) = S∗n,l(t)− S(t) is the deviation for
the lth replication. In this example we take p = 100001 and N = 1000.

Table 1: The sample quadratic risks for different optimal γ

n 100 200 500 1000

R(S∗γ∗ , S) 0.0289 0.0089 0.0021 0.0011

R(Ŝγ̂ , S) 0.0457 0.0216 0.0133 0.0098

R(Ŝγ̂ , S)/R(S∗γ∗ , S) 1.6 2.4 6.3 8.9

Table 2: The sample quadratic risks for the same optimal γ̂

n 100 200 500 1000

R(S∗γ̂ , S) 0.0391 0.0159 0.0098 0.0066

R(Ŝγ̂ , S) 0.0457 0.0216 0.0133 0.0098

R(Ŝγ̂ , S)/R(S∗γ̂ , S) 1.2 1.4 1.3 1.5

Table 1 gives the values for the sample risks of the improved estimate
(4.6) and the model selection procedure based on the weighted LSE (3.15)
from [11] for different numbers of observation period n. Table 2 gives the
values for the sample risks of the the model selection procedure based on
the weighted LSE (3.15) from [11] and it’s improved version for different
numbers of observation period n.

Remark 6.1. Figures 1–2 show the behavior of the procedures (3.6) and
(4.6) depending on the values of observation periods n. The bold line is the
function (6.1), the continuous line is the model selection procedure based on
the least squares estimators Ŝ and the dashed line is the improved model se-
lection procedure S∗. From the Table 2 for the same γ with various observa-
tions numbers n we can conclude that theoretical result on the improvement
effect (3.13) is confirmed by the numerical simulations. Moreover, for the
proposed shrinkage procedure, Table 1 and Figures 1–2, we can conclude that
the benefit is considerable for non large n.

12



Figure 1: Behavior of the regression function and its estimates for n = 500.

Figure 2: Behavior of the regression function and its estimates for n = 1000.

7 Proofs

7.1 Proof of Theorem 3.1

Consider the quadratic error of the estimate (3.12)

‖S∗γ − S‖
2 =

n∑
j=1

(γ(j)θ∗j,n − θj)
2 =

d∑
j=1

(γ(j)θ∗j,n − θj)
2 +

n∑
j=d+1

(γ(j)θ̂j,n − θj)2

=

n∑
j=1

(γ(j)θ̂j,n − θj)2 + c2
n − 2cn

d∑
j=1

(θ̂j,n − θj)
θ̂j,n

‖θ̃n‖d

= ‖Ŝγ − S‖2 + c2
n − 2cn

d∑
j=1

(θ̂j,n − θj)ιj(θ̃n) ,

where ιj(x) = xj/‖x‖d for x = (xj)1≤j≤d ∈ Rd. Therefore, we can represent
the risk for the improved estimator S∗γ as

RQ(S∗γ , S) = RQ(Ŝγ , S) + c2
n − 2cnEQ,S

d∑
j=1

(θ̂j,n − θj) Ij,n ,

13



where Ij,n = E(ιj(θ̃n)(θ̂j,n − θj)|Gn). Now, taking into account that the

vector θ̃n = (θ̂j,n)1≤j≤d is the Gn conditionally Gaussian vector in Rd with

mean θ̃ = (θj)1≤j≤d and covariance matrix n−1Gn, we obtain

Ij,n =

∫
Rd

ιj(x)(x− θj)p(x|Gn)dx .

Here p(x|Gn) is the conditional distribution density of the vector θ̃n, i.e.

p(x|Gn) =
1

(2π)d/2
√

detGn

exp

(
−

(x− θ)′G−1
n (x− θ)

2

)
.

Changing the variables by u = G−1/2
n (x− θ), one finds that

Ij,n =
1

(2π)d/2

d∑
l=1

gj,l

∫
Rd
ι̃j,n(u)ul exp

(
−
‖u‖2d

2

)
du , (7.1)

where ι̃j,n(u) = ιj(G
1/2
n u+ θ) and gij denotes the (i, j)-th element of G1/2

n .
Furthermore, integrating by parts, the integral Ij,n can be rewritten as

Ij,n =

d∑
l=1

d∑
k=1

E

(
gjl gkl

∂ιj
∂uk

(u)|
u=θ̃n
|Gn
)
.

Now taking into account that z′Az ≤ λmax(A)‖z‖2 and the condition D2)
we obtain that

∆Q(S) = c2
n − 2cnn

−1EQ,S

(
trGn

‖θ̃n‖d
−
θ̃′nGnθ̃n

‖θ̃n‖3

)

≤ c2
n − 2cn l

∗
nn
−1EQ,S

1

‖θ̃n‖d
.

Recall, that the ′ denotes the transposition. Moreover, in view of the Jensen
inequality we can estimate the last expectation from below as

EQ,S (‖θ̃n‖d)−1 = EQ,S (‖θ̃ + n−1/2ξ̃n‖d)−1 ≥ (‖θ‖d + n−1/2EQ,S‖ξ̃n‖d)−1 .

Note now that the condition through the inequality (1.3) we obtain

EQ,S‖ξ̃n‖2d ≤ κQ d .

So, for ‖S‖2 ≤ r∗n

EQ,S ‖θ̃n‖−1 ≥
(
r∗n +

√
dκQ/n

)−1

and, therefore,

∆Q(S) ≤ c2
n − 2cn

l∗n(
r∗n +

√
dκ∗/n

)
n

= −c2
n .

Hence Theorem 3.1.
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7.2 Proof of Theorem 4.1

Substituting (4.4) in (4.1) yields for any γ ∈ Γ

Errn(γ) = Jn(γ) + 2
n∑
j=1

γ(j)

(
θ∗j,n θ̂j,n −

σ̂n
n
− θ∗j,n θj

)

+ ‖S‖2 − ρP̂n(γ) . (7.2)

Now we set L(γ) =
∑n

j=1
γ(j),

B1,n(γ) =
n∑
j=1

γ(j)(EQξ
2
j,n − σQ) , B2,n(γ) =

n∑
j=1

γ(j)ξ̃j,n ,

M(γ) =
1√
n

n∑
j=1

γ(j)θjξj,n and B3,n(γ) =
1√
n

n∑
j=1

γ(j)g(j)θ̂j,nξj,n .

Taking into account the definition (4.5), we can rewrite (7.2) as

Errn(γ) = Jn(γ) + 2
σQ − σ̂n

n
L(γ) + 2M(γ) +

2

n
B1,n(γ)

+ 2
√
Pn(γ)

B2,n(γ)
√
σQn

− 2B3,n(γ) + ‖S‖2 − ρP̂n(γ) (7.3)

with γ = γ/|γ|n. Let γ0 = (γ0(j))1≤n be a fixed sequence in Γ and γ∗ be as
in (4.6). Substituting γ0 and γ∗ in (7.3), we consider the difference

Errn(γ∗)− Errn(γ0) ≤ 2
σQ − σ̂n

n
L(x) + 2M(x) +

2

n
B1,n(x)

+ 2
√
Pn(γ∗)

B2,n(γ∗)
√
σQn

− 2
√
Pn(γ0)

B2,n(γ0)
√
σQn

− 2B3,n(γ∗) + 2B3,n(γ0)− ρP̂n(γ∗) + ρP̂n(γ0) ,

where x = γ∗ − γ0. Note that |L(x)| ≤ 2|Γ|∗ and |B1,n(x)| ≤ L1,n(Q).
Applying the elementary inequality

2|ab| ≤ εa2 + ε−1b2 (7.4)

with any ε > 0, we get

2
√
Pn(γ)

B2,n(γ)
√
σQn

≤ εPn(γ) +
B2

2,n(γ)

εσQn
≤ εPn(γ) +

B∗2
εσn

,

where
B∗2 = max

γ∈Γ

(
B2

2,n(γ) +B2
2,n(γ2)

)
15



with γ2 = (γ2
j )1≤j≤n. Note that from definition the function L2,n(Q) in the

condition C2) we obtain that

EQB
∗
2 ≤

∑
γ∈Γ

(
EQB

2
2,n(γ) + EQB

2
2,n(γ2)

)
≤ 2νL2,n(Q) . (7.5)

Moreover, by the same method we estimate the term B3,n. Note that

n∑
j=1

g2
γ(j) θ̂2

j = c2
n ≤

c∗n
n
, (7.6)

where c∗n = nmaxγ∈Γ c2
n. Therefore, through the Cauchy–Schwarz inequal-

ity we can estimate the term B3,n(γ) as

|B3,n(γ)| ≤ |γ|n√
n
cn

 n∑
j=1

γ2(j) ξ2
j

1/2

=
|γ|n√
n
cn
(
σQ +B2,n(γ2)

)1/2
.

So, applying the elementary inequality (7.4) with some arbitrary ε > 0, we
have

2|B3,n(γ)| ≤ εPn(γ) +
c∗n
εσQn

(σQ +B∗2) .

Using the bounds above, one has

Errn(γ∗) ≤ Errn(γ0) +
4|Γ|n|σ̂n − σQ|

n
+ 2M(x) +

2

n
L1,n(Q)

+
2

ε

c∗

nσQ
(σQ +B∗2) +

2

ε

B∗2
nσQ

+ 2εPn(γ∗) + 2εPn(γ0)− ρP̂n(γ∗) + ρP̂n(γ0) .

The setting ε = ρ/4 and the estimating where this is possible ρ by 1 in this
inequality imply

Errn(γ∗) ≤ Errn(γ0) +
5|Γ|n|σ̂n − σQ|

n
+ 2M(x) +

2

n
L1,n(Q)

+
16(c∗n + 1)(σQ +B∗2)

ρnσQ
− ρ

2
P̂n(γ∗) +

ρ

2
Pn(γ0) + ρP̂n(γ0) .

Moreover, taking into account here that

|P̂n(γ0)− Pn(γ0)| ≤
|Γ|n|σ̂n − σQ|

n

16



and that ρ < 1/2, we obtain that

Errn(γ∗) ≤ Errn(γ0) +
6|Γ|n|σ̂n − σQ|

n
+ 2M(x) +

2

n
L1,n(Q)

+
16(c∗n + 1)(σQ +B∗2)

ρnσQ
− ρ

2
Pn(γ∗) +

3ρ

2
Pn(γ0) . (7.7)

Now we examine the third term in the right-hand side of this inequality.
Firstly we note that

2|M(x)| ≤ ε‖Sx‖2 +
Z∗

nε
, (7.8)

where Sx =
∑n

j=1
xjθjφj and

Z∗ = sup
x∈Γ1

nM2(x)

‖Sx‖2
.

We remind that the set Γ1 = Γ − γ0. Using Proposition ?? we can obtain
that for any fixed x = (xj)1≤j≤n ∈ Rn

EM2(x) =
E I2

n (Sx)

n2
=
σQ‖Sx‖2

n
=
σQ
n

n∑
j=1

x2
j θ

2
j (7.9)

and, therefore,

EQZ
∗ ≤

∑
x∈Γ1

nM2(x)

‖Sx‖2
≤ σQν . (7.10)

Moreover, the norm ‖S∗γ∗ − S
∗
γ0
‖ can be estimated from below as

‖S∗γ − S
∗
γ0
‖2 =

n∑
j=1

(x(j) + β(j))2θ̂2
j

≥ ‖Ŝx‖2 + 2

n∑
j=1

x(j)β(j)θ̂2
j ,

where β(j) = γ0(j)gj(γ0)− γ(j)gj(γ). Therefore, in view of (3.5)

‖Sx‖2 − ‖S∗γ − S
∗
γ0
‖2 ≤ ‖Sx‖2 − ‖Ŝx‖2 − 2

n∑
j=1

x(j)β(j)θ̂2
j

≤ −2M(x2)− 2

n∑
j=1

x(j)β(j)θ̂jθj −
2√
n

Υ(x) ,
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where Υ(γ) =
∑n

j=1
γ(j)β(j)θ̂jξj . Note that the first term in this inequality

we can estimate as

2M(x2) ≤ ε‖Sx‖2 +
Z∗1
nε

and Z∗1 = sup
x∈Γ1

nM2(x2)

‖Sx‖2
.

Note that, similarly to (7.10) we can estimate the last term as

EQZ
∗
1 ≤ σQν .

From this it follows that for any 0 < ε < 1

‖Sx‖2 ≤
1

1− ε

(
‖S∗γ − S

∗
γ0
‖2 +

Z∗1
nε

−2
n∑
j=1

x(j)β(j)θ̂jθj −
2Υ(x)√

n

 . (7.11)

Moreover, note now that the property (7.6) yields

n∑
j=1

β2(j)θ̂2
j ≤ 2

n∑
j=1

g2
γ(j) θ̂2

j + 2
n∑
j=1

g2
γ0

(j) θ̂2
j ≤

4c∗

εn
. (7.12)

Taking into account that |x(j)| ≤ 1 and using the inequality (7.4), we get
that for any ε > 0

2

∣∣∣∣∣∣
n∑
j=1

x(j)β(j)θ̂jθj

∣∣∣∣∣∣ ≤ ε‖Sx‖2 +
4c∗

εn
.

To estimate the last term in the right hand of (7.11) we use first the Cauchy
– Schwarz inequality and then the bound (7.12), i.e.

2√
n
|Υ(γ)| ≤ 2|γ|n√

n

 n∑
j=1

β2(j)θ̂2
j

1/2 n∑
j=1

γ̄2(j) ξ2
j

1/2

≤ εPn(γ) +
c∗

nεσQ

n∑
j=1

γ̄2(j) ξ2
j ≤ εPn(γ) +

c∗(σQ +B∗2)

nεσQ
.

Therefore,

2√
n
|Υ(x)| ≤ 2√

n
|Υ(γ∗)|+ 2√

n
|Υ(γ0)|

≤ εPn(γ∗) + εPn(γ0) +
2c∗(σQ +B∗2)

nεσQ
.
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So, using all these bounds in (7.11), we obtain that

‖Sx‖2 ≤
1

(1− ε)

(
Z∗1
nε

+ ‖S∗γ∗ − S
∗
γ0
‖2 +

6c∗n(σ +B∗2)

nσε

+ εPn(γ∗) + εPn(γ0)

)
.

Using in the inequality (7.8) this bound and the estimate

‖S∗γ∗ − S
∗
γ0
‖2 ≤ 2(Errn(γ∗) + Errn(γ0)) ,

we obtain

2|M(x)| ≤ Z∗ + Z∗1
n(1− ε)ε

+
2ε(Errn(γ∗) + Errn(γ0))

(1− ε)

+
6c∗n(σQ +B∗2)

nσQ(1− ε)
+

ε2

1− ε
(Pn(γ∗) + Pn(γ0)) .

Choosing here ε ≤ ρ/2 < 1/2 we obtain that

2|M(x)| ≤ 2(Z∗ + Z∗1 )

nε
+

2ε(Errn(γ∗) + Errn(γ0))

(1− ε)

+
12c∗n(σQ +B∗2)

nσQ
+ ε (Pn(γ∗) + Pn(γ0)) .

From here and (7.7), it follows that

Errn(γ∗) ≤ 1 + ε

1− 3ε
Errn(γ0) +

6|Γ|n|σ̂n − σQ|
n(1− 3ε)

+
2

n(1− 3ε)
L1,n(Q)

+
28(1 + c∗n)(B∗2 + σQ)

ρ(1− 3ε)nσQ
+

2(Z∗ + Z∗1 )

n(1− 3ε)
+

2ρPn(γ0)

1− 3ε
.

Choosing here ε = ρ/3 and estimating (1− ρ)−1 by 2 where this is possible,
we get

Errn(γ∗) ≤ 1 + ρ/3

1− ρ
Errn(γ0) +

12|Γ|n|σ̂n − σQ|
n

+
4

n
L1,n(Q)

+
56(1 + c∗n)(B∗2 + σQ)

ρnσQ
+

4(Z∗ + Z∗1 )

n
+

2ρPn(γ0)

1− ρ
.

Taking the expectation and using the upper bound for Pn(γ0) in Lemma 7.1
with ε = ρ yields

RQ(S∗, S) ≤ 1 + 5ρ

1− ρ
RQ(S∗γ0 , S) +

ǓQ,n

nρ
+

12|Γ|nEQ|σ̂n − σQ|
n

,

where ǓQ,n = 4L1,n(Q) + 56(1 + c∗n)(2L2,n(Q)ν + 1) + 2c∗n. The inequality
holds for each γ0 ∈ Λ, this implies Theorem 4.1.
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7.3 Property of Penalty term

Lemma 7.1. For any n ≥ 1, γ ∈ Γ and 0 < ε < 1

Pn(γ) ≤ EErrn(γ)

1− ε
+

c∗n
nε(1− ε)

. (7.13)

Proof. By the definition of Errn(γ) one has

Errn(γ) =
n∑
j=1

(γ(j)θ∗j,n − θj)
2 =

n∑
j=1

(
γ(j)(θ∗j,n − θj) + (γ(j)− 1)θj

)2

≥
n∑
j=1

γ(j)2(θ∗j,n − θj)
2 + 2

n∑
j=1

γ(j)(γ(j)− 1)θj(θ
∗
j,n − θj).

Taking into account the condition B2) and the definition (3.10) we obtain
that the last term in tho sum can be replaced as

n∑
j=1

γ(j)(γ(j)− 1)θj(θ
∗
j,n − θj) =

n∑
j=1

γ(j)(γ(j)− 1)θj(θ̂j,n − θj) ,

i.e. E
∑n

j=1
γ(j)(γ(j) − 1)θj(θ

∗
j,n − θj) = 0 and, therefore, taking into

account the definition (4.11) we obtain that

EErrn(γ) ≥
n∑
j=1

γ(j)2E (θ∗j,n − θj)
2 =

n∑
j=1

γ(j)2E

(
ξj,n√
n
− gγ(j)θ̂j

)2

≥ Pn(γ)− 2√
n
E

n∑
j=1

γ(j)2gγ(j)θ̂j,nξj

≥ (1− ε)Pn(γ)− 1

ε
E

n∑
j=1

g2
γ(j)θ̂2

j .

The inequality (7.6) implies the bound (7.13). Hence Lemma 7.1.
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