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Abstract

Representing networks in a low dimensional latent space is a crucial task with
many interesting application in graph learning problems, such as link prediction and
node classification. A widely applied network representation learning paradigm
is based on the combination of random walks with the traditional Skip-Gram
approach, modeling center-context node relationships. In this paper, we emphasize
on exponential family distributions to capture rich interaction patterns between
nodes in random walk sequences. We introduce the generic exponential family
graph embedding (EFGE) model, that generalizes random walk-based network
representation learning techniques to exponential family conditional distributions.
Our experimental evaluation demonstrates that the proposed technique outperforms
well-known baseline methods in two downstream machine learning tasks.

1 Introduction

Graphs or networks have become ubiquitous as data from diverse disciplines can naturally be repre-
sented as graph structures. A recent paradigm in network analysis, known as network representation
learning (NRL) [5], aims at finding vector representations of nodes (i.e., node embeddings), in such a
way that the structure of the network and its various properties are preserved in the lower dimensional
representation space. That way, after obtaining the embeddings, the learned features can further be
used in any downstream machine learning task, such as classification and prediction.

Random walk-based methods have become a prominent line of research [12, 4], being inspired from
the field of natural language processing (NLP) [9]. Typically, those methods sample a set of random
walks on the input graph, treating them as the equivalent of sentences in natural language, while
the nodes visited by the walk are considered as words. Then, widely used NLP models, such as the
Skip-Gram model [9], are used to learn node latent representations, examining simple co-occurrence
relationships of nodes within the set of random walk sequences.

Nevertheless, Skip-Gram models the conditional distribution of nodes within a random walk based
on the softmax function, which might prohibit to capture richer types of interaction patterns among
nodes that co-occur within a random walk. In this work, we argue that considering more expressive
conditional probability models to relate nodes within a random walk sequence, might lead to more
informative representations. We capitalize on exponential family distribution models to capture
interactions between nodes. The main contributions of the paper can be summarized as follows:

• We introduce a novel approach, referred to as EFGE, which generalizes classical Skip-
Gram-based models to exponential family distributions.
• We show that the objectives of existing models, including word embedding in NLP [9] and

overlapping community detection [18], can be reinterpreted under the EFGE model.
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• We demonstrate that the proposed exponential family graph embedding models generally
outperform widely used baseline approaches in various learning tasks on graphs.

2 Preliminary Concepts

Random walk-based methods. For a graph G = (V, E), a sequence of nodes w = (w1, ..., wL) ∈
W will be called a walk if (wl−1, wl) ∈ E for every 2 ≤ l ≤ L and W will represent the set of
walks of length L. The context sequence of a node wl, referred to as center, in the random walk
w ∈ W is defined as Nw

γ (wl) := (wl−γ , . . . , wl−1, wl+1, . . . , wl+γ). Random walk-based node
embedding methods [12, 4, 10] generate a set of node sequences by simulating various (e.g., uniform,
biased) random walk strategies. Node representations are then learned by optimizing the relationship
between each center and context node pair in the generated sequences under the Skip-Gram model.
We typically learn two embedding vectors α[v] and β[v] for each node v ∈ V , where β[v] corresponds
to the vector if the node is interpreted as center and α[v] denotes the vector if it is considered as
context (in the experiments, we will only consider α[v] to represent the embedding vector of v).

Exponential families. A class of probability distributions is called exponential family, if they can
be expressed as p(x) = h(x) exp (ηT (x)−A(η)), where h is the base measure, η are the natural
parameters, T is the sufficient statistic and A(η) is the log-partition function [1]. Different choices of
base measure and sufficient statistics lead us to obtain different distributions. For instance, the base
measure and sufficient statistic of Poisson distribution are h(x) = 1/x! and T (x) = x. We use the
natural parameter ηv,u to design a set of network representation learning models [15]; it is defined as
the product of context and center vectors, ηv,u := f

(
α[u]>β[v]

)
, where f is called the link function.

3 Proposed Approach

We define the generic objective function to learn node embeddings in the following way:

L(α, β) := arg max
Ω

∑
w∈W

∑
1≤l≤L

∑
v∈V

log p(ylwl,v; Ω), (1)

where ylwl,v is the observed value indicating the relationship between center wl and context node v.
Instead of restricting ourselves to the Sigmoid or Softmax functions in order to model the conditional
probability in the objective function of Eq. (1), we assume that each ywl,v follows an exponential
family distribution. That way, the objective to learn node embeddings Ω = (α, β) can be rewritten as:

arg max
Ω

∑
w∈W

∑
1≤l≤L

∑
v∈V

[
log h(xwl,v) + ηwl,vT (xwl,v)−A(ηwl,v)

]
. (2)

As we can observe, Eq. (2) generalizes Skip-Gram-based models to exponential family distributions.
Therefore, the EFGE models have the additional flexibility to utilize a wide range of exponential
distributions, allowing them to capture more complex types of node interactions.

We examine three particular instances of the EFGE model, in particular, we utilize the Bernoulli,
Poisson, and Normal distributions leading to the corresponding EFGE-BERN, EFGE-POIS and
EFGE-NORM models. For illustration, two dimensional embeddings of Dolphins network [8] are
depicted in Fig. 1 in the Appendix. As we can observe, the proposed EFGE-BERN and EFGE-POIS
models learn representations differentiating nodes with respect to their communities.

3.1 The EFGE-BERN Model

Our first model is the EFGE-BERN model, in which we assume that each ywl,v follows a Bernoulli
distribution, which is equal to 1 if node v appears in the context set of wl in the walk w ∈ W . It can
be written as ywl,v = xl−γwl,v

∨ · · · ∨xl−1
wl,v
∨xl+1

wl,v
∨ · · · ∨xl+γwl,v

, where xt+lwl,v
indicates the appearance

of v in the context of wl at the position t (−γ ≤ t ≤ γ). We express the objective function of the
EFGE-BERN model, LB(α, β), by dividing Eq. (2) into two parts with respect to the values of xwl,v:
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∑
w∈W

∑
1≤l≤L

 ∑
v∈Nγ(wl)

log p(ywlv)+
∑

v 6∈Nγ(wl)

log p(ywlv)

=
∑

w∈W

∑
1≤l≤L

 ∑
−γ≤j≤γ
u:=wj

log p(xl+jwlu
)+
∑
−γ≤j≤γ
u:6=wj

log p(xl+jwlu
)



=
∑

w∈W

∑
1≤l≤L

 ∑
−γ≤j≤γ
u:=wj

log σ(ηwlu)+
∑
−γ≤j≤γ
u:6=wj

log σ(−ηwlu)

,

where σ(η) is the sigmoid function defined as 1/(1− exp(−η)) and the identity map is chosen for
the link function, so ηv,u is the product of vectors α[v] and β[u].

Relationship to negative sampling. In Lemma 1, we show that the log-likelihood LB(α, β) of the
EFGE-BERN model in fact converges to the objective function of negative sampling given in Eq. (3).
Lemma 1. For large values of k, the log-likelihood function LB converges to∑

w∈W

∑
1≤l≤L

∑
−γ≤j≤γ

[
log p(xl+jwl,wl+j

) +

k∑
s=1

Eu∼q−
[

log p(xl+jwl,u
)
]]
. (3)

Proof. Please see the appendix.

3.2 The EFGE-POIS Model

Let ywl,v be a value indicating the number of occurrences of node v in the context of wl. We assume
that ywl,v follows a Poisson distribution, with the mean value λ̃wl,v being the number of appearances
of node v in the context Nw

γ (wl). Similar to the previous model, it can be expressed as ywl,v = xl−γwl,v

+ · · · + xl−1
wl,v

+ xl+1
wl,v

+ · · · + xl+γwl,v
, where xl+twl,v

∼ Pois(λwl,v) for −γ ≤ t ≤ γ. That way, we
obtain λ̃wl,v =

∑γ
j=−γ λ

l+j
wl,v

, since the sum of independent Poisson random variables is also Poisson.
By plugging the exponential form of the Poisson distribution into Eq. (1), and following a similar
strategy as in the EFGE-BERN model, the equation can be split into two parts for the cases where
ywl,v > 0 and ywl,v = 0. That way, the negative sampling strategy (given in Eq. (3)) can be adopted:

∑
w∈W

∑
1≤l≤L

∑
−γ≤j≤γ
u:=wj

[
− log(xwl,u!)+ηwl,uxwl,u−exp(ηwl,u)

]
+

∑
−γ≤j≤γ
u:6=wj

[
− exp(ηwl,u)

]
.

Relationship to overlapping community detection. It can be seen that the objective function of the
widely used BIGCLAM overlapping community detection method by Yang and Leskovec [18], can be
obtained by unifying the objectives of the EFGE-BERN and EFGE-POIS models.
Lemma 2. Let Zwl,v be independent random variables following Poisson distribution with natural
parameter ηwl,v defined as log(β[wl] · α[v]). Then, if the model parameter πwl,v is defined as
p(Zwl,v > 0), the objective function of EFGE-BERN model becomes equal to∑

w∈W

∑
1≤l≤L

[ ∑
v∈Nγ(wl)

log
(

1− exp
(
− β[wl] · α[v]

))
−

∑
v 6∈Nγ(wl)

β[wl] · α[v]

]
.

Proof. Please see the appendix.

3.3 The EFGE-NORM Model

We consider each ywl,v as an edge weight indicating the relationship between wl and v. We assume
that xl+twl,v

∼ N (1, σ2
+) if v ∈ Nγ(wl), and xl+twl,v

∼ N (0, σ2
−) otherwise. Hence, we obtain that
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ywl,v ∼ N (µ̃, σ̃2), where µ̃ is the number of occurrences of v in the context if we follow a similar
assumption ywl,v =

∑γ
j=−γ x

l+j
wl,v

as in the previous models. The base measure of the model is
exp(−x2

wl,u
/2σ2)/

√
2πσ for known variance, and ηwl,u is defined as exp(−α[u]>β[wl]):

∑
w∈W

∑
1≤l≤L

∑
−γ≤j≤γ
u:=wj

[
log h(xwlu)+xwlu

ηwlu
σ+
−
η2
wlu

2

]
+
∑

−γ≤j≤γ
u: 6=wj

[
log h(xwlu)+xwlu

ηwlu
σ−
−
η2
wlu

2

]
.

4 Experimental Evaluation

The performance of the proposed models is evaluated in node classification and link prediction tasks.
The details of the experimental set-up, baseline methods and datasets are provided in the Appendix.

4% 6% 8% 10% 30% 50% 70% 90%
DEEPWALK 0.460 0.489 0.505 0.517 0.566 0.584 0.595 0.592
NODE2VEC 0.491 0.517 0.530 0.541 0.585 0.597 0.601 0.599

LINE 0.387 0.423 0.451 0.466 0.532 0.551 0.560 0.564
HOPE 0.205 0.210 0.204 0.219 0.256 0.277 0.299 0.320

NETMF 0.496 0.526 0.540 0.552 0.590 0.603 0.604 0.608

EFGE-BERN 0.493 0.517 0.536 0.549 0.588 0.603 0.609 0.609
EFGE-POIS 0.514 0.537 0.551 0.562 0.595 0.606 0.611 0.613

EFGE-NORM 0.525 0.542 0.553 0.561 0.596 0.606 0.612 0.616

a: CiteSeer
4% 6% 8% 10% 30% 50% 70% 90%

DEEPWALK 0.689 0.715 0.732 0.747 0.802 0.819 0.826 0.833
NODE2VEC 0.714 0.743 0.757 0.769 0.815 0.831 0.839 0.841

LINE 0.544 0.590 0.633 0.661 0.746 0.765 0.774 0.775
HOPE 0.302 0.299 0.302 0.302 0.301 0.302 0.303 0.302

NETMF 0.716 0.748 0.767 0.773 0.821 0.834 0.841 0.844
EFGE-BERN 0.720 0.743 0.759 0.767 0.808 0.823 0.834 0.838
EFGE-POIS 0.733 0.746 0.759 0.765 0.802 0.814 0.820 0.825

EFGE-NORM 0.743 0.760 0.770 0.780 0.810 0.824 0.827 0.839

b: Cora
4% 6% 8% 10% 30% 50% 70% 90%

DEEPWALK 0.585 0.600 0.608 0.613 0.626 0.628 0.628 0.633
NODE2VEC 0.600 0.611 0.619 0.622 0.636 0.638 0.639 0.639

LINE 0.580 0.590 0.597 0.603 0.618 0.621 0.623 0.623
HOPE 0.378 0.379 0.379 0.379 0.379 0.379 0.378 0.380

NETMF 0.589 0.596 0.601 0.605 0.617 0.620 0.623 0.623

EFGE-BERN 0.598 0.610 0.617 0.622 0.634 0.638 0.638 0.638
EFGE-POIS 0.605 0.614 0.620 0.624 0.635 0.637 0.636 0.638

EFGE-NORM 0.614 0.622 0.624 0.628 0.637 0.640 0.642 0.641

c: DBLP
Table 1: Micro-F1 scores for node classification.
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Citeseer 0.770 0.780 0.717 0.744 0.742 0.815 0.834 0.828
Cora 0.739 0.757 0.686 0.712 0.755 0.769 0.797 0.807

DBLP 0.919 0.954 0.933 0.873 0.930 0.950 0.950 0.955
AstroPh 0.911 0.969 0.971 0.931 0.897 0.963 0.922 0.973

HepTh 0.843 0.896 0.854 0.836 0.882 0.898 0.885 0.896
Facebook 0.980 0.992 0.986 0.975 0.987 0.991 0.991 0.992

GrQc 0.921 0.940 0.909 0.902 0.928 0.938 0.937 0.940

Table 2: AUC scores for link prediction.

Node classification. Table 1 shows the classifi-
cation performance on three different networks.
The experiments show that the proposed EFGE-
POIS and EFGE-NORM models perform quite
well, outperform most baselines especially on
limited training data. The percentage gain for
Micro-F1 score of our best model with respect to
the highest baseline score varies from 0.61% up
to 5.33% for CiteSeer and from 0.22% to 2.44%
for DBLP. The highest gain of EFGE-NORM
model against the best performing baseline is
around 3.80% over Cora.

These results can qualitatively be explained by
the fact that, the exponential family distribution
models enable to effectively capture the num-
ber of occurrences of a node within the context
of another one, while learning the embedding
vectors. Of course, the structural properties of
the network, such as the existence of community
structure, might affect the performance as shown
in the toy example of Fig. 1 in the Appendix.
The existence of well defined communities at
the Dolphins network, allows the EFGE-POIS
model to learn more discriminative embeddings
with respect to the underlying communities.

Link prediction. Table 2 shows the area under
curve (AUC) scores for the link prediction task.
Since the networks used in the node classifica-
tion experiments consist of disconnected com-
ponents, we perform the link prediction over the
largest connected component. As it can be seen,
the EFGE-NORM model is performing quite
well on almost all different types of networks.
Although NODE2VEC is quite effective having the same performance in two datasets, EFGE-NORM
performs quite better in the remaining networks, with gain ranging from 0.04% up to 18.29%.

5 Conclusions

We introduced the EFGE models, proposing three instances (EFGE-BERN, EFGE-POIS, and EFGE-
NORM) that generalize random walk approaches to exponential family. The benefit of these models
stems from the fact that they allow to utilize conditional distributions over center-context node pairs,
going beyond simple co-occurrence relationships. The experimental results have demonstrated that
the proposed models are able to outperform widely used baseline methods.
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A Appendix

A.1 Source Code

The C+ implementation of EFGE models can be reached at: https://github.com/
abdcelikkanat/EFGE

A.2 Visualization

For the illustration purposes of the proposed models, Fig. 1 depicts two dimensional embedding
vectors of the Dolphins network composed by two communities.

(a) Network (b) DEEPWALK (c) EFGE-BERN (d) EFGE-POIS (e) EFGE-NORM

Figure 1: The Dolphins network composed by 2 communities and learned embeddings for d = 2.

A.3 Proofs of Lemmas

In this section, the proof of lemmas are given.
Lemma 1. For large values of k. the log-likelihood function LB converges to∑

w∈W

∑
1≤l≤L

∑
−γ≤j≤γ

[
log p(xl+jwl,wl+j

) +

k∑
s=1

Eu∼q−
[

log p(xl+jwl,u
)
]]
.

Proof. Let q−(·|wl) be the true conditional distribution of a random walk method for generating
non-context nodes defined over V . Then, it can be written that

∑
w∈W

∑
1≤l≤L

∑
−γ≤j≤γ

log p(xl+jwl,vl+j
) +

k∑
s=1

Eu∼q−
[

log p(xl+jwl,u
)
]

≈
∑

w∈W

∑
1≤l≤L

∑
−γ≤j≤γ

log p(xl+jwl,vl+j
) + k

1

k

k∑
s=1

us∼q−

log p(xl+jwl,us
)

=
∑

w∈W

∑
1≤l≤L

∑
−γ≤j≤γ

log p(xl+jwl,vl+j
) +

k∑
s=1

us∼q−

log p(xl+jwl,us
)

≈
∑

w∈W

∑
1≤l≤L

∑
−γ≤j≤γ
u:=vl+j

log p(xl+jwl,u
) +

∑
−γ≤j≤γ
u:6=wl+j

log p(xl+jwl,u
)

=LB(α, β),

where the second line follows from the law of large numbers for the sample size of k and k is selected
as |V| − 1 in the fourth line.

Lemma 2. Let Zwl,v be independent random variables following Poisson distribution with natural
parameter ηwl,v defined as log(β[wl] · α[v]). Then, the objective function of EFGE-BERN model
becomes equal to∑

w∈W

∑
1≤l≤L

[ ∑
v∈Nγ(wl)

log
(

1− exp
(
− β[wl] · α[v]

))
−

∑
v 6∈Nγ(wl)

β[wl] · α[v]

]
,
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if the model parameter πwl,v is defined by p(Zwl,v > 0).

Proof. Let ywl,v follow a Bernoulli distribution with parameter πwl,v and it is equal to 1 if v ∈
Nγ(wl), and 0 otherwise. Then, the objective function LB(α, β) can be divided into parts as follows:

LB =
∑

w∈W

∑
1≤l≤L

[ ∑
v∈Nγ(wl)

log p(ywl,vj) +
∑

v 6∈Nγ(wl)

log p(ywl,v)

]

=
∑

w∈W

∑
1≤l≤L

[ ∑
v∈Nγ(wl)

log
(
1− p(zwl,v = 0)

)
+
∑

v 6∈Nγ(vi)

log p(zwl,v = 0)

]

=
∑

w∈W

∑
1≤l≤L

[ ∑
v∈Nγ(wl)

log
(

1− exp
(
− exp(ηwl,v)

))
+

∑
v 6∈Nγ(wl)

exp(−ηwl,v)

]

=
∑

w∈W

∑
1≤l≤L

[ ∑
v∈Nγ(wl)

log
(

1− exp
(
− β[wl] · α[v]

))
−

∑
v 6∈Nγ(wl)

β[wl] · α[v]

]
.

A.4 Description of Datasets

Here we provide a detailed description of networks that we have used in our study and (Table 3 shows
various statistics of the networks):

• CiteSeer [3] is a citation network obtained from the CiteSeer library, in which each node
corresponds to a paper and the edges indicate reference relationships among papers. The
labels represent the subjects of the paper.

• Cora [16] is another citation network constructed from the publications in the machine
learning area; the documents are classified into seven categories.

• DBLP [13] is a co-authorship graph, where an edge exists between nodes if two authors
have co-authored at least one paper. The labels represent the research areas.

• AstroPh [6] is another collaboration network built from the papers submitted to the ArXiv
repository for the Astro Physics subject area, from January 1993 to April 2003.

• HepTh [6] network is constructed in a similar way from the papers submitted to ArXiv for
the High Energy Physics - Theory category.

• GrQc [6] is our last collaboration network which has been constructed from the e-prints
submitted to the category of General Relativity and Quantum Cosmology.

• Facebook [7] is a social network extracted from a survey conducted via a Facebook applica-
tion.

|V| |E| |K| |C| Avg. Degree Density
CiteSeer 3,312 4,660 6 438 2.814 0.0009

Cora 2,708 5,278 7 78 3.898 0.0014
DBLP 27,199 66,832 4 2,115 4.914 0.0002

AstroPh 17,903 19,7031 - 1 22.010 0.0012
HepTh 8,638 24,827 - 1 5.7483 0.0007

Facebook 4,039 88,234 - 1 43.6910 0.0108
GrQc 4,158 13,428 - 1 6.4589 0.0016

Table 3: Statistics of networks used in the experiments. |V|: number of nodes, |E|: number of edges,
|K|: number of labels and |C|: number of connected components.
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A.5 Baseline Methods

We evaluate the three proposed EFGE models against five state-of-the-art NRL techniques:

• DEEPWALK [12] generates a set of node sequences by choosing a node uniformly at random
from the neighbours of the node it currently resides.

• NODE2VEC [4] relies on a biased random walk strategy, introducing two additional parame-
ters which are used to determine the behaviour of the random walk in visiting nodes close to
the one currently residing at. We simply set these parameters to 1.0.

• LINE [17] learns embeddings that are based on first-order and second-order proximity (each
one of length d/2).

• HOPE [11] is a matrix factorization method which aims at extracting feature vectors by
preserving higher order patterns of the network (in our experiments, we have used the Katz
index).

• NETMF [14] aims at factorizing the matrix approximated by the pointwise mutual informa-
tion of center and context pairs.

A.6 Experimental Setup

For node classification, we aim at predicting the correct labels of nodes having access to a limited
number of training labels (i.e., nodes with known label). In our experiments, we split the learned
embedding vectors into varying sizes of training and test sets, from 4% up to 90% in order to better
evaluate the models. We perform our experiments applying an one-vs-rest logistic regression classifier
with L2 regularization.

In the link prediction task, the goal is to predict the missing edges or to estimate possible future
connections between nodes. For this experiment, we randomly remove half of the edges of a given
network, keeping the residual network connected. Then, we learn node representations using the
residual network. The removed edges as well as a randomly chosen set of same number node pairs
form the testing set. For the training set, we sample the same number of non-existing edges following
the same strategy to have negative samples, and the edges in the residual network are used as positive
instances. Since we learn embedding vectors for the nodes of the graph, we use the extracted node
representation to build edge feature vectors using Hadamard product operator. In all experiments, we
have used the logistic regression classifier with L2 regularization over the networks listed in Table 3.

In our experiments, we have chosen walk length L = 10, number of walks N = 80 and window
size γ = 10 for all models and the variants of EFGE model are fed with the same node sequences
produced by NODE2VEC. The size of embedding vectors are chosen as 128 for all methods.

A.7 Optimization

For the optimization step of our models, we adopt Stochastic Gradient Descent (SGD) [2] to learn
latent representations Ω = (α, β). Except for the large networks, we start the initial learning rate
from 0.025, and then it is linearly decreased with respect to the number of nodes which have been
processed so far. We set the minimum step size to 0.0001 and we do not allow it to fall below this
value. Since it is computationally very expensive to compute gradients for each node pairs, we take
advantage of the fact that we have formulated the objective function of each model in a such way
that it could be divided into two parts according to the values of xij’s; thus, we adopt the negative
sampling strategy with the sampling size k = 5 in all the experiments. We generate negative samples
from the whole vertex set with respect to the number of occurrences of nodes in the generated walks
raised to the power of 0.75, similar to Ref. [9].

A.8 Parameter Sensitivity

We have performed further sensitivity analysis experiments, to better understand the impact of the
various parameters in the performance of the proposed models.
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Figure 2: Influence of dimension size over CiteSeer network.
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Figure 3: Influence of window size γ for the CiteSeer network.

10 30 50 70 90
Training set ratios (%)

0.2

0.3

0.4

0.5

0.6

M
ic

ro
-F

1
 S

co
re

s

σ= 0.5

σ= 1.0

σ= 1.5

σ= 2.0

σ= 2.5

σ= 4.0

Figure 4: Influence of standard deviation for the EFGE-NORM model.

Influence of dimension and window sizes. We examine the effect of embedding dimension d and
the effect of the window size γ used to sample context nodes on the different models over different
training set ratios. The results are depicted in Figures 2 and 3.

The effect of standard deviation at the EFGE-NORM model. The EFGE-NORM model has an
extra parameter σ which can influence the performance of the method. To examine the impact of
σ, we have chosen six different values, performing experiments over CiteSeer network. Figure 4
depicts how the Micro-F1 scores change for various training set ratios. The results clearly indicate
that the model performs well for small values of σ — with the best results obtained for σ = 1. For
this reason, we have set this value for all the experiments conducted in the node classification and
link prediction tasks.
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