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Abstract: The impact of dispersed crude oil and dispersant on adult Pacific oysters, Crassostrea 

gigas, was evaluated through an integrative biomarker approach including (1) biochemical (plasma 

catecholase- and laccase-type phenoloxidase and superoxide dismutase), (2) histological 

(digestive cell lysosomal responses, digestive gland histopathology) and (3) physiological (flesh 

condition index) endpoints in the haemolymph and digestive gland. Adult oysters were exposed to 

non-contaminated water (control), chemically-dispersed oil (Brut Arabian Light), mechanically-

dispersed oil and dispersant (FINASOL®) alone for 2 days, and further depurated in 

noncontaminated water for 4 weeks. After exposure to chemically and mechanically dispersed oil 

oysters exhibited induction of plasma laccase-type phenoloxidase and superoxide dismutase 

activities, enlargement of digestive cell lysosomes, lipofuscin accumulation, reduced neutral lipid 

content and atrophy of digestive gland diverticula; more markedly on exposure to chemically 

dispersed oil. From the studied biomarkers, only lysosomal biomarkers were significantly affected 

after exposure to the dispersant alone. This included lysosomal enlargement, neutral lipid depletion 

and lipofuscin accumulation in the digestive gland epithelium. A recovery of plasma enzyme 

activities was observed after 4 weeks of depuration. The integrative biological response index 

indicated that chemically dispersed oil caused significantly higher stress to C. gigas than the 

mechanically-dispersed one or the dispersant alone; nevertheless, the response seems to be 

reversible after depuration.  

 

Keywords: dispersant, oil spill, bivalve, invertebrate, biomarker, Integrated biomarker response
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1. Introduction  

 

Accidental oil spills constitute a relevant economic and ecological problem of public concern. 

Economic and ecological consequences of spilled oil can be minimised with chemical dispersants, 

which are surface active agents or surfactants that enhance the solubilisation of oil slicks in the 

water column (NRC, National Research Council, 2005; Lee et al., 2015). Third generation 

compounds replaced earlier generations of oil dispersants by the mid 70s. These mixtures are more 

efficient than the previous generations and are less toxic. Most of the products marketed today 

belong to this category. However, lethal and sublethal toxicities of this type of dispersants (e.g. 

Corexit 9500) and of chemically dispersed oil have been reported in recent studies (Almeda et al., 

2014; Goodbody-Gringley et al., 2013). Paradoxically, chemically dispersed oil is cleaned from 

the environment by degradation and enhanced biodegradation but the process also renders 

hydrocarbons more bioavailable for marine filter-feeding organisms and results in more severe 

effects (Baussant et al., 2001; Luna-Acosta et al., 2011); moreover, surfactants themselves can be 

noxious (Ostroumov, 2003). As a result, the utilitarian value of dispersants as alternatives to 

mechanical oil removal in the marine environment is still under discussion. Among filter-feeding 

organisms, the Pacific oyster Crassostrea gigas has proven to be useful for biomonitoring 

chemical contamination in coasts and estuaries (Beliaeff et al., 1998; O'Connor, 2002). This 

leading aquaculture product (FAO, Food and Agriculture Organization, 2014) has preferentially 

been chosen as a sentinel organism for its ability to concentrate pollutants, its immobility, its 

limited ability to metabolize accumulated contaminants, its relative wide distribution among 

habitats, its abundance, its persistence, and its ease of collection, all of which makes it a good 

long-term integrator of the environment (O'Connor, 2002). 

To cope with the presence of pollutants in the environment, C. gigas may activate stress responses 

determined as biomarkers. Biomarkers are useful tools for assessing pollution impact on living 

organisms and for early diagnosis of ecosystem health disturbance (Cajaraville et al., 2000; 
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Marigómez et al., 2013a). Among biomarkers, superoxide dismutase (SOD) is an antioxidant 

enzyme that catalyzes the dismutation of superoxide anion (O2
 −), a highly reactive oxygen species 

(ROS), into oxygen (O2) or hydrogen peroxide (H2O2) (Neumann et al. 2001). The extent to which 

ROS produce biological damage depends on the effectiveness of antioxidant defences, such as 

SOD (Neumann et al., 2001). Other enzymes involved in defence mechanisms in bivalves include 

phenoloxidases (POs). POs are a family of copper proteins and are the rate limiting enzymes in 

melanisation. POs are also involved in many cellular defence responses in invertebrates, such as 

self/non-self recognition, phagocytosis and nodule and capsule formation (Asokan et al., 1997). 

Tyrosinase-type POs catalyse the oxidation of monophenols to quinones, but have not been 

detected in C. gigas (Luna-Acosta et al., 2010). Catecholase-type POs catalyse the oxidation of 

diphenols to quinones and have been detected in C. gigas. Laccase type POs catalyse the oxidation 

of aromatics, including polycyclic aromatic hydrocarbons (PAHs), by an indirect mechanism 

involving the participation of an oxidative mediator (Dodor et al. 2004), and have been detected 

in C. gigas (Luna-Acosta et al., 2010). Both SOD and POs in plasma have responded on exposure 

to a variety of chemical pollutants in bivalves, including petroleum hydrocarbons (Bado-Nilles et 

al., 2009; Luna-Acosta et al., 2011, 2015; Valavanidis et al., 2006). 

Likewise, changes in lysosomal size, contents and membrane stability and atrophy of digestive 

gland diverticula are considered highly responsive biomarkers of the effects induced by petroleum 

hydrocarbons and related organochemicals (Lekube et al., 2014; Marigomez et al., 2006; 

Marigómez and Baybay-Villacorta, 2003). Additionally, histopathological alterations provide 

complementary and environmentally relevant information about the consequences of 

environmental insult in mollusc health (Kimet al., 2006). The flesh condition index is one of the 

best indicators of gross body state for environmental studies; it can also reflect sub-lethal 

physiological changes from a stressful xenobiotic exposure (Duquesne et al., 2004; Hyötylänen et 

al., 2002; Widdows et al. 1981). 
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Within this context, the present studywas aimed to compare, under controlled laboratory 

conditions, the effects of chemically and mechanically dispersed crude oil in C. gigas upon the 

application of an integrated biomarker approach; this included: (a) catecholase- and laccase-type 

phenoloxidase (PO) and superoxide dismutase (SOD) activities in haemolymph plasma, (b) 

lysosomal responses in digestive cells, (c) digestive gland histopathology and (d) Flesh Condition 

Index (FCI) levels. Enzyme responses may occur very rapidly, i.e. within 2 h. For this reason, a 

time course evaluation of enzyme responses was done at 0, 2, 10, 24 and 48 h. Histological and 

physiological changes occur more slowly than enzyme responses and these changes were studied 

at 48 h of exposure. A total exposure period of 48 h was selected because it corresponds to four 

tidal cycles in France. This exposure regime was chosen in order to reflect realistic conditions of 

coastal pollution in which the dilution process is expected to reduce the dispersed oil 

concentration. Following the exposure period, oysters were placed in a recovery period of 4 weeks 

in non-contaminated water to see if sublethal effects could be detected and if initial sub-lethal 

effects would have long-term consequences. 

 

2. Materials and methods 

 

Adult oysters, C. gigas (length = 9 ± 1 cm, purchased at Naissain, France, in May) were 

acclimatised in the laboratory at 20 ± 1 °C for 2 weeks before starting the experiments. The oxygen 

saturation of water in each tank used for the complete experiment was maintained at around 96% 

by air compressor via an air diffuser. During acclimatisation (as well as during depuration 

following exposure treatments but not during exposure to chemicals) oysters were fed daily with 

Heteroskeletonema sp. (5 × 104 cell ml−1), purchased from a hatchery (SATMAR, Normandie, 

France). 

Brut Arabian Light (BAL) crude oil was selected because of its worldwide use, its physical and 

chemical properties and information available. It has the following physico-chemical 
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characteristics: density (20°C) = 0.860; viscosity (15°C) = 60 mPa·s; 12% polar compounds, 34% 

aromatic hydrocarbons and 54% saturated hydrocarbons. To simulate natural weathering after oil 

spills, BAL crude oil was topped at 110 °C (BAL 110) to eliminate its most volatile compounds. 

The chemical dispersant (D) used in this study was selected following an evaluation carried out by 

the Centre of Documentation, Research and Experimentation on Accidental Water Pollution 

(http://www.cedre.fr/en/response/dispersant.php; CEDRE, France); thus, it was effective for use 

in the marine environment (norm NF.T.90–345), non-toxic (norm NF.T.90–349) at the 

concentration recommended by the manufacturer (Total Fluides Sas, Puteaux, France) and 

biodegradable (norm NF.T.90–346). The dispersant corresponds to a third generation chemical 

dispersant of the series type FINASOL®. According to manufacturer's instructions, a 5% v/v 

dilution was used for the present experimental treatments. The chemical formulation of the 

dispersant was not available for reasons of confidentiality. 

 

2.1. Experimental design 

BAL 110 polluted seawater consisted of 20 g BAL 110 added to 300 l seawater (i.e. 67 ppm) in 

order to obtain a realistic concentration of dispersed oil in the range of those reported in situ 

following an oil spill (e.g., Braer oil spill; Lunel, 1995). The following dispersion treatments were 

carried out: control (C) with non-contaminated water, chemical dispersion (CD)with 20 g of BAL 

110 and 5% of dispersant (i.e. 1.2 g or 4 ppm), mechanical dispersion (MD) with 20 g of BAL 110 

and dispersant (D) with 1.2 g of dispersant. Experiments were carried out at 20 °C, summer 

seawater temperature at which oysters are known to respond to pollutant insult (Gagnaire et al., 

2006). A funnel (at the surface of each tank) was connected to a submersed Johnson L450 water 

pump (at the bottom of the tank), in order to maintain the mixture of oil and dispersant as a 

homogenous solution (Milinkovitch et al., 2011); this device was applied to all tanks, including 

the control ones (Fig. 1). The same volumes of BAL110 and dispersant, the same dispersant and 

http://www.cedre.fr/
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the same homogenization system have been used in previous studies (e.g. Milinkovitch et al., 

2011). 

Initially, chemicals were added to the seawater. Preliminary tests confirmed that total petroleum 

hydrocarbon concentrations in the water column were depth-independent, suggesting that small 

petroleum droplets were homogeneously dispersed in the water column (data not shown). When 

chemicals were completely homogenized in the tanks, i.e. 12 h later, the exposure period began 

(t0). Ten oysters of the initial stock were used at t0 for biochemical analyses and remaining oysters 

(N=70; per tank) were introduced into the tanks for 48 h (t48). The seawater was not changed during 

the acclimation or exposure period. The oysters were exposed to these different conditions for a 

period of 48 h corresponding to four tidal cycles in France. This exposure regime was chosen in 

order to reflect realistic conditions of coastal pollution in which the dilution process is expected to 

reduce the dispersed oil concentration. At 2, 10, 24 and 48 h of exposure, 10 oysters were retrieved 

per treatment for biochemical analyses (Fig. 1). Histological and physiological analyses were also 

performed in oysters retrieved at t48. Further on, remaining oysters were depurated in a new tanks 

with non-contaminated seawater for 4 weeks, and at the end of that period, 10 oysters per treatment 

were retrieved for depuration analyses. The experiment was replicated three times (i.e. exposure 

period with the 4 treatments for 48 h and depuration period for 4weeks) and were carried out in 

parallel (Fig. 1). 

 

2.2. Determination of TPHs in seawater 

The concentration of total polycyclic hydrocarbons (TPH; dissolved hydrocarbon plus oil droplets) 

in seawater ([TPH]sw) was measured for the 3 experimental replicates. Three analytical replicates 

were measured at the beginning (t0), and at the end (48 h) of the exposure period for each 

experimental replicate. The mean of the 9 values (3 analytical replicates × 3 experimental 

replicates) were calculated for each experimental time. Each seawater sample was collected using 

a glass pipette connected to a pipette filler (VWR), and stored in a 60 ml tinted glass bottle (VWR). 
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The seawater sample extraction was achieved with 10 ml pestipur-quality dichloromethane (Carlo 

Erba Reactifs, SDS, France) to separate organic and aqueous phases. Then, water was extracted 

twice more with the same volume of dichloromethane (2 × 10 ml). The combined organic layers 

were dried using anhydrous sulphate and analysed using a UV spectrophotometer (SAFAS Xenius 

XM) at 390 nm. The detection limit of this method depends on the precision of the 

spectrophotometer, and results are not reliable for [TPH]sw values under 1 mg·l-1. The results were 

expressed in milligrams per litre, and were compared against BAL 110 standards (5–100 mg·l-1) 

(Fusey and Oudot, 1976). 

 

2.3. Determination of enzyme activities in plasma 

Haemolymph samples were collected after 0, 2, 10, 24 and 48 h exposure and 4 wk. depuration. 

Oysters were opened by excising the adductor muscle and 0.5–1 ml haemolymph were withdrawn 

directly from the pericardial cavity with a 1-ml syringe equipped with a needle (0.9 × 25 mm). 

After hemolymph extraction, oysters were not reintroduced in experimental tanks and the volume 

of experimental seawater in tanks was maintained. The haemolymph retrieved from 10 oysters 

was pooled, following previous studies (Luna-Acosta et al., 2011). In addition, no significant 

differences have been observed for defence responses in C. gigas (including PO) following 

exposure to pollutants, between individual or pooled samples (Bado-Nilles et al., 2008). 

Haemolymph samples were centrifuged (260 g, 10 min, 4 °C) to separate cellular fraction (i.e. 

haemocytes) and plasma (Luna-Acosta et al., 2010). The plasma was selected for the biochemical 

determination of SOD and PO activities. 

SOD activity was determined as previously described (Luna-Acosta et al., 2011) by applying an 

indirect spectrophotometric method (kit Ransod SD 125, Randox, France) based on competition 

of SOD with iodonitrotetrazoliumn (INT) for dismutation of superoxide anion (Therond et al., 

1996). One SOD unit is defined as the amount of enzyme that promotes a 50% decrease in INT 

reduction rate (Therond et al., 1996). Catecholase- and laccase-type PO activities were determined 
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as previously described (Luna-Acosta et al., 2010). For catecholase-type activity, the increase of 

absorbance at 490 nm was monitored for 4 h using dopamine 100 mM as substrate (Sigma-

Aldrich). For laccase type activity, the increase of absorbance at 420 nm was monitored for 2 h 

using p-phenylendiamine 50 mM as substrate (Sigma-Aldrich). For both assays, nonenzymatic 

oxidation by the substrate was monitored in wells without oyster sample and subtracted from 

oxidation of the substrate with oyster sample. One unit of catecholase- and laccase type PO 

activities corresponds to the amount of enzyme that catalyzes the production of 1 μmol product 

per min (ε = 3.3 M-1 cm-1 and 43.16 M-1 cm-1, respectively; Luna-Acosta et al., 2010). All activities 

were measured in triplicate for each sample and expressed in relation to protein concentration 

measured according to the Lowry method with slight modifications, by using bicinchoninic acid 

and copper sulphate 4% (Smith et al., 1985). Serum albumin was used as protein standard (Sigma-

Aldrich). 

 

2.4. Histological processing  

After 48 h exposure, oysters (30 per experimental group = 10 per treatment × 3 replicates) were 

retrieved and their digestive gland and mantle were dissected out. The digestive gland was halved. 

One half and the mantle tissue were fixed in Davidson's fixative for 24 h and embedded in paraffin. 

Paraffin sections (5 μm thick) were obtained using a Leitz 1512 rotary microtome (Ernest 

LeitzWetzlar GmbH, Austria) and stained with haematoxylin-eosin (H/E). The second half of 

digestive gland was frozen in liquid nitrogen and stored at −80 °C until cryosectioning. Later, 

cryotome sections (8 μm) were obtained in a Leica CM3000 cryotome (Ernest Leitz Wetzlar 

GmbH, Austria) with a cabinet temperature of −24 °C. Sections were collected onto warm 

glass slides and stored at −40 °C until required for staining. 

 

2.5. Quantitative microscopy of digestive cell lysosomes 
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Cryotome sections (1 per oyster; 10 oysters per experimental group) were stained for the 

histochemical demonstration of β-glucuronidase activity, neutral lipids and lipofuscins. 

The histochemical demonstration of β-glucuronidase activity (incubation for 20 min) was used in 

order to visualise digestive cell lysosomes (Izagirre and Marigómez, 2009). Aided by an image 

analysis system attached to a light microscope (100× objective lens) 5 measurements were made 

per section and the following stereological parameters were calculated (Lowe et al., 1981): 

lysosomal volume density (VvDCL = VL/VC), surface density (SvDCL = SL/VC), surface-to-volume 

ratio (inverse to size) (S/VDCL = SL/VL) and numerical density (NvDCL=NL/VC);where V=volume, 

S=surface, N=number, L=lysosomes, and C=digestive gland cytoplasm. A correction factor for 

particles with an average diameter smaller than the section thickness was applied. 

Neutral lipids were detected by using Lillie and Ashburn's Oil Red O (ORO) staining method 

(Culling, 1974). Counts were made in 5 fields selected within a given section using a drawing-

tube attached to a Nikon Optiphot light microscope (40× objective; ∼400× final magnification). 

A Weibel graticule (multipurpose test system M-168; Weibel, 1979) was used, and hits on ORO 

vesicles and on the remaining digestive epithelium were recorded enabling the calculation of the 

volume density of intracellular neutral lipids in digestive cells (VvNL) according to Delesse's 

principle (Weibel, 1979): VvNL=VNL/VC, where VNL is the volume of neutral lipids and VC the 

volume of digestive cells (Marigómez and Baybay-Villacorta, 2003). 

The histochemical demonstration of lipofuscins was done using the Schmorl's method (Zorita et 

al., 2006). Counts were made in 5 fields selected within a given section using a drawing-tube 

attached to a Nikon Optiphot light microscope (40× objective; ∼400× final magnification). A M-

168 Weibel graticule (Weibel, 1979) was used, and hits on lipofuscins and on the remaining 

digestive epithelium were recorded enabling the calculation of the relative section area of 

lipofuscins in relation to the section area of digestive cells: AaLF=ALF/AC where ALF is the total 

section area of lipofuscins and AC the total section area of digestive cells. 
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2.6. Tissue-level biomarkers and histopathology  

Prevalence of parasites, haemocyte infiltration and general condition were systematically 

examined at the light microscope in H/E stained paraffin sections of digestive gland and scored 

(Kim et al., 2006). Structural changes in digestive gland epithelium were determined by means of 

quantitative microscopy on H/E stained paraffin sections. Mean epithelium thickness (MET), 

mean luminal radius (MLR) and mean diverticular radius (MDR) were determined by stereology 

(Garmendia et al., 2011b; Vega et al., 1989). A M-168 Weibel multipurpose test system (Weibel, 

1979) was superimposed to microscopic images (20× objective; ~200× final magnification) with 

the aid of a drawing tube attached to the microscope and hits on digestive gland epithelium (d), 

diverticular lumen (l) and interstitial connective tissue (c) were recorded. The following formulae 

were applied: MET = 2d√π/(√d + √l); MLR = √(l/π); and MDR = √((d + l)/π); MLR/MET and 

MET/MDR ratios were calculated as well (Vega et al., 1989). These parameters are indicative of 

the atrophy in the digestive epithelium and alterations in the digestive diverticula, respectively. 

Only measurements were made at 48 h since the samples for recovery time were compromised for 

procedural mistakes; same for histochemistry. 

 

2.7. Condition index 

Flesh condition index (FCI) was calculated in 30 oysters (10 oysters × 3 experimental replicates) 

per treatment, after 2 d exposure and 4wk. depuration, and expressed in mg flesh dry weight·g−1 

shell dry weight (Lobel and Wright, 1982). 

 

2.8. Integrative biological response index 

The Integrative Biological Response (IBR) index was developed in order to integrate biochemical, 

genotoxicity and histochemical biomarkers (Beliaeff and Burgeot, 2002). In the present study, 

SOD, AaLF, Vv, MLR/MET and FCI were used to calculate the IBR index after 48 h exposure for 

each experimental replicate. The five biomarkers were selected, based on the following criteria: 
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(1) At least one for each level of biological organization studied (i.e. biochemical, histological and 

physiological); and (2) if similar results were observed at the same level of biological organization 

(i.e. significant differences in treatments in comparison to Control), only one of the biomarkers 

was selected for the IBR, to avoid redundance. Biomarkers were orderly represented in the five 

axes of start plots, from the less (SOD) to the most complex (FCI) biological level (Marigómez et 

al., 2013a). The calculation method is based on relative differences between the biomarkers in 

each given data set. Thus, the IBR/n index is computed by summing-up triangular star plot areas 

(a simple multivariate graphic method) for each two neighboring biomarkers in a given data set 

(Beliaeff and Burgeot, 2002; Broeg and Lehtonen, 2006). 

 

2.9. Statistical analyses 

All values are reported as mean ± standard deviation (SD). Statistical analysis was carried out with 

STATISTICA 7.0. Values were tested for normality (Shapiro test) and homogeneity of variances 

(Bartlett's test). In some cases ([TPH]sw, enzyme activities, VvDCL and NvDCL), logarithmic 

transformations (Log10) were used to meet the underlying assumptions of normality and 

homogeneity of variances. For normal values, the following tests were carried out (Zar, 2010): 

one-way nested ANOVA was used to analyse [TPH]sw results (analytical replicate nested into 

treatments); two-way nested MANOVA to analyse enzyme activity, with treatment (C, CD,MD 

and D) and period (exposure and depuration period) as fixed factors, and analytical replicate as a 

random factor (analytical replicate was nested within each combination of treatment and period); 

one-way MANOVA to analyse lysosomal biomarkers, VvNL, AaLF and MLR/MET; two-way 

MANOVA to analyse flesh condition index results, with treatment and period as fixed factors; and 

one-way ANOVA to analyse IBR results. When the null hypothesis (H0: no difference between 

treatments or within treatment at different time intervals) was rejected, significant differences were 

tested using Tukey's HSD test. Chi-square statistics were used to test sex ratios (Zar, 2010). 

Statistical significance was determined at p < 0.05. 



13 

 

3. Results 

 

There were significant differences in [TPH]sw among experimental groups, especially at t0, with 

the highest concentration in CD, followed by MD and the lowest in C and D (Fig. 2). Further on, 

[TPH]sw decayed along the experimental time and reached identical values in CD and MD groups 

after 10 h exposure, which were only slightly higher than in C and D groups (Fig. 2). 

Mortality throughout the experimental period (48 h exposure and 4 wk. depuration) was b10%, 

which makes valid this test (Rand & Petrocelli, 1985). This percentage was constant across 

treatments. No significant effect was recorded on catecholase-type PO activity (data not shown). 

No significant effect was observed at different periods (including t0) for laccase-type PO and SOD 

in the C treatment. However, significant effects were observed between treatments on laccase-type 

PO (Fig. 3a) and SOD (Fig. 3b) activities, from 2 h to 4 wk. In CD and MD treated oysters, laccase-

type PO activity was enhanced after 10 h exposure (Fig. 3a),whilst in D treated ones only a less 

marked and transient (between hours 2 and 10) enhancement was envisaged (Fig. 3a). SOD activity 

raised promptly (within 2 h) in CD treated oysters (after 2 h exposure), but not at all in response 

to MD or D treatment (Fig. 3b). After 4 wk. depuration, all enzyme activities returned to control 

levels, but it cannot be disregarded that control levels could have been reached much sooner (Fig. 

3a and b). Time-course studies are needed in the future in order to elucidate how quick is recovery, 

which is just as important as documenting adverse impacts, commonly overlooked in many 

studies. 

No significant presence of parasites was observed in H/E stained paraffin sections of digestive 

gland. The gonad was mature in all the oysters examined and no clear difference was found among 

experimental groups. In addition, digestive cell lysosomes were tiny and their section profile area 

could not be precisely determined, therefore, SvDCL results were not consistent and were not 

included for discussion. Accordingly, S/VDCL values, which were not dissimilar between 

treatments, resulted very small (S/VDCL=6.858±0.792; N=120). Nevertheless, the digestive cells 
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of CD, MD and D treated oysters exhibited high VvDCL and high NvDCL in comparison with 

control oysters (Fig. 4a and b). Likewise, AaLF was higher in treated oysters than in controls ones, 

especially in CD treated oysters (Fig. 4c). In contrast, VvNL was markedly reduced in treated 

oysters (~60, 50 and 40% lower in CD, MD and D treatments) in comparison with controls (Fig. 

4d). Histopathological alterations including luminal swelling, epithelial thinning, a certain degree 

of digestive cell vacuolisation and haemocyte infiltration were observed in the digestive gland of 

treated oysters (data not shown), especially after CD treatment and to a lesser extent after MD and 

D treatments. This is clearly reflected in the higher MLR/MET values (Fig. 4e), and lower 

MET/MDR values (data not shown since MET/MDR values are complementary to MLR/MET 

values), indicating alterations both in the digestive epithelium and diverticula structure in treated 

oysters compared to control ones (Fig. 5). 

Shell dry-wt (44.9± 8.5 g, N=240) remained unchanged in all the treatments along the 

experimental period. Likewise, FCI was not statistically different between treatments (C, CD, MD 

and D) after 48 h exposure (ranging between 26 ± 2 and 27 ± 2 mg flesh dry weight·g-1 shell dry 

weight); however, significant differences were observed after 4 wk. depuration, with higher FCI 

values in CD (40 ± 2 mg flesh dry weight·g-1 shell dry weight) and MD (36 ± 2 mg flesh dry 

weight·g-1 shell dry weight) than in D (27 ± 2 mg flesh dry weight·g-1 shell dry weight) and C (31 

± 2 mg flesh dry weight·g-1 shell dry weight) treated oysters. 

Overall, the IBR index was significantly higher in CD, MD and D treated oysters in comparison 

to C oysters and statistically higher in CD treated oysters in comparison to MD and D treated 

oysters (Fig. 4f). 

 

4. Discussion 

 

TPH concentration in seawater in CD and MD treatments was within the range of those reported 

after oil spills (e.g., [TPH]sw=1–100mg·l-1 after the Braer oil spill, Lunel, 1995; ~202 mg·l-1 after 
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the BP/Deepwater Horizon oil spill, Sammarco et al., 2013) and was higher in CD than in MD 

seawater at t0, although identical values were reached after 10 h. Chemical dispersion promotes 

(1) partitioning of hydrocarbons from oil to water (Greer et al., 2012; Wu et al., 2012) and (2) 

formation of small crude oil droplets in the prey size spectra of suspension feeders (e.g. Almeda 

et al., 2014). Thus, both the PAH concentration and the proportion of high molecular weight PAHs 

(highly toxic) in seawater increase as a result of chemical dispersion, as well as their bioavailability 

(Lee et al., 2015; NRC, National Research Council, 2005). As a result, in comparison with the MD 

treatment, toxic hydrocarbons would be retained in seawater at the short time after CD treatment; 

this would render toxic PAHs more bioavailable for oysters (Baussant et al., 2001; Luna-Acosta 

et al., 2011). In agreement, after 48 h under the present experimental conditions, CD and MD 

treated juvenile Pacific oysters, C. gigas, exhibited higher PAH tissue concentrations (×3) after 

CD than after MD treatment (Luna-Acosta et al., 2011). Comparable results were also obtained in 

juvenile grey mullets, Liza aurata (Milinkovitch et al., 2011). Therefore, a higher sublethal toxicity 

might be expected after CD than after MD treatment, due to a higher bioavailability of PAHs from 

BAL 110, in the presence of the chemical dispersant (CD treatment), as below discussed. 

Bivalves may activate biomarker responses, such as SOD and POs, to cope with the presence of 

pollutants in the environment. These biomarkers have shown to respond on exposure to petroleum 

hydrocarbons in bivalves (Bado-Nilles et al., 2009; Luna-Acosta et al., 2011, 2015; Verlecar et al., 

2007). In the present study, no effect was observed on catecholase-type activity. However, laccase 

enzyme activity in plasma was enhanced in CD treated oysters, especially for the first 24 h of 

exposure, and to a lesser extent and more delayed in MD treated oysters. Accordingly, laccase 

gene expression was up-regulated in adult C. gigas haemocytes after 7 d exposure to the water 

soluble fraction of a light crude oil (Bado-Nilles et al., 2009). Laccase-type POs catalyse the 

oxidation of aromatics, including polycyclic aromatic hydrocarbons (PAHs; Dodor et al. 2004), 

while catecholase-type POs catalyse the oxidation of diphenols to quinones, which could explain 

differences observed in the response of both enzymes in this study. Because of laccase affinity to 
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aromatic compounds (Dodor et al., 2004), its activity induction may provide protection against 

PAHs. The more marked activation observed in laccase in CD compared to MD is seemingly 

related to the higher TPH concentration measured in seawater at the beginning of the experiment. 

Interestingly, the attenuation in the differences in laccase-type PO activity between CD and MD 

treated oysters runs in parallel with the attenuation in the differences in TPH concentration in 

seawater along the experimental time. Nevertheless, this protective mechanism seems to be 

effective in adult oysters but not necessarily in other life stages, as laccase activity was inhibited 

in juvenile oysters exposed to hydrocarbons (Luna-Acosta et al., 2011). This is not surprising 

because the resistance against pollutants and the associated protective mechanisms are known to 

vary largely between life stages in bivalves (Harrison et al., 1984). In parallel, SOD activity was 

promptly enhanced in CD treated oysters but not in MD or D treated oysters. Since SOD is an 

antioxidant enzyme known to be induced in PAH exposed bivalves (e.g. Orbea et al., 2002), the 

high SOD activity recorded in CD oysters would be in agreement with a high bioavailability of 

PAHs after CD treatment. Besides, enhancement of laccase activity can promote additional ROS 

production and thus contribute to enhance SOD activity (Winston, 1991). Therefore, CD treatment 

provoked the highest antioxidant response, which was early induced. Finally, it is worth noting 

that both laccase-type PO and SOD enzyme activities returned to control levels after 4 weeks in 

clean seawater, which indicates that these biological responses are fully reversible upon removal 

of the contaminant. Summarizing, chemical dispersion of oil slicks may have more marked effects 

on certain target enzymes of adult C. gigas than mechanical dispersion or the dispersant alone, as 

previously suggested for juvenile oysters (Luna-Acosta et al., 2011). 

A return to control levels is in agreement with previous studies carried out in other marine species 

exposed to oil (Hannam et al., 2009; Webby and Ling, 2016; Mauduit et al., 2016). Hannam et al. 

(2009) assessed the impact of dispersed oil exposure on immune endpoints in the Arctic Scallop 

Chlamys islandica, using a combination of cellular and humoral biological responses. Oil used in 

that study was the water-accomodated fraction (WAF) of North Sea crude oil. Laboratory 
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exposures of C. islandica to sub-lethal dispersed oil concentrations were conducted over 15 days, 

followed by a 7-day recovery period in clean, filtered seawater. Whilst results indicated alteration 

in the immune endpoints measured, this appeared to be reversible upon removal of the contaminant 

stress. Exposure of the European seabass (Dicentrarchus labrax) to weathered Arabian crude oil 

and dispersant (4% of Corexit EC9500A) mixture for 48 h was associated with temporarily 

impaired health (Mauduit et al., 2016), while exposure to dispersant and to oil alone did not affect 

fish health. Fish health recovery was confirmed by the absence of long-term effects (almost 1 year 

post-exposure). Webby and Ling (2016) evaluated sublethal effects of the water soluble fractions 

of physically and chemically dispersed heavy fuel oil (HFO) and the water soluble fraction of 

cryolite on the haematology of subadult or adult snapper (Chrysophrys auratus), spotted wrasse 

(Notolabrus celidotus) and red rock lobster (Jasus edwardsii). In most cases, physiological indices 

returned to control levels by the end of the 96 h exposure period after a brief disruption and there 

were no further signs of haematological disruption during a further 10 days of depuration. 

Lysosomal enlargement in molluscan digestive cells constitutes a general response to pollutants, 

which usually is accompanied by reduction in lysosome numbers (e.g. Izagirre and Marigómez, 

2009). In general, lysosomes were very small (high S/VDCL), which is in agreement with previous 

studies performed in oysters (Díez, 1996); this only allowed a limited interpretation of the obtained 

data. However, lysosomal enlargement (high VvDCL and NvDCL) was elicited in digestive cells, in 

all the treated oysters but especially in CD treated ones. These results suggest that not only oil, 

both chemically and mechanically dispersed, but also the employed dispersant exert sublethal toxic 

effects on oysters, as previously reported in other marine species (e.g. Almeda et al., 2014; 

Goodbody-Gringley et al., 2013; Mu et al., 2014; Ostroumov, 2003). Likewise, VvNL was 

markedly reduced in all the treated oysters in comparison with controls, and once again more 

markedly in CD treated oysters. 

The total lipid content in bivalves may decline with nutritional stress and increase in response to 

another stress sources or at certain moments of the reproductive cycle, e.g. with gamete ripeness 
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(Shaw et al., 2011). In this case, the use of reserves to satisfy the extra demand of energy required 

to face pollutant insult might have led to lipid consumption resulting in lower VvNL in treated than 

in control oysters. In agreement, reduced levels of intracellular lipids have been related to poor 

nutritional status or to certain moments of the gametogenic cycle (Marigómez et al., 2013b; Shaw 

et al., 2011). Lipofuscins are pigments considered as the terminal products of the lipid peroxidation 

that accumulate in lysosomes as a result of environmental insult as well as with age (Moore et al., 

2006). Presently, lipofuscins were accumulated in treated oysters, most markedly in CD treated 

oysters. These results are in agreement with previous studies that demonstrated lipofuscin 

accumulation within the digestive cells of mussels exposed to PAHs, organochlorides and metals 

(Krishnakumar et al., 1997; Marigómez et al., 2013a; Viarengo et al., 1990). 

On the other hand, subtle histopathological effects were observed in the digestive gland of treated 

oysters including luminal swelling, epithelial thinning, certain degree of digestive cell 

vacuolisation and haemocyte infiltrations, especially in CD and MD treated oysters and, to a lesser 

extent after D treatment. Similar effects have been reported in stressed bivalves (Garmendia et al., 

2011; Marigómez et al., 2013a). Accordingly, MLR/MET and MET/MDR were significantly 

different in CD in comparison with the three other experimental groups. MLR/MET was also the 

most sensitive tissue-level biomarker in mussels after the Prestige oil spill, MLR/MET reduction 

being marked from Galicia to the Basque Coast for 3 years, from2003 to 2006 (Garmendia et al., 

2011b). Overall, it seems that the effects at the histological level are not severe, which can be due 

to the short duration of the exposure. Indeed, histopathological alterations in sentinel molluscs are 

considered indicative of mid- (days to weeks) to long-term(weeks to months) effects, although the 

very first symptoms are evident within a few days (1–3), as in the present study (Garmendia et al., 

2011). It should also be noted that in the experimental design histological and histochemical 

measurements were included to determine the effects at higher biological organization levels. 

Results confirmed the effects at tissue level exerted by chemically dispersed oil even at very short 

exposure time. 
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Higher FCI was recorded after 4 wk. depuration in CD and MD treated oysters in comparison with 

control oysters. FCI is known to decrease or remain unchanged in oil exposed bivalves (Brooks et 

al., 2011; Van Scoy et al., 2010). Other authors (e.g. Duquesne et al., 2004), have observed 

increase in FCI in bivalves exposed to pollutants, such as heavy metals, and have attributed it to 

hormesis, which is a cumulative consequence of an adaptive response common to biological 

systems (Stebbing, 1998). However, oil exposure may produce spawning arrest and lead to 

increase FCI (Baussant et al., 2011; Marigómez et al., 2013b),which is not unlikely to have 

happened in CD and to a lesser extent MD treatments. 

Overall, IBR/n index was higher in exposed oysters than in the other treatments. In mussels and 

clams, IBR index provides indication of environmental stress caused by pollution, even in the 

presence of mixtures of chemicals present at concentrations below or nearby their detection limits 

(Beliaeff and Burgeot, 2002; Broeg and Lehtonen, 2006; Marigómez et al., 2013a). It seems that 

chemical dispersion of oil slicks may have more noxious effects in the Pacific oyster, C. gigas than 

mechanical dispersion. Recent studies have also revealed that chemical dispersants enhance 

bioaccumulation and/or effects of oil in marine planktonic copepods (Almeda et al., 2014), fish 

(Mu et al., 2014) and roundworm (Bolt, 2014). 

Other authors have also found long-term effects following chemical or mechanical dispersion (e.g. 

Vignier et al., 2015; Frantzen et al., 2016; for review, see Beyer et al., 2016). Vignier et al. (2015) 

found that the exposure of oyster gametes and embryos to oil preparations (crude oil obtained from 

the Deepwater Horizon oil spill) and dispersant (Corexit 9500A) impaired fertilization success, 

the normal development of embryos to the larval stage, and the growth of the resulting larvae. It 

also induced larval death, with dispersed oil and dispersant alone producing the highest impact. 

These results suggest that oil spills and employing dispersants to disperse oil at the time of the 

oyster spawning season could affect oyster recruitment and, ultimately, oyster resources in affected 

regions. Frantzen et al. 2016 did not found marked differences in sub-lethal short- or long-term 

responses between corresponding chemically and mechanically dispersed oil treatments in 
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Icelandic scallops C. islandica, using naphthenic crude oil (Troll) from the North Sea and the Dasic 

NS dispersant. However, the authors observed a concentration dependent increase in cumulative 

post-exposure mortality, suggesting long-term effects of chemically and mechanically dispersed 

oil in these bivalves. Moreover, according to the review of Beyer et al. (2016), the use of oil 

dispersing agents in offshore waters during the Deepwater Horizon oil spill enhanced the bacterial 

degradation of oil, but also increased the bioavailability (and hence ecotoxicity impact) of the oil 

in certain offshore habitats. 

In conclusion, the present results suggest that chemically-dispersed oil exerts more remarkable 

sublethal effects in oysters in comparison to mechanically-dispersed oil and that dispersant 

provokes some sublethal toxicity, at least transiently; as reported for other biological effects 

endpoints and in other marine animals (Almeda et al., 2014; Baussant et al., 2011; Goodbody-

Gringley et al., 2013; Ostroumov, 2003) and in oyster early life stages (Luna-Acosta et al., 2011). 

These results suggest also that if the chemical dispersant of the series type FINASOL® is used to 

respond to an oil spill, long-term effects are not expected in oysters. However, based on results of 

FCI after 4 wk. of depuration in the present study, and on results on mortality, early development 

and fertilization in other studies (Vignier et al., 2015; Frantzen et al., 2016; for review, see Beyer 

et al., 2016), the effects of chemically and mechanically dispersed oil on growth, survival and 

reproductive development cannot be fully discharged. Therefore, further researches in C. gigas 

and in other bivalve species are needed to strengthen the knowledge base required to establish 

recommendations and potential long-term effects of using chemical dispersants in coasts and 

estuaries. 
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Figure 1. The following treatments were carried out: C: control, with non-contaminated seawater; 

CD: chemical dispersion, made by pouring 20 g of BAL 110 (67 ppm) and 1.2 g of chemical 

dispersant (4 ppm) into the funnel of the homogenization system; MD: mechanical dispersion, 

made by pouring 20 g of BAL 110 (67 ppm) into the funnel; D: chemical dispersant (D), by pouring 

1.2 g of chemical dispersant into the funnel. The homogenization system constituted of a funnel 

(a) linked to a water pump (b) in a 300 l seawater tank.→: Direction of seawater and/or 

contaminant movement through the experimental system. In a first step, chemicals were poured 

into the tanks. Once chemicals were completely homogenized in the tanks, oysters were introduced 

into the tanks for 48 h. Further on, oysters were depurated in non-contaminated seawater for 4 wk. 

Three replicates of the whole experimental set upwere carried out in parallel (× 3). 
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Figure 2. Total petroleum hydrocarbon concentration in seawater ([TPH]sw) during the 48 h 

exposure period. Mean ± standard error (N = 9). C: control; CD: chemical dispersion; MD: 

mechanical dispersion; D: dispersant. Superscript letters indicate significant (p < 0.05) differences 

between treatments at each experimental time. 
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Figure 3. Biomarkers (mean ± standard error; N = 9) determined in plasma of C. gigas on exposure 

at different exposure times to chemically (CD) and mechanically dispersed oil (MD) and to 

dispersant (D), as well as non exposed control oysters (C). a. Laccase-type phenoloxidase (PO) 

activity; b. Superoxide dismutase (SOD) activity. Superscript letters indicate significant (p < 0.05) 

differences between treatments at each experimental time.
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Figure 4. (a–e) Biomarkers (mean±standard error; N=30) determined in the digestive gland of C. 

gigas on exposure for 48 h to chemically (CD) and mechanically dispersed oil (MD) and to 

dispersant (D), as well as non exposed control oysters (C): (a) Lysosomal volume density (VvDCL); 

(b) Lysosomal numerical density (NvDCL); (c) Volume density of intracellular neutral lipids 

(VvNL); (d) Relative section area of lipofuscins in relation the section area of the digestive cells 

(AaLF); and (e) Mean luminal radius mean epithelium thickness radius (MLR/MET). (f) IBR/n 

index (mean ± standard error; N = 12; 4 experimental groups × 3 replicates). Superscript letters 

indicate significant (p < 0.05) differences between treatments at each experimental time. 
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Figure 5. Histological sections (5 μm; H/E) of the digestive gland of C. gigas: (a) control; (b) CD 

treatment. Note the swelling of the lumen and the epithelial thinning in the CD treated oyster in 

comparison with the control one. Scale bar: 100 μm; ICT: interstitial connective tissue; E: 

epithelium; L: lumen. 
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