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Abstract. We have investigated the effects of a non–thermal electron population on the ionization and recombina-
tion rates. The considered electron distribution is defined as a Maxwellian function below a break energy Eb and
as a power–law function of index α above this energy. We have calculated the collisional (direct and excitation
autoionization) ionization coefficient rates as well as the (radiative and dielectronic) recombination rates. Practical
methods are given to calculate these rates in order to be easily included in a computer code. The ionization rates
are very sensitive to the non–thermal electron population and can be increased by several orders of magnitude
depending on the temperature and parameters of the power–law function (Eb and α). The non–thermal electrons
have a much weaker effect on the (radiative and dielectronic) recombination rates. We have determined the mean
electric charge of elements C, N, O, Ne, Mg, Si, S, Ar, Ca, Fe and Ni for different values of the break energy and
power–law index. The ionization balance is affected significantly, whereas the effect is smaller in ionizing plasmas.

Key words. acceleration of particles – atomic data – atomic processes – radiation mechanisms: non–thermal –
shock waves – ISM: supernova remnants

1. Introduction

The ionization and recombination rates for astrophysical
plasmas have usually been calculated for a Maxwellian
electron distribution (e.g., Arnaud & Rothenflug 1985;
Arnaud & Raymond 1992; Mazzotta et al. 1998). However,
in many low-density astrophysical plasmas, electron distri-
butions may differ from the Maxwellian distribution. The
degree of ionization of a plasma depends on the shape of
the electron distribution, as well as on the electronic tem-
perature. This has been studied for the solar corona (e.g.
Roussel-Dupré 1980; Owocki & Scudder 1983; Dzifcáková
1992; Dzifcáková 1998) and for evaporating interstellar
clouds (Ballet et al. 1989), where a non–thermal electron
distribution occurs in places where there are high gradi-
ents of density or temperature.

A non–thermal electron population is expected in var-
ious astrophysical plasmas. Strong shocks can convert a
large fraction of their energy into the acceleration of rel-
ativistic particles by the diffusive shock acceleration pro-
cess (e.g., Drury 1983; Blandford & Eichler 1987; Jones &
Ellison 1991; Kang & Jones 1991). Direct evidence for the
presence of accelerated electrons up to relativistic ener-
gies ('1 GeV) comes from the observations of radio syn-
chrotron emission in supernova remnants and in clusters of
galaxies. More recently, non–thermal X-ray emission has
been reported in several shell-like supernova remnants and
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interpreted as synchrotron radiation from cosmic-ray elec-
trons up to '100 TeV (Koyama et al. 1995; Allen et al.
1997; Koyama et al. 1997; Slane et al. 1999; Slane et al.
2001).

A number of recent works have focused on the non–
thermal emission from supernova remnants (e.g., Laming
2001; Ellison et al. 2000; Berezhko & Völk 2000; Bykov
et al. 2000b; Baring et al. 1999; Gaisser et al. 1998;
Reynolds 1996, 1998; Sturner et al. 1997) and clusters of
galaxies (e.g., Sarazin 1999; Bykov et al. 2000a; Sarazin
& Kempner 1999). The impact of efficient acceleration on
the hydrodynamics and thermal X-ray emission has been
investigated (Decourchelle et al. 2000; Hughes et al. 2000).

When the acceleration is efficient, the non–thermal
population is expected to modify directly the ionization
rates in the plasma as well as the line excitation (e.g.
Dzifcáková 2000; Seely et al. 1987). A hybrid electron
distribution (Maxwellian plus power–law tail) is expected
from diffusive shock acceleration (e.g., Berezhko & Ellison
1999; Bykov & Uvarov 1999). The low energy end of
the power–law electron distribution (which connects to the
Maxwellian thermal population) is likely to enhance the
ionization rates and to significantly modify the degree of
ionization of the plasma, which is used as a diagnostic of
the plasma electron temperature.

In this paper, we shall examine the influence of a
power–law non–thermal electron distribution (connecting
to the falling Maxwellian thermal population) on the ion-
ization and recombination rates for C, N, O, Ne, Mg, Si,
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S, Ar, Ca, Fe and Ni. For different characteristic values
of the power–law electron distribution, the mean electric
charge of these elements has been determined as a func-
tion of the temperature at ionization equilibrium and for
different values of the ionization timescale. We intend, in
this paper, to give a comprehensive study of the depen-
dence of these quantities on the parameters of the non–
thermal population, illustrated by simple examples. We
do not provide tables, which would be too numerous as
the ionization equilibrium depends in our model on four
parameters (element, temperature of the thermal compo-
nent, index and low energy break of the non–thermal pop-
ulation). In the appendix or directly in the text, we give
the formula needed for the calculations of the rates which
could be easily inserted in computer codes.

In Sect. 2, we define the Hybrid electron distribution
used in this work. The calculation of the new ionization
collisional rates and (radiative and dielectronic) recombi-
nation rates is discussed in Sect. 3. In Sect. 4, we present
the derived mean electric charge of the elements in ioniza-
tion equilibrium as well as in ionizing plasmas.

2. The electron distribution shapes

The Maxwellian distribution, generally considered for the
electron distribution in astrophysical plasmas, Ne(E), is
defined as:

dNe(E) = ne f
M
E (E) dE (1)

fM
E (E) =

2√
π

(kT )−3/2 E1/2 e−
E
kT (2)

where E is the energy of the electron, T is the electronic
temperature and ne the total electronic density. In this
expression the Maxwellian function fM

E (E) is normalised
so that

∫∞
0

fM
E (E) dE = 1.

It is convenient to express this distribution in term of
the reduced energy x = E/kT :

dNe(x) = ne f
M(x) dx (3)

fM(x) =
2√
π

x
1
2 e−x. (4)

The corresponding scaled (non–dimensional) distribution
fM(x) is an universal function, of fixed shape.

Non–Maxwellian electron distributions expected in the
vicinity of shock waves, as in young supernova remnants,
seem to be reasonably described by a Maxwellian distri-
bution at low energy up to a break energy Eb, and by a
power–law distribution at higher energy (e.g., Berezhko &
Ellison 1999; Bykov & Uvarov 1999). We call hereafter this
“Maxwellian/Power–law” type of electron distribution the
Hybrid electron distribution (fH). It is defined, in reduced
energy coordinates, as:

dNe(x) = nef
H(x)dx (5)

fH(x) = C(xb, α)
2√
π
x1/2 e−x x ≤ xb (6)

fH(x) = C(xb, α)
2√
π
x

1/2
b e−xb

(
x

xb

)−α
x ≥ xb,
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Fig. 1. The Hybrid (Maxwell/Power–law) electron distribution
for different values of the break parameter xb, compared to a
Maxwellian distribution (xb = ∞). The slope of the power–
law has been fixed to α = 2. Reduced energy coordinates,
x = E/kT , are used.

where xb = Eb/kT is the reduced break energy, and α
is the energy index of the power–law (α > 1). Note that
for α ≤ 2 the energy diverges (in practice a cutoff at
very high energy occurs). Since for the calculations of the
ionization and recombination rates the very high energies
(≥20 kT ) have negligible effect, for simplicity, we use here
a power-law defined from xb to infinity.

The normalisation factor of the power–law distribution
is defined so that the electron distribution is continous at
xb. The factor C(xb, α) is a normalisation constant, so
that

∫∞
0

fH(x) dx = 1:

C(xb, α) =
√
π

2
1

γ(3
2 , xb) + (α− 1)−1 x

3/2
b e−xb

(7)

where γ(a, x) is the gamma function defined as γ(a, x) =∫ x
0 t

a−1 e−t dt. For x ≤ xb, the Hybrid distribution only
differs from a Maxwellian distribution by this multiplica-
tive factor. The scaled distribution fH(x) only depends
on the two non–dimensional parameters, xb and α. The
dependence on kT of the corresponding physical electron
distribution is fH

E (E) = (kT )−1fH(E/kT ).
The Hybrid distributions fH(x), obtained for sev-

eral values of the energy break xb, are compared to the
Maxwellian distribution in Fig. 1. The slope has been
fixed to α = 2, a typical value found in the models refer-
enced above. The variation of the reduced median energy
of the distribution with xb, for α = 1.5, 2., 3., is plotted in
Fig. 2, as well as the variation of the normalisation factor
C(xb, α).

As apparent in the figures, there is a critical value
of xb, for each α value, corresponding to a qualitative
change in the behavior of the Hybrid distribution. This
can be understood by looking at the distribution at the
break energy xb. Whereas the distribution is continuous,
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ter xb. The lines are labeled by the value of the slope parameter
α. The bold part of the curves corresponds to xb ≥ α + 1/2.
The black horizontal lines correspond to the values obtained
for a Maxwellian distribution.

its slope changes. The logarithmic slope is 1/2−xb on the
Maxwellian side and −α on the power–law side. There is
no break in the shape of the Hybrid distribution (full line
in Fig. 1), only for the critical value of xb = α+ 1/2. For
xb > α+1/2, the power–law always decreases less rapidly
with energy than a Maxwellian distribution and does cor-
respond to an enhanced high energy tail. The contribution
of this tail increases with decreasing xb (and α). Thus the
median energy increases and the normalisation parameter,
which scales the Maxwellian part, decreases (see Fig. 2).
On the other hand, when xb < α+ 1/2, there is an inter-
mediate region above the energy break where the power–
law decreases more steeply than a Maxwellian (see dotted
line in Fig. 1). This results in a deficit of electrons at
these energies as compared to a Maxwellian distribution,
more and more pronounced as xb is small. The median
energy thus starts to decrease with decreasing xb and can
be even lower than the median energy of a Maxwellian
distribution (Fig. 2). In this paper we only consider the
regime where xb ≥ α + 1/2. It corresponds to clear cases
where the high energy part of the distribution is indeed
increased, as expected when electron are accelerated in
shocks. Furthermore, the distribution used here is only an
approximation, valid when the hard tail can be considered
as a perturbation of the original Maxwellian distribution.
The simulations of Bykov & Uvarov (1999, see their Fig. 2)
clearly show that the low energy part of the distribution is

less and less well approximated by a Maxwellian distribu-
tion, as the “enhanced” high energy tail extends to lower
and lower energy (lower “break”). Although we cannot
rigorously define a corresponding quantitative lower limit
on xb, the cases presented by Bykov & Uvarov (1999, see
their Fig. 2) suggest a limit similar to the one considered
here, i.e. a few times the Maxwellian peak energy.

The distribution considered here differs from the so-
called “kappa-distribution” or the “power distribution”,
relevant for other physical conditions (see e.g. Dzifcáková
2000 and references therein). These two distributions have
been used to model deviations from a Maxwellian distri-
bution caused by strong plasma inhomogeneities, as in the
solar corona, and their impact on the ionization balance
has been extensively studied (e.g. Roussel-Dupré 1980;
Owocki & Scudder 1983; Dzifcáková 1992; Dzifcáková
1998). Although the effect of the Hybrid distribution is ex-
pected to be qualitatively similar, it has never been quan-
titatively studied. In the next section we discuss how the
ionization and recombination rates are modified, as com-
pared to a pure Maxwellian distribution, depending on the
parameters xb and α.

3. Calculations of the collisional ionization
and recombination rates

Let us consider a collisional process of cross section
σ(E), varying with energy E of the incident electron.
The corresponding rate coefficient (cm3 s−1), either for a
Maxwellian distribution or a Hybrid distribution, f(x), is
given by:

Rate =
(

2kT
me

) 1
2
∫ ∞
xth

x
1
2 σ(xkT ) f(x) dx (8)

with xth = Eth/kT . Eth corresponds to the threshold en-
ergy of the considered process (for E < Eth, σ(E) = 0).
For the recombination processes, no threshold energy is
involved and xth = 0.

The rates for the Hybrid distribution depend on kT ,
xb and α and are noted CH

I
(T, xb, α), αH

RR
(T, xb, α) and

αH
DR

(T, xb, α) for the ionization, radiative and dielectronic
recombination process respectively. The corresponding
rates for the Maxwellian distribution which only depends
on kT are CM

I
(T ), αM

RR
(T ) and αM

DR
(T ).

The ionization data are taken from Arnaud &
Rothenflug (1985) and Arnaud & Raymond (1992), as
adopted by Mazzotta et al. (1998) for the most abundant
elements considered here. The recombination data are
taken from the updated calculations of Mazzotta (1998).
In the next sections we outline the general behavior of
the rates with the electron distribution parameters, using
mostly oxygen ions (but also iron) as illustration.

3.1. The electronic collisional ionization rates

The ionization cross sections present a threshold at the
first ionization potential of the ionizing ion, EI . The cross
sections always present a maximum, at Em, and decrease
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Fig. 3. Variation of the ratio of the ionization rate in a Hybrid
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ture, versus the break parameter xb of the Hybrid distribution.
The curves correspond to different values of the slope param-
eter α and are labeled accordingly. The ion considered is O+6,
the temperature is fixed at 106 K.

as ln(E)/E at very high energies (e.g., Tawara et al. 1985).
The ionization rate is very sensitive to the proportion of
electrons above the threshold and the modification of the
ionization rate for the Hybrid distribution depends on how
the high energy tail affects this proportion.

Parametric formulae for the ionization cross sections
are available from the litterature and it is easy to derive
the corresponding rates for the Hybrid distribution. This
is detailed in Appendix A.

To understand the influence of the presence of a high
energy power–law tail in the electron distribution, we com-
puted the ratio βI(T, xb, α) = CH

I
(T, xb, α)/CM

I
(T ), of

the ionization rate in a Hybrid distribution over that in
a Maxwellian with the same temperature. This ratio is
plotted in Figs. 3 to 7 for different ions and values of the
parameters xb and α.

Let us first consider O+6. Its ionization potential is
EI = 739 eV and the cross section is maximum at about
3 EI. Its abundance, for a Maxwellian electron distri-
bution, is maximum at T ∗ ' 106 K under ionization
equilibrium (Arnaud & Rothenflug 1985). At this tem-
perature, the threshold energy is well above the thermal
energy (EI/kT ∼ 8) and only the very high energy tail of
the Maxwellian contributes to CM

I
(T ), i.e. a small fraction

of the electron distribution. This fraction is dramatically
increased in the Hybrid distribution as soon at the break
energy is not too far off from the threshold, xb ∼ 15 for
O+6 (Fig. 3). The enhancement factor βI(T, xb, α) natu-
rally increases with decreasing break xb and slope α pa-
rameters (Fig. 3), since the distribution median energy
increases when these parameters are decreased (Fig. 2).
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Fig. 4. Same as Fig. 3 but the parameter α is now fixed to 2.
The curves correspond to different values of the temperature.

This behavior versus xb and α is general at all temper-
atures as illustrated in Fig. 4, provided that the thermal
energy is not too close to Em, i.e. that the majority of
the contribution to the ionization rate is from electrons
with energies corresponding to the increasing part of the
ionization cross section. If this is no more the case, the
ionization rate starts to decrease with increasing distribu-
tion median energy. Thus, for high enough values of the
temperature (see the curve at T = 108 K in Fig. 4), the
factor βI(T, xb, α) becomes less than unity and decreases
with decreasing xb. The correction factor is small (around
∼10%) however in that case.

More generally the enhancement factor βI(T, xb, α) at
fixed values of xb and α, depends on the temperature
(Fig. 4). It decreases with increasing temperature: the
peak of the distribution is shifted to higher energy as the
ratio kT/EI increases and the enhancement due to the
contribution of the hard energy tail decreases.

The qualitative behavior outlined above does not de-
pend on the ion considered. We plotted in Figs. 5 and 6
the enhancement factor for the different ions of oxygen
and a choice of iron ions at T ∗ (the temperature of maxi-
mum ionization fraction of the ion for a Maxwellian elec-
tron distribution under ionization equilibrium). EI/kT

∗ is
always greater than unity and the ionization rates are in-
creased by the Hybrid distribution, the enhancement fac-
tor βI(T, xb, α) increasing with decreasing xb. However
this enhancement factor differs from ion to ion, it generally
increases with increasing EI/kT

∗ value (approximatively
with an exponential dependence), as shown in Fig. 7. This
is again due to the relative position of the peak of the dis-
tribution with respect to the threshold energy. Note that
EI/kT

∗ is generally smaller for more ionized ions (but this
is not strictly true) so that low charge species are generally
more affected by the Hybrid distribution.
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In summary, the Hybrid rates are increased with
respect to the Maxwellian rates except at very high tem-
perature. The enhancement factor depends on the temper-
ature, mostly via the factor EI/kT . It increases dramati-
cally with decreasing temperature and is always important
at T ∗, where it can reach several orders of magnitude. The
ionization balance is thus likely to be affected significantly,
whereas the effect should be smaller in ionizing plasmas
but important in recombining plasmas. For xb typically
lower than 10–20 (with this upper limit higher for lower
temperature, see Fig. 4), the impact of the Hybrid rate
increases with decreasing xb and α.

The ionization rates for a Hybrid distribution are less
dependent on the temperature than the Maxwellian rates,
as illustrated in Figs. 8 and 9. This is a direct consequence
of the temperature dependance of the enhancement factor:
as this factor increases with decreasing temperature, the
Hybrid ionization rate decreases less steeply with tem-
perature than the Maxwellian rates. More precisely, as
derived from the respective expression of the rates at
low temperature (respectively Eqs. (A.2) and (A.10)), the
Maxwellian rate falls off exponentially (as e−EI/kT ) with
decreasing temperature, whereas the Hybrid rate only de-
creases as a power–law. As expected, one also notes that
the modification of the rates is more pronounced for lower
value of xb (compare the two figures corresponding to
xb = 10 and xb = 2.5).

3.2. The recombination rates
3.2.1. The radiative recombination rates

The radiative recombination rates are expected to be
less affected by the Hybrid distribution, since the cross
sections for recombination decrease with energy and no
threshold exists. As the net effect of the high energy tail
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Fig. 6. Same as Fig. 5 for the different ions of iron.

present in the hybrid distribution is to increase the me-
dian energy of the distribution (cf. Fig. 2), as compared
to a Maxwellian, the radiative recombination rates are
decreased.

To estimate the corresponding dumping factor,
βRR(xb, α) = αH

RR
(T, xb, α)/αM

RR
(T ), we follow the method

used by Owocki & Scudder (1983). We assume that the ra-
diative recombination cross section varies as a power–law
in energy:

σRR(E) ∝ E−a (9)

which corresponds to a recombination rate (Eq. (8)), for
a Maxwellian distribution (Eq. (4)), varying as:

αM
RR

(T ) ∝ T η (10)

with η = a− 1
2 .

The dumping factor computed for such a power–law cross
section (Eqs. (8) with (9)) is:

βRR(xb, α) =

∫∞
0 x−η fH(x) dx∫∞
0 x−η fM(x) dx

· (11)

Note that the dumping factor is independent of the tem-
perature. It depends on the ion considered via the η pa-
rameter. Replacing the Maxwellian and Hybrid distribu-
tion functions by their expression (respectively Eqs. (4)
and (6)) we obtain:

βRR(xb, α) =
C(xb, α)
Γ
(

3
2− η

) [γ(3
2
− η, xb

)
+
x

3
2−η
b e−xb

α+η− 1

]
·(12)

This estimate of the dumping factor is only an approxi-
mation, since the radiative recombination has to be com-
puted by summing over the various possible states of the
recombined ions, taking into account the respective differ-
ent cross sections. Furthermore, even if often the radiative
recombination rate can be approximated by a power–law
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in a given temperature range, this does not mean that the
underlying cross section is well approximated by a unique
power–law.
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However as we will see the correction factor is small,
and we can reasonably assume that it allows a fair esti-
mate of the true Hybrid radiative recombination rates. To
minimize the errors, the Hybrid radiative recombination
rate has to be calculated from the best estimate of the
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Maxwellian rates, multiplied by this approximation of the
dumping factor:

αH
RR

(T, xb, α) = βRR(xb, α) αM
RR

(T ) (13)

where αM
RR

(T ) is as given in Mazzotta et al. (1998).
The parameters η for the various ions are taken from

Aldrovandi & Péquignot (1973), when available. For other
ions we used a mean value of η = 0.8 corresponding to
the mean value < η > reported in Arnaud & Rothenflug
(1985). The exact value has a negligible effect on the es-
timation of the radiative recombination rates.

The dumping factor is plotted in Fig. 10 for the various
ions of oxygen. In that case a common η value is used. The
dumping factor decreases with decreasing values of xb and
α, following the increase of the distribution median energy.
The modification is however always modest, at most 15%
for α = 2. For iron, plotted in Fig. 11 for α = 2, the value
of η slightly changes with the considered ions, but this
only yields negligible variations in the dumping factor.

3.2.2. The dielectronic recombination rates

The dielectronic recombination is a resonant process in-
volving bound states at discrete energies Ei and the
rates have to be computed by summing the contribu-
tion of many such bound states. According to Arnaud &
Raymond (1992), and Mazzotta et al. (1998), the dielec-
tronic recombination rates for a Maxwellian distribution
can be fitted accurately by the formula:

αM
DR

(T ) = T
−3/2
eV

∑
i

ci e−xi cm3 s−1 (14)

where TeV is the temperature expressed in eV and xi =
Ei/kT . The numerical values for ci and Ei are taken from
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Fig. 11. Same as Fig. 10 for iron ions and α = 2. The slight
variations among the species are due to the corresponding vari-
ations in the adopted η values (see Eq. (12)).

Mazzotta et al. (1998). Only a few terms (typically 1 to 4)
are introduced in this fitting formula. They roughly cor-
respond to the dominant transitions for the temperature
range considered.

Following again the method used by Owocki & Scudder
(1983), we thus assume that the corresponding dielec-
tronic recombination cross section can be approximated
by:

σDR(E) =
∑
i

Ci δ(E −Ei) with Ci =
ci (2πme)

1
2

4 Ei
· (15)

The relation between Ci and ci is obtained by compar-
ing Eq. (14) with the equation obtained by integrating
(Eq. (8)) the above cross section over a Maxwellian dis-
tribution (Eq. (4)). The dielectronic rates can then be
computed from Eq. (8), with the cross section given by
Eq. (15) and the distribution function given by Eq. (6):

αH
DR

(T, xb, α) = C(xb, α) T−3/2
eV

∑
i,xi≤xb

ci e−xi+C(xb, α)

×T−3/2
eV e−xb

∑
i,xi>xb

ci

(
xi
xb

)−α− 1
2

· (16)

Note that this estimate of αH
DR

(T, xb, α) is only an ap-
proximation, for the same reasons outlined above for the
radiative recombination rates.

To understand the effect of the hybrid distribution,
let us assume that only a single energy EDR is domi-
nant, corresponding to a simple Dirac cross section at
this energy. In that case, from Eq. (8), the ratio of the
dielectronic recombination rate in a Hybrid distribution
over that in a Maxwellian with the same temperature,
βDR(T, xb, α) = αH

DR
(T, xb, α)/αM

DR
(T ), is simply the ratio

of the Hybrid to the Maxwellian function at the resonance
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energy. Its expression depends on the position of the reso-
nance energy with respect to the energy break. In reduced
energy coordinates, we obtain from Eqs. (4) and (6):

βDR(T, xb, α) = C(xb, α) for
EDR

kT
≤ xb

βDR(T, xb, α) = C(xb, α) e

(
EDR
kT −xb

) (
EDR

xbkT

)−( 1
2 +α)

for
EDR

kT
≥ xb. (17)

For (xb kT ) > EDR (i.e. at high temperature or high
value of xb), the resonance lies in the Maxwellian part
of the distribution. βDR(T, xb, α) is independent of the
temperature and the dielectronic recombination rates are
decreased, following the variation of the normalisation fac-
tor, C(xb, α), i.e. the decrease is modest (see Fig. 2).

For (xb kT ) < EDR the resonance lies in the power–law
part of the distribution. The increase of the dielectronic
recombination rate can be dramatic, increasing with de-
creasing xb and α.

These effects of the Hybrid distribution on the dielec-
tronic recombination rates are illustrated in Figs. 12 to 15,
where we plotted the factor βDR(T, xb, α) for various ions
and values of the parameters. The factors are computed
exactly from Eqs. (14) and (16).

In Fig. 12 we consider O+6 at the temperature of
its maximum ionization fraction, T ∗ = 106 K. For this
ion only one term is included in the rate estimate, with
EDR = 529 eV, and EDR/kT = 6.1 at the temperature
considered. We plotted the variation of βDR(T, xb, α) with
xb for α = 3, α = 2 and α = 1.5. For xb > 6.1 the
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Fig. 13. Same as Fig. 12 but the parameter α is now fixed to 2.
The curves correspond to different values of the temperature
and are labelled accordingly.

“resonance” energy EDR lies in the Maxwellian part of the
distribution and the dielectronic recombination rate is de-
creased as compared to a Maxwellian, but by less than
10%, following the variation of the normalisation factor
C(xb, α). For smaller values of xb, the rate is increased
significantly, up to a factor of 5 for α = 1.5.

We consider other temperatures, fixing α to α = 2,
in Fig. 13. Since we only consider the parameter range
xb > α + 1/2, there is a threshold temperature, kT >
EDR/(α+ 1/2), above which the resonance always falls in
the Maxwellian part. The dielectronic recombination rate
is decreased via the factor C(xb, α). This factor slightly
decreases with decreasing xb (cf. Fig. 2). At lower temper-
ature, the resonance energy can fall above the break, pro-
vided that xb is small enough (xb < EDR/kT ). This occurs
at smaller xb for higher temperature and the enhancement
at a given xb increases with decreasing temperature.

We display in Figs. 14 and 15 the variation of the factor
βDR(T, xb, α) with xb (for α = 2), for the different ions of
oxygen and iron, at the temperature of maximum ioniza-
tion fraction for a Maxwellian distribution under ioniza-
tion equilibrium. For most of the ions this temperature is
above the threshold temperature, kT = EDR/(α+1/2), for
all the resonances and the dielectronic rate is decreased.
For the ions for which this is not the case (O+1, O+6 and
from Fe+1 to Fe+5), the dielectronic rate can be increased
significantly (by a factor between 2 to 5) provided xb is
small enough (typically xb = 2.5− 5). The increase starts
as soon as xb < EDR/kT

∗ for the oxygen ions. The behav-
ior of βDR(T, xb, α) is more complex for the iron ions (two
breaks in the variation of βDR(T, xb, α)), due to the pres-
ence of more than one dominant resonance energy (more
than one term), taken into account in the computation of
the dielectronic rate.
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In conclusion, the effect of the hybrid distribution on
the dielectronic rate depends on the position of the reso-
nance energy as compared to the power–law energy break.
It can only be increased if kT < EDR/(α + 1/2). At
high temperature, the dielectronic recombination rate is
slightly decreased.

3.2.3. The total recombination rates

At xb = 10, the total rates are basically unchanged by the
Hybrid distribution. For xb = 2.5 = α+ 1/2 (Fig. 16), the
total rates are more significantly changed. The radiative
recombination rate increases with decreasing temperature
and it usually dominates the total recombination rate in
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Fig. 16. Variation of the total recombination rate with tem-
perature. Each curve corresponds to an ion and is labeled ac-
cordingly. Black lines: rates for a Hybrid electron distribution
with α = 2 and xb = α+ 1

2
= 2.5. Black thick lines: rates for

Maxwellian distribution.

the low temperature range. As the dielectronic rate is in-
creased by the Hybrid distribution only at low tempera-
ture, there are very few ions for which the total recombi-
nation rate can be actually increased. This only occurs in
a small temperature range, in the rising part of the dielec-
tronic rate. One also notes the expected slight decrease
of the radiative recombination rates (when it is dominant
at low temperature) and of the dielectronic rate at high
temperature.

4. Ionization equilibria

4.1. Collisional ionization equilibrium (CIE)

The ionization equilibrium fractions, for coronal plasmas,
can be computed from the rates described in the previous
sections. In the low density regime (coronal plasmas) the
steady state ionic fractions do not depend on the electron
density and the population density ratio NZ,z+1/NZ,z of
two adjacent ionization stages Z+(z+1) and Z+z of element
Z can be expressed by:

NZ,z+1

NZ,z
=

CZ,zI

αZ,z+1
R

(18)

where CZ,zI and αZ,z+1
R are the ionization and total re-

combination rates of ion Z+z and Z+(z+1) respectively.
To assess the impact of the Hybrid rates on the ionization
balance, we computed the variation with temperature of
the mean electric charge of the plasma. This variation is
compared with the variation obtained for a Maxwellian
electron distribution in Fig. 17 for oxygen and iron and
for different values of the parameters xb and α.
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As expected, the plasma is always more ionized for a
Hybrid electron distribution than for a Maxwellian dis-
tribution. The mean charge at a given temperature is in-
creased, since the enhancement of the ionization rate is
always much more important than a potential increase of
the dielectronic rate (e.g. compare Figs. 5 and 14). The
effect of the Hybrid distribution on the plasma ionization
state is thus governed by the enhancement of the ioniza-
tion rates. The enhancement of the plasma mean charge is
more pronounced for smaller values of xb and smaller val-
ues of α (Fig. 17), following the same behavior observed for
the ionization rates (due to the increasing influence of the
high energy tail). Similarly the effect is more important
at low temperature, and a clear signature of the Hybrid
distribution is the disappearance of the lowest ionization
stages, that cannot survive even at very low temperature.
For instance, for α = 2 and the extreme corresponding
value of xb = α + 1/2, the mean charge is already +4
for oxygen and +6 for iron at T = 104 K. At high tem-
perature, the mean charge can typically be changed by a
few units, the effect being more important in the temper-
ature range where the mean charge changes rapidly with
temperature in the Maxwellian case.

The same behavior is seen for all elements (Fig. 18).
One notes that the effect of the Hybrid distribution gen-
erally decreases with Z. Again this is a consequence of
the same behavior observed on the ionization rates (see
Fig. 7).

A remarkable effect of the Hybrid distribution is that
the mean charge is not always a monotonous function
of temperature, in the low temperature regime. This is
clearly apparent in Figs. 17 and 18 for 104 K ≤ T ≤ 105 K
and xb = 10. This phenomenon can only occur when the
dielectronic rate dominates the total recombination rate
and in the temperature range where this rate increases
with temperature. In that case, the density ratio of two
adjacent ions, NZ,z+1/NZ,z, can decrease with tempera-
ture provided that the ionization rate of Z+z increases less
rapidly with temperature than the recombination rate of
the adjacent ion Z+(z+1) (Eq. (18)). This usually does not
occur in the Maxwellian case, but can occur in the Hybrid
case, due to the flatter temperature dependence of the ion-
ization rates for this type of distribution. For instance, for
3 × 104 K ≤ T ≤ 7 × 104 K, the ionization rate of O+2

is increased by a factor of 2.5 for an Hybrid distribution
with xb = 10 (Fig. 8), whereas the total recombination
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rate of O+3 is increased by a slightly larger factor of 2.7
(see the corresponding grey line in Fig. 16, as seen above
for xb = 10 the total rate is basically unchanged com-
pared to the Maxwellian case). The mean charge, which
is around 〈z〉 = 2.5, is thus dominated by the behavior of
these ions and decreases in that temperature range.

4.2. Non–equilibrium ionization (NEI)

Collisional Ionization Equilibrium (CIE) is not always
achieved. For example, in adiabatic supernova remnants,
the ionization timescale is longer than the dynamical
timescale, so that the plasma is underionized compared to

the equilibrium case. In non–equilibrium conditions, the
ionization state of the gas depends on the thermodynamic
history of the shocked gas (temperature, density) and time
elapsed since it has been shocked.

The time evolution of the ionic fractions is given by:

dXZ,z

dt
= ne[C

Z,z−1
I XZ,z−1 + αZ,z+1

R XZ,z+1

−(CZ,zI + αZ,zR )XZ,z ] (19)

with XZ,z =
NZ,z∑
iNZ,i

·

To estimate the effects of a Hybrid electron distribution
on the ionization in non–equilibrium ionization conditions,
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we assume that the gas has been suddently heated to
a given temperature, which stays constant during the

evolution. The ionization timescale depends then on∫
ne dt, where ne is the number density of electrons and
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t the time elapsed since the gas has been heated. Within
this assumption, the coupled system of rate equations can
be resolved using an exponentiation method (e.g., Hughes
& Helfand 1985).

For different ionization timescales (up to equilibrium),
we computed the variation with temperature of the mean
electric charge of oxygen and iron in two extreme cases
of the electron distribution: Maxwellian and Hybrid with
xb = α + 1/2 and α = 2. For small ionization timescales
(ne t ' 108−109 s cm−3), the effect of the Hybrid distribu-
tion on the mean electric charge is small, it increases with
the ionization timescale and is maximum at equilibrium
as is illustrated for oxygen and iron in Fig. 19. As in the
equilibrium case, the effect from non–thermal electrons is
always more important at low temperature and vanishes
at high temperature. Note that the mean electric charge
is slightly larger at high temperature for the thermal pop-
ulation than for the non–thermal one, as a consequence of
the decrease of the ionization cross section at very high
energy.

5. Conclusions

We have studied the effect on the ionization and recom-
bination rates, as well as on the ionization balance, of
a non–thermal electron distribution, as expected in the
vicinity of strong shocks.

The electron distribution is modelled by a Maxwellian
distribution at low energy up to a break energy, and by
a power–law distribution at higher energy. It is carac-
terised by the three parameters kT (the temperature of
the Maxwellian part), xb the reduced energy break, and
α the slope of the power–law component. We only consid-
ered the parameter range where xb > α+1/2 which corre-
sponds to an enhanced high energy tail. All the behaviors
outlined are only valid for this range of parameters.

We provide exact formulae of the ionization rates for
this Hybrid electron distribution in the Appendix, and ap-
proximate estimates of the radiative recombination rates
(Eqs. (12) and (13)) and of the dielectronic recombination
rates (Eq. (16)). The Hybrid rates depend on the ion con-
sidered and on the parameters kT , α and xb. Computer
codes are available on request.

For the parameter range considered, the proportion
of electrons at high energies and the mean energy of the
distribution is a monotonic function of xb and α. As ex-
pected, the modification of the rates for the Hybrid dis-
tribution, as compared to the Maxwellian distribution of
the same temperature, increases with decreasing xb (with
a threshold at about xb ∼ 10−20, higher for lower tem-
perature) and decreasing α.

The impact of the Hybrid electron distribution on
the ionization rates depends on how the high energy tail
affects the proportion of electrons above the ionization
potential EI . The Hybrid rates are increased with re-
spect to the Maxwellian rates except at very high tem-
perature. The enhancement factor depends on the tem-
perature, mostly via the factor EI/kT , and increases

dramatically with decreasing temperature. For a given ion,
it is always important at T ∗, the temperature of max-
imum ionization fraction for a Maxwellian distribution
under ionization equilibrium, where it can reach several
orders of magnitude.

The effect of the hybrid distribution on the dielectronic
rate depends on the position of the resonance energies EDR

as compared to the power–law energy break. The dielec-
tronic rate can only be increased if kT < EDR/(α+ 1/2).
At T ∗ the enhancement factor is typically less than an
order of magnitude. At high temperature, the dielectronic
recombination rate is slightly decreased (by typically 10%
at most). The effect of the hybrid distribution on the ra-
diative recombination rates is only of the order of a few
10% at most.

The ionization balance is affected significantly, whereas
the effect is smaller in ionizing NIE plasmas. The plasma
is always more ionized for a Hybrid electron distribution
than for a Maxwellian distribution. The effect is more
important at low temperature, and a clear signature of
the Hybrid distribution is the disappearance of the lowest
ionization stages, which cannot survive even at very low
temperature.
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Appendix A: Ionization rates

A.1. Direct ionization (DI)

For the direct ionization (DI) cross sections we chose the
fitting formula proposed by Arnaud & Rothenflug (1985)
from the work of Younger (1981):

σDI(E) =
∑
j

1
ujI2

j

[
AjUj+BjU2

j +Cj ln(uj) +Dj
ln(uj)
uj

]
with uj =

E

Ij
; Uj = 1− 1

uj
· (A.1)

The sum is performed over the subshells j of the ioniz-
ing ion. E is the incident electron energy and Ij is the
collisional ionization potential for the level j considered.

The parameters Aj , Bj , Cj , Dj (in units of
10−14 cm2 eV2) and Ij (in eV) are taken from the works
of Arnaud & Raymond (1992) for iron, and of Arnaud &
Rothenflug (1985) for the others elements. The parame-
ters for elements not considered in these works are given
in Mazzotta et al. (1998).

A.1.1. The Maxwellian electron distribution

For a Maxwellian electron distribution, Arnaud &
Rothenflug (1985) obtained according to Eqs. (1), (8) and
(A.1), the rate:

CM
DI

(T ) =
6.692× 107

(kT )3/2

∑
j

e−xj

xj
FM

DI
(xj) cm3 s−1 (A.2)
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where

xj =
Ij
kT

(A.3)

FM
DI

(xj) = Aj [1− xjf1(xj)]
+Bj [1 + xj − xj(2 + xj)f1(xj)] (A.4)
+Cj f1(xj) +Dj xjf2(xj)

where kT and Ij are in eV. The summation is per-
formed over the subshells j of the ionizing ion. The math-
ematical functions, f1(x) = ex

∫∞
1

e−tx

t dt, and f2(x) =
ex
∫∞

1
e−tx

t ln(t) dt can be computed from the analytical
approximations given by Arnaud & Rothenflug (1985) in
their Appendix B.

A.1.2. The Hybrid electron distribution

Similar to the Hybrid electron distribution, the direct ion-
ization rate CH

DI
(T, xb, α) is given by:

CH
DI

(T, xb, α) = C(xb, α)
6.692× 107

(kT )3/2

×
∑
j

GH
DI

(xj , xb, α) cm3 s−1. (A.5)

The function GH
DI

(xj , xb, α) depends on the position of
the power–law break energy as compared to the ionization
potential:

– For xb > xj :
GH

DI
(xj , xb, α) is the sum of the contribution of the

truncated Maxwellian component and the power–law
component:

GH
DI

(xj , xb, α) =
e−xj

xj
FM

DI
(xj)−

e−xb

xj
F
′

DI
(xj , xb)

+e−xb FPL
DI

(ubj , α) (A.6)

where:

ubj =
xb

xj
(A.7)

F
′

DI
(xj , xb) = Aj [1− xjf1(xb)]

+Bj

[
1 +

xj
ubj

− xj(2 + xj)f1(xb)
]

+Cj
[
f1(xb) + ln

(
ubj

)]
(A.8)

+Dj

[
xjf2(xb) + ln

(
ubj

)
xjf1(xb)

]
FPL

DI
(ubj , α) = Aj

[
ubj

α− 1/2
− 1
α+ 1/2

]
+Bj

[
ubj

α− 1/2
− 2
α+ 1/2

+
u−1

bj

α+ 3/2

]

+
Cjubj

α− 1/2

[
ln(ubj )+

1
α− 1/2

]
(A.9)

+
Dj

α+ 1/2

[
ln(ubj ) +

1
α+ 1/2

]
·

– For xb < xj :
Only the power–law component contributes of the elec-
tron distribution to the rate:

GH
DI

(xj , xb, α) = e−xb

(
xb

xj

)α+ 1
2

fDI(α) (A.10)

where

fDI(α) =
Aj

α2 − 1/4
+

2Bj
(α2 − 1/4) (α+ 3/2)

+
Cj

(α− 1/2)2 +
Dj

(α+ 1/2)2 · (A.11)

A.2. Excitation autoionization (EA)

For the excitation autoionization (EA) cross sections,
we used the generalized formula proposed by Arnaud &
Raymond (1992):

σEA(E) =
1

uIEA

[A+B U + C U2 +D U3 +E ln(u)]

with u =
E

IEA

; Un = 1− 1
un

(A.12)

where IEA is the excitation autoionization threshold and
E is the incident electron energy.

The parameters A, B, C, D, E (in units of
10−16 cm2 eV) and IEA (in eV) are taken from the works
of Arnaud & Rothenflug (1985) and Arnaud & Raymond
(1992). The parameters for elements not considered in
these works are given in Mazzotta et al. (1998).

A.2.1. The Maxwellian electron distribution

The excitation autoionization rate for a Maxwellian
distribution is:

CM
EA

(T ) =
6.692× 107 e−xEA

(kT )1/2
FM

EA
(xEA) cm3 s−1 (A.13)

where

xEA =
IEA

kT
(A.14)

FM
EA

(xEA) = A+B[1− xEAf1(xEA)]

+C[1− xEA + x2
EA
f1(xEA)] (A.15)

+D
[
1− xEA

2
+
x2

EA

2
−
x3

EA

2
f1(xEA)

]
+Ef1(xEA).

A.2.2. The Hybrid electron distribution

For the Hybrid electron distribution, the excitation au-
toionization rate CH

EA
(T, xb, α) is given by:

CH
EA

(T, xb, α) = C(xb, α)
6.692× 107

(kT )1/2

×GH
EA

(xEA , xb, α) cm3 s−1. (A.16)
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The function GH
EA

(xEA , xb, α) depends on the position of
the power–law break energy as compared to the ionization
potential:

– For xb > xEA :
GH

EA
(xEA , xb, α) is the sum of the contribution of the

truncated Maxwellian component and the power–law
component:

GH
EA

(xEA , xb, α) = e−xEA FM
EA

(xEA )

−e−xb F
′

EA
(xEA , xb) (A.17)

+xb e−xb FPL
EA

(uEA , α)

where:

uEA =
xb

xEA

(A.18)

F
′

EA
(xEA , xb) = A+B [1− xEA f1(xb)]

+C
[
1− xEA

uEA

+ x2
EA

f1(xb)
]

(A.19)

+D
[
1− xEA

2u2
EA

+
x2

EA

2uEA

−
x3

EA

2
f1(xb)

]
+E [ln(uEA) + f1(xb)]

FPL
EA

(uEA , α) = A

[
1

α− 1/2

]
+B

[
1

α− 1/2
−

u−1
EA

α+ 1/2

]
+C

[
1

α− 1/2
−

u−2
EA

α+ 3/2

]
(A.20)

+D
[

1
α− 1/2

−
u−3

EA

α+ 5/2

]
+E

[
1

(α− 1/2)2
+

ln(uEA)
α− 1/2

]
·

– For xb < xEA :

Only the power–law component contributes of the
electron distribution to the rate:

GH
EA

(xEA , xb, α) = xb e−xb

(
xb

xEA

)α− 1
2

fEA(α) (A.21)

where

fEA(α) =
A

α− 1/2
+

B

α2 − 1/4

+
2 C

(α− 1/2)(α+ 3/2)
(A.22)

+
3 D

(α− 1/2)(α+ 5/2)

+
E

(α− 1/2)2
·

A.3. Total ionization rates (DI + EA)

The total ionization rate CH
I

(T, xb, α) is obtained by:

CH
I

(T, xb, α) = CH
DI

(T, xb, α) + CH
EA

(T, xb, α). (A.23)
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